JP2012063076A - Heat storage apparatus and air conditioning apparatus - Google Patents

Heat storage apparatus and air conditioning apparatus Download PDF

Info

Publication number
JP2012063076A
JP2012063076A JP2010207498A JP2010207498A JP2012063076A JP 2012063076 A JP2012063076 A JP 2012063076A JP 2010207498 A JP2010207498 A JP 2010207498A JP 2010207498 A JP2010207498 A JP 2010207498A JP 2012063076 A JP2012063076 A JP 2012063076A
Authority
JP
Japan
Prior art keywords
heat
heat storage
heat transfer
storage material
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010207498A
Other languages
Japanese (ja)
Inventor
Shigeyuki Inoue
茂之 井上
Kouji Kurisuya
広治 栗須谷
Akihiko Shimizu
昭彦 清水
Kensho Yamamoto
憲昭 山本
Takashi Sugio
孝 杉尾
Masahiro Baba
雅浩 馬場
Hirokazu Kamota
廣和 加守田
Satoshi Tokura
聡 十倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010207498A priority Critical patent/JP2012063076A/en
Publication of JP2012063076A publication Critical patent/JP2012063076A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive heat storage apparatus that improves a convention heat transfer rate from a heat transfer surface to a heat storage member by suppressing heat dissipation from something other than the heat transfer surface, in the apparatus in which a heat storage member mainly composed of water having large heat capacity is used and a heat storage tank is brought into contact with a heat source.SOLUTION: The heat storage apparatus includes: a heat transfer means 4 having the thinnest part in a wall surface of the heat storage tank, arranged to contact with the heat source and conveying heat between the heat source and the heat storage member; and a rectification means 6 provided in a side of the heat storage member of the heat transfer means 4 and rectifying convection flow of the heat storage member generated on the heat transfer surface from at least one rectifying surface intersecting a perpendicular direction. Accordingly, the heat storage apparatus with heat transfer performance and durability can be provided.

Description

本発明は、熱源に当接して用いられる蓄熱装置とこれを用いた空気調和機に関するものである。   The present invention relates to a heat storage device used in contact with a heat source and an air conditioner using the same.

従来、ヒートポンプ式空気調和機による暖房運転では、室外熱交換器の除霜を行うために、四方弁により冷媒の流れを暖房サイクルから冷房サイクルに切替え、高温高圧の冷媒を室外熱交換器に流すことが一般的である。この除霜方式では室内に振り向けていた熱量を室外熱交換器の除霜に振り向けるため暖房効果を損なうという欠点がある。また暖房運転では、充分加熱された室内機からの吹出し気流を確保するために、室内機の配管温度を一定温度まで昇温させた後に室内の送風を開始するので、始動時から送風開始まで遅延時間があり、この点もヒートポンプ式空気調和機の欠点と言える。   Conventionally, in heating operation using a heat pump air conditioner, in order to defrost an outdoor heat exchanger, the refrigerant flow is switched from a heating cycle to a cooling cycle by a four-way valve, and high-temperature and high-pressure refrigerant is allowed to flow to the outdoor heat exchanger. It is common. This defrosting method has a disadvantage that the heating effect is impaired because the amount of heat that has been diverted indoors is diverted to the defrost of the outdoor heat exchanger. Also, in heating operation, in order to ensure a blown air flow from a sufficiently heated indoor unit, the indoor unit's piping temperature is raised to a certain temperature, and then indoor ventilation starts. There is time, and this is also a drawback of heat pump air conditioners.

これらの欠点を補うために、蓄熱装置を冷凍サイクルに組み込むことにより、暖房運転中に、蓄熱装置に蓄えられた圧縮機の廃熱を除霜や立上り特性の改善に利用する技術がよく用いられる。   In order to compensate for these drawbacks, a technology that uses the waste heat of the compressor stored in the heat storage device for defrosting and improving the start-up characteristics during heating operation by incorporating the heat storage device in the refrigeration cycle is often used. .

特許文献1はこのような従来の蓄熱装置の一例である。図6は従来の蓄熱装置の縦断面図である。図6において、蓄熱装置100は、圧縮機102の隔壁104の外周面に固設されている。また、蓄熱装置100は、アルミ箔板や銅板等の金属部材106を有しており、この金属部材106は、隔壁104の外周面に当接するように巻回されている。   Patent document 1 is an example of such a conventional heat storage device. FIG. 6 is a longitudinal sectional view of a conventional heat storage device. In FIG. 6, the heat storage device 100 is fixed to the outer peripheral surface of the partition wall 104 of the compressor 102. In addition, the heat storage device 100 includes a metal member 106 such as an aluminum foil plate or a copper plate, and the metal member 106 is wound so as to contact the outer peripheral surface of the partition wall 104.

蓄熱装置100の内部には、圧縮機102で発生した熱を隔壁104を介して蓄積する蓄熱材108が収容されており、この蓄熱材108は、縦断面形状がコ字状の収容部材110と上述した金属部材106とで形成された空間部に充填されている。この空間部中には、蓄熱材108と共に、流入した冷媒を加熱する加熱配管112が配設されている。   Inside the heat storage device 100, a heat storage material 108 that stores heat generated by the compressor 102 via the partition wall 104 is accommodated, and the heat storage material 108 includes a housing member 110 having a U-shaped longitudinal section. The space formed by the metal member 106 described above is filled. In this space part, the heat storage material 108 and the heating pipe 112 for heating the inflowing refrigerant are disposed.

特許第2705734号公報Japanese Patent No. 2705734

上述したように、図6に示される従来の蓄熱装置では、金属部材106は、圧縮機102の隔壁104に当接するように巻回されているが、蓄熱材108を保持するための蓄熱槽110の壁厚が、金属部材106よりも薄く、放熱により、蓄熱槽への蓄熱量が失われるという課題がある。   As described above, in the conventional heat storage device shown in FIG. 6, the metal member 106 is wound so as to contact the partition wall 104 of the compressor 102, but the heat storage tank 110 for holding the heat storage material 108. The wall thickness is thinner than that of the metal member 106, and there is a problem that the amount of heat stored in the heat storage tank is lost due to heat dissipation.

また、蓄熱材108に液体を用いた場合、金属部材106は鉛直平板であり、圧縮機102において、モーター部2と圧縮部3に挟まれているので金属部材106の高さ寸法は限定的であるがために、金属部材106と蓄熱材108との境界層に生じる自然対流は金属部材106との表面において層流の占める割合が高くなり、対流熱伝達率を低下させる一因となる。   Further, when a liquid is used for the heat storage material 108, the metal member 106 is a vertical flat plate and is sandwiched between the motor unit 2 and the compression unit 3 in the compressor 102, so the height dimension of the metal member 106 is limited. For this reason, the natural convection generated in the boundary layer between the metal member 106 and the heat storage material 108 has a higher proportion of laminar flow on the surface of the metal member 106, which is a cause of lowering the convective heat transfer coefficient.

そこで本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、蓄熱装置からの放熱を抑制し、限定的な伝熱面においても圧縮機で発生した熱を蓄熱材に効率的に蓄積することが可能な蓄熱装置及びこの蓄熱装置を用いた空気調和機を提供するこ
とを目的としている。
Therefore, the present invention has been made in view of such problems of the prior art, suppresses heat radiation from the heat storage device, and uses heat generated by the compressor as a heat storage material even on a limited heat transfer surface. It aims at providing the heat storage apparatus which can accumulate | store efficiently, and the air conditioner using this heat storage apparatus.

上記目的を達成するために、本発明に係る蓄熱装置は、水を含有する蓄熱材と、蓄熱材を内部に保持し、熱源に当接して用いられる蓄熱槽と、蓄熱槽の壁面における最薄箇所を有するとともに、熱源に当接するように配置され、熱源と前記蓄熱材との間の伝熱を担う伝熱手段とを備える。   In order to achieve the above object, a heat storage device according to the present invention includes a heat storage material containing water, a heat storage tank that holds the heat storage material inside and is used in contact with a heat source, and a thinnest wall surface of the heat storage tank. And a heat transfer means that is disposed so as to contact the heat source and bears heat transfer between the heat source and the heat storage material.

本発明によれば、熱源に蓄熱槽が当接する蓄熱装置において、最薄箇所を伝熱面に持たせることにより、伝熱面以外からの放熱を抑制することができる。   According to the present invention, in the heat storage device in which the heat storage tank is in contact with the heat source, heat radiation from other than the heat transfer surface can be suppressed by providing the heat transfer surface with the thinnest portion.

以上のことにより、伝熱性能と耐久性を兼ね備えた蓄熱装置を提供することが可能となる。   As described above, it is possible to provide a heat storage device having both heat transfer performance and durability.

(a)本発明の実施の形態1に係る蓄熱装置における蓄熱槽の見取り図(b)A−A‘断面を示す図(A) Outline drawing of the heat storage tank in the heat storage device according to Embodiment 1 of the present invention (b) A diagram showing a cross section taken along line A-A ′. 本発明の実施の形態1に係る伝熱手段の見取り図A sketch of heat transfer means according to Embodiment 1 of the present invention 本発明に係る蓄熱装置を用いた空気調和機の構成図The block diagram of the air conditioner using the thermal storage apparatus which concerns on this invention 図3の空気調和機の通常暖房時の動作および冷媒の流れを示す模式図The schematic diagram which shows the operation | movement at the time of normal heating of the air conditioner of FIG. 3, and the flow of a refrigerant | coolant. 図3の空気調和機の除霜・暖房時の動作および冷媒の流れを示す模式図The schematic diagram which shows the operation | movement at the time of defrosting and heating of the air conditioner of FIG. 3, and the flow of a refrigerant | coolant 従来の蓄熱装置の断面図Cross-sectional view of a conventional heat storage device

第1の発明は、水を含有する蓄熱材と、蓄熱材を内部に保持し、熱源に当接して用いられる蓄熱槽と、蓄熱槽の壁面における最薄箇所を有するとともに、熱源に当接するように配置され、熱源と蓄熱材との間の伝熱を担う伝熱手段と、を備えたもので、伝熱面から蓄熱材への対流熱伝達率を向上させることができる。   1st invention hold | maintains a heat storage material containing water, a heat storage material inside, has a heat storage tank used by contact | abutting to a heat source, and the thinnest part in the wall surface of a heat storage tank, and it is contact | abutted to a heat source And a heat transfer means that bears heat transfer between the heat source and the heat storage material, and can improve the convective heat transfer rate from the heat transfer surface to the heat storage material.

第2の発明は、伝熱手段の蓄熱材側に設けられ、鉛直方向と交差する少なくとも一つの整流面により伝熱面に生じる蓄熱材の対流を整流する整流手段と、を備えたもので、比較的厚みのある伝熱面を整流手段とすることで、最薄箇所において生じる自然対流の乱流化を促し伝熱効率をあげることができる。   The second invention is provided with a rectifying means provided on the heat storage material side of the heat transfer means, and rectifies the convection of the heat storage material generated on the heat transfer surface by at least one rectification surface intersecting the vertical direction. By using a relatively thick heat transfer surface as the rectifying means, turbulence of natural convection occurring at the thinnest point can be promoted, and heat transfer efficiency can be increased.

以下、本発明に係る実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態において、本発明について図面を用いて説明するが、本発明はこれらに限定することを意図しない。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. In the following embodiments, the present invention will be described with reference to the drawings, but the present invention is not intended to be limited to these.

(実施の形態1)
本発明の実施の形態1に係る蓄熱装置(図示せず)は、空気調和装置の圧縮機の外殻に当接して用いられ、圧縮機の廃熱を蓄積し利用するためのもので、蓄熱材と共に熱交換器が内部に封入されている。蓄熱材としては水を含有するエチレングリコール溶液が充填されており、前記熱交換器は接続配管によって空気調和機の冷媒配管に連結されており、蓄熱材から得られる熱を利用して冷媒の加熱に用いられる。図1(a)は、本実施の形態1に係る蓄熱装置において蓄熱材と共に熱交換器が封入される蓄熱槽2の見取り図である。便宜的に破線で表記した部分が本実施の形態における伝熱手段4を示し、図1(b)は伝熱手段4のA−A‘断面図である。実施の形態1に係る蓄熱装置は、伝熱手段4において、熱源である圧縮機の外殻と当接し、熱源との熱の授受に供せられる。蓄熱槽2は、その外殻にポリフェニレンサルファイド(PPS)樹脂を用い、光造形により伝熱手段4は蓄
熱槽2と一体的に成形されている。伝熱手段4において圧縮機の外殻と当接する面は、蓄熱槽2と一体的に成形される際、図1(b)に示すとおり、他の蓄熱槽外殻のどの壁厚よりも薄く成形され、蓄熱槽2における壁厚の最薄箇所になっている。このように伝熱手段4において圧縮機の外殻と当接する面は、蓄熱槽外殻の壁厚の中で最も薄くすることにより、伝熱手段4以外の壁面は相対的に断熱性が高くなり熱抵抗として機能する。
(Embodiment 1)
The heat storage device (not shown) according to Embodiment 1 of the present invention is used in contact with the outer shell of the compressor of the air conditioner, and is used to store and use the waste heat of the compressor. A heat exchanger is enclosed with the material. The heat storage material is filled with an ethylene glycol solution containing water, and the heat exchanger is connected to a refrigerant pipe of an air conditioner by a connection pipe, and heat of the refrigerant is obtained using heat obtained from the heat storage material. Used for. Fig.1 (a) is a sketch of the heat storage tank 2 in which a heat exchanger is enclosed with a heat storage material in the heat storage device according to the first embodiment. For convenience, a portion indicated by a broken line indicates the heat transfer means 4 in the present embodiment, and FIG. 1B is a cross-sectional view of the heat transfer means 4 along AA ′. The heat storage device according to Embodiment 1 is brought into contact with the outer shell of the compressor, which is a heat source, in the heat transfer means 4 and is used for transferring heat to and from the heat source. The heat storage tank 2 uses polyphenylene sulfide (PPS) resin for the outer shell, and the heat transfer means 4 is formed integrally with the heat storage tank 2 by optical modeling. The surface of the heat transfer means 4 that contacts the outer shell of the compressor is thinner than any wall thickness of the other outer shell of the heat storage tank, as shown in FIG. It is molded and is the thinnest part of the wall thickness in the heat storage tank 2. As described above, the surface of the heat transfer means 4 that contacts the outer shell of the compressor is made the thinnest among the wall thicknesses of the outer shell of the heat storage tank, so that the wall surfaces other than the heat transfer means 4 have relatively high heat insulation. It functions as thermal resistance.

図2は、伝熱手段4を蓄熱槽2から切出した時の見取り図である。圧縮機との密着性を高めるために、圧縮機の外殻と当接する面は円筒状の鉛直平面を形成している。この鉛直平面の蓄熱材側の面には整流手段6を備えている。整流手段6は伝熱手段4と一体的に成形されており、整流手段6として個々の平板が、伝熱手段4上に立てられるように配置されてある。この整流手段6であるところの個々の平板の形状は、上方に向かって広がる三角翼形状である。さらに、蓄熱槽を圧縮機に巻回した際、上記整流手段6の平板は鉛直方向に対して一定の傾きを有し、同時に、隣り合う平板どうしは「ハ」の字状(または、逆「ハ」の字状)に配列されている。   FIG. 2 is a sketch when the heat transfer means 4 is cut out from the heat storage tank 2. In order to improve the adhesiveness with the compressor, the surface in contact with the outer shell of the compressor forms a cylindrical vertical plane. Rectification means 6 is provided on the surface of the vertical plane on the heat storage material side. The rectifying means 6 is formed integrally with the heat transfer means 4, and individual flat plates are arranged as the rectifying means 6 so as to stand on the heat transfer means 4. The shape of each flat plate as the rectifying means 6 is a triangular wing shape spreading upward. Further, when the heat storage tank is wound around the compressor, the flat plate of the rectifying means 6 has a certain inclination with respect to the vertical direction, and at the same time, the adjacent flat plates have a “C” shape (or reverse “ C).

一般に流体の流れは臨界レイノルズ数を境に層流と乱流に分類され、同じ物質でも、流れを制御することによって伝熱効率を向上させることができる。本実施の形態においては伝熱手段4は鉛直平面を形成し、熱源であるところの圧縮機から蓄熱材への伝熱を担う。この際、伝熱手段4の鉛直面に沿って蓄熱材の自然対流が発生する。ここに整流手段6を鉛直方向に交わるように設置したことにより、蓄熱材の自然対流が平板である整流手段6の影響を受ける。つまり、蓄熱材が整流手段6の前縁を乗り超えた後で乱流となり伝熱効率を向上させることができる。本実施の形態においては特に整流手段6を自然対流の下流に向けて広がる三角翼型にしたことで、伝熱面に至るまで乱流化することができる。また隣り合う整流手段6どうしを「ハ」の字のしたことで、整流手段6に沿って流れてきた蓄熱材も平板の間隔が狭まる際に絞られ、内圧が高まることにより、伝熱面から離れた位置においても蓄熱材の対流が整流手段6を乗り越えることが促され、攪拌される領域も拡大させることができる。さらに整流手段6を乗り越えることなく通過する蓄熱材も整流手段6に絞られることにより、その流速を増加させ熱伝達率が改善される。また、この整流手段6によって絞られた流路は鉛直の流れ方向に対して連続しないよう、流路の上流側または下流側の少なくともどちらかに他の整流手段6が存在するように設置されており、自然対流の層流化が妨げられるようになっている。   In general, fluid flow is classified into laminar flow and turbulent flow with a critical Reynolds number as the boundary, and heat transfer efficiency can be improved by controlling the flow of the same material. In the present embodiment, the heat transfer means 4 forms a vertical plane and bears heat transfer from the compressor as a heat source to the heat storage material. At this time, natural convection of the heat storage material occurs along the vertical plane of the heat transfer means 4. Since the rectifying means 6 is installed so as to cross in the vertical direction, the natural convection of the heat storage material is affected by the rectifying means 6 which is a flat plate. That is, it becomes a turbulent flow after the heat storage material gets over the front edge of the rectifying means 6, and heat transfer efficiency can be improved. In the present embodiment, in particular, the rectifying means 6 is formed into a triangular wing shape spreading toward the downstream side of natural convection, so that turbulent flow can be achieved up to the heat transfer surface. Further, since the adjacent straightening means 6 are shaped like “C”, the heat storage material flowing along the straightening means 6 is also squeezed when the interval between the flat plates is narrowed, and the internal pressure is increased, so that the heat transfer surface The convection of the heat storage material is encouraged to move over the rectifying means 6 even at a distant position, and the agitated region can be enlarged. Further, the heat storage material that passes through the rectifying means 6 without passing over the rectifying means 6 is also restricted to the rectifying means 6, thereby increasing the flow velocity and improving the heat transfer rate. Further, the flow path narrowed by the rectifying means 6 is installed so that another rectifying means 6 exists at least on either the upstream side or the downstream side of the flow path so that the flow path is not continuous in the vertical flow direction. Therefore, laminarization of natural convection is hindered.

以上のように本発明に係る伝熱手段4および伝熱手段4上に設けられた整流手段6により、総じて蓄熱材の攪拌効果が得られ、蓄熱材への伝熱効率を向上させた蓄熱装置を提供することができる。   As described above, the heat transfer device 4 according to the present invention and the rectifying device 6 provided on the heat transfer device 4 generally provide a heat storage material stirring effect and improve the heat transfer efficiency to the heat storage material. Can be provided.

図3に、本発明に係る蓄熱装置1を備えた空気調和機の構成を示す。本発明に係る空気調和機は、室外機56と室内機14とそれらを接続する冷媒配管から構成される。   In FIG. 3, the structure of the air conditioner provided with the heat storage apparatus 1 which concerns on this invention is shown. The air conditioner according to the present invention includes an outdoor unit 56, an indoor unit 14, and a refrigerant pipe that connects them.

室外機56は圧縮機58と四方弁25と膨張弁24と室外熱交換器20が配置され、さらに圧縮機58の冷媒吐出口と四方弁25とを接続する第一配管26と、圧縮機58の冷媒吸入口と四方弁25とを接続する第二配管28と、四方弁25と室外熱交換器20とを接続する第三配管66と、室外熱交換器20と四方弁25とを接続する第四配管64とを備える。   The outdoor unit 56 includes a compressor 58, a four-way valve 25, an expansion valve 24, and an outdoor heat exchanger 20, and further includes a first pipe 26 that connects the refrigerant discharge port of the compressor 58 and the four-way valve 25, and the compressor 58. A second pipe 28 connecting the refrigerant suction port and the four-way valve 25, a third pipe 66 connecting the four-way valve 25 and the outdoor heat exchanger 20, and connecting the outdoor heat exchanger 20 and the four-way valve 25. 4th piping 64 is provided.

室内機14は室内熱交換器22と、送風ファン(図示せず)と送風方向を制御するルーバー(図示せず)とを備える。   The indoor unit 14 includes an indoor heat exchanger 22, a blower fan (not shown), and a louver (not shown) that controls the blowing direction.

第五配管62は膨張弁24と室内熱交換器22との間に設置され、室外機56と室内機14とを接続する。第六配管60は、室内熱交換器22と四方弁25の間に設置され、室
外機56と室内機14とを接続する。
The fifth pipe 62 is installed between the expansion valve 24 and the indoor heat exchanger 22 and connects the outdoor unit 56 and the indoor unit 14. The sixth pipe 60 is installed between the indoor heat exchanger 22 and the four-way valve 25 and connects the outdoor unit 56 and the indoor unit 14.

さらに室外機においては、第一配管26と第四配管64とを接続する第七配管40と、配管40に設置された第一電磁弁42と、第二配管28と第五配管62とを接続する第八配管68と、第八配管68に設置された第二電磁弁44とを備える。   Further, in the outdoor unit, a seventh pipe 40 that connects the first pipe 26 and the fourth pipe 64, a first electromagnetic valve 42 installed in the pipe 40, a second pipe 28, and a fifth pipe 62 are connected. And the second solenoid valve 44 installed in the eighth pipe 68.

本発明に係る蓄熱装置1は、第八配管68上にあり、第八配管68は蓄熱装置1内部で蛇管となり、蓄熱装置1内部にて蓄熱材との熱交換を担う。また蓄熱装置1は圧縮機58に密着し、第二配管28と第二電磁弁44との間に配置されている。   The heat storage device 1 according to the present invention is on the eighth pipe 68, and the eighth pipe 68 becomes a serpentine tube inside the heat storage device 1, and bears heat exchange with the heat storage material inside the heat storage device 1. The heat storage device 1 is in close contact with the compressor 58 and is disposed between the second pipe 28 and the second electromagnetic valve 44.

尚、圧縮機58、送風ファン、ルーバー、四方弁25、膨張弁24、第一電磁弁42、第二電磁弁44は制御装置(図示せず、例えばマイコン)と電気的に接続され、制御装置により制御される。   The compressor 58, the blower fan, the louver, the four-way valve 25, the expansion valve 24, the first electromagnetic valve 42, and the second electromagnetic valve 44 are electrically connected to a control device (not shown, for example, a microcomputer). Controlled by

図4は、本発明に係る空気調和機の通常暖房時の動作および冷媒の流れを示す模式図である。圧縮機58の吐出口から吐出された冷媒は、第一配管26、四方弁25を経由して室内熱交換器22に至る。室内熱交換器22において冷媒より低温の室内空気と熱交換して凝縮した冷媒は、配管62を経て膨張弁24に至る。膨張弁24において減圧した冷媒は配管64を通って室外熱交換器20に至る。室外熱交換器20において冷媒より高温の室外空気と熱交換して蒸発した冷媒は配管66と四方弁25と配管28を経て圧縮機58の吸入口に戻る。   FIG. 4 is a schematic diagram illustrating an operation and a refrigerant flow during normal heating of the air conditioner according to the present invention. The refrigerant discharged from the discharge port of the compressor 58 reaches the indoor heat exchanger 22 via the first pipe 26 and the four-way valve 25. The refrigerant condensed by exchanging heat with indoor air having a temperature lower than that of the refrigerant in the indoor heat exchanger 22 reaches the expansion valve 24 via the pipe 62. The refrigerant depressurized in the expansion valve 24 reaches the outdoor heat exchanger 20 through the pipe 64. In the outdoor heat exchanger 20, the refrigerant evaporated by exchanging heat with outdoor air having a temperature higher than that of the refrigerant returns to the suction port of the compressor 58 through the pipe 66, the four-way valve 25, and the pipe 28.

本発明に係る蓄熱装置1は、圧縮機58に密着して設置され、圧縮機58で発生した熱を蓄熱材に蓄積する。蓄熱の際、第一電磁弁42と第二電磁弁44は閉制御されている。   The heat storage device 1 according to the present invention is installed in close contact with the compressor 58 and accumulates heat generated by the compressor 58 in the heat storage material. During the heat storage, the first electromagnetic valve 42 and the second electromagnetic valve 44 are controlled to be closed.

図5は、図3に示した空気調和機の構成における除霜暖房時の動作及び冷媒の流れを示す模式図である。以下、図5を参照しながら除霜暖房時の動作を説明する。図中、実線矢印は暖房に供する冷媒の流れを、破線矢印は除霜に供する冷媒の流れを示している。   FIG. 5 is a schematic diagram showing the operation and refrigerant flow during defrost heating in the configuration of the air conditioner shown in FIG. 3. Hereinafter, the operation at the time of defrost heating will be described with reference to FIG. In the figure, the solid arrow indicates the flow of the refrigerant used for heating, and the broken arrow indicates the flow of the refrigerant used for defrosting.

上述の通常暖房運転時に室外熱交換器20に着霜し、着霜した霜が成長すると、室外熱交換器20の通風抵抗が増加して風量が減少し、室外熱交換器20において蒸発温度が低下する。図5に示されるように、室外熱交換器20の配管温度を検出する温度センサ70が設けられており、非着霜時に比べて蒸発温度が低下したことを温度センサ70で検出すると、制御装置により、通常暖房運転から除霜暖房運転へ制御信号が切り替わる。除霜暖房運転へ切り替わると、第一電磁弁42と第二電磁弁44は開制御され、上述した通常暖房運転時の冷媒の流れに加え、圧縮機58の吐出口から出た気相冷媒の一部は配管40と第一電磁弁42を通り配管64を通る冷媒に合流して室外熱交換器20を加熱、凝縮した後、配管66、四方弁25、配管28、アキュムレータ72を介して圧縮機58の吸入口へ至る。   When the outdoor heat exchanger 20 is frosted during the normal heating operation described above and the frost formed grows, the ventilation resistance of the outdoor heat exchanger 20 increases and the air flow decreases, and the evaporation temperature in the outdoor heat exchanger 20 is reduced. descend. As shown in FIG. 5, a temperature sensor 70 that detects the piping temperature of the outdoor heat exchanger 20 is provided, and when the temperature sensor 70 detects that the evaporation temperature has decreased as compared to the non-frosting state, Thus, the control signal is switched from the normal heating operation to the defrosting heating operation. When switching to the defrost heating operation, the first electromagnetic valve 42 and the second electromagnetic valve 44 are controlled to open, and in addition to the refrigerant flow during the normal heating operation described above, the gas phase refrigerant discharged from the discharge port of the compressor 58 is changed. A part of the refrigerant passes through the pipe 40 and the first electromagnetic valve 42 and merges with the refrigerant passing through the pipe 64 to heat and condense the outdoor heat exchanger 20, and then compressed through the pipe 66, the four-way valve 25, the pipe 28, and the accumulator 72. To the suction port of the machine 58.

また配管62から分岐した液相冷媒の一部は、配管68と第二電磁弁44を経て、蓄熱熱交換器7で蓄熱材から吸熱して蒸発気化し、配管68から配管28に合流し圧縮機58の吸入口へと戻る。   A part of the liquid-phase refrigerant branched from the pipe 62 passes through the pipe 68 and the second electromagnetic valve 44, absorbs heat from the heat storage material in the heat storage heat exchanger 7, evaporates, and merges from the pipe 68 to the pipe 28 to be compressed. Return to the inlet of the machine 58.

アキュムレータ72に戻る冷媒には室外熱交換器20から戻ってくる液相冷媒が含まれているが、これに蓄熱熱交換器7から戻ってくる高温の気相冷媒を混合することにより、液相冷媒の蒸発が促進され、アキュムレータ72を通過して液相冷媒が圧縮機58に戻ることがなくなり、圧縮機58の信頼性を向上させることができる。   The refrigerant returning to the accumulator 72 includes the liquid phase refrigerant returning from the outdoor heat exchanger 20. By mixing the high-temperature gas phase refrigerant returning from the heat storage heat exchanger 7 with this, the liquid phase refrigerant is returned. The evaporation of the refrigerant is promoted, and the liquid-phase refrigerant does not return to the compressor 58 through the accumulator 72, so that the reliability of the compressor 58 can be improved.

除霜暖房開始時に霜の付着により氷点下になった室外熱交換器20の温度は、圧縮機5
8の吐出口から出た気相冷媒によって加熱されて、零度付近で霜が融解し、除霜が終了すると、室外熱交換器20の温度は再び上昇しはじめる。この室外熱交換器20の温度上昇を温度センサ70で検出すると、除霜が完了したと判断し、制御装置から除霜暖房運転から通常暖房運転への指示が出力される。
The temperature of the outdoor heat exchanger 20 that has become below freezing due to the attachment of frost at the start of defrost heating is the compressor 5
When heated by the gas-phase refrigerant discharged from the outlet 8 and frost is melted near zero, defrosting is completed, the temperature of the outdoor heat exchanger 20 begins to rise again. When the temperature sensor 70 detects the temperature rise of the outdoor heat exchanger 20, it is determined that the defrosting is completed, and an instruction from the defrost heating operation to the normal heating operation is output from the control device.

上述のごとく、本実施の形態における蓄熱装置は、空調装置において圧縮機58に密着し、暖房運転時に圧縮機58で発生した熱を蓄熱材に蓄積し、通常暖房運転から除霜暖房運転に移行したときに、室内熱交換器22を経て配管62から分流した液相冷媒の一部が、蓄熱熱交換器7で蓄熱材から吸熱し蒸発、気相化させ、暖房運転と除霜運転を両立して快適性を向上させることができる。   As described above, the heat storage device in the present embodiment is in close contact with the compressor 58 in the air conditioner, accumulates heat generated in the compressor 58 during the heating operation in the heat storage material, and shifts from the normal heating operation to the defrosting heating operation. When this is done, a part of the liquid phase refrigerant diverted from the pipe 62 through the indoor heat exchanger 22 absorbs heat from the heat storage material in the heat storage heat exchanger 7 and evaporates and vaporizes it, thereby achieving both heating operation and defrosting operation. And comfort can be improved.

本発明は、水を含む蓄熱材に蓄えられた熱を熱交換器で効率よく回収する蓄熱装置を提供することができ、これを用いた空気調和機や各種冷凍装置に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can provide a heat storage device that efficiently recovers heat stored in a heat storage material containing water using a heat exchanger, and can be used for an air conditioner and various refrigeration devices using the heat storage device.

1 蓄熱装置
2 蓄熱槽
4 伝熱手段
6 整流手段
7 蓄熱熱交換器
14 室内機
22 室内熱交換器
24 膨張弁
25 四方弁
26 28 40 60 62 64 66 配管
42 第一電磁弁
44 第二電磁弁
56 室外機
58 圧縮機
70 温度センサ
72 アキュムレータ
DESCRIPTION OF SYMBOLS 1 Thermal storage apparatus 2 Thermal storage tank 4 Heat transfer means 6 Rectification means 7 Thermal storage heat exchanger 14 Indoor unit 22 Indoor heat exchanger 24 Expansion valve 25 Four-way valve 26 28 40 60 60 62 64 66 Pipe 42 First electromagnetic valve 44 Second electromagnetic valve 56 Outdoor unit 58 Compressor 70 Temperature sensor 72 Accumulator

Claims (5)

水を含有する蓄熱材と、
前記蓄熱材を内部に保持し、熱源に当接して用いられる蓄熱槽と、
前記蓄熱槽の壁面における最薄箇所を有するとともに、前記熱源に当接するように配置され、前記熱源と前記蓄熱材との間の伝熱を担う伝熱手段と、を備えることを特徴とする蓄熱装置。
A heat storage material containing water;
Holding the heat storage material inside, a heat storage tank used in contact with a heat source; and
A heat storage device comprising: a heat transfer means that has the thinnest portion on the wall surface of the heat storage tank, and is disposed so as to contact the heat source, and is responsible for heat transfer between the heat source and the heat storage material. apparatus.
前記伝熱手段の前記蓄熱材側に設けられ、鉛直方向と交差する少なくとも一つの整流面により伝熱面に生じる前記蓄熱材の対流を整流する整流手段と、を備えることを特徴とする請求項1に記載の蓄熱装置。 The rectifying means is provided on the heat storage material side of the heat transfer means, and rectifies the convection of the heat storage material generated on the heat transfer surface by at least one rectification surface intersecting the vertical direction. The heat storage device according to 1. 前記整流面は鉛直方向と直交しないことを特徴とする請求項2に記載の蓄熱装置。 The heat storage device according to claim 2, wherein the rectifying surface is not orthogonal to the vertical direction. 前記整流面の前記伝熱手段に対する高さは、前記対流の上流から下流に向かう方向に増大することを特徴とする請求項2記載の蓄熱装置。 The heat storage device according to claim 2, wherein a height of the rectifying surface with respect to the heat transfer means increases in a direction from upstream to downstream of the convection. 請求項1〜4記載のいずれか1項に記載の蓄熱装置を備えることを特徴とする空気調和機。 An air conditioner comprising the heat storage device according to any one of claims 1 to 4.
JP2010207498A 2010-09-16 2010-09-16 Heat storage apparatus and air conditioning apparatus Pending JP2012063076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010207498A JP2012063076A (en) 2010-09-16 2010-09-16 Heat storage apparatus and air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010207498A JP2012063076A (en) 2010-09-16 2010-09-16 Heat storage apparatus and air conditioning apparatus

Publications (1)

Publication Number Publication Date
JP2012063076A true JP2012063076A (en) 2012-03-29

Family

ID=46058972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010207498A Pending JP2012063076A (en) 2010-09-16 2010-09-16 Heat storage apparatus and air conditioning apparatus

Country Status (1)

Country Link
JP (1) JP2012063076A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5324692B1 (en) * 2012-10-05 2013-10-23 パナソニック株式会社 Heat storage device and air conditioner equipped with the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648376A (en) * 1987-06-29 1989-01-12 Matsushita Electric Ind Co Ltd Regenerating device
JPH02128065U (en) * 1989-03-27 1990-10-22
JPH02306032A (en) * 1989-05-19 1990-12-19 Bridgestone Corp Flow straightening device for water heat accumulating tank and flow straightening structure thereof
JPH0331666A (en) * 1989-06-28 1991-02-12 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
JPH03160243A (en) * 1989-11-17 1991-07-10 Matsushita Electric Ind Co Ltd Heat storage tank
JP2003090689A (en) * 2001-09-13 2003-03-28 Denso Corp Cold storage and heat storage heat exchanger
JP2010071097A (en) * 2008-09-16 2010-04-02 Calsonic Kansei Corp Heat storage device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648376A (en) * 1987-06-29 1989-01-12 Matsushita Electric Ind Co Ltd Regenerating device
JPH02128065U (en) * 1989-03-27 1990-10-22
JPH02306032A (en) * 1989-05-19 1990-12-19 Bridgestone Corp Flow straightening device for water heat accumulating tank and flow straightening structure thereof
JPH0331666A (en) * 1989-06-28 1991-02-12 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
JPH03160243A (en) * 1989-11-17 1991-07-10 Matsushita Electric Ind Co Ltd Heat storage tank
JP2003090689A (en) * 2001-09-13 2003-03-28 Denso Corp Cold storage and heat storage heat exchanger
JP2010071097A (en) * 2008-09-16 2010-04-02 Calsonic Kansei Corp Heat storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5324692B1 (en) * 2012-10-05 2013-10-23 パナソニック株式会社 Heat storage device and air conditioner equipped with the same

Similar Documents

Publication Publication Date Title
CN103604169B (en) Heating and cooling air conditioner
EP2623889B1 (en) Thermal storage device and air conditioner provided with thermal storage device
EP2623893A1 (en) Heat storage device and air conditioner comprising the heat storage device
JP5110136B2 (en) Heat storage device and air conditioner equipped with the heat storage device
JP6978692B2 (en) Heat exchanger and heat pump equipment
JP4634530B1 (en) Heat storage device and air conditioner equipped with the heat storage device
JP6420677B2 (en) Air conditioner
WO2017130399A1 (en) Refrigeration cycle device and flat tube heat exchanger
JP5182346B2 (en) Heat storage device and air conditioner using the same
JP2012063076A (en) Heat storage apparatus and air conditioning apparatus
JP5940895B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
CN213901535U (en) Heat exchanger unit
JP5083394B2 (en) Heat storage device and air conditioner equipped with the heat storage device
JP2012077935A (en) Heat storage device, and air conditioner using the same
WO2011099060A1 (en) Heat storage device, and air-conditioner provided with same
JP2011163662A (en) Heat storage device and air conditioner including the same
JP2011137600A (en) Outdoor unit of air conditioner
EP2623911A1 (en) Heat storage device and air conditioner comprising the heat storage device
JP5490160B2 (en) Heater and refrigeration cycle apparatus
JP2012072934A (en) Heat storage device, and air conditioner with the same
JP2014025614A (en) Parallel flow heat exchanger and air conditioner incorporating parallel flow heat exchanger
WO2013099163A1 (en) Heat storage device, and air conditioner equipped with same
JP5067460B2 (en) Heat storage device and air conditioner equipped with the heat storage device
JP2012052681A (en) Heat storage device
JP2013228134A (en) Parallel flow type heat exchanger and air conditioner mounted with the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218