JP2012072934A - Heat storage device, and air conditioner with the same - Google Patents

Heat storage device, and air conditioner with the same Download PDF

Info

Publication number
JP2012072934A
JP2012072934A JP2010216457A JP2010216457A JP2012072934A JP 2012072934 A JP2012072934 A JP 2012072934A JP 2010216457 A JP2010216457 A JP 2010216457A JP 2010216457 A JP2010216457 A JP 2010216457A JP 2012072934 A JP2012072934 A JP 2012072934A
Authority
JP
Japan
Prior art keywords
heat storage
heat
compressor
storage device
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010216457A
Other languages
Japanese (ja)
Inventor
Kensho Yamamoto
憲昭 山本
Kouji Kurisuya
広治 栗須谷
Toshiyuki Imasaka
俊之 今坂
Tsugio Kubo
次雄 久保
Takashi Sugio
孝 杉尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010216457A priority Critical patent/JP2012072934A/en
Publication of JP2012072934A publication Critical patent/JP2012072934A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat storage device capable of increasing temperature in a heat storage material in a short time, and to provide an air conditioner employing the heat storage device.SOLUTION: In the heat storage device that is arranged to enclose a substantially cylindrical compressor 6, a heat storage tank body 46 houses a heat storage material 36 for storing heat generated at the compressor 6 and a heat storage exchanger 34 for acquiring the stored heat, and has a heat transfer plate 51 coming into contact with the compressor for acquiring heat generated in the compressor. In the heat storage tank body, the heat transfer plate is composed of a member with a predetermined thickness having high heat conductivity, and also other parts are composed of members with heat conductivity lower than that of the heat transfer plate. By this arrangement, a high heat storage performance can be secured.

Description

本発明は、圧縮機を囲むように配置され圧縮機で発生した熱を蓄積する蓄熱材を収容する蓄熱装置及びこの蓄熱装置を備えた空気調和機に関する。   The present invention relates to a heat storage device that stores a heat storage material that is arranged so as to surround a compressor and stores heat generated by the compressor, and an air conditioner including the heat storage device.

従来、ヒートポンプ式空気調和機による暖房運転時、室外熱交換器に着霜した場合には、暖房サイクルから冷房サイクルに四方弁を切り替えて除霜を行っている。この除霜方式では、室内ファンは停止するものの、室内機から冷気が徐々に放出されることから暖房感が失われるという欠点がある。   Conventionally, when the outdoor heat exchanger is frosted during the heating operation by the heat pump air conditioner, defrosting is performed by switching the four-way valve from the heating cycle to the cooling cycle. In this defrosting method, although the indoor fan is stopped, there is a disadvantage that a feeling of heating is lost because cold air is gradually discharged from the indoor unit.

そこで、室外機に設けられた圧縮機に蓄熱装置を設け、暖房運転中に蓄熱槽に蓄えられた圧縮機の廃熱を利用して除霜するようにしたものが提案されている(例えば、特許文献1参照)。   Accordingly, a heat storage device is provided in the compressor provided in the outdoor unit, and the one that is defrosted using the waste heat of the compressor stored in the heat storage tank during the heating operation has been proposed (for example, Patent Document 1).

図10は、従来の蓄熱装置の一例を示す横断面図である。図10において、蓄熱装置100は、圧縮機101の外周面に固設されている。また、蓄熱装置100は、蓄熱槽102、蓄熱材103、熱交換器104からなり、蓄熱槽102の伝熱面105は、圧縮機101の外周面に接するように配置されており、これにより圧縮機の廃熱を蓄熱槽に蓄えている。   FIG. 10 is a cross-sectional view showing an example of a conventional heat storage device. In FIG. 10, the heat storage device 100 is fixed to the outer peripheral surface of the compressor 101. The heat storage device 100 includes a heat storage tank 102, a heat storage material 103, and a heat exchanger 104, and a heat transfer surface 105 of the heat storage tank 102 is disposed so as to be in contact with the outer peripheral surface of the compressor 101, thereby compressing. The waste heat of the machine is stored in a heat storage tank.

特開平3−31666号公報JP-A-3-31666

図10に示される従来の蓄熱装置では、蓄熱槽102を単一材料で形成するのが一般的である。ここで、熱伝導率が高い材料で蓄熱槽を形成すると、圧縮機から蓄熱材への熱抵抗が低減されるが、同時に蓄熱槽から外雰囲気への放熱量も増加するため、十分な蓄熱量が得られない。一方、熱伝導率が低い材料で蓄熱槽を形成すると、蓄熱槽から外雰囲気への放熱量は減少するが、圧縮機から蓄熱材への熱抵抗が増加するため、やはり、十分な蓄熱性能が得られないことがあった。   In the conventional heat storage device shown in FIG. 10, the heat storage tank 102 is generally formed of a single material. Here, when the heat storage tank is formed of a material having high thermal conductivity, the thermal resistance from the compressor to the heat storage material is reduced, but at the same time, the amount of heat released from the heat storage tank to the outside atmosphere is also increased, so a sufficient amount of heat storage Cannot be obtained. On the other hand, if the heat storage tank is formed of a material with low thermal conductivity, the heat radiation from the heat storage tank to the outside atmosphere decreases, but the thermal resistance from the compressor to the heat storage material increases, so that sufficient heat storage performance is still achieved. Sometimes it was not possible.

本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、圧縮機と蓄熱材の間の熱抵抗を低減しながら、蓄熱材から外雰囲気への放熱量を低減することにより、高い蓄熱性能を有し、短時間で蓄熱材の温度上昇が可能な蓄熱装置及びこの蓄熱装置を用いた空気調和機を提供することを目的としている。   The present invention has been made in view of such problems of the prior art, and reduces the amount of heat released from the heat storage material to the outside atmosphere while reducing the thermal resistance between the compressor and the heat storage material. Accordingly, an object of the present invention is to provide a heat storage device having high heat storage performance and capable of increasing the temperature of the heat storage material in a short time, and an air conditioner using the heat storage device.

上記目的を達成するために、本発明は、略円筒状の圧縮機を囲むように配置された蓄熱装置であって、前圧縮機で発生した熱を蓄積する蓄熱材と、蓄熱材を収容する蓄熱槽と、蓄熱槽の側面であって圧縮機からの熱を蓄熱材に伝える伝熱面と、を有し、伝熱面の材料の熱伝導率は蓄熱槽の伝熱面以外の材料の熱伝導率より高いとしている。   In order to achieve the above object, the present invention is a heat storage device arranged so as to surround a substantially cylindrical compressor, and stores a heat storage material that accumulates heat generated by the pre-compressor, and the heat storage material. A heat storage tank, and a heat transfer surface that is a side surface of the heat storage tank and transfers heat from the compressor to the heat storage material, and the heat conductivity of the material of the heat transfer surface is that of a material other than the heat transfer surface of the heat storage tank. It is said that it is higher than thermal conductivity.

本発明によれば、圧縮機に接する蓄熱槽の伝熱面が熱伝導率の高い材料で構成されているため、圧縮機からの廃熱を効率良く蓄熱材に蓄えることが可能となり、かつ、蓄熱槽の
それ以外の面、すなわち外雰囲気と接する面が熱伝導率の低い材料で構成されているため、蓄えた熱の外雰囲気への放熱を最小限にとどめることができる。これにより、高い蓄熱性能を有し、短時間で蓄熱材の温度上昇が可能な蓄熱装置及びこの蓄熱装置を用いた空気調和機を提供することができる。
According to the present invention, since the heat transfer surface of the heat storage tank in contact with the compressor is made of a material having high thermal conductivity, it becomes possible to efficiently store waste heat from the compressor in the heat storage material, and Since the other surface of the heat storage tank, that is, the surface in contact with the outside atmosphere is made of a material having a low thermal conductivity, heat radiation of the stored heat to the outside atmosphere can be minimized. Thereby, it is possible to provide a heat storage device having high heat storage performance and capable of increasing the temperature of the heat storage material in a short time, and an air conditioner using the heat storage device.

本発明に係る蓄熱装置を備えた空気調和機の構成を示す図The figure which shows the structure of the air conditioner provided with the heat storage apparatus which concerns on this invention. 図1の空気調和機の通常暖房時の動作及び冷媒の流れを示す模式図The schematic diagram which shows the operation | movement at the time of normal heating of the air conditioner of FIG. 1, and the flow of a refrigerant | coolant. 図1の空気調和機の除霜・暖房時の動作及び冷媒の流れを示す模式図The schematic diagram which shows the operation | movement at the time of defrosting and heating of the air conditioner of FIG. 1, and the flow of a refrigerant | coolant. 圧縮機とアキュームレータを取り付けた状態の本発明に係る蓄熱装置の斜視図The perspective view of the heat storage apparatus which concerns on this invention of the state which attached the compressor and the accumulator 蓄熱槽の分解斜視図Exploded perspective view of heat storage tank 図4における線VII−VIIに沿った断面図Sectional view along line VII-VII in FIG. 図4の蓄熱装置に設けられたシート部材を樹脂層と金属層の2層積層構造とした場合の拡大断面図4 is an enlarged cross-sectional view when the sheet member provided in the heat storage device of FIG. 図4の蓄熱装置に設けられたシート部材を樹脂層と金属層と樹脂層の3層積層構造とした場合の拡大断面図4 is an enlarged cross-sectional view when the sheet member provided in the heat storage device of FIG. 4 has a three-layer laminated structure of a resin layer, a metal layer, and a resin layer. 伝熱板厚さと伝熱性能の関係図Relationship between heat transfer plate thickness and heat transfer performance 従来の蓄熱装置の横断面図Cross-sectional view of a conventional heat storage device

本発明は、略円筒状の圧縮機を囲むように配置された蓄熱装置であって、前圧縮機で発生した熱を蓄積する蓄熱材と、蓄熱材を収容する蓄熱槽と、蓄熱槽の側面であって圧縮機からの熱を蓄熱材に伝える伝熱面と、を有し、伝熱面の材料の熱伝導率は蓄熱槽の伝熱面以外の材料の熱伝導率より高いとしている。 The present invention is a heat storage device disposed so as to surround a substantially cylindrical compressor, a heat storage material that accumulates heat generated by the pre-compressor, a heat storage tank that stores the heat storage material, and a side surface of the heat storage tank The heat conductivity of the material of the heat transfer surface is higher than the heat conductivity of the material other than the heat transfer surface of the heat storage tank.

この構成により、圧縮機に接する蓄熱槽の伝熱面を熱伝導率の高い材料でとすることで、圧縮機からの廃熱を効率良く蓄熱材に蓄えることが可能となり、かつ、蓄熱槽のそれ以外の面、すなわち外雰囲気と接する面を熱伝導率の低い材料で構成することで、蓄えた熱の外雰囲気への放熱を最小限にとどめることができる。これにより、高い蓄熱性能を有し、短時間で蓄熱材の温度上昇が可能な蓄熱装置及びこの蓄熱装置を用いた空気調和機を提供することができる。   With this configuration, the heat transfer surface of the heat storage tank in contact with the compressor is made of a material having high thermal conductivity, so that waste heat from the compressor can be efficiently stored in the heat storage material, and the heat storage tank By configuring the other surface, that is, the surface in contact with the outside atmosphere with a material having a low thermal conductivity, heat radiation of the stored heat to the outside atmosphere can be minimized. Thereby, it is possible to provide a heat storage device having high heat storage performance and capable of increasing the temperature of the heat storage material in a short time, and an air conditioner using the heat storage device.

また、具体的には、蓄熱槽が圧縮機と接する伝熱面に金属を採用し、その他の材料には樹脂を採用している。これにより、蓄熱槽が圧縮機と接触した場合も、割れ等に伴う蓄熱材の漏れを防ぐことが可能となる。更に接触面以外を成形精度の高い樹脂で構成することで、圧縮機と蓄熱槽の接触面の間に生じる隙間を最低限にとどめることができ、圧縮機と蓄熱槽伝熱面の接触不良にともなう蓄熱性能の低下を防ぐことが可能となる。   Specifically, the heat storage tank employs metal for the heat transfer surface in contact with the compressor, and other materials employ resin. Thereby, also when a thermal storage tank contacts with a compressor, it becomes possible to prevent the leakage of the thermal storage material accompanying a crack etc. Furthermore, by constructing the resin other than the contact surface with a resin with high molding accuracy, the gap generated between the contact surface of the compressor and the heat storage tank can be kept to a minimum, resulting in poor contact between the compressor and the heat storage tank heat transfer surface. It is possible to prevent the accompanying deterioration in heat storage performance.

また、好ましくは、伝熱面材料は、前記伝熱面以外に接合される第1樹脂層と、該第1樹脂層に対して前記圧縮機側に積層される金属層とで構成することで、伝熱面の材料の熱伝導性、強度等が向上する。   Preferably, the heat transfer surface material is constituted by a first resin layer bonded to a portion other than the heat transfer surface, and a metal layer laminated on the compressor side with respect to the first resin layer. The heat conductivity, strength, etc. of the heat transfer surface material are improved.

更に好ましくは、伝熱面材料は、金属層に対して圧縮機側に積層される第2樹脂層を更に備えることにより、伝熱面材料とその他の材料の密着性が更に向上する。
また、好ましくは、伝熱面の圧縮機から蓄熱材への熱の流れ方向の部材厚さL(mm)を0.5mm<L<3mmで表される構成とすることで、圧縮機と伝熱面の間に気泡のかみ込み等、空隙が生じた場合でも伝熱面の熱拡散効果により、圧縮機から蓄熱材への伝熱性能の低下を最低限にとどめることができる。
More preferably, the heat transfer surface material further includes a second resin layer laminated on the compressor side with respect to the metal layer, thereby further improving the adhesion between the heat transfer surface material and the other material.
Preferably, the member thickness L (mm) in the heat flow direction from the compressor on the heat transfer surface to the heat storage material is expressed as 0.5 mm <L <3 mm, so Even when voids are generated between the hot surfaces, the heat transfer performance from the compressor to the heat storage material can be minimized due to the thermal diffusion effect of the heat transfer surface.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、本発明に係る蓄熱装置を備えた空気調和機の構成を示しており、空気調和機は冷媒配管で互いに接続された室外機2と室内機4とで構成されている。   FIG. 1 shows a configuration of an air conditioner provided with a heat storage device according to the present invention, and the air conditioner is composed of an outdoor unit 2 and an indoor unit 4 connected to each other by refrigerant piping.

図1に示されるように、室外機2の内部には、圧縮機6と四方弁8とストレーナ10と膨張弁12と室外熱交換器14とが設けられ、室内機4の内部には、室内熱交換器16が設けられ、これらは冷媒配管を介して互いに接続されることで冷凍サイクルを構成している。   As shown in FIG. 1, a compressor 6, a four-way valve 8, a strainer 10, an expansion valve 12, and an outdoor heat exchanger 14 are provided inside the outdoor unit 2. A heat exchanger 16 is provided, and these are connected to each other via a refrigerant pipe to constitute a refrigeration cycle.

さらに詳述すると、圧縮機6と室内熱交換器16は、四方弁8が設けられた第1配管18を介して接続され、室内熱交換器16と膨張弁12は、ストレーナ10が設けられた第2配管20を介して接続されている。また、膨張弁12と室外熱交換器14は第3配管22を介して接続され、室外熱交換器14と圧縮機6は第4配管24を介して接続されている。   More specifically, the compressor 6 and the indoor heat exchanger 16 are connected via a first pipe 18 provided with a four-way valve 8, and the indoor heat exchanger 16 and the expansion valve 12 are provided with a strainer 10. The second pipe 20 is connected. The expansion valve 12 and the outdoor heat exchanger 14 are connected via a third pipe 22, and the outdoor heat exchanger 14 and the compressor 6 are connected via a fourth pipe 24.

第4配管24の中間部には四方弁8が配置されており、圧縮機6の冷媒吸入側における第4配管24には、液相冷媒と気相冷媒を分離するためのアキュームレータ26が設けられている。また、圧縮機6と第3配管22は、第5配管28を介して接続されており、第5配管28には第1電磁弁30が設けられている。   A four-way valve 8 is disposed in the middle of the fourth pipe 24, and an accumulator 26 for separating the liquid-phase refrigerant and the gas-phase refrigerant is provided in the fourth pipe 24 on the refrigerant suction side of the compressor 6. ing. The compressor 6 and the third pipe 22 are connected via a fifth pipe 28, and the first solenoid valve 30 is provided in the fifth pipe 28.

さらに、圧縮機6の周囲には蓄熱槽32が設けられ、蓄熱槽32の内部には、蓄熱熱交換器34が設けられるとともに、蓄熱熱交換器34と熱交換するための蓄熱材(例えば、エチレングリコール水溶液)36が充填されており、蓄熱槽32と蓄熱熱交換器34と蓄熱材36とで蓄熱装置を構成している。   Further, a heat storage tank 32 is provided around the compressor 6, and a heat storage heat exchanger 34 is provided inside the heat storage tank 32, and a heat storage material for exchanging heat with the heat storage heat exchanger 34 (for example, An ethylene glycol aqueous solution) 36 is filled, and the heat storage tank 32, the heat storage heat exchanger 34, and the heat storage material 36 constitute a heat storage device.

また、第2配管20と蓄熱熱交換器34は第6配管38を介して接続され、蓄熱熱交換器34と第4配管24は第7配管40を介して接続されており、第6配管38には第2電磁弁42が設けられている。   The second pipe 20 and the heat storage heat exchanger 34 are connected via a sixth pipe 38, the heat storage heat exchanger 34 and the fourth pipe 24 are connected via a seventh pipe 40, and the sixth pipe 38. Is provided with a second electromagnetic valve 42.

室内機4の内部には、室内熱交換器16に加えて、送風ファン(図示せず)と上下羽根(図示せず)と左右羽根(図示せず)とが設けられており、室内熱交換器16は、送風ファンにより室内機4の内部に吸込まれた室内空気と、室内熱交換器16の内部を流れる冷媒との熱交換を行い、暖房時には熱交換により暖められた空気を室内に吹き出す一方、冷房時には熱交換により冷却された空気を室内に吹き出す。上下羽根は、室内機4から吹き出される空気の方向を必要に応じて上下に変更し、左右羽根は、室内機4から吹き出される空気の方向を必要に応じて左右に変更する。   In addition to the indoor heat exchanger 16, an air blower fan (not shown), upper and lower blades (not shown), and left and right blades (not shown) are provided inside the indoor unit 4, and indoor heat exchange is performed. The unit 16 exchanges heat between the indoor air sucked into the interior of the indoor unit 4 by the blower fan and the refrigerant flowing through the interior of the indoor heat exchanger 16, and blows out the air warmed by heat exchange into the room during heating. On the other hand, air cooled by heat exchange is blown into the room during cooling. The upper and lower blades change the direction of air blown from the indoor unit 4 up and down as necessary, and the left and right blades change the direction of air blown from the indoor unit 4 to right and left as needed.

なお、圧縮機6、送風ファン、上下羽根、左右羽根、四方弁8、膨張弁12、電磁弁30,42等は制御装置(図示せず、例えばマイコン)に電気的に接続され、制御装置により制御される。   The compressor 6, the blower fan, the upper and lower blades, the left and right blades, the four-way valve 8, the expansion valve 12, the electromagnetic valves 30 and 42, etc. are electrically connected to a control device (not shown, for example, a microcomputer). Be controlled.

上記構成の本発明に係る冷凍サイクル装置において、各部品の相互の接続関係と機能を暖房運転時を例にとり冷媒の流れとともに説明する。   In the refrigeration cycle apparatus according to the present invention having the above-described configuration, the mutual connection relationship and function of each component will be described together with the flow of the refrigerant taking the heating operation as an example.

圧縮機6の吐出口から吐出された冷媒は、第1配管18を通って四方弁8から室内熱交換器16へと至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て第2配管20を通り、膨張弁12への異物侵入を防止するストレーナ10を通って、膨張弁12に至る。膨張弁12で減圧した冷媒は、第3配管22を通って室外
熱交換器14に至り、室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、第4配管24と四方弁8とアキュームレータ26を通って圧縮機6の吸入口へと戻る。
The refrigerant discharged from the discharge port of the compressor 6 reaches the indoor heat exchanger 16 from the four-way valve 8 through the first pipe 18. The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 passes through the second pipe 20 through the indoor heat exchanger 16, expands through the strainer 10 that prevents foreign matter from entering the expansion valve 12. To valve 12. The refrigerant decompressed by the expansion valve 12 reaches the outdoor heat exchanger 14 through the third pipe 22, and the refrigerant evaporated by exchanging heat with the outdoor air in the outdoor heat exchanger 14 is the fourth pipe 24 and the four-way valve 8. And returns to the suction port of the compressor 6 through the accumulator 26.

また、第1配管18の圧縮機6吐出口と四方弁8の間から分岐した第5配管28は、第1電磁弁30を介して第3配管22の膨張弁12と室外熱交換器14の間に合流している。   The fifth pipe 28 branched from the compressor 6 discharge port of the first pipe 18 and the four-way valve 8 is connected to the expansion valve 12 of the third pipe 22 and the outdoor heat exchanger 14 via the first electromagnetic valve 30. I am joining in between.

さらに、内部に蓄熱材36と蓄熱熱交換器34を収納した蓄熱槽32は、圧縮機6に接して取り囲むように配置され、圧縮機6で発生した熱を蓄熱材36に蓄積し、第2配管20から室内熱交換器16とストレーナ10の間で分岐した第6配管38は、第2電磁弁42を経て蓄熱熱交換器34の入口へと至り、蓄熱熱交換器34の出口から出た第7配管40は、第4配管24における四方弁8とアキュームレータ26の間に合流する。なお、合流する場所はアキュームレータ26と圧縮機6の間でも良く、その場合、アキュームレータ26自身が持つ熱容量によって熱を奪われること避けることができる。   Furthermore, the heat storage tank 32 in which the heat storage material 36 and the heat storage heat exchanger 34 are housed is disposed so as to be in contact with and surround the compressor 6, and the heat generated in the compressor 6 is accumulated in the heat storage material 36, and the second The sixth pipe 38 branched from the pipe 20 between the indoor heat exchanger 16 and the strainer 10 reaches the inlet of the heat storage heat exchanger 34 via the second electromagnetic valve 42 and exits from the outlet of the heat storage heat exchanger 34. The seventh pipe 40 joins between the four-way valve 8 and the accumulator 26 in the fourth pipe 24. In addition, the place where it joins may be between the accumulator 26 and the compressor 6, and in that case, it can be avoided that heat is taken away by the heat capacity of the accumulator 26 itself.

次に、図1に示される空気調和機の通常暖房時の動作及び冷媒の流れを模式的に示す図2を参照しながら通常暖房時の動作を説明する。   Next, the operation during normal heating will be described with reference to FIG. 2 schematically showing the operation during normal heating and the flow of the refrigerant of the air conditioner shown in FIG.

通常暖房運転時、第1電磁弁30と第2電磁弁42は閉制御されており、上述したように圧縮機6の吐出口から吐出された冷媒は、第1配管18を通って四方弁8から室内熱交換器16に至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て、第2配管20を通り膨張弁12に至り、膨張弁12で減圧した冷媒は、第3配管22を通って室外熱交換器14に至る。室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、第4配管24を通って四方弁8から圧縮機6の吸入口へと戻る。   During the normal heating operation, the first electromagnetic valve 30 and the second electromagnetic valve 42 are controlled to be closed, and the refrigerant discharged from the discharge port of the compressor 6 as described above passes through the first pipe 18 and the four-way valve 8. To the indoor heat exchanger 16. The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 exits the indoor heat exchanger 16, passes through the second pipe 20, reaches the expansion valve 12, and the refrigerant decompressed by the expansion valve 12 is the third refrigerant. It reaches the outdoor heat exchanger 14 through the pipe 22. The refrigerant evaporated by exchanging heat with outdoor air in the outdoor heat exchanger 14 returns from the four-way valve 8 to the suction port of the compressor 6 through the fourth pipe 24.

また、圧縮機6で発生した熱は、圧縮機6の外壁から蓄熱槽32の外壁を介して蓄熱槽32の内部に収容された蓄熱材36に蓄積される。   Further, the heat generated in the compressor 6 is accumulated in the heat storage material 36 housed in the heat storage tank 32 from the outer wall of the compressor 6 through the outer wall of the heat storage tank 32.

次に、図1に示される空気調和機の除霜・暖房時の動作及び冷媒の流れを示す模式的に示す図3を参照しながら除霜・暖房時の動作を説明する。図中、実線矢印は暖房に供する冷媒の流れを示しており、破線矢印は除霜に供する冷媒の流れを示している。   Next, the operation during defrosting / heating will be described with reference to FIG. 3 schematically showing the operation of the air conditioner shown in FIG. 1 during defrosting / heating and the flow of refrigerant. In the figure, the solid line arrows indicate the flow of the refrigerant used for heating, and the broken line arrows indicate the flow of the refrigerant used for defrosting.

上述した通常暖房運転中に室外熱交換器14に着霜し、着霜した霜が成長すると、室外熱交換器14の通風抵抗が増加して風量が減少し、室外熱交換器14内の蒸発温度が低下する。本発明に係る空気調和機には、図3に示されるように、室外熱交換器14の配管温度を検出する温度センサ44が設けられており、非着霜時に比べて、蒸発温度が低下したことを温度センサ44で検出すると、制御装置から通常暖房運転から除霜・暖房運転への指示が出力される。   When the outdoor heat exchanger 14 is frosted during the above-described normal heating operation and the frosted frost grows, the ventilation resistance of the outdoor heat exchanger 14 increases and the air flow decreases, and the evaporation in the outdoor heat exchanger 14 increases. The temperature drops. As shown in FIG. 3, the air conditioner according to the present invention is provided with a temperature sensor 44 that detects the piping temperature of the outdoor heat exchanger 14, and the evaporation temperature is lower than that during non-frosting. When this is detected by the temperature sensor 44, an instruction from the normal heating operation to the defrosting / heating operation is output from the control device.

通常暖房運転から除霜・暖房運転に移行すると、第1電磁弁30と第2電磁弁42は開制御され、上述した通常暖房運転時の冷媒の流れに加え、圧縮機6の吐出口から出た気相冷媒の一部は第5配管28と第1電磁弁30を通り、第3配管22を通る冷媒に合流して、室外熱交換器14を加熱し、凝縮して液相化した後、第4配管24を通って四方弁8とアキュームレータ26を介して圧縮機6の吸入口へと戻る。   When the normal heating operation is shifted to the defrosting / heating operation, the first electromagnetic valve 30 and the second electromagnetic valve 42 are controlled to open, and in addition to the refrigerant flow during the normal heating operation described above, the first solenoid valve 30 and the second electromagnetic valve 42 are discharged from the discharge port of the compressor 6. After a part of the vapor-phase refrigerant passes through the fifth pipe 28 and the first electromagnetic valve 30 and merges with the refrigerant passing through the third pipe 22, the outdoor heat exchanger 14 is heated, condensed, and converted into a liquid phase. Through the fourth pipe 24, the four-way valve 8 and the accumulator 26 are returned to the suction port of the compressor 6.

また、第2配管20における室内熱交換器16とストレーナ10の間で分流した液相冷媒の一部は、第6配管38と第2電磁弁42を経て、蓄熱熱交換器34で蓄熱材36から吸熱し蒸発、気相化して、第7配管40を通って第4配管24を通る冷媒に合流し、アキュームレータ26から圧縮機6の吸入口へと戻る。   Further, a part of the liquid-phase refrigerant that is divided between the indoor heat exchanger 16 and the strainer 10 in the second pipe 20 passes through the sixth pipe 38 and the second electromagnetic valve 42, and then is stored in the heat storage material 36 in the heat storage heat exchanger 34. From the accumulator 26 and returns to the suction port of the compressor 6 through the seventh pipe 40 and the refrigerant that passes through the fourth pipe 24.

アキュームレータ26に戻る冷媒には、室外熱交換器14から戻ってくる液相冷媒が含まれているが、これに蓄熱熱交換器34から戻ってくる高温の気相冷媒を混合することで、液相冷媒の蒸発が促され、アキュームレータ26を通過して液相冷媒が圧縮機6に戻ることがなくなり、圧縮機6の信頼性の向上を図ることができる。   The refrigerant returning to the accumulator 26 includes the liquid phase refrigerant returning from the outdoor heat exchanger 14. By mixing this with the high-temperature gas phase refrigerant returning from the heat storage heat exchanger 34, The evaporation of the phase refrigerant is promoted, and the liquid phase refrigerant does not return to the compressor 6 through the accumulator 26, so that the reliability of the compressor 6 can be improved.

除霜・暖房開始時に霜の付着により氷点下となった室外熱交換器14の温度は、圧縮機6の吐出口から出た気相冷媒によって加熱されて、零度付近で霜が融解し、霜の融解が終わると、室外熱交換器14の温度は再び上昇し始める。この室外熱交換器14の温度上昇を温度センサ44で検出すると、除霜が完了したと判断し、制御装置から除霜・暖房運転から通常暖房運転への指示が出力される。   The temperature of the outdoor heat exchanger 14 that has become below freezing due to the attachment of frost at the start of defrosting and heating is heated by the gas-phase refrigerant discharged from the discharge port of the compressor 6, and the frost is melted near zero degrees. When melting is finished, the temperature of the outdoor heat exchanger 14 begins to rise again. When the temperature sensor 44 detects the temperature rise of the outdoor heat exchanger 14, it is determined that the defrosting has been completed, and the control device outputs an instruction from the defrosting / heating operation to the normal heating operation.

図4、図5は蓄熱装置を示しており、蓄熱装置は、上述したように、蓄熱槽32と蓄熱熱交換器34と蓄熱材36とで構成されている。なお、図4は、圧縮機6と、圧縮機6に組み付けられるアキュームレータ26を蓄熱装置に取り付けた状態を示している。また、図5は蓄熱槽の分解斜視図であり、図6は図4における線VII−VIIに沿った蓄熱槽の断面図である。   4 and 5 show a heat storage device, and the heat storage device includes the heat storage tank 32, the heat storage heat exchanger 34, and the heat storage material 36 as described above. FIG. 4 shows a state where the compressor 6 and the accumulator 26 assembled to the compressor 6 are attached to the heat storage device. 5 is an exploded perspective view of the heat storage tank, and FIG. 6 is a cross-sectional view of the heat storage tank along line VII-VII in FIG.

図4及び図5に示されるように、蓄熱槽32は、側壁46a、46bと底壁(図示せず)を有し上方が開口した樹脂製の蓄熱槽本体46と、この蓄熱槽本体46の上方開口部を閉塞する樹脂製の蓋体48と、蓄熱槽本体46と蓋体48の間に介装されシリコンゴム等で作製されたパッキンを備え、蓋体48は蓄熱槽本体46にてツメ部50により固定される。また、蓄熱槽本体46の側壁46bの一部(つまり、側壁46bで圧縮機6と対向する部分)は開口しており、この開口部46cに圧縮機6の外周面と密着する伝熱板51が嵌まり込み、接合される。本実施例では、伝熱板として、加工性、耐食性に優れた銅板を採用している。   As shown in FIGS. 4 and 5, the heat storage tank 32 includes a resin heat storage tank body 46 having side walls 46 a and 46 b and bottom walls (not shown) and opened upward, and the heat storage tank body 46. A resin lid 48 that closes the upper opening and a packing made of silicon rubber or the like interposed between the heat storage tank main body 46 and the lid 48 are provided. It is fixed by the part 50. In addition, a part of the side wall 46b of the heat storage tank main body 46 (that is, a part facing the compressor 6 at the side wall 46b) is open, and the heat transfer plate 51 is in close contact with the outer peripheral surface of the compressor 6 at the opening 46c. Is inserted and joined. In this embodiment, a copper plate excellent in workability and corrosion resistance is adopted as the heat transfer plate.

なお、伝熱板51は、全体として所定の直径の円筒の一部を切り欠いた形状を呈しており、この内側には、圧縮機6が収容されることから、取付公差等を考慮して伝熱板51の内径は圧縮機6の外径より僅かに大きく設定される。   The heat transfer plate 51 has a shape in which a part of a cylinder having a predetermined diameter is cut out as a whole. Since the compressor 6 is accommodated inside the heat transfer plate 51, the mounting tolerance and the like are taken into consideration. The inner diameter of the heat transfer plate 51 is set slightly larger than the outer diameter of the compressor 6.

蓄熱熱交換器34は、例えば銅管等を蛇行状に折曲したもので、蓄熱槽本体46の内部に収容されており、蓄熱熱交換器34の両端は蓋体48から上方に延出され、一端は第6配管38(図1参照)に接続される一方、他端は第7配管40(図1参照)に接続される。また、蓄熱熱交換器34が収容され、側壁46a、46bと底壁と伝熱板51で囲繞された蓄熱槽本体46の内部空間には、蓄熱材36が充填される。   The heat storage heat exchanger 34 is, for example, a copper tube or the like bent in a serpentine shape, and is housed inside the heat storage tank body 46, and both ends of the heat storage heat exchanger 34 are extended upward from the lid 48. One end is connected to the sixth pipe 38 (see FIG. 1), while the other end is connected to the seventh pipe 40 (see FIG. 1). The heat storage heat exchanger 34 is accommodated, and the heat storage material 36 is filled in the internal space of the heat storage tank main body 46 surrounded by the side walls 46 a and 46 b, the bottom wall, and the heat transfer plate 51.

蓄熱槽本体46は圧縮機6を抱くように横方向から密着させ、バンド52a、52bにより、それぞれアキュームレータ26、圧縮機6に上下で締結されることで、強固に固定される。   The heat storage tank main body 46 is closely fixed from the lateral direction so as to hold the compressor 6 and fastened to the accumulator 26 and the compressor 6 by bands 52a and 52b, respectively, so as to be firmly fixed.

なお、図5において蓄熱熱交換器34は省略しているが、蓄熱熱交換器34は、蓋体48を蓄熱槽本体46に固定する前に蓋体48に取り付けられ、蓄熱槽32の内部に収容される。   Although the heat storage heat exchanger 34 is omitted in FIG. 5, the heat storage heat exchanger 34 is attached to the lid body 48 before fixing the lid body 48 to the heat storage tank main body 46, and is installed inside the heat storage tank 32. Be contained.

次に、上記構成の蓄熱装置の作用を説明する。   Next, the operation of the heat storage device having the above configuration will be described.

上述したように、蓄熱装置は、暖房運転時に圧縮機6で発生した熱を蓄熱材36に蓄熱し、通常暖房運転から除霜・暖房運転に移行したときに、蓄熱熱交換器34によって、その熱を取得し利用する。したがって、暖房運転時に霜が成長するよりも早く蓄熱材36の温度が十分に上げられるよう、圧縮機6外表面から蓄熱材36に至る伝熱経路の伝熱性能
が良く、かつ蓄熱材36から外雰囲気への断熱性が高い程好ましい。
As described above, the heat storage device stores heat generated in the compressor 6 during the heating operation in the heat storage material 36, and when the heat storage device 36 shifts from the normal heating operation to the defrosting / heating operation, the heat storage heat exchanger 34 Obtain and use heat. Therefore, the heat transfer performance of the heat transfer path from the outer surface of the compressor 6 to the heat storage material 36 is good so that the temperature of the heat storage material 36 can be sufficiently raised faster than frost grows during heating operation. The higher the heat insulation to the outside atmosphere, the better.

圧縮機6外表面から蓄熱材36に至る伝熱経路の伝熱性能は、蓄熱槽本体46と圧縮機6との密着度と、伝熱面の伝熱性能に依存しており、蓄熱材36から外雰囲気への断熱性は蓄熱槽本体46の伝熱面以外の断熱性能に依存している。   The heat transfer performance of the heat transfer path from the outer surface of the compressor 6 to the heat storage material 36 depends on the degree of adhesion between the heat storage tank body 46 and the compressor 6 and the heat transfer performance of the heat transfer surface. The heat insulation from the atmosphere to the outside atmosphere depends on the heat insulation performance other than the heat transfer surface of the heat storage tank body 46.

そこで、本発明に係る蓄熱装置においては、蓄熱槽本体46に断熱性が高く、成形精度の高い樹脂部材を採用し、そこに伝熱性能の高い伝熱板51を嵌め込み、接合する構成としている。これにより、蓄熱材から、外雰囲気への放熱を防ぐと共に、伝熱面の寸法精度の確保が可能となり、圧縮機と伝熱面の密着度を向上させ、蓄熱材36への蓄熱性能を向上させている。   Therefore, in the heat storage device according to the present invention, a resin member having high heat insulation and high molding accuracy is adopted for the heat storage tank main body 46, and a heat transfer plate 51 having high heat transfer performance is fitted and joined thereto. . As a result, heat dissipation from the heat storage material to the outside atmosphere can be prevented, and dimensional accuracy of the heat transfer surface can be ensured, the degree of adhesion between the compressor and the heat transfer surface is improved, and the heat storage performance to the heat storage material 36 is improved. I am letting.

また、伝熱板51は金属の単層構造でもよいが、耐食性、強度等を考慮して、金属層に樹脂層を積層した積層構造とすることもできる。これにより伝熱板51と蓄熱槽本体46の結合部を同一樹脂材料で構成することが可能となり、結合部の強度を増加させることができる。   In addition, the heat transfer plate 51 may have a metal single-layer structure, but it may be a laminated structure in which a resin layer is laminated on a metal layer in consideration of corrosion resistance, strength, and the like. Thereby, it becomes possible to comprise the coupling | bond part of the heat exchanger plate 51 and the thermal storage tank main body 46 with the same resin material, and can increase the intensity | strength of a coupling | bond part.

積層構造の場合、図7に示されるように、外側(圧縮機6との対向面)に金属層58を配置し、内側(蓄熱材36との接触面)に樹脂層60を配置するのが好ましい。金属層58を圧縮機6側に配置するのは、例えば、圧縮機6表面の凹凸で伝熱板51が傷むことを防止するためである。また、金属層58よりも蓄熱材側に樹脂層60を配置するのは、金属層58の腐食を防止するためである。   In the case of a laminated structure, as shown in FIG. 7, the metal layer 58 is disposed on the outer side (the surface facing the compressor 6), and the resin layer 60 is disposed on the inner side (the contact surface with the heat storage material 36). preferable. The reason why the metal layer 58 is disposed on the compressor 6 side is to prevent the heat transfer plate 51 from being damaged by unevenness on the surface of the compressor 6, for example. The reason why the resin layer 60 is disposed closer to the heat storage material than the metal layer 58 is to prevent corrosion of the metal layer 58.

さらに、図8に示されるように、金属層58に、圧縮機6と密着する第2の樹脂層62を積層してもよく、この場合、伝熱板51と蓄熱槽本体46の結合部の強度を更に増加させることができる。   Furthermore, as shown in FIG. 8, a second resin layer 62 that is in close contact with the compressor 6 may be laminated on the metal layer 58, and in this case, the connection portion between the heat transfer plate 51 and the heat storage tank main body 46. The strength can be further increased.

また、伝熱板51の厚さは、圧縮機6から蓄熱材36への熱の流れ方向に対して下式の厚さL(mm)で構成されることが望ましい。   In addition, the thickness of the heat transfer plate 51 is desirably configured by the following thickness L (mm) with respect to the flow direction of heat from the compressor 6 to the heat storage material 36.

0.5mm<L<3mm
図9は、伝熱板51と圧縮機6の間に1mm間隔で隙間が生じた場合の伝熱性能を、伝熱板の厚さに対して示した計算例である。伝熱板の熱伝導率が高い場合、気泡の含有などにより伝熱板51と圧縮機6の間に空隙が生じても、伝熱板の厚さを適度に確保することで、圧縮機と接していない伝熱板の領域に関しても熱拡散効果による温度上昇が可能となり、圧縮機6から蓄熱材36への伝熱性能の低下を最低限にとどめることができる。
0.5mm <L <3mm
FIG. 9 is a calculation example showing heat transfer performance with respect to the thickness of the heat transfer plate when gaps are generated at intervals of 1 mm between the heat transfer plate 51 and the compressor 6. When the heat conductivity of the heat transfer plate is high, even if a gap is generated between the heat transfer plate 51 and the compressor 6 due to the inclusion of air bubbles, etc., the thickness of the heat transfer plate is appropriately secured, The temperature of the heat transfer plate that is not in contact can also be increased by the heat diffusion effect, and the decrease in heat transfer performance from the compressor 6 to the heat storage material 36 can be minimized.

本発明に係る蓄熱装置は圧縮機と密着する密着部材を備えており、圧縮機で発生した熱を蓄熱材に効率的に蓄積することができるので、空気調和機、冷蔵庫、給湯器、ヒートポンプ式洗濯機等に有用である。   The heat storage device according to the present invention includes an adhesion member that is in close contact with the compressor, and can efficiently accumulate heat generated in the compressor in the heat storage material. Useful for washing machines.

2 室外機
4 室内機
6 圧縮機
8 四方弁
10 ストレーナ
12 膨張弁
14 室外熱交換器
16 室内熱交換器
18 第1配管
20 第2配管
22 第3配管
24 第4配管
26 アキュームレータ
28 第5配管
30 第1電磁弁
32 蓄熱槽
34 蓄熱熱交換器
36 蓄熱材
38 第6配管
40 第7配管
42 第2電磁弁
44 温度センサ
46 蓄熱槽本体
46a、46b 側壁
46c 側壁開口部、
48 蓋体
50 ツメ部
51 伝熱板
52a、52b バンド
58 金属層
60 樹脂層
62 第2の樹脂層
DESCRIPTION OF SYMBOLS 2 Outdoor unit 4 Indoor unit 6 Compressor 8 Four-way valve 10 Strainer 12 Expansion valve 14 Outdoor heat exchanger 16 Indoor heat exchanger 18 1st piping 20 2nd piping 22 3rd piping 24 4th piping 26 Accumulator 28 5th piping 30 First solenoid valve 32 Thermal storage tank 34 Thermal storage heat exchanger 36 Thermal storage material 38 Sixth pipe 40 Seventh pipe 42 Second electromagnetic valve 44 Temperature sensor 46 Thermal storage tank body 46a, 46b Side wall 46c Side wall opening,
48 Lid 50 Claw 51 Heat transfer plate 52a, 52b Band 58 Metal layer 60 Resin layer 62 Second resin layer

Claims (6)

略円筒状の圧縮機を囲むように配置された蓄熱装置であって、
前記圧縮機で発生した熱を蓄積する蓄熱材と、前記蓄熱材を収容する蓄熱槽と、前記蓄熱槽の側面であって前記圧縮機からの熱を前記蓄熱材に伝える伝熱面と、を有し、前記伝熱面の材料の熱伝導率は前記蓄熱槽の前記伝熱面以外の材料の熱伝導率より高いことを特徴とする蓄熱装置。
A heat storage device arranged to surround a substantially cylindrical compressor,
A heat storage material that accumulates heat generated by the compressor, a heat storage tank that houses the heat storage material, and a heat transfer surface that is a side surface of the heat storage tank and transfers heat from the compressor to the heat storage material. And a thermal conductivity of a material of the heat transfer surface is higher than a thermal conductivity of a material other than the heat transfer surface of the heat storage tank.
前記伝熱面の材料には金属を用い、その他の材料には樹脂を用いたことを特徴とする、請求項1に記載の蓄熱装置。 The heat storage device according to claim 1, wherein a metal is used for a material of the heat transfer surface, and a resin is used for other materials. 前記伝熱面以外の材料には樹脂を用い、前記伝熱面材料は、第1樹脂層と、該第1樹脂層に対して前記圧縮機側に積層される金属層とで構成されることを特徴とする、請求項1に記載の蓄熱装置に記載の蓄熱装置。 Resin is used for materials other than the said heat transfer surface, and the said heat transfer surface material is comprised by the 1st resin layer and the metal layer laminated | stacked on the said compressor side with respect to this 1st resin layer. The heat storage device according to claim 1, wherein the heat storage device is a heat storage device. 前記伝熱面材料は、前記金属層に対して前記圧縮機側に積層される第2樹脂層をさらに備えることを特徴とする請求項3に記載の蓄熱装置。 The heat storage device according to claim 3, wherein the heat transfer surface material further includes a second resin layer laminated on the compressor side with respect to the metal layer. 前記伝熱面の厚さL(mm)は、0.5mm<L<3mmで表されることを特徴とする請求項1〜4のいずれか1項に記載の蓄熱装置。 5. The heat storage device according to claim 1, wherein a thickness L (mm) of the heat transfer surface is expressed by 0.5 mm <L <3 mm. 請求項1〜5のいずれか1項に記載の蓄熱装置を用いた空気調和機。 An air conditioner using the heat storage device according to any one of claims 1 to 5.
JP2010216457A 2010-09-28 2010-09-28 Heat storage device, and air conditioner with the same Pending JP2012072934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010216457A JP2012072934A (en) 2010-09-28 2010-09-28 Heat storage device, and air conditioner with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010216457A JP2012072934A (en) 2010-09-28 2010-09-28 Heat storage device, and air conditioner with the same

Publications (1)

Publication Number Publication Date
JP2012072934A true JP2012072934A (en) 2012-04-12

Family

ID=46169295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010216457A Pending JP2012072934A (en) 2010-09-28 2010-09-28 Heat storage device, and air conditioner with the same

Country Status (1)

Country Link
JP (1) JP2012072934A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103542752A (en) * 2012-07-12 2014-01-29 爱信精机株式会社 Chemical heat storage device
JP2014085021A (en) * 2012-10-19 2014-05-12 Panasonic Corp Heat storage device, and air conditioner including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331666A (en) * 1989-06-28 1991-02-12 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
JP2004020135A (en) * 2002-06-19 2004-01-22 Toyota Motor Corp Regenerator
JP2008039209A (en) * 2006-08-02 2008-02-21 Hitachi Ltd Temperature adjusting member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331666A (en) * 1989-06-28 1991-02-12 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
JP2004020135A (en) * 2002-06-19 2004-01-22 Toyota Motor Corp Regenerator
JP2008039209A (en) * 2006-08-02 2008-02-21 Hitachi Ltd Temperature adjusting member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103542752A (en) * 2012-07-12 2014-01-29 爱信精机株式会社 Chemical heat storage device
US9714793B2 (en) 2012-07-12 2017-07-25 Aisin Seiki Kabushiki Kaisha Chemical heat storage device including rotatable heat storage material accommodation unit
CN103542752B (en) * 2012-07-12 2017-12-01 爱信精机株式会社 Chemical heat storage device
JP2014085021A (en) * 2012-10-19 2014-05-12 Panasonic Corp Heat storage device, and air conditioner including the same

Similar Documents

Publication Publication Date Title
JP5238001B2 (en) Refrigeration cycle equipment
WO2011099061A1 (en) Heat storage device, and air-conditioner provided with same
JP4760996B1 (en) Heat storage device and air conditioner equipped with the heat storage device
JP4760995B1 (en) Heat storage device and air conditioner equipped with the heat storage device
JP5110136B2 (en) Heat storage device and air conditioner equipped with the heat storage device
JP5182347B2 (en) Heat storage device and air conditioner equipped with the heat storage device
JP4634530B1 (en) Heat storage device and air conditioner equipped with the heat storage device
JP2012078012A (en) Heat storage apparatus and air conditioner with the same
JP2014085021A (en) Heat storage device, and air conditioner including the same
JP2012072934A (en) Heat storage device, and air conditioner with the same
WO2011099060A1 (en) Heat storage device, and air-conditioner provided with same
JP2011163662A (en) Heat storage device and air conditioner including the same
JP5083394B2 (en) Heat storage device and air conditioner equipped with the heat storage device
JP4634529B1 (en) Heat storage device and air conditioner equipped with the heat storage device
JP5585348B2 (en) Heat storage device and air conditioner equipped with the heat storage device
WO2012042687A1 (en) Heat storage device and air conditioner with the heat storage device
WO2013099163A1 (en) Heat storage device, and air conditioner equipped with same
JP2012077935A (en) Heat storage device, and air conditioner using the same
JP5067460B2 (en) Heat storage device and air conditioner equipped with the heat storage device
JP2014020679A (en) Heat storage device and air conditioner including the same
JP2012072963A (en) Heat storage device, air conditioner with the same
JP2012072958A (en) Heat storage device, and air conditioner with the same
WO2011099062A1 (en) Heat storage device, and air conditioner provided with said heat storage device
JP2012063076A (en) Heat storage apparatus and air conditioning apparatus
JP2012077937A (en) Heat storage device, and air conditioner with the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528