JPH0331666A - Heat pump type air conditioner - Google Patents
Heat pump type air conditionerInfo
- Publication number
- JPH0331666A JPH0331666A JP16590689A JP16590689A JPH0331666A JP H0331666 A JPH0331666 A JP H0331666A JP 16590689 A JP16590689 A JP 16590689A JP 16590689 A JP16590689 A JP 16590689A JP H0331666 A JPH0331666 A JP H0331666A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- compressor
- bypass circuit
- way valve
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 110
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 58
- 238000005338 heat storage Methods 0.000 claims description 92
- 239000011232 storage material Substances 0.000 claims description 32
- 238000010257 thawing Methods 0.000 abstract description 102
- 238000000034 method Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract 1
- 238000005057 refrigeration Methods 0.000 description 21
- 238000010438 heat treatment Methods 0.000 description 19
- 239000007789 gas Substances 0.000 description 18
- 238000010586 diagram Methods 0.000 description 13
- 239000002918 waste heat Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/52—Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、蓄熱を利用したヒートポンプ式空気調和機に
関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat pump type air conditioner that utilizes heat storage.
従来の技術
従来、空気熱源ヒートポンプ式空気調和機の室外熱交換
器の除霜方法は、大半が四方弁を切換えて冷房サイクル
とし、室外熱交換器をawI器、室内熱交換器を蒸発器
とする逆サイクル除霜方式で、この時コールドドラフト
防止のために室内ファンを停止していた。この方式では
、基本的に冷凍サイクル中の冷媒循環量が少なく圧縮機
の電気入力の増大がそれほど期待できないので、除霜時
間が長くなること、並びに除霜中の数分間は室内ファン
が停止するので暖房感が欠如し快適性が損なわれること
、さらに除霜運転終了後、四方弁を切換えて暖房運転に
復帰してからち室内熱交換器の温度が上昇するまでに時
間を要するなど使用者からすれば満足できるものではな
かった。Conventional technology Conventionally, most defrosting methods for outdoor heat exchangers in air source heat pump air conditioners have been to switch a four-way valve to create a cooling cycle, with the outdoor heat exchanger being an AWI device and the indoor heat exchanger being an evaporator. At this time, the indoor fan was stopped to prevent cold drafts. With this method, the amount of refrigerant circulated during the refrigeration cycle is basically small and the electrical input to the compressor cannot be expected to increase much, so the defrosting time becomes longer and the indoor fan stops for several minutes during defrosting. This results in a lack of heating sensation, which impairs comfort.Furthermore, it takes time for the temperature of the indoor heat exchanger to rise after switching the four-way valve and returning to heating operation after the defrosting operation is completed, causing problems for the user. From that point of view, it was not satisfactory.
近年、このような欠点を有する逆サイクル除霜方式にか
わって圧縮機周囲に蓄熱材を充填した蓄熱槽を設け、暖
房中に圧縮機廃熱をこの蓄熱槽に蓄え、除霜時にこの熱
を利用する除霜方式が提案されている(例えば特開昭6
3−169457号公報)。In recent years, instead of the reverse cycle defrosting system which has such drawbacks, a heat storage tank filled with heat storage material has been installed around the compressor, and compressor waste heat is stored in this heat storage tank during heating, and this heat is used during defrosting. Defrosting methods have been proposed (for example, in JP-A No. 6
3-169457).
以下、図面を参照しながら上記従来のヒートポンプ式空
気調和機について説明する。The conventional heat pump air conditioner will be described below with reference to the drawings.
第8図は従来のヒートポンプ式空気調和機における冷凍
サイクル図である。FIG. 8 is a refrigeration cycle diagram in a conventional heat pump type air conditioner.
同図において1は圧縮機、2は四方弁、3は室内熱交換
器、4はキャピラリチューブ、5は室外熱交換器である
。また、25はキャピラリチューブ4をバイパスするバ
イパス回路であり、このバイパス回路25には二方弁2
6、逆止弁27、熱交換器9が備えられている。また、
10は蓄熱槽で、この蓄熱槽lOは圧縮機lの周囲に熱
交換可能なように接触されて配設され内部に潜熱蓄熱材
(NaCHsC00・3H,0)11が充填されており
、この蓄熱材11と熱交換可能なように前記熱交換器9
が配設されている。そして、さらにその周囲を断熱材2
8で囲んでいる。この冷凍サイクルにおいて、暖房運転
時には二方弁26は閉の状態であり、圧縮機1から吐出
された冷媒は、四方弁2、室内熱交換器3、キャピラリ
チューブ4、室外熱交換器5、四方弁2と流れ、圧縮機
1に吸入される。この時、前述の構造により、従来は圧
縮機1から外気へ放熱されていた熱を蓄熱槽10に蓄え
ることが可能である。In the figure, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a capillary tube, and 5 is an outdoor heat exchanger. Further, 25 is a bypass circuit that bypasses the capillary tube 4, and this bypass circuit 25 includes a two-way valve 2.
6, a check valve 27, and a heat exchanger 9 are provided. Also,
Reference numeral 10 denotes a heat storage tank, and this heat storage tank lO is arranged around the compressor l so as to be able to exchange heat, and is filled with a latent heat storage material (NaCHsC00.3H,0) 11. The heat exchanger 9 is configured to be able to exchange heat with the material 11.
is installed. Then, surround it with insulation material 2.
It is surrounded by 8. In this refrigeration cycle, the two-way valve 26 is closed during heating operation, and the refrigerant discharged from the compressor 1 is transferred to the four-way valve 2, the indoor heat exchanger 3, the capillary tube 4, the outdoor heat exchanger 5, and the four-way valve 26. It flows through valve 2 and is sucked into compressor 1. At this time, with the above-described structure, it is possible to store heat, which was conventionally radiated from the compressor 1 to the outside air, in the heat storage tank 10.
次に、除霜運転時は二方弁26を開とする。これにより
、圧縮機1から吐出された冷媒は、四方弁2、室内熱交
換器3へと流れ、暖房に利用された後わずかの冷媒はキ
ャピラリチューブ4を通って室外熱交換器5へと流れ、
残りの大部分の冷媒はバイパス回路25へ流入し、二方
弁26を通って熱交換器9へと流れて蓄熱材11より熱
を奪い、逆止弁27を通った後キャピラリチューブ4を
通過した冷媒と合流して室外熱交換器5へと流れる。そ
して、ここで冷媒が持つ熱を利用して除霜を行い、さら
に四方弁2を通過して圧縮機1に吸入される。Next, the two-way valve 26 is opened during defrosting operation. As a result, the refrigerant discharged from the compressor 1 flows to the four-way valve 2 and the indoor heat exchanger 3, and after being used for heating, a small amount of refrigerant flows through the capillary tube 4 to the outdoor heat exchanger 5. ,
Most of the remaining refrigerant flows into the bypass circuit 25, passes through the two-way valve 26, flows to the heat exchanger 9, removes heat from the heat storage material 11, passes through the check valve 27, and then passes through the capillary tube 4. The refrigerant flows into the outdoor heat exchanger 5. Here, the refrigerant defrosts using the heat it has, and then passes through the four-way valve 2 and is sucked into the compressor 1.
このように、従来圧縮機から外気へ放熱していた熱を回
収して除霜に利用することができるのでエネルギ効率を
高めることができ、また高い暖房能力を保ちながら除霜
を行うことができる。In this way, the heat that was conventionally radiated from the compressor to the outside air can be recovered and used for defrosting, increasing energy efficiency and defrosting while maintaining high heating capacity. .
発明が解決しようとする課題
しかしながら、上記従来のヒートポンプ式空気調和機に
は以下のような課題があった。Problems to be Solved by the Invention However, the above-mentioned conventional heat pump type air conditioner had the following problems.
すなわち、除霜時に大部分の冷媒は室内熱交換器3より
バイパス回路25へと流れ、蓄熱槽IO内の熱交換器9
にて蓄熱材11より熱を奪って高温の過熱ガスとなるの
で熱交換器9内での圧力損失が大きくなる。また、室内
機と室外機とを分離して設置し、接続配管で接続するい
わゆるセパレートタイプのヒートポンプ式空気調和機の
場合は、室内熱交換器3とキャピラリチューブ4とを結
ぶ接続配管での圧力損失も加わり、室外熱交換器5の入
口での冷媒圧力が低くなるため霜と冷媒の温度差が小さ
くなり、除霜能力があまり大きくなかった。That is, during defrosting, most of the refrigerant flows from the indoor heat exchanger 3 to the bypass circuit 25, and is transferred to the heat exchanger 9 in the heat storage tank IO.
Since the gas absorbs heat from the heat storage material 11 and becomes a high-temperature superheated gas, the pressure loss within the heat exchanger 9 increases. In addition, in the case of a so-called separate type heat pump air conditioner in which the indoor unit and outdoor unit are installed separately and connected by connecting piping, the pressure in the connecting piping that connects the indoor heat exchanger 3 and the capillary tube 4 In addition to the loss, the refrigerant pressure at the inlet of the outdoor heat exchanger 5 became low, so the temperature difference between the frost and the refrigerant became small, and the defrosting ability was not very large.
したがって、高い暖房能力を保ちながら除霜を行うこと
はできるが、除霜時間を短縮するのは困難であった。特
に、蓄熱槽にあまり蓄熱されていない状態で除霜を行う
場合や着霜量が多くて除霜途中で蓄熱された熱を使いき
ってしまった場合などは、完全に除霜することができな
いおそれがあった。Therefore, although defrosting can be performed while maintaining high heating capacity, it is difficult to shorten the defrosting time. In particular, when defrosting is performed when there is not much heat stored in the heat storage tank, or when there is a large amount of frost and the stored heat is used up during defrosting, complete defrosting may not be possible. There was a risk.
また除霜時には、冷媒は室外熱交換器5の入口で高温の
過熱ガスとなるので室外熱交換器5を通過する際の圧力
損失も大きく、これも除霜能力を低下させる原因となっ
ていた。Furthermore, during defrosting, the refrigerant becomes a high-temperature superheated gas at the inlet of the outdoor heat exchanger 5, so there is a large pressure loss when passing through the outdoor heat exchanger 5, which also causes a reduction in defrosting performance. .
本発明は上記課題に鑑み、蓄熱を利用した簡単な構成の
冷凍サイクルで、橿めて短時間に除霜を終えることで暖
房区間及び除霜区間を含めた積算の暖房能力(以下、積
算暖房能力と称す)を高めることを目的としている。In view of the above problems, the present invention uses a refrigeration cycle with a simple configuration that utilizes heat storage to finish defrosting in a short time. The purpose is to improve the ability of the students.
また本発明は、蓄熱槽にあまり蓄熱されていない状態で
除霜を行う場合や、着霜量が多くて除霜途中で蓄熱され
た熱を使いきってしまった場合でも、完全に除霜するこ
とができることを目的としている。In addition, the present invention can completely defrost even when defrosting is performed when there is not much heat stored in the heat storage tank, or when the amount of frost is large and the stored heat is used up during defrosting. The aim is to be able to do so.
11題を解決するための手段
上記課題を解決するために本発明のヒートポンプ式空気
調和機は、圧縮機、四方弁、室内熱交換器、減圧器、室
外熱交換器等を連結して冷媒回路を構成し、内部に蓄熱
材を充填した蓄熱槽を前記圧縮機の周囲に前記圧縮機と
熱交換的に配設し、前記減圧器をバイパスする第1バイ
パス回路及び前記圧縮機の吐出側から前記四方弁を介し
て前記室内熱交換器へ至る配管に一端を接続し他端を前
記室外熱交換器から前記四方弁を介して前記圧縮機の吸
入側へ至る配管に接続した第2バイパス回路を設け、前
記第1バイパス回路と前記減圧器との冷媒流路を切換可
能とするか若しくは前記第1バイパス回路の冷媒流路を
開閉可能とし、かつ前記第2バイパス回路の冷媒流路を
開閉可能とする流路制御手段を有し、前記第1バイパス
回路と前記蓄熱槽を熱交換的に接続したものである。Means for Solving 11 Problems In order to solve the above problems, the heat pump type air conditioner of the present invention has a refrigerant circuit that connects a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, an outdoor heat exchanger, etc. , a heat storage tank filled with a heat storage material therein is disposed around the compressor in a heat exchange manner with the compressor, and a first bypass circuit bypasses the pressure reducer and a discharge side of the compressor. a second bypass circuit having one end connected to a pipe leading to the indoor heat exchanger via the four-way valve and the other end connected to a pipe leading from the outdoor heat exchanger to the suction side of the compressor via the four-way valve; The refrigerant flow path between the first bypass circuit and the pressure reducer can be switched, or the refrigerant flow path of the first bypass circuit can be opened and closed, and the refrigerant flow path of the second bypass circuit can be opened and closed. The first bypass circuit and the heat storage tank are connected in a heat exchange manner.
また本発明の他のヒートポンプ式空気調和機は、圧縮機
、四方弁、室内熱交換器、減圧器、室外熱交換器等を連
結して冷媒回路を構成し、内部に蓄熱材を充填した蓄熱
槽を前記圧縮機の周囲に前記圧縮機と熱交換的に配設し
、前記室内熱交換器から前記減圧器に至る配管に一端を
接続し、他端を前記減圧器から前記室外熱交換器に至る
配管と前記室外熱交換器から前記四方弁を介して前記圧
縮機の吸入側に至る配管とに分岐して接続した第3バイ
パス回路を設け、前記第3バイパス回路と前記減圧器と
の冷媒流路を切換可能とするか若しくは前記第3バイパ
ス回路の冷媒流路を開閉可能とする波路制御手段を有し
、前記第3バイパス回路と前記蓄熱槽を熱交換的に接続
したものである。In addition, another heat pump type air conditioner of the present invention has a refrigerant circuit configured by connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, an outdoor heat exchanger, etc., and a heat storage medium filled with a heat storage material. A tank is arranged around the compressor for heat exchange with the compressor, one end is connected to a pipe leading from the indoor heat exchanger to the pressure reducer, and the other end is connected to a pipe from the pressure reducer to the outdoor heat exchanger. A third bypass circuit is provided which is branched and connected to a pipe leading to the outdoor heat exchanger and a pipe leading to the suction side of the compressor via the four-way valve, and the third bypass circuit and the pressure reducer are connected to each other. The third bypass circuit and the heat storage tank are connected in a heat exchange manner, and have a wave path control means that enables switching of the refrigerant flow path or opening and closing of the refrigerant flow path of the third bypass circuit. .
また本発明の他のヒートポンプ式空気調和機は、圧縮機
、四方弁、室内熱交換器、減圧器、室外熱交換器等を連
結して冷媒回路を構成し、内部に蓄熱材を充填した蓄熱
槽を前記圧縮機の周囲に前記圧縮機と熱交換的に配設し
、前記減圧器をバイパスする第1バイパス回路及び前記
圧縮機の吐出側から前記四方弁を介して前記室内熱交換
器へ至る配管に一端を接続し他端を前記減圧器から前記
室外熱交換器へ至る配管に接続した第4バイパス回路を
設け、前記第1バイパス回路と前記減圧器との冷媒流路
を切換可能とするか若しくは前記第1バイパス回路の冷
媒流路を開閉可能とし、かつ前記第4バイパス回路の冷
媒流路を開閉可能とする流路制御手段を有し、前記第1
バイパス回路と前記蓄熱槽を熱交換的に接続したもので
ある。In addition, another heat pump type air conditioner of the present invention has a refrigerant circuit configured by connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, an outdoor heat exchanger, etc., and a heat storage medium filled with a heat storage material. A tank is arranged around the compressor in a heat exchange manner with the compressor, and a first bypass circuit bypasses the pressure reducer and a discharge side of the compressor is connected to the indoor heat exchanger via the four-way valve. A fourth bypass circuit is provided, one end of which is connected to a pipe leading from the pressure reducer to the outdoor heat exchanger, and the other end is connected to a pipe leading from the pressure reducer to the outdoor heat exchanger, and the refrigerant flow path between the first bypass circuit and the pressure reducer can be switched. or a flow path control means for opening and closing the refrigerant flow path of the first bypass circuit and for opening and closing the refrigerant flow path of the fourth bypass circuit;
The bypass circuit and the heat storage tank are connected for heat exchange.
また本発明の他のヒートポンプ式空気調和機は、圧縮機
、四方弁、室内熱交換器、減圧器、室外熱交換器等を連
結して冷媒回路を構成し、内部に蓄熱材を充填した蓄熱
槽を前記圧縮機の周囲に前記圧縮機と熱交換的に配設し
、前記圧縮機の吐出側から前記四方弁を介して前記室内
熱交換器へ至る配管に一端を接続し他端を前記減圧器か
ら前記室外熱交換器へ至る配管に接続した第4バイパス
回路を設け、前記第4バイパス回路の冷媒流路を開閉可
能とする波路制御手段を有し、前記第4バイパス回路と
前記蓄熱槽を熱交換的に接続したものである。In addition, another heat pump type air conditioner of the present invention has a refrigerant circuit configured by connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, an outdoor heat exchanger, etc., and a heat storage medium filled with a heat storage material. A tank is disposed around the compressor for heat exchange with the compressor, one end is connected to a pipe leading from the discharge side of the compressor to the indoor heat exchanger via the four-way valve, and the other end is connected to the pipe connected to the indoor heat exchanger. A fourth bypass circuit connected to piping from the pressure reducer to the outdoor heat exchanger is provided, and has wave path control means for opening and closing the refrigerant flow path of the fourth bypass circuit, and the fourth bypass circuit and the heat storage Tanks are connected for heat exchange.
また本発明の他のヒートポンプ式空気調和機は、圧縮機
、四方弁、室内熱交換器、減圧器、室外熱交換器等を連
結して冷媒回路を構成し、内部に蓄熱材を充填した蓄熱
槽を前記圧縮機の周囲に前記圧縮機と熱交換的に配設し
、前記圧縮機の吐出側から前記四方弁を介して前記室内
熱交換器へ至る配管に一端を接続し他端を前記減圧器か
ら前記室外熱交換器へ至る配管と前記室外熱交換器がら
前記四方弁を介して前記圧縮機吸入側に至る配管とに分
岐して接続した第5バイパス回路を設け、前記第5バイ
パス回路の冷媒流路を開閉可能とする流路制御手段を有
し、前記第5バイパス回路と前記蓄熱槽を熱交換的に接
続したものである。In addition, another heat pump type air conditioner of the present invention has a refrigerant circuit configured by connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, an outdoor heat exchanger, etc., and a heat storage medium filled with a heat storage material. A tank is disposed around the compressor for heat exchange with the compressor, one end is connected to a pipe leading from the discharge side of the compressor to the indoor heat exchanger via the four-way valve, and the other end is connected to the pipe connected to the indoor heat exchanger. A fifth bypass circuit is provided that is branched and connected to a pipe leading from the pressure reducer to the outdoor heat exchanger and a pipe leading from the outdoor heat exchanger to the suction side of the compressor via the four-way valve, and The fifth bypass circuit and the heat storage tank are connected in a heat exchange manner, including a flow path control means for opening and closing a refrigerant flow path of the circuit.
また本発明の他のヒートポンプ式空気調和機は、圧縮機
、四方弁、室内熱交換器、減圧器、室外熱交換器等を連
結して冷媒回路を構成し、内部に蓄熱材を充填した蓄熱
槽を前記圧縮機の周囲に前記圧縮機と熱交換的に配設し
、前記室内熱交換器がら前記減圧器へ至る配管若しくは
前記減圧器から前記室外熱交換器へ至る配管に一端を接
続し、他端を前記室内熱交換器から前記四方弁を介して
前記圧縮機吸入側へ至る配管に接続した第6バイバス回
路を設け、前記第6バイパス回路の冷媒流路を開閉可能
とする流路制御手段を有し、前記第6範
バイパス回路と前金蓄熱槽を熱交換的に接続したもので
ある。In addition, another heat pump type air conditioner of the present invention has a refrigerant circuit configured by connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, an outdoor heat exchanger, etc., and a heat storage medium filled with a heat storage material. A tank is arranged around the compressor for heat exchange with the compressor, and one end is connected to a pipe leading from the indoor heat exchanger to the pressure reducer or a pipe leading from the pressure reducer to the outdoor heat exchanger. , a sixth bypass circuit is provided whose other end is connected to piping from the indoor heat exchanger to the suction side of the compressor via the four-way valve, and the refrigerant flow path of the sixth bypass circuit can be opened and closed. It has a control means, and connects the sixth range bypass circuit and the front metal heat storage tank in a heat exchange manner.
作用 本発明は上記手段により、次のような作用を有する。action The present invention has the following effects through the above means.
すなわち、内部に蓄熱材を充填した蓄熱槽を圧縮機の周
囲に圧縮機と熱交換的に配設し、減圧器をバイパスする
第1バイパス回路及び圧縮機の吐出側から四方弁を介し
て室内熱交換器へ至る配管に一端を接続し他端を室外熱
交換器から四方弁を介して圧縮機の吸入側へ至る配番協
続した第2バイパス回路を設け、第1バイパス回路と蓄
熱槽を熱交換的に接続することで、除霜時に室外熱交換
器に流入する冷媒の圧力を従来より高く保つことができ
るので除霜能力を高め、極めて短時間に除霜を終えるこ
とができる。In other words, a heat storage tank filled with a heat storage material inside is arranged around the compressor for heat exchange with the compressor, and a first bypass circuit that bypasses the pressure reducer and a four-way valve are connected to the indoor air from the discharge side of the compressor. A second bypass circuit is provided in which one end is connected to the piping leading to the heat exchanger and the other end is connected to the outdoor heat exchanger via a four-way valve to the suction side of the compressor, and the first bypass circuit and the heat storage tank are connected. By connecting them for heat exchange, the pressure of the refrigerant flowing into the outdoor heat exchanger during defrosting can be kept higher than before, increasing the defrosting ability and completing defrosting in an extremely short time.
また、室内熱交換器から減圧器に至る配管に−端を接続
し、他端を減圧器から室外熱交換器に至る配管と室外熱
交換器から四方弁を介して圧縮機の吸入側に至る配管と
に分岐して接続した第3バイパス回路を設け、第3バイ
パス回路と蓄熱槽を熱交換的に接続することで、除霜時
に室外熱交換器を通過する冷媒の圧力損失を小さくする
ことができるので除霜能力を高め、極めて短時間に除霜
を終えることができる。In addition, the - end is connected to the piping from the indoor heat exchanger to the pressure reducer, and the other end is connected to the piping from the pressure reducer to the outdoor heat exchanger and from the outdoor heat exchanger to the suction side of the compressor via the four-way valve. By providing a third bypass circuit branched and connected to the piping and connecting the third bypass circuit and the heat storage tank for heat exchange, the pressure loss of the refrigerant passing through the outdoor heat exchanger during defrosting is reduced. This increases the defrosting ability and allows defrosting to be completed in an extremely short time.
また、減圧器をバイパスする第1バイパス回路および圧
縮機の吐出側から四方弁を介して室内熱交換器へ至る配
管に一端を接続し他端を減圧器から室外熱交換器へ至る
配管に接続した第4バイパス回路を設け、第1バイパス
回路と蓄熱槽を熱交換的に接続することで、除霜時に圧
縮機から吐出されたホットガスを室外熱交換器に導き、
かつ室外熱交換器に流入する冷媒の圧力を従来より高く
保つことができるので除霜能力を高め、橿めて短時間に
除霜を終えることができる。In addition, one end is connected to the first bypass circuit that bypasses the pressure reducer and piping from the discharge side of the compressor to the indoor heat exchanger via a four-way valve, and the other end is connected to the piping from the pressure reducer to the outdoor heat exchanger. By providing a fourth bypass circuit and connecting the first bypass circuit and the heat storage tank in a heat exchange manner, hot gas discharged from the compressor during defrosting is guided to the outdoor heat exchanger.
In addition, since the pressure of the refrigerant flowing into the outdoor heat exchanger can be maintained higher than before, the defrosting ability can be increased and defrosting can be completed in a short time.
また、圧縮機の吐出J四方弁を介して室内熱交換器へ至
る配管に一端を接続し他端を減圧器から室外熱交換器へ
至る配管に接続した第4バイパス回路を設け、第4バイ
パス回路と蓄熱槽を熱交換的に接続することで、除霜時
に圧縮機から吐出されたホットガスを蓄熱槽を介して室
外熱交換器に導くので、常に高温のホットガスを室外熱
交換器に流入させることができ、かつ室外熱交換器に流
入する冷媒の圧力を従来より高く保つことができるので
除霜能力を高め、掻めて短時間に除霜を終えることがで
きる。In addition, a fourth bypass circuit is provided in which one end is connected to the pipe leading to the indoor heat exchanger via the compressor discharge J four-way valve, and the other end is connected to the pipe leading from the pressure reducer to the outdoor heat exchanger. By connecting the circuit and the heat storage tank in a heat exchange manner, hot gas discharged from the compressor during defrosting is guided to the outdoor heat exchanger via the heat storage tank, so hot gas that is always at high temperature is sent to the outdoor heat exchanger. Since the pressure of the refrigerant flowing into the outdoor heat exchanger can be kept higher than before, the defrosting ability can be increased and defrosting can be completed in a short time.
また、圧縮機の吐出側から四方弁を介して室内熱交換器
へ至る配管に一端を接続し他端を減圧器から室外熱交換
器へ至る配管と室外熱交換器から四方弁を介して圧縮機
吸入側に至る配管とに分岐して接続した第5バイパス回
路を設け、第5バイパス回路と蓄熱槽を熱交換的に接続
することで、除霜時に圧縮機から吐出されたホットガス
を蓄熱槽を介して室外熱交換器に導(ので、常に高温の
ホットガスを室外熱交換器に流入させることができ、か
つ室外熱交換器に流入する冷媒の圧力を従来より高く保
ち、また室外熱交換器を通過する冷媒の圧力損失も小さ
くすることができるので除霜能力を高め、極めて短時間
に除霜を終えることができる。In addition, one end is connected to the piping from the discharge side of the compressor to the indoor heat exchanger via a four-way valve, and the other end is connected to the piping from the pressure reducer to the outdoor heat exchanger and from the outdoor heat exchanger to the compressor via the four-way valve. By providing a fifth bypass circuit that branches off and connects to the piping leading to the machine suction side, and by connecting the fifth bypass circuit and the heat storage tank in a heat exchange manner, the hot gas discharged from the compressor during defrosting can be stored as heat. This allows hot gas at a constant temperature to flow into the outdoor heat exchanger, and also keeps the pressure of the refrigerant flowing into the outdoor heat exchanger higher than before. Since the pressure loss of the refrigerant passing through the exchanger can also be reduced, the defrosting ability can be increased and defrosting can be completed in an extremely short time.
また、室内熱交換器から減圧器へ至る配管若しくは減圧
器から室外熱交換器へ至る配管に一端を接続し、他端を
室内熱交換器から四方弁を介して圧縮機吸入側へ至る配
管に接続した第6バイパス回路を設け、第6バイパス回
路と蓄熱槽を熱交換的に接続することで、除霜時に室内
の快適性を損なわずに蓄熱された熱を短時間に取り出す
ことができるので、橿めて短時間に除霜を終えることが
できる。Also, connect one end to the piping from the indoor heat exchanger to the pressure reducer or from the pressure reducer to the outdoor heat exchanger, and connect the other end to the piping from the indoor heat exchanger to the compressor suction side via the four-way valve. By providing a connected sixth bypass circuit and connecting the sixth bypass circuit and the heat storage tank for heat exchange, the stored heat can be taken out in a short time without impairing indoor comfort during defrosting. , you can finish defrosting in a short time.
したがって、上記いずれの実施例の場合も暖房時に圧縮
機の廃熱を蓄熱しておき、除霜時にこの蓄熱した熱を利
用することで橿めて短時間に除霜を終えて再び暖房を行
うため積算暖房能力の向上を図ることができる。Therefore, in any of the above embodiments, waste heat from the compressor is stored during heating, and this stored heat is used during defrosting to finish defrosting in a short time and perform heating again. Therefore, it is possible to improve the cumulative heating capacity.
また、上記いずれの実施例の場合も、蓄熱槽にあまり蓄
熱されていない状態で除霜を行う場合や、着霜量が多く
て除霜途中で蓄熱された熱を使いきってしまった場合で
も、完全に除霜することができる。In addition, in any of the above embodiments, even when defrosting is performed when there is not much heat stored in the heat storage tank, or when the amount of frost is large and the stored heat is used up during defrosting, , can be completely defrosted.
実施例
以下、本発明の一実施例について図面を参考に説明する
。なお本実施例を説明するに当り、第8図に示す従来の
ものと同一の機能を有するものには同一の番号を付して
説明を省略する。EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. In explaining this embodiment, parts having the same functions as the conventional one shown in FIG. 8 are given the same numbers, and the explanation will be omitted.
まず、第1図と第2図により、本発明の第1の実施例に
ついて説明する。First, a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
第1図は本発明の第1の実施例における冷凍サイクル図
、第2図は第1図における圧縮機周囲の概略横断面図で
ある。同図において、6はキャピラリチューブ4をバイ
パスする第1バイパス回路であり、この第1バイパス回
路6には二方弁7、逆止弁8、熱交換器9が備えられて
いる。また、lOは蓄熱槽で、この蓄熱槽lOは圧縮機
lの周囲に熱交換可能なように接触されて配設され内部
に潜熱蓄熱材(N a CHs Coo ・3 Hg
O) 11が充填されており、この蓄熱材11と熱交換
可能なように前記熱交換器9が配設されている。また、
12は圧縮機1の吐出側から四方弁2を介して室内熱交
換器3へ至る配管に一端を接続し他端を室外熱交換器5
から四方弁2を介して圧縮機1の吸入側へ至る配管に接
続した第2バイパス回路であり、この第2バイパス回路
12には二方弁13が備えられている。FIG. 1 is a refrigeration cycle diagram in a first embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of the area around the compressor in FIG. 1. In the figure, 6 is a first bypass circuit that bypasses the capillary tube 4, and this first bypass circuit 6 is equipped with a two-way valve 7, a check valve 8, and a heat exchanger 9. In addition, 1O is a heat storage tank, and this heat storage tank 1O is arranged around the compressor 1 so as to be able to exchange heat, and contains a latent heat storage material (N a CHs Coo ・3 Hg
O) 11 is filled, and the heat exchanger 9 is arranged so as to be able to exchange heat with this heat storage material 11. Also,
12 has one end connected to a pipe leading from the discharge side of the compressor 1 to the indoor heat exchanger 3 via the four-way valve 2, and the other end connected to the outdoor heat exchanger 5.
This is a second bypass circuit connected to piping from the compressor 1 to the suction side of the compressor 1 via a four-way valve 2, and this second bypass circuit 12 is equipped with a two-way valve 13.
この冷凍サイクルにおいて、暖房運転時には二方弁7及
び二方弁13は閉の状態であり、圧縮機lから吐出され
た冷媒は、四方弁2、室内熱交換器3、キャピラリチュ
ーブ4、室外熱交換器5、四方弁2と流れ、圧縮機1に
吸入される。この時、前述の構造により、従来は圧縮機
1から外気へ放熱されていた熱を蓄熱槽10に蓄えるこ
とが可能である。In this refrigeration cycle, the two-way valve 7 and the two-way valve 13 are closed during heating operation, and the refrigerant discharged from the compressor l is transferred to the four-way valve 2, the indoor heat exchanger 3, the capillary tube 4, and the outdoor heat It flows through the exchanger 5 and the four-way valve 2, and is sucked into the compressor 1. At this time, with the above-described structure, it is possible to store heat, which was conventionally radiated from the compressor 1 to the outside air, in the heat storage tank 10.
次に、除霜運転時は二方弁7及び二方弁13を開とする
。これにより、圧縮機1から吐出された冷媒の一部は第
2バイパス回路12に流れ、残りの冷媒は、四方弁2、
室内熱交換器3へと流れ、暖房に利用された後わずかの
冷媒はキャピラリチューブ4を通って室外熱交換器5へ
と流れ、残りの大部分の冷媒は第1バイパス回路6へ流
入し、二方弁7を通って熱交換器9へと流れて蓄熱材1
1より熱を奪い、逆止弁8を通った後キャピラリチュー
ブ4を通過した冷媒と合流して室外熱交換器5へと流れ
る。そして、ここで冷媒が持つ熱を利用して除霜を行い
、さらに四方弁2を通過した後、第2バイパス回路12
を通過した冷媒と合流して圧縮機1に吸入される。Next, during defrosting operation, the two-way valve 7 and the two-way valve 13 are opened. As a result, a part of the refrigerant discharged from the compressor 1 flows into the second bypass circuit 12, and the remaining refrigerant flows through the four-way valve 2,
After flowing into the indoor heat exchanger 3 and being used for heating, a small amount of the refrigerant flows through the capillary tube 4 to the outdoor heat exchanger 5, and most of the remaining refrigerant flows into the first bypass circuit 6. The heat storage material 1 flows through the two-way valve 7 to the heat exchanger 9.
The refrigerant absorbs heat from the refrigerant 1, passes through the check valve 8, joins with the refrigerant that has passed through the capillary tube 4, and flows to the outdoor heat exchanger 5. Here, defrosting is performed using the heat of the refrigerant, and after passing through the four-way valve 2, the second bypass circuit 12
It joins with the refrigerant that has passed through and is sucked into the compressor 1.
このように、従来圧縮機lから外気へ放熱していた熱を
回収して除霜に利用することができるのでエネルギ効率
を高めることができ、さらに第2バイパス回路12を設
けることで、除霜時に室外熱交換器5に流入する冷媒の
圧力を従来より高く保つことができるので冷媒の飽和温
度と霜の温度との差が大きくなって除霜能力が高まり、
橿めて短時間に除霜を終えることができる。In this way, the heat that was conventionally radiated from the compressor l to the outside air can be recovered and used for defrosting, increasing energy efficiency.Furthermore, by providing the second bypass circuit 12, the defrosting Since the pressure of the refrigerant flowing into the outdoor heat exchanger 5 can be kept higher than before, the difference between the saturation temperature of the refrigerant and the frost temperature increases, increasing the defrosting ability.
You can finish defrosting in a short period of time.
また、蓄熱槽にあまり蓄熱されていない状態で除霜を行
う場合や、着霜量が多くて除霜途中で蓄熱された熱を使
いきってしまった場合でも、室外熱交換器5に流入する
冷媒の飽和温度のほうを霜の温度より高く保つことがで
きるので完全に除霜することができる。In addition, even when defrosting is performed when there is not much heat stored in the heat storage tank, or when the amount of frost is large and the stored heat is used up during defrosting, the heat flows into the outdoor heat exchanger 5. Since the saturation temperature of the refrigerant can be kept higher than the frost temperature, complete defrosting can be achieved.
次に、第3図により、本発明の第2の実施例について説
明する。Next, a second embodiment of the present invention will be described with reference to FIG.
第3図は本発明の第2の実施例における冷凍サイクル図
である。同図において、14は室内熱交換器3からキャ
ピラリチューブ4に至る配管に一端を接続し、他端をキ
ャピラリチューブ4から室外熱交換器5に至る配管と室
外熱交換器5から四方弁2を介して圧縮機1の吸入側に
至る配管とに分岐して接続した第3バイパス回路であり
、この第3バイパス回路14には二方弁15、逆止弁1
6、熱交換器9が備えられており、この熱交換器9は蓄
熱材11と熱交換可能なように配設されている。FIG. 3 is a refrigeration cycle diagram in a second embodiment of the present invention. In the figure, 14 connects one end to the piping from the indoor heat exchanger 3 to the capillary tube 4, and the other end connects the piping from the capillary tube 4 to the outdoor heat exchanger 5 and the four-way valve 2 from the outdoor heat exchanger 5. This is a third bypass circuit that is branched and connected to the piping that reaches the suction side of the compressor 1 through the
6. A heat exchanger 9 is provided, and the heat exchanger 9 is arranged so as to be able to exchange heat with the heat storage material 11.
この冷凍サイクルにおいて、除霜運転時は二方弁15を
開とする。これにより、圧縮機lから吐出された冷1は
四方弁2、室内熱交換器3へと流れ、暖房に利用された
後わずかの冷媒はキャピラリチューブ4を通って室外熱
交換器5へと流れ、残りの大部分の冷媒は第3バイパス
回路14へ流入し、二方弁15を通って熱交換器9へと
流れて蓄熱材11より熱を奪い、一部の冷媒は逆止弁1
6を通った後キャピラリチューブ4を通過した冷媒と合
流して室外熱交換器5へと流れる。そして、ここで冷媒
が持つ熱を利用して除霜を行い、さらに四方弁2を通過
した後、室外熱交換器5をバイパスした残りの冷媒と合
流して圧縮機1に吸入される。In this refrigeration cycle, the two-way valve 15 is opened during defrosting operation. As a result, the cold 1 discharged from the compressor 1 flows to the four-way valve 2 and the indoor heat exchanger 3, and after being used for heating, a small amount of refrigerant flows through the capillary tube 4 to the outdoor heat exchanger 5. Most of the remaining refrigerant flows into the third bypass circuit 14 and passes through the two-way valve 15 to the heat exchanger 9 to remove heat from the heat storage material 11.
After passing through the refrigerant 6, it joins with the refrigerant that has passed through the capillary tube 4 and flows to the outdoor heat exchanger 5. Here, defrosting is performed using the heat of the refrigerant, and after passing through the four-way valve 2, it joins with the remaining refrigerant that bypassed the outdoor heat exchanger 5 and is sucked into the compressor 1.
この実施例においては、第3バイパス回路14を設ける
ことで、室外熱交換器5を通過する冷媒の圧力損失を従
来より低く保つことができるので除霜能力が高まり、極
めて短時間に除霜を終えることができる。In this embodiment, by providing the third bypass circuit 14, the pressure loss of the refrigerant passing through the outdoor heat exchanger 5 can be kept lower than before, thereby increasing the defrosting ability and defrosting in an extremely short time. I can finish it.
次に、第4図により、本発明の第3の実施例について説
明する。Next, a third embodiment of the present invention will be described with reference to FIG.
第4図は本発明の第3の実施例における冷凍サイクル図
である。同図において、17は圧縮機の吐出側から四方
弁2を介して室内熱交換器3へ至る配管に一端を接続し
他端をキャピラリチューブ4から室外熱交換器5へ至る
配管に接続した第4バイパス回路であり、この第4バイ
パス回路17には二方弁18及び逆止弁19が備えられ
ている。FIG. 4 is a refrigeration cycle diagram in a third embodiment of the present invention. In the figure, reference numeral 17 has one end connected to the pipe leading from the discharge side of the compressor to the indoor heat exchanger 3 via the four-way valve 2, and the other end connected to the pipe leading from the capillary tube 4 to the outdoor heat exchanger 5. This fourth bypass circuit 17 is equipped with a two-way valve 18 and a check valve 19.
この冷凍サイクルにおいて、除霜運転時には二方弁7及
び二方弁18を開とする。これにより、圧縮機1から吐
出された冷媒の一部は第4バイパス回路17へと流れ、
残りの冷媒は四方弁2、室内熱交換器3へと流れ、暖房
に利用された後わずかの冷媒はキャピラリチューブ4を
通って室外熱交換器5へと流れ、残りの大部分の冷媒は
第1バイパス回路6へ流入し、二方弁7を通って熱交換
器9へと流れて蓄熱材11より熱を奪い、逆止弁8を通
った後キャピラリチューブ4を通過した冷媒と合流して
室外熱交換器5へと流れる。そして、室外熱交換器5の
入口で第4バイパス回路17を流れてきた冷媒と合流し
た後、冷媒が持つ熱を利用して除霜を行い、さらに四方
弁2を通過した後、圧縮機1に吸入される。In this refrigeration cycle, the two-way valve 7 and the two-way valve 18 are opened during defrosting operation. As a result, a part of the refrigerant discharged from the compressor 1 flows to the fourth bypass circuit 17,
The remaining refrigerant flows to the four-way valve 2 and the indoor heat exchanger 3. After being used for heating, a small amount of the refrigerant flows through the capillary tube 4 to the outdoor heat exchanger 5, and most of the remaining refrigerant flows to the outdoor heat exchanger 5. 1 flows into the bypass circuit 6, passes through the two-way valve 7, flows to the heat exchanger 9, removes heat from the heat storage material 11, passes through the check valve 8, and joins with the refrigerant that has passed through the capillary tube 4. It flows to the outdoor heat exchanger 5. After joining the refrigerant flowing through the fourth bypass circuit 17 at the entrance of the outdoor heat exchanger 5, defrosting is performed using the heat of the refrigerant, and after passing through the four-way valve 2, the compressor 1 is inhaled.
この実施例においては、第4バイパス回路17を設ける
ことで、除霜時に圧縮機1から吐出されたホットガスを
室外熱交換器5に導き、かつ室外熱交換器5に流入する
冷媒の圧力を従来より高く保つことができるので除霜能
力を高め、極めて短時間に除霜を終えることができる。In this embodiment, by providing the fourth bypass circuit 17, hot gas discharged from the compressor 1 during defrosting is guided to the outdoor heat exchanger 5, and the pressure of the refrigerant flowing into the outdoor heat exchanger 5 is controlled. Since the temperature can be maintained higher than before, the defrosting ability can be increased and defrosting can be completed in an extremely short time.
次に、第5図により、本発明の第4の実施例について説
明する。Next, a fourth embodiment of the present invention will be described with reference to FIG.
第5図は本発明の第4の実施例における冷凍サイクル図
である。同図において、17は圧縮機の吐出側から四方
弁2を介して室内熱交換器3へ至る配管に一端を接続し
他端をキャピラリチューブ4から室外熱交換器5へ至る
配管に接続した第4バイパス回路であり、この第4バイ
パス回路17には二方弁18、熱交換器9、逆止弁19
が備えられており、この熱交換器9は蓄熱材11と熱交
換可能なように配設されている。FIG. 5 is a refrigeration cycle diagram in a fourth embodiment of the present invention. In the figure, reference numeral 17 has one end connected to the pipe leading from the discharge side of the compressor to the indoor heat exchanger 3 via the four-way valve 2, and the other end connected to the pipe leading from the capillary tube 4 to the outdoor heat exchanger 5. This fourth bypass circuit 17 includes a two-way valve 18, a heat exchanger 9, and a check valve 19.
The heat exchanger 9 is arranged so as to be able to exchange heat with the heat storage material 11.
この冷凍サイクルにおいて、除霜運転時には二方弁18
を開とする。これにより、圧縮機lから吐出された冷媒
の一部は第4バイパス回路17へ流入し、二方弁18を
通って熱交換器9へと流れて蓄熱材11より熱を奪い、
逆止弁19を通った後室外熱交換器5へと流れる。残り
の冷媒は四方弁2、室内熱交換器3へと流れ、暖房に利
用された後キャピラリチューブ4を通って室外熱交換器
5へと流れ、室外熱交換器5の入口で第4バイパス回路
17を流れてきた冷媒と合流した後、冷媒が持つ熱を利
用して除霜を行い、さらに四方弁2を通過した後、圧縮
機讐に吸入される。In this refrigeration cycle, the two-way valve 18 is
Let's open. As a result, a part of the refrigerant discharged from the compressor l flows into the fourth bypass circuit 17, passes through the two-way valve 18, flows to the heat exchanger 9, and removes heat from the heat storage material 11.
After passing through the check valve 19, it flows to the outdoor heat exchanger 5. The remaining refrigerant flows to the four-way valve 2 and the indoor heat exchanger 3, and after being used for heating, it flows through the capillary tube 4 to the outdoor heat exchanger 5, and is connected to the fourth bypass circuit at the inlet of the outdoor heat exchanger 5. After joining with the refrigerant flowing through the refrigerant 17, the refrigerant defrosts using the heat of the refrigerant, and after passing through the four-way valve 2, it is sucked into the compressor.
この実施例においては、第4バイパス回路17ニ熱交換
器9を設けることで、除霜時に圧縮機1がら吐出された
ホットガスを蓄熱槽10を介して室外熱交換器5に導く
ので、常に高温のホットガスを室外熱交換器5に流入さ
せることができ、かつ室外熱交換器5に流入する冷媒の
圧力を従来より高く保つことができるので除霜能力を高
め、極めて短時間に除霜を終えることができる。In this embodiment, by providing the fourth bypass circuit 17 and the heat exchanger 9, the hot gas discharged from the compressor 1 during defrosting is guided to the outdoor heat exchanger 5 via the heat storage tank 10, so that the heat exchanger 9 is always provided. High-temperature hot gas can flow into the outdoor heat exchanger 5, and the pressure of the refrigerant flowing into the outdoor heat exchanger 5 can be maintained higher than before, increasing the defrosting ability and defrosting in an extremely short time. can finish.
次に、第6図により、本発明の第5の実施例について説
明する。Next, a fifth embodiment of the present invention will be described with reference to FIG.
第6図は本発明の第5の実施例における冷凍サイクル図
である。同図において、20は圧縮機1の吐出側から四
方弁2を介して室内熱交換器3へ至る配管に一端を接続
し他端をキャピラリチューブ4から室外熱交換器5へ至
る配管と室外熱交換器5から四方弁2を介して圧縮機l
の吸入・側に至る配管とに分岐して接続した第5バイパ
ス回路であり、この第5バイパス回路20には二方弁2
1、熱交換器9、逆止弁22が備えられており、この熱
交換器9は蓄熱材11と熱交換可能なように配設されて
いる。FIG. 6 is a refrigeration cycle diagram in a fifth embodiment of the present invention. In the figure, 20 connects one end to a pipe leading from the discharge side of the compressor 1 to the indoor heat exchanger 3 via the four-way valve 2, and connects the other end to the pipe leading from the capillary tube 4 to the outdoor heat exchanger 5 and the outdoor heat exchanger 5. From the exchanger 5 to the compressor l via the four-way valve 2
The fifth bypass circuit is branched and connected to the piping leading to the suction side of the
1, a heat exchanger 9 and a check valve 22 are provided, and the heat exchanger 9 is arranged so as to be able to exchange heat with the heat storage material 11.
この冷凍サイクルにおいて、除霜運転時には二方弁21
を開とする。これにより、圧縮機lから吐出された冷媒
の一部は第5バイパス回路20へ流入し、二方弁21を
通って熱交換器9へと流れて蓄熱材11より熱を奪い、
逆止弁22を通った後、一部の冷媒は室外熱交換器5へ
と流れ、残りの冷媒は室外熱交換器5をバイパスして圧
縮機1の吸入側へ流れる。In this refrigeration cycle, the two-way valve 21 is
Let's open. As a result, a part of the refrigerant discharged from the compressor 1 flows into the fifth bypass circuit 20, passes through the two-way valve 21, flows to the heat exchanger 9, and removes heat from the heat storage material 11.
After passing through the check valve 22, a part of the refrigerant flows to the outdoor heat exchanger 5, and the remaining refrigerant bypasses the outdoor heat exchanger 5 and flows to the suction side of the compressor 1.
この実施例においては、第5バイパス回路20に熱交換
器9を設けることで、除霜時に圧縮機1から吐出された
ホットガスを蓄熱槽10を介して室外熱交換器5に導く
ので、常に高温のホットガスを室外熱交換器5に流入さ
せることができ、かつ室外熱交換器5に流入する冷媒の
圧力を従来より高く保つことができるので除霜能力を高
めることができる。また、一部の冷媒は室外熱交換器5
をバイパスして室外熱交換器5を通過する冷媒の圧力損
失を低(することかできるので、さらに除霜能力を高め
て極めて短時間に除霜を終えることができる。In this embodiment, by providing the heat exchanger 9 in the fifth bypass circuit 20, hot gas discharged from the compressor 1 during defrosting is guided to the outdoor heat exchanger 5 via the heat storage tank 10, so that the heat exchanger 9 is always provided in the fifth bypass circuit 20. Since high-temperature hot gas can be made to flow into the outdoor heat exchanger 5 and the pressure of the refrigerant flowing into the outdoor heat exchanger 5 can be maintained higher than before, the defrosting ability can be enhanced. In addition, some refrigerant is transferred to the outdoor heat exchanger 5.
Since the pressure loss of the refrigerant passing through the outdoor heat exchanger 5 can be reduced by bypassing the refrigerant, the defrosting ability can be further increased and defrosting can be completed in an extremely short time.
次に、第7図により、本発明の第6の実施例について説
明する。Next, a sixth embodiment of the present invention will be described with reference to FIG.
第7図は本発明の第6の実施例における冷凍サイクル図
である。同図において、23はキャピラリチューブ4か
ら室外熱交換器5へ至る配管に一端を接続し、他端を室
内熱交換器3から四方弁2を介して圧縮機1の吸入側へ
至る配管に接続した第6バイパス回路であり、この第6
バイパス回路23には二方弁24及び熱交換器9が備え
られており、この熱交換器9は蓄熱材11と熱交換可能
なように配設されている。FIG. 7 is a refrigeration cycle diagram in a sixth embodiment of the present invention. In the figure, 23 has one end connected to a pipe leading from the capillary tube 4 to the outdoor heat exchanger 5, and the other end connected to the pipe leading from the indoor heat exchanger 3 to the suction side of the compressor 1 via the four-way valve 2. This is the sixth bypass circuit.
The bypass circuit 23 is equipped with a two-way valve 24 and a heat exchanger 9, and the heat exchanger 9 is arranged so as to be able to exchange heat with the heat storage material 11.
この冷凍サイクルにおいて、除霜運転時は四方弁2を冷
房サイクルに切り換え、二方弁24を開とする。これに
より、圧縮機1から吐出された冷媒は、四方弁2より室
外熱交換器5へと流れ、冷媒が持つ熱を利用して除霜を
行い、はとんどの冷媒は第6バイパス回路23へ流入し
、二方弁24を通って熱交換器9へと流れて蓄熱材11
より熱を奪い、圧縮機1の吸入側−\流れる。In this refrigeration cycle, during defrosting operation, the four-way valve 2 is switched to the cooling cycle, and the two-way valve 24 is opened. As a result, the refrigerant discharged from the compressor 1 flows from the four-way valve 2 to the outdoor heat exchanger 5, and defrosts using the heat of the refrigerant. The heat storage material 11 flows into the heat exchanger 9 through the two-way valve 24.
It absorbs more heat and flows to the suction side of the compressor 1.
この実施例においては、第6バイパス回路23を設け、
これに熱交換器9を配設することで、冷媒はほとんど室
内熱交換器3には流れないので除霜時に室内の快適性を
損なわずに蓄熱された熱を短時間に取り出すことができ
、極めて短時間に除霜を終えることができる。In this embodiment, a sixth bypass circuit 23 is provided,
By disposing the heat exchanger 9 in this, almost no refrigerant flows into the indoor heat exchanger 3, so the stored heat can be taken out in a short time without impairing indoor comfort during defrosting. Defrosting can be completed in an extremely short time.
なお、上記第1の実施例〜第6の実施例に示した圧縮機
1については一定容量のものでもよいが、例えばインバ
ータを用いた周波数可変型圧縮機のような可変容量型の
ものを用いてもよい、この場合、除霜時に大容量運転を
することで、さらに除霜時間の短縮を図ることができる
。The compressor 1 shown in the first to sixth embodiments may be of a fixed capacity, but it may be of a variable capacity type, such as a variable frequency compressor using an inverter. In this case, by performing high-capacity operation during defrosting, the defrosting time can be further shortened.
また、上記実施例では圧縮機1の周囲に蓄熱槽10を取
り付けたが、蓄熱槽10は内部に蓄熱材11を充填し、
熱交換器9及び圧縮機1を収納した密閉容器としてもよ
い、あるいは圧縮機lの外周面の一部を蓄熱槽の一部と
してもよい。Further, in the above embodiment, the heat storage tank 10 is attached around the compressor 1, but the heat storage tank 10 is filled with a heat storage material 11,
It may be a closed container housing the heat exchanger 9 and the compressor 1, or a part of the outer peripheral surface of the compressor 1 may be a part of the heat storage tank.
また、上記第1の実施例〜第6の実施例に示したキャピ
ラリチューブ4のかわりに例えばステッピングモータ等
で駆動される電動膨張弁のような可変絞りを用いてもよ
い。この場合、例えば第1の実施例では除霜時に電動膨
張弁を全開にすることで室内熱交換器3を通過した冷媒
は全部第1バイパス回路6に流れるので熱交換器9での
熱交換能力が高まり、さらに除霜時間を短縮することが
できる。また、第4及び第5の実施例の場合は除霜時に
電動膨張弁を全開とすることで室内熱交換器3での冷媒
溜りがなくなり除霜時間を短縮することができる。Further, instead of the capillary tube 4 shown in the first to sixth embodiments, a variable throttle such as an electric expansion valve driven by a stepping motor or the like may be used. In this case, for example, in the first embodiment, by fully opening the electric expansion valve during defrosting, all the refrigerant that has passed through the indoor heat exchanger 3 flows to the first bypass circuit 6, so that the heat exchange capacity of the heat exchanger 9 is reduced. This increases the defrosting time and further shortens the defrosting time. Further, in the case of the fourth and fifth embodiments, by fully opening the electric expansion valve during defrosting, there is no refrigerant accumulation in the indoor heat exchanger 3, and the defrosting time can be shortened.
また、本実施例には示していないが、第1〜第6バイパ
ス回路にキャピラリチューブ等の補助減圧器を設けて冷
媒循環量を調整してもよい。Further, although not shown in this embodiment, an auxiliary pressure reducer such as a capillary tube may be provided in the first to sixth bypass circuits to adjust the refrigerant circulation amount.
発明の効果
上記実施例より明らかなように本発明は、内部に蓄熱材
を充填した蓄熱槽を圧縮機の周囲に圧縮機と熱交換的に
配設し、減圧器をバイパスする第1バイパス回路及び圧
縮機の吐出側から四方弁を介して室内熱交換器へ至る配
管に一端を接続し他端を室外熱交換器から四方弁を介し
て圧縮機の吸入側へ至る配管に接続した第2バイパス回
路を設け、第1バイパス回路と蓄熱槽を熱交換的に接続
することで、除霜時に室外熱交換器に流入する冷媒の圧
力を従来より高く保つことができるので除霜能力を高め
、極めて短時間に除霜を終えることができる。Effects of the Invention As is clear from the above embodiments, the present invention provides a first bypass circuit in which a heat storage tank filled with a heat storage material is disposed around a compressor in a heat exchange manner with the compressor, thereby bypassing a pressure reducer. and a second pipe having one end connected to the pipe leading from the discharge side of the compressor to the indoor heat exchanger via the four-way valve, and the other end connected to the pipe leading from the outdoor heat exchanger to the suction side of the compressor via the four-way valve. By providing a bypass circuit and connecting the first bypass circuit and the heat storage tank for heat exchange, the pressure of the refrigerant flowing into the outdoor heat exchanger during defrosting can be maintained higher than before, increasing the defrosting ability. Defrosting can be completed in an extremely short time.
また、室内熱交換器から減圧器に至る配管に一端を接続
し、他端を減圧器から室外熱交換器に至る配管と室外熱
交換器から四方弁を介して圧縮機の吸入側に至る配管と
に分岐して接続した第3バイパス回路を設け、第3バイ
パス回路と蓄熱槽を熱交換的に接続することで、除霜時
に室外熱交換器を通過する冷媒の圧力損失を小さくする
ことができるので除霜能力を高め、極めて短時間に除霜
を終えることができる。In addition, one end is connected to the piping from the indoor heat exchanger to the pressure reducer, and the other end is connected to the piping from the pressure reducer to the outdoor heat exchanger, and the piping from the outdoor heat exchanger to the suction side of the compressor via a four-way valve. By providing a third bypass circuit that is branched and connected to the third bypass circuit and connecting the third bypass circuit and the heat storage tank for heat exchange, it is possible to reduce the pressure loss of the refrigerant passing through the outdoor heat exchanger during defrosting. This increases the defrosting ability and allows defrosting to be completed in an extremely short time.
また、減圧器をバイパスする第1バイパス回路及び圧縮
機の吐出側から四方弁を介して室内熱交換器へ至る配管
に一端を接続し他端を減圧器から室外熱交換器へ至る配
管に接続した第4バイパス回路を設け、第1バイパス回
路と蓄熱槽を熱交換的に接続することで、除霜時に圧縮
機から吐出されたホットガスを室外熱交換器に導き、か
つ室外熱交換器に流入する冷媒の圧力を従来より高く保
つことができるので除霜能力を高め、極めて短時間に除
霜を終えることができる。In addition, one end is connected to the first bypass circuit that bypasses the pressure reducer and piping from the discharge side of the compressor to the indoor heat exchanger via a four-way valve, and the other end is connected to the piping from the pressure reducer to the outdoor heat exchanger. By providing a fourth bypass circuit and connecting the first bypass circuit and the heat storage tank in a heat exchange manner, hot gas discharged from the compressor during defrosting can be guided to the outdoor heat exchanger, and can also be routed to the outdoor heat exchanger. Since the pressure of the inflowing refrigerant can be maintained higher than before, the defrosting ability is increased and defrosting can be completed in an extremely short time.
また、圧縮機の吐出側から四方弁を介して室内熱交換器
へ至る配管に一端を接続し他端を減圧器から室外熱交換
器へ至る配管に接続した第4バイパス回路を設け、第4
バイパス回路と蓄熱槽を熱交換的に接続することで、除
霜時に圧縮機から吐出されたホットガスを蓄熱槽を介し
て室外熱交換器に導くので、常に高温のホットガスを室
外熱交換器に流入させることができ、かつ室外熱交換器
に流入する冷媒の圧力を従来より高(保つことができる
ので除霜能力を高め、極めて短時間に除霜を終えること
ができる。In addition, a fourth bypass circuit is provided, in which one end is connected to the pipe leading from the discharge side of the compressor to the indoor heat exchanger via a four-way valve, and the other end is connected to the pipe leading from the pressure reducer to the outdoor heat exchanger.
By connecting the bypass circuit and the heat storage tank in a heat exchange manner, the hot gas discharged from the compressor during defrosting is guided to the outdoor heat exchanger via the heat storage tank, so the high temperature hot gas is always transferred to the outdoor heat exchanger. Since the pressure of the refrigerant flowing into the outdoor heat exchanger can be maintained higher than before, the defrosting ability can be increased and defrosting can be completed in an extremely short time.
また、圧縮機の吐出側から四方弁を介して室内熱交換器
へ至る配管に一端を接続し他端を減圧器から室外熱交換
器へ至る配管と室外熱交換器から四方弁を介して圧縮機
吸入側に至る配管とに分岐して接続した第5バイパス回
路を設け、第5バイパス回路と蓄熱槽を熱交換的に接続
することで、除霜時に圧縮機から吐出されたホットガス
を蓄熱槽を介して室外熱交換器に導くので、常に高温の
ホットガスを室外熱交換器に流入させることができ、か
つ室外熱交換器に流入する冷媒の圧力を従来より高く保
ち、また室外熱交換器を通過する冷媒の圧力損失も小さ
くすることができるので除霜能力を高め、極めて短時間
に除霜を終えることができる。In addition, one end is connected to the piping from the discharge side of the compressor to the indoor heat exchanger via a four-way valve, and the other end is connected to the piping from the pressure reducer to the outdoor heat exchanger and from the outdoor heat exchanger to the compressor via the four-way valve. By providing a fifth bypass circuit that branches off and connects to the piping leading to the machine suction side, and by connecting the fifth bypass circuit and the heat storage tank in a heat exchange manner, the hot gas discharged from the compressor during defrosting can be stored as heat. Since it is led to the outdoor heat exchanger through the tank, the hot gas can always flow into the outdoor heat exchanger, and the pressure of the refrigerant flowing into the outdoor heat exchanger can be kept higher than before, and the outdoor heat exchanger Since the pressure loss of the refrigerant passing through the container can also be reduced, the defrosting ability can be increased and defrosting can be completed in an extremely short time.
また、室内熱交換器から減圧器へ至る配管若しくは減圧
器から室外熱交換器へ至る配管に一端を接続し、他端を
室内熱交換器から四方弁を介して圧縮機吸入側へ至る配
管に接続した第6バイパス回路を設け、第6バイパス回
路と蓄熱槽を熱交換的に接続することで、除霜時に室内
の快適性を損なわずに蓄熱された熱を短時間に取り出す
ことができるので、極めて短時間に除霜を終えることが
できる。Also, connect one end to the piping from the indoor heat exchanger to the pressure reducer or from the pressure reducer to the outdoor heat exchanger, and connect the other end to the piping from the indoor heat exchanger to the compressor suction side via the four-way valve. By providing a connected sixth bypass circuit and connecting the sixth bypass circuit and the heat storage tank for heat exchange, the stored heat can be taken out in a short time without impairing indoor comfort during defrosting. , defrosting can be completed in an extremely short time.
これらのことより明らかなように、本発明は暖房時に圧
縮機の廃熱を蓄熱しておき、除霜時にこの蓄熱した熱を
利用することで極めて短時間に除霜を終えて再び暖房を
行うため積算暖房能力の向上を図ることができる。As is clear from the above, the present invention stores the waste heat of the compressor during heating, and uses this stored heat during defrosting to finish defrosting in an extremely short time and perform heating again. Therefore, it is possible to improve the cumulative heating capacity.
また、蓄熱槽にあまり蓄熱されていない状態で除霜を行
う場合や、着霜量が多くて除霜途中で蓄熱された熱を使
いきってしまった場合でも、完全に除霜することができ
る。In addition, even when defrosting is performed when there is not much heat stored in the heat storage tank, or when there is a large amount of frost and the stored heat is used up during defrosting, it is possible to completely defrost. .
したがって、特に低外気温時に暖房を行う場合の快適性
を大幅に向上させることが可能である。Therefore, it is possible to significantly improve comfort especially when performing heating at low outside temperatures.
第1図は本発明の第1の実施例を示すヒートポンプ式空
気調和機の冷凍サイクル図、第2図は同ヒートポンプ式
空気調和機の圧縮機周囲の概略横断面図、第3図は本発
明の第2の実施例を示すヒートポンプ式空気調和機の冷
凍サイクル図、第4図は本発明の第3の実施例を示ずヒ
ートポンプ式空気調和機の冷凍サイクル図、第5図は本
発明の第4の実施例を示すヒートポンプ式空気調和機の
冷凍サイクル図、第6図は本発明の第5の実施例気調和
機の冷凍サイクル図である。
1・・・・・・圧縮機、2・・・・・・四方弁、3・・
・・・・室内熱交換器、4・・・・・・キャピラリチュ
ーブ(減圧器)、5・・・・・・室外熱交換器、6・・
・・・・第1バイパス回路、7・・・・・・二方弁(流
路制御手段)、9・・・・・・熱交換器、10・・・・
・・蓄熱槽、11・・・・・・蓄熱材、12・・・・・
・第2バイパス回路、13・・・・・・二方弁(流路制
御手段)、14・・・・・・第3バイパス回路、15・
・・・・・二方弁(流路制御手段)、17・・・・・・
第4バイパス回路、18・・・・・・二方弁(流路制御
手段)、20・・・・・・第5バイパス回路、21・・
・・・・二方弁(流路制御手段)、23・・・・・・第
6バイパス回路、24・・・・・・二方弁(流路制御手
段)。Fig. 1 is a refrigeration cycle diagram of a heat pump type air conditioner showing a first embodiment of the present invention, Fig. 2 is a schematic cross-sectional view of the area around the compressor of the heat pump type air conditioner, and Fig. 3 is a diagram of the present invention. Fig. 4 is a refrigeration cycle diagram of a heat pump air conditioner showing the second embodiment of the present invention, and Fig. 5 is a refrigeration cycle diagram of a heat pump air conditioner without showing the third embodiment of the present invention. A refrigeration cycle diagram of a heat pump type air conditioner showing a fourth embodiment, and FIG. 6 is a refrigeration cycle diagram of an air conditioner according to a fifth embodiment of the present invention. 1... Compressor, 2... Four-way valve, 3...
...Indoor heat exchanger, 4...Capillary tube (pressure reducer), 5...Outdoor heat exchanger, 6...
...First bypass circuit, 7... Two-way valve (flow path control means), 9... Heat exchanger, 10...
...Thermal storage tank, 11...Thermal storage material, 12...
・Second bypass circuit, 13... Two-way valve (flow path control means), 14... Third bypass circuit, 15...
...Two-way valve (flow path control means), 17...
Fourth bypass circuit, 18... Two-way valve (flow path control means), 20... Fifth bypass circuit, 21...
... Two-way valve (flow path control means), 23 ... Sixth bypass circuit, 24 ... Two-way valve (flow path control means).
Claims (6)
交換器等を連結して冷媒回路を構成し、内部に蓄熱材を
充填した蓄熱槽を前記圧縮機の周囲に前記圧縮機と熱交
換的に配設し、前記減圧器をバイパスする第1バイパス
回路と、前記圧縮機の吐出側から前記四方弁を介して前
記室内熱交換器へ至る配管に一端を接続し他端を前記室
外熱交換器から前記四方弁を介して前記圧縮機の吸入側
へ至る配管に接続した第2バイパス回路とを設け、前記
第1バイパス回路と前記減圧器との冷媒流路を切換可能
とするか若しくは前記第1バイパス回路の冷媒流路を開
閉可能とし、かつ前記第2バイパス回路の冷媒流路を開
閉可能とする流路制御手段を有し、前記第1バイパス回
路と前記蓄熱槽を熱交換的に接続したヒートポンプ式空
気調和機。(1) A refrigerant circuit is constructed by connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, an outdoor heat exchanger, etc., and a heat storage tank filled with a heat storage material is placed around the compressor to compress the a first bypass circuit arranged to exchange heat with the compressor and bypassing the pressure reducer; one end connected to a pipe leading from the discharge side of the compressor to the indoor heat exchanger via the four-way valve, and the other end and a second bypass circuit connected to piping from the outdoor heat exchanger to the suction side of the compressor via the four-way valve, and the refrigerant flow path between the first bypass circuit and the pressure reducer can be switched. or a flow path control means for opening and closing the refrigerant flow path of the first bypass circuit and for opening and closing the refrigerant flow path of the second bypass circuit, and the first bypass circuit and the heat storage tank. A heat pump air conditioner connected for heat exchange.
交換器等を連結して冷媒回路を構成し、内部に蓄熱材を
充填した蓄熱槽を前記圧縮機の周囲に前記圧縮機と熱交
換的に配設し、前記室内熱交換器から前記減圧器に至る
配管に一端を接続し、他端を前記減圧器から前記室外熱
交換器に至る配管と前記室外熱交換器から前記四方弁を
介して前記圧縮機の吸入側に至る配管とに分岐して接続
した第3バイパス回路を設け、前記第3バイパス回路と
前記減圧器との冷媒流路を切換可能とするか若しくは前
記第3バイパス回路の冷媒流路を開閉可能とする流路制
御手段を有し、前記第3バイパス回路と前記蓄熱槽を熱
交換的に接続したヒートポンプ式空気調和機。(2) A refrigerant circuit is constructed by connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, an outdoor heat exchanger, etc., and a heat storage tank filled with a heat storage material is placed around the compressor to compress the one end is connected to the piping from the indoor heat exchanger to the pressure reducer, and the other end is connected to the piping from the pressure reducer to the outdoor heat exchanger and from the outdoor heat exchanger. A third bypass circuit branched and connected to the piping leading to the suction side of the compressor via the four-way valve is provided, and the refrigerant flow path between the third bypass circuit and the pressure reducer can be switched. A heat pump type air conditioner including a flow path control means for opening and closing a refrigerant flow path of the third bypass circuit, and in which the third bypass circuit and the heat storage tank are connected in a heat exchange manner.
交換器等を連結して冷媒回路を構成し、内部に蓄熱材を
充填した蓄熱槽を前記圧縮機の周囲に前記圧縮機と熱交
換的に配設し、前記減圧器をバイパスする第1バイパス
回路及び前記圧縮機の吐出側から前記四方弁を介して前
記室内熱交換器へ至る配管に一端を接続し他端を前記減
圧器から前記室外熱交換器へ至る配管に接続した第4バ
イパス回路を設け、前記第1バイパス回路と前記減圧器
との冷媒流路を切換可能とするか若しくは前記第1バイ
パス回路の冷媒流路を開閉可能とし、かつ前記第4バイ
パス回路の冷媒流路を開閉可能とする流路制御手段を有
し、前記第1バイパス回路と前記蓄熱槽を熱交換的に接
続したヒートポンプ式空気調和機。(3) A refrigerant circuit is constructed by connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, an outdoor heat exchanger, etc., and a heat storage tank filled with a heat storage material is placed around the compressor to compress the A first bypass circuit is arranged to exchange heat with the compressor, and the other end is connected to a first bypass circuit that bypasses the pressure reducer, and a pipe leading from the discharge side of the compressor to the indoor heat exchanger via the four-way valve. A fourth bypass circuit connected to piping from the pressure reducer to the outdoor heat exchanger is provided, and the refrigerant flow path between the first bypass circuit and the pressure reducer can be switched, or the refrigerant in the first bypass circuit is A heat pump type air conditioner comprising a flow path control means for opening and closing a flow path and for opening and closing a refrigerant flow path of the fourth bypass circuit, and connecting the first bypass circuit and the heat storage tank in a heat exchange manner. Machine.
交換器等を連結して冷媒回路を構成し、内部に蓄熱材を
充填した蓄熱槽を前記圧縮機の周囲に前記圧縮機と熱交
換的に配設し、前記圧縮機の吐出側から前記四方弁を介
して前記室内熱交換器へ至る配管に一端を接続し他端を
前記減圧器から前記室外熱交換器へ至る配管に接続した
第4バイパス回路を設け、前記第4バイパス回路の冷媒
流路を開閉可能とする流路制御手段を有し、前記第4バ
イパス回路と前記蓄熱槽を熱交換的に接続したヒートポ
ンプ式空気調和機。(4) A refrigerant circuit is constructed by connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, an outdoor heat exchanger, etc., and a heat storage tank filled with a heat storage material is placed around the compressor to compress the one end is connected to a pipe that runs from the discharge side of the compressor to the indoor heat exchanger via the four-way valve, and the other end runs from the pressure reducer to the outdoor heat exchanger. A heat pump that is provided with a fourth bypass circuit connected to piping, has flow path control means for opening and closing a refrigerant flow path of the fourth bypass circuit, and connects the fourth bypass circuit and the heat storage tank in a heat exchange manner. type air conditioner.
交換器等を連結して冷媒回路を構成し、内部に蓄熱材を
充填した蓄熱槽を前記圧縮機の周囲に前記圧縮機と熱交
換的に配設し、前記圧縮機の吐出側から前記四方弁を介
して前記室内熱交換器へ至る配管に一端を接続し他端を
前記減圧器から前記室外熱交換器へ至る配管と前記室外
熱交換器から前記四方弁を介して前記圧縮機吸入側へ至
る配管とに分岐して接続した第5バイパス回路を設け、
前記第5バイパス回路の冷媒流路を開閉可能とする流路
制御手段を有し、前記第5バイパス回路と前記蓄熱槽を
熱交換的に接続したヒートポンプ式空気調和機。(5) A refrigerant circuit is constructed by connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, an outdoor heat exchanger, etc., and a heat storage tank filled with a heat storage material is placed around the compressor to compress the one end is connected to a pipe that runs from the discharge side of the compressor to the indoor heat exchanger via the four-way valve, and the other end runs from the pressure reducer to the outdoor heat exchanger. a fifth bypass circuit branched and connected to the piping and the piping leading from the outdoor heat exchanger to the compressor suction side via the four-way valve;
A heat pump type air conditioner including a flow path control means for opening and closing a refrigerant flow path of the fifth bypass circuit, and in which the fifth bypass circuit and the heat storage tank are connected in a heat exchange manner.
交換器等を連結して冷媒回路を構成し、内部に蓄熱材を
充填した蓄熱槽を前記圧縮機の周囲に前記圧縮機と熱交
換的に配設し、前記室内熱交換器から前記減圧器に至る
配管若しくは前記減圧器から前記室外熱交換器へ至る配
管に一端を接続し、他端を前記室内熱交換器から前記四
方弁を介して前記圧縮機吸入側へ至る配管に接続した第
6バイパス回路を設け、前記第6バイパス回路の冷媒流
路を開閉可能とする流路制御手段を有し、前記第6バイ
パス回路と前記蓄熱槽を熱交換的に接続したヒートポン
プ式空気調和機。(6) A refrigerant circuit is constructed by connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, an outdoor heat exchanger, etc., and a heat storage tank filled with a heat storage material is placed around the compressor to compress the one end is connected to a pipe from the indoor heat exchanger to the pressure reducer or from the pressure reducer to the outdoor heat exchanger, and the other end is connected to the pipe from the indoor heat exchanger to the outdoor heat exchanger. A sixth bypass circuit is provided which is connected to the piping leading to the compressor suction side via the four-way valve, and includes flow path control means for opening and closing the refrigerant flow path of the sixth bypass circuit, A heat pump type air conditioner in which a circuit and the heat storage tank are connected in a heat exchange manner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16590689A JPH0331666A (en) | 1989-06-28 | 1989-06-28 | Heat pump type air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16590689A JPH0331666A (en) | 1989-06-28 | 1989-06-28 | Heat pump type air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0331666A true JPH0331666A (en) | 1991-02-12 |
Family
ID=15821249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16590689A Pending JPH0331666A (en) | 1989-06-28 | 1989-06-28 | Heat pump type air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0331666A (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0611202A (en) * | 1992-06-26 | 1994-01-21 | Daikin Ind Ltd | Air conditioning apparatus |
JPH0674618A (en) * | 1992-08-28 | 1994-03-18 | Daikin Ind Ltd | Air conditioner |
JP2011153812A (en) * | 2010-07-08 | 2011-08-11 | Panasonic Corp | Refrigerating cycle device |
JP2011153736A (en) * | 2010-01-26 | 2011-08-11 | Panasonic Corp | Refrigerating cycle device |
JP4760995B1 (en) * | 2010-09-29 | 2011-08-31 | パナソニック株式会社 | Heat storage device and air conditioner equipped with the heat storage device |
EP2428753A2 (en) | 2010-09-09 | 2012-03-14 | Panasonic Corporation | Air conditioner |
EP2428751A2 (en) | 2010-09-09 | 2012-03-14 | Panasonic Corporation | Air conditioner |
CN102378881A (en) * | 2010-03-01 | 2012-03-14 | 松下电器产业株式会社 | Refrigeration cycle device |
EP2428752A2 (en) | 2010-09-09 | 2012-03-14 | Panasonic Corporation | Air conditioner |
WO2012032680A1 (en) * | 2010-09-09 | 2012-03-15 | パナソニック株式会社 | Refrigeration cycle apparatus |
JP2012063076A (en) * | 2010-09-16 | 2012-03-29 | Panasonic Corp | Heat storage apparatus and air conditioning apparatus |
CN102401519A (en) * | 2010-09-16 | 2012-04-04 | 乐金电子(天津)电器有限公司 | Outdoor unit of air conditioner |
EP2437009A2 (en) | 2010-09-29 | 2012-04-04 | Panasonic Corporation | Air conditioner |
JP2012072957A (en) * | 2010-09-29 | 2012-04-12 | Panasonic Corp | Air conditioner |
JP2012072934A (en) * | 2010-09-28 | 2012-04-12 | Panasonic Corp | Heat storage device, and air conditioner with the same |
JP2012072961A (en) * | 2010-09-29 | 2012-04-12 | Panasonic Corp | Air conditioner |
JP2012078010A (en) * | 2010-10-01 | 2012-04-19 | Panasonic Corp | Heat storage device and air conditioner using same |
JP2012078011A (en) * | 2010-10-01 | 2012-04-19 | Panasonic Corp | Thermal storage device and air conditioner provided with thermal storage device |
JP2012087945A (en) * | 2010-10-15 | 2012-05-10 | Panasonic Corp | Air conditioner |
CN102538272A (en) * | 2012-02-09 | 2012-07-04 | 美的集团有限公司 | Air conditioning system and defrosting method thereof |
CN102753911A (en) * | 2010-02-10 | 2012-10-24 | 松下电器产业株式会社 | Heat storage device, and air-conditioner provided with same |
JP2013120030A (en) * | 2011-12-08 | 2013-06-17 | Panasonic Corp | Air conditioner |
CN103175354A (en) * | 2011-12-26 | 2013-06-26 | 珠海格力电器股份有限公司 | Heat storage phase change defrosting device |
WO2013099163A1 (en) * | 2011-12-26 | 2013-07-04 | パナソニック株式会社 | Heat storage device, and air conditioner equipped with same |
WO2013145702A1 (en) * | 2012-03-26 | 2013-10-03 | パナソニック株式会社 | Vehicle air-conditioning apparatus, heat exchanging device, and unit device for vehicle air conditioning |
CN103542754A (en) * | 2012-07-12 | 2014-01-29 | 珠海格力电器股份有限公司 | Air conditioner and heat accumulator thereof |
CN103542753A (en) * | 2012-07-12 | 2014-01-29 | 珠海格力电器股份有限公司 | Air conditioner and heat accumulator thereof |
JP2014031954A (en) * | 2012-08-03 | 2014-02-20 | Panasonic Corp | Air conditioner |
CN103836849A (en) * | 2014-02-28 | 2014-06-04 | 华南理工大学 | Waste heat energy storage defrosting system for frequency conversion scroll compressor of electric automobile |
CN103851943A (en) * | 2012-12-05 | 2014-06-11 | 珠海格力电器股份有限公司 | Heat accumulator and air conditioner with same |
WO2015032293A1 (en) * | 2013-09-05 | 2015-03-12 | 珠海格力电器股份有限公司 | Refrigeration- and heat accumulation method and refrigeration- and heating anti-frost method and air conditioning system |
CN104764264A (en) * | 2015-03-17 | 2015-07-08 | 珠海格力电器股份有限公司 | Heat pump system and frosting inhibition control method thereof |
CN109341165A (en) * | 2018-08-31 | 2019-02-15 | 上海交通大学 | A kind of air source heat pump defrosting system based on heat of compressor phase-change accumulation energy |
CN113811833A (en) * | 2019-04-23 | 2021-12-17 | Ckd株式会社 | Heat exchange system |
US11466480B2 (en) | 2016-11-04 | 2022-10-11 | U-Shin Ltd. | Door locking device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6277565A (en) * | 1985-09-27 | 1987-04-09 | 三菱電機株式会社 | Defrostation circuit for air conditioner |
JPS6321462A (en) * | 1986-07-11 | 1988-01-29 | 株式会社東芝 | Air conditioner |
JPS63108173A (en) * | 1986-10-27 | 1988-05-13 | 松下電器産業株式会社 | Defrostation method of heat pump type air conditioner |
JPS63127065A (en) * | 1986-11-17 | 1988-05-30 | 三菱重工業株式会社 | Heat pump |
JPS63187065A (en) * | 1987-01-30 | 1988-08-02 | 株式会社東芝 | Air conditioner |
JPS6475868A (en) * | 1987-09-17 | 1989-03-22 | Daikin Ind Ltd | Refrigerant circuit |
-
1989
- 1989-06-28 JP JP16590689A patent/JPH0331666A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6277565A (en) * | 1985-09-27 | 1987-04-09 | 三菱電機株式会社 | Defrostation circuit for air conditioner |
JPS6321462A (en) * | 1986-07-11 | 1988-01-29 | 株式会社東芝 | Air conditioner |
JPS63108173A (en) * | 1986-10-27 | 1988-05-13 | 松下電器産業株式会社 | Defrostation method of heat pump type air conditioner |
JPS63127065A (en) * | 1986-11-17 | 1988-05-30 | 三菱重工業株式会社 | Heat pump |
JPS63187065A (en) * | 1987-01-30 | 1988-08-02 | 株式会社東芝 | Air conditioner |
JPS6475868A (en) * | 1987-09-17 | 1989-03-22 | Daikin Ind Ltd | Refrigerant circuit |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0611202A (en) * | 1992-06-26 | 1994-01-21 | Daikin Ind Ltd | Air conditioning apparatus |
JPH0674618A (en) * | 1992-08-28 | 1994-03-18 | Daikin Ind Ltd | Air conditioner |
JP2011153736A (en) * | 2010-01-26 | 2011-08-11 | Panasonic Corp | Refrigerating cycle device |
EP2530411A4 (en) * | 2010-01-26 | 2012-12-05 | Panasonic Corp | Refrigeration cycle apparatus |
EP2530411A1 (en) * | 2010-01-26 | 2012-12-05 | Panasonic Corporation | Refrigeration cycle apparatus |
CN102753911A (en) * | 2010-02-10 | 2012-10-24 | 松下电器产业株式会社 | Heat storage device, and air-conditioner provided with same |
CN102378881A (en) * | 2010-03-01 | 2012-03-14 | 松下电器产业株式会社 | Refrigeration cycle device |
JP2011153812A (en) * | 2010-07-08 | 2011-08-11 | Panasonic Corp | Refrigerating cycle device |
JP2012057879A (en) * | 2010-09-09 | 2012-03-22 | Panasonic Corp | Refrigeration cycle apparatus |
WO2012032680A1 (en) * | 2010-09-09 | 2012-03-15 | パナソニック株式会社 | Refrigeration cycle apparatus |
CN102523754A (en) * | 2010-09-09 | 2012-06-27 | 松下电器产业株式会社 | Refrigeration cycle apparatus |
JP2012057867A (en) * | 2010-09-09 | 2012-03-22 | Panasonic Corp | Air conditioner |
JP2012057870A (en) * | 2010-09-09 | 2012-03-22 | Panasonic Corp | Air conditioner |
EP2428752A2 (en) | 2010-09-09 | 2012-03-14 | Panasonic Corporation | Air conditioner |
CN102401429B (en) * | 2010-09-09 | 2015-08-19 | 松下电器产业株式会社 | Air conditioner |
CN102401429A (en) * | 2010-09-09 | 2012-04-04 | 松下电器产业株式会社 | Air conditioner |
KR20130066477A (en) * | 2010-09-09 | 2013-06-20 | 파나소닉 주식회사 | Refrigerating cycle device |
EP2428751A2 (en) | 2010-09-09 | 2012-03-14 | Panasonic Corporation | Air conditioner |
EP2428753A2 (en) | 2010-09-09 | 2012-03-14 | Panasonic Corporation | Air conditioner |
CN102523754B (en) * | 2010-09-09 | 2015-08-26 | 松下电器产业株式会社 | Refrigerating circulatory device |
JP2012063076A (en) * | 2010-09-16 | 2012-03-29 | Panasonic Corp | Heat storage apparatus and air conditioning apparatus |
CN102401519B (en) * | 2010-09-16 | 2016-08-10 | 乐金电子(天津)电器有限公司 | The off-premises station of air-conditioner |
CN102401519A (en) * | 2010-09-16 | 2012-04-04 | 乐金电子(天津)电器有限公司 | Outdoor unit of air conditioner |
JP2012072934A (en) * | 2010-09-28 | 2012-04-12 | Panasonic Corp | Heat storage device, and air conditioner with the same |
EP2437009A2 (en) | 2010-09-29 | 2012-04-04 | Panasonic Corporation | Air conditioner |
CN102434914A (en) * | 2010-09-29 | 2012-05-02 | 松下电器产业株式会社 | Air conditioner |
JP4760995B1 (en) * | 2010-09-29 | 2011-08-31 | パナソニック株式会社 | Heat storage device and air conditioner equipped with the heat storage device |
JP2012072961A (en) * | 2010-09-29 | 2012-04-12 | Panasonic Corp | Air conditioner |
JP2012072957A (en) * | 2010-09-29 | 2012-04-12 | Panasonic Corp | Air conditioner |
WO2012042690A1 (en) | 2010-09-29 | 2012-04-05 | パナソニック株式会社 | Heat storage device and air conditioner comprising the heat storage device |
CN103154640A (en) * | 2010-09-29 | 2013-06-12 | 松下电器产业株式会社 | Heat storage device and air conditioner comprising the heat storage device |
EP2623888A1 (en) * | 2010-10-01 | 2013-08-07 | Panasonic Corporation | Thermal storage device and air conditioner provided with thermal storage device |
EP2623888A4 (en) * | 2010-10-01 | 2013-08-07 | Panasonic Corp | Thermal storage device and air conditioner provided with thermal storage device |
JP2012078010A (en) * | 2010-10-01 | 2012-04-19 | Panasonic Corp | Heat storage device and air conditioner using same |
EP2623912A1 (en) * | 2010-10-01 | 2013-08-07 | Panasonic Corporation | Heat storage device and air conditioner using same |
JP2012078011A (en) * | 2010-10-01 | 2012-04-19 | Panasonic Corp | Thermal storage device and air conditioner provided with thermal storage device |
EP2623912A4 (en) * | 2010-10-01 | 2014-01-01 | Panasonic Corp | Heat storage device and air conditioner using same |
JP2012087945A (en) * | 2010-10-15 | 2012-05-10 | Panasonic Corp | Air conditioner |
CN103162361A (en) * | 2011-12-08 | 2013-06-19 | 松下电器产业株式会社 | Air conditioner |
JP2013120030A (en) * | 2011-12-08 | 2013-06-17 | Panasonic Corp | Air conditioner |
CN103175354A (en) * | 2011-12-26 | 2013-06-26 | 珠海格力电器股份有限公司 | Heat storage phase change defrosting device |
WO2013099163A1 (en) * | 2011-12-26 | 2013-07-04 | パナソニック株式会社 | Heat storage device, and air conditioner equipped with same |
CN102538272A (en) * | 2012-02-09 | 2012-07-04 | 美的集团有限公司 | Air conditioning system and defrosting method thereof |
WO2013145702A1 (en) * | 2012-03-26 | 2013-10-03 | パナソニック株式会社 | Vehicle air-conditioning apparatus, heat exchanging device, and unit device for vehicle air conditioning |
JP2015037894A (en) * | 2012-03-26 | 2015-02-26 | パナソニック株式会社 | Vehicle air conditioner, heat exchange device, and unit device for vehicle air conditioning |
CN103542753A (en) * | 2012-07-12 | 2014-01-29 | 珠海格力电器股份有限公司 | Air conditioner and heat accumulator thereof |
CN103542754A (en) * | 2012-07-12 | 2014-01-29 | 珠海格力电器股份有限公司 | Air conditioner and heat accumulator thereof |
JP2014031954A (en) * | 2012-08-03 | 2014-02-20 | Panasonic Corp | Air conditioner |
CN103851943A (en) * | 2012-12-05 | 2014-06-11 | 珠海格力电器股份有限公司 | Heat accumulator and air conditioner with same |
WO2015032293A1 (en) * | 2013-09-05 | 2015-03-12 | 珠海格力电器股份有限公司 | Refrigeration- and heat accumulation method and refrigeration- and heating anti-frost method and air conditioning system |
CN104422193A (en) * | 2013-09-05 | 2015-03-18 | 珠海格力电器股份有限公司 | Refrigerating and heating liquid storage method, refrigerating and heating frost prevention method and air conditioning system |
CN103836849A (en) * | 2014-02-28 | 2014-06-04 | 华南理工大学 | Waste heat energy storage defrosting system for frequency conversion scroll compressor of electric automobile |
CN104764264A (en) * | 2015-03-17 | 2015-07-08 | 珠海格力电器股份有限公司 | Heat pump system and frosting inhibition control method thereof |
US11466480B2 (en) | 2016-11-04 | 2022-10-11 | U-Shin Ltd. | Door locking device |
CN109341165A (en) * | 2018-08-31 | 2019-02-15 | 上海交通大学 | A kind of air source heat pump defrosting system based on heat of compressor phase-change accumulation energy |
CN113811833A (en) * | 2019-04-23 | 2021-12-17 | Ckd株式会社 | Heat exchange system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0331666A (en) | Heat pump type air conditioner | |
JPH01118080A (en) | Heat pump type air conditioner | |
JPH10160299A (en) | Freezer | |
JP3010934B2 (en) | Air conditioner | |
JPH01208674A (en) | Heat pump type hot water, heating and cooling machine | |
JPH04203776A (en) | Heat pump type air conditioner | |
JP2557940Y2 (en) | Air heat source heat pump air conditioner | |
JPS61262560A (en) | Heat pump type air conditioner | |
JPH03230060A (en) | Heat pump type air conditioner | |
JPH08313096A (en) | Air conditioner | |
JP3242217B2 (en) | Air conditioner | |
JPH10205932A (en) | Air conditioner | |
JP2001033126A (en) | Air conditioner | |
KR100325308B1 (en) | Cooling and heating heat pump system using heat regeneration cycle | |
JPH0350461A (en) | Heat pump type air conditioner | |
JPS62237260A (en) | Defrostation control method of heat pump type air conditioner | |
CA1111645A (en) | Split system air conditioner adapted to receive a water preheater | |
JPH0331630A (en) | Heat pump type air conditioner | |
JPH049559A (en) | Heat pump system and defrosting method of heat pump system | |
JPS6018895B2 (en) | Solar heat pump air conditioner | |
JP2000274892A (en) | Air conditioner | |
JPH08320172A (en) | Air conditioner | |
JP2682730B2 (en) | Refrigerant heating type air conditioner and control method thereof | |
JPH0429345Y2 (en) | ||
JPH01179874A (en) | Air-conditioner |