JP5324692B1 - Heat storage device and air conditioner equipped with the same - Google Patents

Heat storage device and air conditioner equipped with the same Download PDF

Info

Publication number
JP5324692B1
JP5324692B1 JP2012222794A JP2012222794A JP5324692B1 JP 5324692 B1 JP5324692 B1 JP 5324692B1 JP 2012222794 A JP2012222794 A JP 2012222794A JP 2012222794 A JP2012222794 A JP 2012222794A JP 5324692 B1 JP5324692 B1 JP 5324692B1
Authority
JP
Japan
Prior art keywords
heat storage
heat
agent
storage agent
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012222794A
Other languages
Japanese (ja)
Other versions
JP2014074553A (en
Inventor
孝 杉尾
正敏 高橋
育雄 赤嶺
靖人 向井
次雄 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2012222794A priority Critical patent/JP5324692B1/en
Application granted granted Critical
Publication of JP5324692B1 publication Critical patent/JP5324692B1/en
Publication of JP2014074553A publication Critical patent/JP2014074553A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

【課題】圧縮機で発生した熱を効率的に蓄熱することができる蓄熱装置を提供すること。
【解決手段】圧縮機に接触するように配設され、圧縮機で発生した熱を蓄積するための蓄熱装置は、圧縮機で発生した熱を蓄積する蓄熱剤を収容する蓄熱槽本体を有する蓄熱槽と、蓄熱槽本体に収容され、蓄熱槽本体内の蓄熱剤と熱交換を行う蓄熱熱交換器と、蓄熱槽本体内の蓄熱剤を攪拌する攪拌装置とを備える。
【選択図】図6
A heat storage device capable of efficiently storing heat generated in a compressor.
A heat storage device disposed so as to come into contact with a compressor and for storing heat generated by the compressor has a heat storage tank main body that stores a heat storage agent that stores heat generated by the compressor. A tank, a heat storage heat exchanger that is housed in the heat storage tank body and exchanges heat with the heat storage agent in the heat storage tank body, and a stirring device that stirs the heat storage agent in the heat storage tank body.
[Selection] Figure 6

Description

本発明は、蓄熱装置および蓄熱装置を備える空気調和機に関する。   The present invention relates to a heat storage device and an air conditioner including the heat storage device.

空気調和機において、従来、ヒートポンプ式空気調和機による暖房運転時、室外熱交換器に着霜した場合には、暖房サイクルから冷房サイクルに四方弁を切り替えて除霜を行っている。この除霜方式では、本来は暖房すべき室内空間を冷やさないようにするために室内ファンは停止するものの、室内機から冷気が徐々に放出されることから暖房感が失われるという欠点がある。   In the air conditioner, conventionally, when the outdoor heat exchanger is frosted during the heating operation by the heat pump type air conditioner, defrosting is performed by switching the four-way valve from the heating cycle to the cooling cycle. In this defrosting method, although the indoor fan is stopped in order not to cool the indoor space that should be heated, there is a disadvantage that a feeling of heating is lost because cold air is gradually discharged from the indoor unit.

そこで、室外機に設けられた圧縮機を熱源とする蓄熱槽を設け、暖房運転中に蓄熱槽に蓄えられた圧縮機の廃熱を利用して除霜するようにしたものが提案されている(例えば、特許文献1参照)。   Therefore, a heat storage tank has been proposed that uses a compressor provided in the outdoor unit as a heat source, and defrosts using the waste heat of the compressor stored in the heat storage tank during heating operation. (For example, refer to Patent Document 1).

図12は、特許文献1の空気調和機の蓄熱装置100を示す。図12に示すように、特許文献1の空気調和機の蓄熱装置100では、蓄熱槽101内に蓄熱コイル104を設け、蓄熱コイル104の周りに蓄熱媒体102を充填し、蓄熱槽101下部の蓄熱媒体102中に熱源装置等の対流発生手段103を設けている。対流発生手段103を用いて蓄熱槽101内での自然対流を促進することにより、蓄熱媒体102と蓄熱コイル104との熱交換効率を向上させ、蓄熱装置100の蓄熱能力を増加させている。   FIG. 12 shows a heat storage device 100 of an air conditioner disclosed in Patent Document 1. As shown in FIG. 12, in the heat storage device 100 for an air conditioner of Patent Document 1, a heat storage coil 104 is provided in a heat storage tank 101, a heat storage medium 102 is filled around the heat storage coil 104, and heat storage in the lower part of the heat storage tank 101 is performed. Convection generating means 103 such as a heat source device is provided in the medium 102. By promoting the natural convection in the heat storage tank 101 using the convection generating means 103, the heat exchange efficiency between the heat storage medium 102 and the heat storage coil 104 is improved, and the heat storage capacity of the heat storage device 100 is increased.

特開2001−116477号公報JP 2001-116477 A

しかしながら、特許文献1に記載の空気調和機の蓄熱装置100では、あくまで蓄熱槽101内における蓄熱媒体102の温度差を利用して自然対流を促進している。よって、蓄熱媒体102を蓄熱槽101内で十分に循環させることができない場合があり、蓄熱媒体102と圧縮機との熱交換効率や、蓄熱媒体102と蓄熱コイル104との熱交換効率を十分に向上させることができず、蓄熱槽101内での蓄熱媒体102の熱交換効率を向上させるという点で未だ改善の余地があった。   However, in the heat storage device 100 for an air conditioner described in Patent Document 1, natural convection is promoted by using the temperature difference of the heat storage medium 102 in the heat storage tank 101 to the last. Therefore, the heat storage medium 102 may not be sufficiently circulated in the heat storage tank 101, and the heat exchange efficiency between the heat storage medium 102 and the compressor and the heat exchange efficiency between the heat storage medium 102 and the heat storage coil 104 are sufficient. However, there is still room for improvement in terms of improving the heat exchange efficiency of the heat storage medium 102 in the heat storage tank 101.

従って、本発明の目的は、上記問題を解決することにあって、蓄熱槽内の蓄熱剤の熱交換効率が良好な蓄熱装置を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problem, and to provide a heat storage device in which the heat exchange efficiency of the heat storage agent in the heat storage tank is good.

上記目的を達成するために、本発明は、圧縮機に接触するように配設され、圧縮機で発生した熱を蓄積するための蓄熱装置であって、
圧縮機で発生した熱を蓄積する蓄熱剤を収容する蓄熱槽本体を有する蓄熱槽と、
蓄熱槽本体に収容され、蓄熱槽本体内の蓄熱剤と熱交換を行う蓄熱熱交換器と、
蓄熱槽本体内の蓄熱剤を攪拌する攪拌装置とを備える。
In order to achieve the above object, the present invention is a heat storage device that is disposed so as to come into contact with a compressor and stores heat generated by the compressor,
A heat storage tank having a heat storage tank body for storing a heat storage agent for storing heat generated by the compressor;
A heat storage heat exchanger that is housed in the heat storage tank body and exchanges heat with the heat storage agent in the heat storage tank body;
A stirring device that stirs the heat storage agent in the heat storage tank body.

蓄熱槽内の蓄熱剤の熱交換効率が良好な蓄熱装置を提供することができる。   A heat storage device with good heat exchange efficiency of the heat storage agent in the heat storage tank can be provided.

本実施の形態にかかる蓄熱装置を備えた空気調和機の冷凍サイクルの構成を示す図The figure which shows the structure of the refrigerating cycle of the air conditioner provided with the heat storage apparatus concerning this Embodiment. 図1の空気調和機の通常暖房時の動作及び冷媒の流れを示す模式図The schematic diagram which shows the operation | movement at the time of normal heating of the air conditioner of FIG. 1, and the flow of a refrigerant | coolant. 図1の空気調和機の除霜・暖房時の動作及び冷媒の流れを示す模式図The schematic diagram which shows the operation | movement at the time of defrosting and heating of the air conditioner of FIG. 1, and the flow of a refrigerant | coolant. 圧縮機とアキュームレータを取り付けた状態の本実施の形態にかかる蓄熱装置の斜視図The perspective view of the heat storage apparatus concerning this Embodiment of the state which attached the compressor and the accumulator 図4の蓄熱装置の分解斜視図4 is an exploded perspective view of the heat storage device of FIG. 図4の蓄熱装置の模式断面図Schematic sectional view of the heat storage device of FIG. 本実施の形態にかかる攪拌装置の斜視図The perspective view of the stirring apparatus concerning this Embodiment 図7の攪拌装置の模式断面図Schematic cross-sectional view of the stirring device in FIG. 本実施の形態にかかる空気調和機の除霜運転シーケンスの一例を示す図The figure which shows an example of the defrost operation sequence of the air conditioner concerning this Embodiment. 変形例にかかる蓄熱装置の模式断面図Schematic sectional view of a heat storage device according to a modification 変形例にかかる攪拌装置の斜視図The perspective view of the stirring apparatus concerning a modification 特許文献1に記載の蓄熱装置の断面図Cross-sectional view of the heat storage device described in Patent Document 1

本発明に係る第1の態様の蓄熱装置は、圧縮機に接触するように配設され、圧縮機で発生した熱を蓄積するための蓄熱装置であって、
圧縮機で発生した熱を蓄積する蓄熱剤を収容する蓄熱槽本体を有する蓄熱槽と、
蓄熱槽本体に収容され、蓄熱槽本体内の蓄熱剤と熱交換を行う蓄熱熱交換器と、
蓄熱槽本体内の蓄熱剤を攪拌する攪拌装置とを備えるよう構成されている。
The heat storage device according to the first aspect of the present invention is a heat storage device that is disposed so as to contact the compressor and accumulates heat generated by the compressor,
A heat storage tank having a heat storage tank body for storing a heat storage agent for storing heat generated by the compressor;
A heat storage heat exchanger that is housed in the heat storage tank body and exchanges heat with the heat storage agent in the heat storage tank body;
And a stirring device that stirs the heat storage agent in the heat storage tank body.

このように構成された本発明に係る第1の態様の蓄熱装置は、攪拌装置により蓄熱剤を攪拌することで蓄熱剤の温度の均一化を図り、蓄熱量の増大化を図ると共に、蓄熱槽の内壁表面や蓄熱熱交換器の外表面の温度境界層の厚みを減少させ、圧縮機と蓄熱剤との間、および蓄熱剤と蓄熱熱交換器との間の熱伝達率を向上させ、蓄熱槽内の蓄熱剤の熱交換効率を向上させることができる。   The heat storage device according to the first aspect of the present invention configured as described above is intended to make the temperature of the heat storage agent uniform by agitating the heat storage agent with the stirring device, to increase the amount of heat storage, and to store the heat storage tank. Reducing the thickness of the temperature boundary layer on the inner wall surface of the heat exchanger and the outer surface of the heat storage heat exchanger, improving the heat transfer coefficient between the compressor and the heat storage agent, and between the heat storage agent and the heat storage heat exchanger, The heat exchange efficiency of the heat storage agent in the tank can be improved.

本発明に係る第2の態様の蓄熱装置において、攪拌装置は、前記の第1の態様における攪拌部材を少なくとも具備し、前記攪拌部材は攪拌羽根であるよう構成されている。   In the heat storage device according to the second aspect of the present invention, the stirring device includes at least the stirring member in the first aspect, and the stirring member is configured to be a stirring blade.

このように構成された本発明に係る第2の態様の蓄熱装置は、蓄熱剤の流れを確実に作り出すことができ、蓄熱槽全体の蓄熱剤を十分に攪拌することができる。   The heat storage device according to the second aspect of the present invention configured as described above can surely create the flow of the heat storage agent, and can sufficiently stir the heat storage agent in the entire heat storage tank.

本発明に係る第3の態様の蓄熱装置において、前記の第1又は第2の態様における攪拌装置は蓄熱槽本体に収容されるよう構成されている。   In the heat storage device according to the third aspect of the present invention, the stirring device according to the first or second aspect is configured to be accommodated in the heat storage tank body.

このように構成された本発明に係る第3の態様の蓄熱装置は、攪拌装置を蓄熱槽本体の外部に配置した場合に比べて、蓄熱槽本体内からの蓄熱剤の漏洩を防止すると共に蓄熱した熱量の無駄な漏洩を防止することができる。   The heat storage device according to the third aspect of the present invention configured as described above prevents the leakage of the heat storage agent from the heat storage tank main body and stores heat compared to the case where the stirring device is disposed outside the heat storage tank main body. It is possible to prevent wasteful leakage of heat quantity.

本発明に係る第4の態様の蓄熱装置において、前記の第1から第3のいずれか1つの態様における攪拌装置は、蓄熱剤を上方から下方へ移動させることにより蓄熱剤を攪拌するよう構成されている。   In the heat storage device according to the fourth aspect of the present invention, the stirring device according to any one of the first to third aspects is configured to stir the heat storage agent by moving the heat storage agent from above to below. ing.

このように構成された本発明に係る第4の態様の蓄熱装置は、蓄熱剤の攪拌方向を上から下とすることで、蓄熱剤の液面を波立たせることなく蓄熱剤を攪拌することができ、蓄熱剤の蒸発を防止し、恒久的に蓄熱槽の機能を維持することができる。   The heat storage device according to the fourth aspect of the present invention configured as described above stirs the heat storage agent without making the liquid level of the heat storage agent rippled by changing the stirring direction of the heat storage agent from top to bottom. The heat storage agent can be prevented from evaporating and the function of the heat storage tank can be maintained permanently.

本発明に係る第5の態様の蓄熱装置において、前記の第1から第4のいずれか1つの態様における攪拌装置は、蓄熱剤を吸い込むための吸込口と、吸い込んだ蓄熱剤を吐き出すための吐出口とを有し、
攪拌装置の吸込口の上端は、蓄熱剤の液面よりも下方に位置されるよう構成されている。
In the heat storage device according to the fifth aspect of the present invention, the stirring device according to any one of the first to fourth aspects includes a suction port for sucking the heat storage agent and a discharge for discharging the sucked heat storage agent. And an exit
The upper end of the suction port of the stirring device is configured to be positioned below the liquid surface of the heat storage agent.

このように構成された本発明に係る第5の態様の蓄熱装置は、攪拌装置が蓄熱剤を確実に吸い込んで吐き出すことにより、効率的な攪拌を行うことができる。   The heat storage device according to the fifth aspect of the present invention configured as described above can perform efficient stirring when the stirring device reliably sucks and discharges the heat storage agent.

本発明に係る第6の態様の蓄熱装置において、前記の第5の態様における攪拌装置の吸込口の上端は、蓄熱熱交換器の上端よりも下方に位置されるよう構成されている。   In the heat storage device according to the sixth aspect of the present invention, the upper end of the suction port of the stirring device according to the fifth aspect is configured to be positioned below the upper end of the heat storage heat exchanger.

このように構成された本発明に係る第6の態様の蓄熱装置は、蓄熱剤の液面が攪拌装置の攪拌によって受ける影響を少なくすることができる。   The heat storage device according to the sixth aspect of the present invention configured as described above can reduce the influence of the liquid surface of the heat storage agent on the stirring of the stirring device.

本発明に係る空気調和機は、前記の第1から第6のいずれか1つの態様における蓄熱装置を備えるよう構成されても良い。   The air conditioner according to the present invention may be configured to include the heat storage device according to any one of the first to sixth aspects.

以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。   Embodiments according to the present invention will be described below in detail with reference to the drawings.

(実施の形態)
図1は、本発明の実施の形態にかかる冷凍サイクル装置を備えた空気調和機の構成を示しており、空気調和機は、冷媒配管で互いに接続された室外機2と室内機4とで構成されている。
(Embodiment)
FIG. 1 shows a configuration of an air conditioner including a refrigeration cycle apparatus according to an embodiment of the present invention, and the air conditioner includes an outdoor unit 2 and an indoor unit 4 that are connected to each other through a refrigerant pipe. Has been.

図1に示されるように、室外機2の内部には、圧縮機6と四方弁8とストレーナ10と膨張弁12と室外熱交換器14とが設けられ、室内機4の内部には、室内熱交換器16が設けられ、これらは冷媒配管を介して互いに接続されることで冷凍サイクルを構成している。   As shown in FIG. 1, a compressor 6, a four-way valve 8, a strainer 10, an expansion valve 12, and an outdoor heat exchanger 14 are provided inside the outdoor unit 2. A heat exchanger 16 is provided, and these are connected to each other via a refrigerant pipe to constitute a refrigeration cycle.

さらに詳述すると、圧縮機6と室内熱交換器16は、四方弁8が設けられた第1配管18を介して接続され、室内熱交換器16と膨張弁12は、ストレーナ10が設けられた第2配管20を介して接続されている。また、膨張弁12と室外熱交換器14は第3配管22を介して接続され、室外熱交換器14と圧縮機6は第4配管24および第5配管25を介して接続される。室外熱交換器14と圧縮機6を接続する第4配管24および第5配管25の間には四方弁8が配置されている。また、四方弁8と圧縮機6の間には第5配管25を介して三方弁42が接続されており、圧縮機6と第5配管25の間には、液相冷媒と気相冷媒を分離するためのアキュームレータ26が設けられている。また、室内熱交換器16と室外熱交換器14を接続する第3配管22は、第6配管28を介して圧縮機6と接続されており、第6配管28には電磁弁30が設けられている。   More specifically, the compressor 6 and the indoor heat exchanger 16 are connected via a first pipe 18 provided with a four-way valve 8, and the indoor heat exchanger 16 and the expansion valve 12 are provided with a strainer 10. The second pipe 20 is connected. The expansion valve 12 and the outdoor heat exchanger 14 are connected via a third pipe 22, and the outdoor heat exchanger 14 and the compressor 6 are connected via a fourth pipe 24 and a fifth pipe 25. A four-way valve 8 is disposed between the fourth pipe 24 and the fifth pipe 25 that connect the outdoor heat exchanger 14 and the compressor 6. A three-way valve 42 is connected between the four-way valve 8 and the compressor 6 via a fifth pipe 25, and a liquid-phase refrigerant and a gas-phase refrigerant are passed between the compressor 6 and the fifth pipe 25. An accumulator 26 is provided for separation. The third pipe 22 that connects the indoor heat exchanger 16 and the outdoor heat exchanger 14 is connected to the compressor 6 via a sixth pipe 28, and the sixth pipe 28 is provided with an electromagnetic valve 30. ing.

さらに、圧縮機6の周囲には蓄熱槽32が設けられる。蓄熱槽32の内部には、蓄熱熱交換器34が設けられるとともに、蓄熱熱交換器34と熱交換するための液体である蓄熱剤(例えば、エチレングリコール水溶液)36が充填されている。蓄熱槽32と蓄熱熱交換器34と蓄熱剤36と、後述する攪拌装置52とで蓄熱装置31を構成している。   Further, a heat storage tank 32 is provided around the compressor 6. A heat storage heat exchanger 34 is provided inside the heat storage tank 32, and a heat storage agent (for example, an ethylene glycol aqueous solution) 36 that is a liquid for exchanging heat with the heat storage heat exchanger 34 is filled therein. The heat storage device 31 is composed of the heat storage tank 32, the heat storage heat exchanger 34, the heat storage agent 36, and a stirring device 52 described later.

また、三方弁42と蓄熱熱交換器34は、キャピラリチューブ43を含む第7配管38を介して接続される。三方弁42と圧縮機6を接続する第5配管25は、第8配管40を介して蓄熱熱交換器34と接続されている。   The three-way valve 42 and the heat storage heat exchanger 34 are connected via a seventh pipe 38 including the capillary tube 43. The fifth pipe 25 connecting the three-way valve 42 and the compressor 6 is connected to the heat storage heat exchanger 34 via the eighth pipe 40.

室内機4の内部には、室内熱交換器16に加えて、送風ファン(図示せず)と上下羽根(図示せず)と左右羽根(図示せず)とが設けられている。室内熱交換器16は、送風ファンにより室内機4の内部に吸込まれた室内空気と、室内熱交換器16の内部を流れる冷媒との間で熱交換を行う。室内熱交換器16における室内空気と冷媒との熱交換により、暖房時には熱交換により暖められた空気が室内に吹き出される一方、冷房時には熱交換により冷却された空気が室内に吹き出される。   In the interior of the indoor unit 4, in addition to the indoor heat exchanger 16, a blower fan (not shown), upper and lower blades (not shown), and left and right blades (not shown) are provided. The indoor heat exchanger 16 performs heat exchange between the indoor air sucked into the indoor unit 4 by the blower fan and the refrigerant flowing inside the indoor heat exchanger 16. Due to heat exchange between indoor air and refrigerant in the indoor heat exchanger 16, air heated by heat exchange is blown into the room during heating, while air cooled by heat exchange is blown into the room during cooling.

なお、圧縮機6、送風ファン、上下羽根、左右羽根、四方弁8、膨張弁12、電磁弁30、三方弁42等は制御装置45(例えばマイコン)に電気的に接続され、制御装置45により制御されて動作を行う。   The compressor 6, the blower fan, the upper and lower blades, the left and right blades, the four-way valve 8, the expansion valve 12, the electromagnetic valve 30, the three-way valve 42, and the like are electrically connected to a control device 45 (for example, a microcomputer). Operates under control.

上記構成の本実施の形態にかかる冷凍サイクル装置において、各部品の相互の接続関係と機能を暖房運転時を例にとり冷媒の流れとともに説明する。   In the refrigeration cycle apparatus according to the present embodiment having the above-described configuration, the mutual connection relationship and function of each component will be described together with the flow of the refrigerant taking the heating operation as an example.

圧縮機6の吐出口から吐出された冷媒は、四方弁8から第1配管18を通って室内熱交換器16へと至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て第2配管20を通り、膨張弁12への異物侵入を防止するストレーナ10を通って、膨張弁12に至る。膨張弁12で減圧した冷媒は、第3配管22を通って室外熱交換器14に至る。室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、第4配管24、四方弁8、三方弁42を通った後、第5配管25からアキュームレータ26を通って、圧縮機6の吸入口を介して圧縮機6へと戻る。   The refrigerant discharged from the discharge port of the compressor 6 reaches the indoor heat exchanger 16 from the four-way valve 8 through the first pipe 18. The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 passes through the second pipe 20 through the indoor heat exchanger 16, expands through the strainer 10 that prevents foreign matter from entering the expansion valve 12. To valve 12. The refrigerant decompressed by the expansion valve 12 reaches the outdoor heat exchanger 14 through the third pipe 22. The refrigerant evaporated by exchanging heat with the outdoor air in the outdoor heat exchanger 14 passes through the fourth pipe 24, the four-way valve 8, and the three-way valve 42, and then passes through the accumulator 26 from the fifth pipe 25 to the compressor 6. It returns to the compressor 6 through the suction port.

また、圧縮機6の吐出口と四方弁8の間にて第1配管18から分岐した第6配管28は、電磁弁30を介して第3配管22の膨張弁12と室外熱交換器14の間に合流している。   The sixth pipe 28 branched from the first pipe 18 between the discharge port of the compressor 6 and the four-way valve 8 is connected to the expansion valve 12 of the third pipe 22 and the outdoor heat exchanger 14 via the electromagnetic valve 30. I am joining in between.

さらに、内部に蓄熱剤36と蓄熱熱交換器34を収納した蓄熱槽32は、圧縮機6に接して取り囲むように配置され、圧縮機6で発生した熱を蓄熱剤36に蓄熱する。   Furthermore, the heat storage tank 32 in which the heat storage agent 36 and the heat storage heat exchanger 34 are housed is disposed so as to be in contact with and surround the compressor 6, and the heat generated in the compressor 6 is stored in the heat storage agent 36.

三方弁42は、一方が四方弁8の吸入配管と接続され、もう一方が第5配管25に接続され、さらにもう一方が第7配管38に接続されている。前述した制御装置45を用いて三方弁42の開閉を制御することにより、四方弁8から第5配管25を通じて圧縮機6の吸入口へ流れる冷媒の経路と、四方弁8から第7配管38を通じて蓄熱熱交換器34を経て圧縮機6の吸入口へ流れる冷媒の経路とを、相互に切り替えることができる。   One of the three-way valves 42 is connected to the suction pipe of the four-way valve 8, the other is connected to the fifth pipe 25, and the other is connected to the seventh pipe 38. By controlling the opening and closing of the three-way valve 42 using the control device 45 described above, the refrigerant path flowing from the four-way valve 8 to the suction port of the compressor 6 through the fifth pipe 25 and the four-way valve 8 through the seventh pipe 38 are controlled. The path of the refrigerant flowing to the suction port of the compressor 6 through the heat storage heat exchanger 34 can be switched between each other.

次に、空気調和機の通常暖房時の動作及び冷媒の流れを、図2の模式図を参照しながら説明する。図中、実線矢印は暖房に供する冷媒の流れを示している。   Next, the operation | movement at the time of normal heating of an air conditioner and the flow of a refrigerant | coolant are demonstrated, referring the schematic diagram of FIG. In the figure, solid arrows indicate the flow of refrigerant used for heating.

通常暖房運転時には、電磁弁30は閉制御され、三方弁42は第4配管24と第5配管25を連通させるように開閉制御される。この制御によれば、電磁弁30の設けられている第6配管28や、蓄熱熱交換器34に接続される第7配管38には冷媒が流れない。   During normal heating operation, the solenoid valve 30 is controlled to close, and the three-way valve 42 is controlled to open and close so that the fourth pipe 24 and the fifth pipe 25 communicate with each other. According to this control, the refrigerant does not flow through the sixth pipe 28 provided with the electromagnetic valve 30 or the seventh pipe 38 connected to the heat storage heat exchanger 34.

圧縮機6の吐出口から吐出された冷媒は、上述したように四方弁8から第1配管18を通って室内熱交換器16に至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て、第2配管20を通り膨張弁12に至る。膨張弁12で減圧した冷媒は、第3配管22を通って室外熱交換器14に至る。室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、第4配管24を通って四方弁8に至った後、三方弁42を通り、第5配管25を介して圧縮機6の吸入口へと戻る。   The refrigerant discharged from the discharge port of the compressor 6 reaches the indoor heat exchanger 16 from the four-way valve 8 through the first pipe 18 as described above. The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 exits the indoor heat exchanger 16 and reaches the expansion valve 12 through the second pipe 20. The refrigerant decompressed by the expansion valve 12 reaches the outdoor heat exchanger 14 through the third pipe 22. The refrigerant evaporated by exchanging heat with the outdoor air in the outdoor heat exchanger 14 reaches the four-way valve 8 through the fourth pipe 24, then passes through the three-way valve 42, and passes through the fifth pipe 25. Return to inlet.

このとき、圧縮機6で発生した熱は、圧縮機6の外壁から蓄熱槽32の内壁を介して蓄熱槽32の内部に収容された蓄熱剤36に蓄熱される。   At this time, the heat generated in the compressor 6 is stored in the heat storage agent 36 housed in the heat storage tank 32 from the outer wall of the compressor 6 through the inner wall of the heat storage tank 32.

次に、空気調和機の除霜・暖房時の動作及び冷媒の流れを、図3の模式図を参照しながら説明する。図中、実線矢印は暖房に供する冷媒の流れを示しており、破線矢印は除霜に供する冷媒の流れを示している。   Next, the operation of the air conditioner during defrosting and heating and the flow of the refrigerant will be described with reference to the schematic diagram of FIG. In the figure, the solid line arrow indicates the flow of the refrigerant used for heating, and the broken line arrow indicates the flow of the refrigerant used for defrosting.

上述した通常暖房運転中に室外熱交換器14に着霜し、着霜した霜が成長すると、室外熱交換器14の通風抵抗が増加して風量が減少し、室外熱交換器14内の蒸発温度が低下する。本実施の形態にかかる空気調和機には、図3に示されるように、室外熱交換器14の配管温度を検出する温度センサ44が設けられており、非着霜時に比べて、蒸発温度が低下したことを温度センサ44で検出すると、制御装置45より、通常暖房運転から除霜・暖房運転へ切り替える指示が出力される。   When the outdoor heat exchanger 14 is frosted during the above-described normal heating operation and the frosted frost grows, the ventilation resistance of the outdoor heat exchanger 14 increases and the air flow decreases, and the evaporation in the outdoor heat exchanger 14 increases. The temperature drops. As shown in FIG. 3, the air conditioner according to the present embodiment is provided with a temperature sensor 44 that detects the piping temperature of the outdoor heat exchanger 14, and the evaporation temperature is higher than that during non-frosting. When the temperature sensor 44 detects that the temperature has decreased, the control device 45 outputs an instruction to switch from the normal heating operation to the defrosting / heating operation.

通常暖房運転から除霜・暖房運転に移行すると、電磁弁30は開制御される。これにより、圧縮機6の吐出口から第1配管18を介して室内熱交換器16へ流れる冷媒の流れに加えて、圧縮機6の吐出口から第6配管28を介して室外熱交換器14へ流れる冷媒の流れが新たに生じる。圧縮機6の吐出口から出た気相冷媒の一部が第6配管28に流入すると、途中に設けられた電磁弁30を通った後、第3配管22を通る冷媒に合流し、室外熱交換器14へ流入する。室外熱交換器14へ流入した冷媒は室外熱交換器14を加熱し、凝縮して液相化する。液相化した冷媒はその後、四方弁8を介して、三方弁42へ至る。   When the normal heating operation is shifted to the defrosting / heating operation, the solenoid valve 30 is controlled to open. Thereby, in addition to the flow of the refrigerant flowing from the discharge port of the compressor 6 to the indoor heat exchanger 16 via the first pipe 18, the outdoor heat exchanger 14 is discharged from the discharge port of the compressor 6 via the sixth pipe 28. A new refrigerant flow is generated. When a part of the gas-phase refrigerant discharged from the discharge port of the compressor 6 flows into the sixth pipe 28, it passes through the electromagnetic valve 30 provided in the middle, and then merges with the refrigerant passing through the third pipe 22, and the outdoor heat It flows into the exchanger 14. The refrigerant that has flowed into the outdoor heat exchanger 14 heats the outdoor heat exchanger 14 and condenses into a liquid phase. Thereafter, the liquid phase refrigerant reaches the three-way valve 42 via the four-way valve 8.

通常暖房運転では、三方弁42が第4配管24および第5配管25を連通させるように開閉制御されるのに対し、除霜・暖房運転では、三方弁42が第4配管24および第7配管38を連通させるように開閉制御される。この制御によれば、冷媒が室外熱交換器14から第4配管24および第7配管38を介して、蓄熱熱交換器34へ流れる(室外熱交換器14から第4配管24および第5配管25を介してアキュームレータ26へは流れない)。   In the normal heating operation, the three-way valve 42 is controlled to open and close so that the fourth pipe 24 and the fifth pipe 25 communicate with each other, whereas in the defrosting / heating operation, the three-way valve 42 is connected to the fourth pipe 24 and the seventh pipe. Opening / closing is controlled so as to communicate 38. According to this control, the refrigerant flows from the outdoor heat exchanger 14 to the heat storage heat exchanger 34 via the fourth pipe 24 and the seventh pipe 38 (from the outdoor heat exchanger 14 to the fourth pipe 24 and the fifth pipe 25. To the accumulator 26).

三方弁42を通った冷媒はキャピラリチューブ43で減圧され低温となり、蓄熱熱交換器34で蓄熱剤36の熱を吸熱する。吸熱した冷媒は、気相状態若しくは高クオリティー状態で、アキュームレータ26に至り、圧縮機6の吸入口へと戻る。   The refrigerant that has passed through the three-way valve 42 is depressurized by the capillary tube 43 to become a low temperature, and the heat storage heat exchanger 34 absorbs the heat of the heat storage agent 36. The refrigerant that has absorbed heat reaches the accumulator 26 in a gas phase state or a high quality state, and returns to the suction port of the compressor 6.

暖房時に霜が付着して氷点下の温度となった室外熱交換器14は、圧縮機6の吐出口から出た気相冷媒と、室内熱交換器16から戻る液相冷媒もしくは気液2相冷媒とが混合された冷媒によって加熱される。零度付近で霜が融解し、霜の融解が終わると、室外熱交換器14の温度は再び上昇し始める。この室外熱交換器14の温度上昇を温度センサ44で検出すると、除霜が完了したと判断し、制御装置45より除霜・暖房運転から通常暖房運転へ切り替える指示が出力される。   The outdoor heat exchanger 14 that has become below freezing temperature due to frost adhering during heating includes a gas-phase refrigerant exiting from the discharge port of the compressor 6 and a liquid-phase refrigerant or a gas-liquid two-phase refrigerant returning from the indoor heat exchanger 16. Are heated by the mixed refrigerant. When the frost melts near zero and the frost melts, the temperature of the outdoor heat exchanger 14 begins to rise again. When the temperature sensor 44 detects the temperature rise of the outdoor heat exchanger 14, it is determined that the defrosting has been completed, and an instruction to switch from the defrosting / heating operation to the normal heating operation is output from the control device 45.

図4−図6は、本実施の形態にかかる空気調和機で用いられる蓄熱装置31を示している。蓄熱装置31は、上述したように、蓄熱剤36の充填された蓄熱槽32と、蓄熱熱交換器34と、後述する攪拌装置52とを備える。図4は、圧縮機6と、圧縮機6に組み付けられるアキュームレータ26を蓄熱装置31に取り付けた状態を示している。また、図5は、蓄熱装置31の分解斜視図であり、図6は、蓄熱装置31の模式断面図である。   4-6 has shown the thermal storage apparatus 31 used with the air conditioner concerning this Embodiment. As described above, the heat storage device 31 includes the heat storage tank 32 filled with the heat storage agent 36, the heat storage heat exchanger 34, and a stirring device 52 described later. FIG. 4 shows a state where the compressor 6 and the accumulator 26 assembled to the compressor 6 are attached to the heat storage device 31. FIG. 5 is an exploded perspective view of the heat storage device 31, and FIG. 6 is a schematic cross-sectional view of the heat storage device 31.

図4−6に示されるように、蓄熱槽32は、側壁と底壁を有し上方が開口した樹脂製の蓄熱槽本体46と、この蓄熱槽本体46の上方開口部を閉塞する樹脂製の蓋体48と、蓄熱槽本体46と蓋体48の間に介装されシリコンゴム等で作製されたパッキン50とを備える。蓄熱槽本体46は、圧縮機6の周囲を囲むように大略円周方向に延在するとともに、その延在方向の長さに対して径方向の長さ(幅)が短い形状を有している。蓋体48は、パッキン50を介して蓄熱槽本体46に取り付けられる。図5では、蓄熱槽本体46の側壁のうち圧縮機6と対向する部分の図示および攪拌部材52の図示を便宜上省略している。   As shown in FIG. 4-6, the heat storage tank 32 is made of a resin heat storage tank main body 46 having a side wall and a bottom wall and opened upward, and a resin made of resin that closes the upper opening of the heat storage tank main body 46. A lid 48 and a packing 50 interposed between the heat storage tank main body 46 and the lid 48 and made of silicon rubber or the like are provided. The heat storage tank main body 46 has a shape that extends in a substantially circumferential direction so as to surround the compressor 6 and has a short length (width) in the radial direction with respect to the length in the extending direction. Yes. The lid 48 is attached to the heat storage tank main body 46 via the packing 50. 5, illustration of the part facing the compressor 6 among the side walls of the heat storage tank main body 46 and illustration of the stirring member 52 are omitted for convenience.

蓄熱熱交換器34は、例えば銅管等を蛇行状に折曲したもので、蓄熱槽本体46の内部に収容されている。蓄熱熱交換器34の両端は蓋体48から上方に延出され、一端は第7配管38(図1参照)に接続される一方、他端は第8配管40(図1参照)に接続される。また、蓄熱熱交換器34が収容され、側壁と底壁で囲繞された蓄熱槽本体46の内部空間には、蓄熱剤36が充填される。なお、蓄熱槽本体46内において蓄熱剤36の上には、蓄熱剤36の蒸発を防ぐためのオイル層(図示せず)が配置される。   The heat storage heat exchanger 34 is, for example, a copper tube or the like bent in a serpentine shape, and is accommodated in the heat storage tank main body 46. Both ends of the heat storage heat exchanger 34 extend upward from the lid body 48, one end is connected to the seventh pipe 38 (see FIG. 1), and the other end is connected to the eighth pipe 40 (see FIG. 1). The Further, the heat storage heat exchanger 34 is accommodated, and the heat storage agent 36 is filled in the internal space of the heat storage tank main body 46 surrounded by the side wall and the bottom wall. An oil layer (not shown) for preventing evaporation of the heat storage agent 36 is disposed on the heat storage agent 36 in the heat storage tank body 46.

次に、蓄熱熱交換器34と同様に蓄熱槽本体46の内部に収容される攪拌装置52について、図6−8を用いて説明する。図7は、攪拌装置52の斜視図であり、図8は、攪拌装置52の模式断面図である。   Next, the stirring device 52 accommodated in the inside of the heat storage tank main body 46 similarly to the heat storage heat exchanger 34 is demonstrated using FIGS. 6-8. FIG. 7 is a perspective view of the stirring device 52, and FIG. 8 is a schematic cross-sectional view of the stirring device 52.

攪拌装置52は、仕切り部材56と、攪拌部材54と、回転軸66と、モータ68とを備える。   The stirring device 52 includes a partition member 56, a stirring member 54, a rotating shaft 66, and a motor 68.

仕切り部材56は、例えば中空の略円筒形状で構成されるとともに、蓄熱槽本体46内において、蓄熱剤36に大部分が浸漬されるように配置される。仕切り部材56の上部分には吸込口60が設けられ、下端部には吐出口62が設けられており、吸込口60および吐出口62が開口を形成することにより、吸込口60および吐出口62を介して、仕切り部材56内の空間に蓄熱剤36が浸入可能となっている。   The partition member 56 is configured, for example, in a hollow, substantially cylindrical shape, and is disposed so that most of the partition member 56 is immersed in the heat storage agent 36 in the heat storage tank main body 46. The upper part of the partition member 56 is provided with a suction port 60, and the lower end part is provided with a discharge port 62. The suction port 60 and the discharge port 62 form an opening, whereby the suction port 60 and the discharge port 62 are formed. Thus, the heat storage agent 36 can enter the space in the partition member 56.

図6に示すように、吸込口60の上端は、蓄熱剤36の液面の上端よりも下方に位置されている。さらに、吸込口60の上端は、蓄熱熱交換器34の上端よりも下方に位置されている。なお、ここでいう蓄熱熱交換器34の「上端」とは、蓄熱熱交換器34のうち蓄熱剤36と実質的に熱交換を行う部分(本実施形態では、横方向に延在して蛇行する箇所より下方部分)の上端を意味する。   As shown in FIG. 6, the upper end of the suction port 60 is positioned below the upper end of the liquid surface of the heat storage agent 36. Further, the upper end of the suction port 60 is positioned below the upper end of the heat storage heat exchanger 34. The “upper end” of the heat storage heat exchanger 34 referred to here is a portion of the heat storage heat exchanger 34 that substantially exchanges heat with the heat storage agent 36 (in this embodiment, it extends in the horizontal direction and meanders). It means the upper end of the lower part).

なお、本実施の形態では蓄熱熱交換器34として、裸管が横方向に延在して蛇行する形状のものを示したが、横方向に限らず縦方向でも斜め方向でも螺旋状でも、さらには熱交換用のフィンを具備したものでもよく、熱交換機能を有するものであれば良いことは言うまでもない。   In the present embodiment, the heat storage heat exchanger 34 has a shape in which a bare pipe extends in the horizontal direction and meanders, but is not limited to the horizontal direction, Needless to say, may be provided with fins for heat exchange and may have any heat exchange function.

吐出口62は、仕切り部材56の下端部に位置されており、攪拌装置52が設けられる端部とは逆方向の端部に傾斜して開口している。   The discharge port 62 is located at the lower end portion of the partition member 56, and is inclined and opened to the end portion in the direction opposite to the end portion where the stirring device 52 is provided.

攪拌装置52はさらに、取付け部材58を備える。取付け部材58は、仕切り部材56の上方端部に固着されるとともに、蓄熱装置31の蓋体48に固定可能に構成される。   The stirring device 52 further includes an attachment member 58. The attachment member 58 is configured to be fixed to the upper end portion of the partition member 56 and to be fixed to the lid body 48 of the heat storage device 31.

仕切り部材56によって仕切られる空間内には、攪拌部材54が配置される。攪拌部材54は、例えば回転羽根などで構成され、上下方向において吸込口60と吐出口62の間に配置される。   In the space partitioned by the partition member 56, the stirring member 54 is disposed. The stirring member 54 is composed of, for example, a rotary blade, and is disposed between the suction port 60 and the discharge port 62 in the vertical direction.

攪拌部材54には、上下方向に延びる回転軸66が連結されている。回転軸66は、下方にて攪拌部材54に連結される。一方で、回転軸66の上方には、絶縁部材70を介して、取付け部材58上に配置されたモータ68の軸(モータ軸72)が連結されている。あるいは、回転軸66と攪拌部材54とは絶縁部材で一体成型され、取付部材58上に配置されたモータ68の軸(モータ軸72)に連結される構成をとっても良い。   A rotating shaft 66 extending in the vertical direction is connected to the stirring member 54. The rotating shaft 66 is connected to the stirring member 54 below. On the other hand, a shaft of a motor 68 (motor shaft 72) disposed on the attachment member 58 is connected to the upper side of the rotation shaft 66 via an insulating member 70. Alternatively, the rotary shaft 66 and the stirring member 54 may be integrally formed of an insulating member and connected to the shaft of the motor 68 (motor shaft 72) disposed on the attachment member 58.

モータ68は、図示しない駆動電源に接続されるとともに、その底部には下方へ突出するモータ軸72を有する。モータ軸72は、取付け部材58の底面に形成される開口74を通って絶縁部材70に連結される。また、絶縁部材70は、成形が容易となるように樹脂で形成される。   The motor 68 is connected to a drive power source (not shown) and has a motor shaft 72 protruding downward at the bottom. The motor shaft 72 is connected to the insulating member 70 through an opening 74 formed in the bottom surface of the mounting member 58. The insulating member 70 is made of resin so that it can be easily molded.

このように構成される攪拌装置52において、駆動電源からの電源により、モータ68がモータ軸72を仕切り部材56の円周方向へ回転させると、回転軸66および回転軸66の先端に配置された攪拌部材54が同方向へ回転される。攪拌部材54である回転羽根は、仕切り部材56内における蓄熱剤を上から下へ向かう軸流として流すように構成される。すなわち、攪拌部材54の回転により、仕切り部材56内において、上から下へ向かう推力が蓄熱剤36に対して付与される。   In the stirring device 52 configured as described above, when the motor 68 rotates the motor shaft 72 in the circumferential direction of the partition member 56 by the power source from the driving power source, the rotating shaft 66 and the tip of the rotating shaft 66 are arranged. The stirring member 54 is rotated in the same direction. The rotating blade that is the stirring member 54 is configured to allow the heat storage agent in the partition member 56 to flow as an axial flow from top to bottom. That is, by the rotation of the stirring member 54, a thrust from the top to the bottom is applied to the heat storage agent 36 in the partition member 56.

なお、取付け部材58の底面側の開口74と絶縁部材70との間にはシール部材(図示せず)が設けられおり、シール部材は、絶縁部材70などが回転する際にもそれらの回転を妨げず、かつ蓄熱剤36が取付け部材58内に浸入することを防止する。絶縁部材70の周囲(側面)には外側に突出するフランジ76が設けられている。フランジ76の突出する方向は、モータ軸72若しくは回転軸66が延びる方向と交差する方向である。   A sealing member (not shown) is provided between the opening 74 on the bottom surface side of the mounting member 58 and the insulating member 70, and the sealing member rotates the insulating member 70 and the like even when the insulating member 70 rotates. This prevents the heat storage agent 36 from entering the mounting member 58. A flange 76 protruding outward is provided around the insulating member 70 (side surface). The direction in which the flange 76 protrudes is a direction that intersects the direction in which the motor shaft 72 or the rotation shaft 66 extends.

また、蓄熱装置31の使用時には、取付け部材58およびモータ68を上方から覆うように、カバー(図示せず)が配置される。図7、8に示すように、取付け部材58の上方縁部には、横方向に突出する係合部64が設けられており、この係合部64を介して取付け部材58およびカバーがともに蓋体48に係合されることにより、攪拌装置52が蓄熱槽本体46内の所定位置にて固定される。   Further, when the heat storage device 31 is used, a cover (not shown) is disposed so as to cover the attachment member 58 and the motor 68 from above. As shown in FIGS. 7 and 8, the upper edge of the mounting member 58 is provided with an engaging portion 64 projecting in the lateral direction, and the mounting member 58 and the cover are both covered with the engaging portion 64. By being engaged with the body 48, the stirring device 52 is fixed at a predetermined position in the heat storage tank main body 46.

また、攪拌装置52は、図6に示すように蓄熱槽本体46内の端部に配置されている。具体的には、蓄熱槽本体46の前記延在方向における端部にて、蓄熱熱交換器34と併設される。なお、本明細書における蓄熱槽本体46内の「端部」には、蓄熱槽本体46の端部の内壁に接する部分だけでなく、蓄熱槽本体46の端部の内壁近傍の空間も含まれるものとする。   Moreover, the stirring apparatus 52 is arrange | positioned at the edge part in the thermal storage tank main body 46, as shown in FIG. Specifically, the heat storage tank body 46 is provided with the heat storage heat exchanger 34 at the end in the extending direction. The “end” in the heat storage tank main body 46 in this specification includes not only a portion in contact with the inner wall of the end of the heat storage tank main body 46 but also a space near the inner wall of the end of the heat storage tank main body 46. Shall.

次に、上記構成の蓄熱装置31の作用を説明する。
上述したように、蓄熱装置31は、暖房運転時に圧縮機6で発生した熱を蓄熱剤36に蓄積し、通常暖房運転から除霜・暖房運転に移行したときに、圧縮機6の吐出口と室内熱交換器16との間にて第1配管18から分流した液相冷媒の一部が、蓄熱熱交換器34で蓄熱剤36から吸熱し蒸発、気相化するためのものである。よって、圧縮機6と蓄熱剤36との熱交換効率および蓄熱剤36と蓄熱熱交換器34との熱交換効率は高いほど好ましい(すなわち、蓄熱槽32内における蓄熱剤36の熱交換効率が高いほど好ましい)。
Next, the operation of the heat storage device 31 configured as described above will be described.
As described above, the heat storage device 31 accumulates the heat generated in the compressor 6 during the heating operation in the heat storage agent 36, and when the normal heating operation shifts to the defrosting / heating operation, the discharge port of the compressor 6 A part of the liquid refrigerant separated from the first pipe 18 between the indoor heat exchanger 16 absorbs heat from the heat storage agent 36 in the heat storage heat exchanger 34, evaporates, and vaporizes. Therefore, it is preferable that the heat exchange efficiency between the compressor 6 and the heat storage agent 36 and the heat exchange efficiency between the heat storage agent 36 and the heat storage heat exchanger 34 are higher (that is, the heat exchange efficiency of the heat storage agent 36 in the heat storage tank 32 is higher). Is preferable).

一方で、蓄熱剤36の温度は一般的に、蓄熱槽本体46内において上方に位置するほど高く、下方に位置するほど低くなっている(例えば温度差10℃)。このように蓄熱剤36に温度差があると、蓄熱剤36と、圧縮機6および蓄熱熱交換器34との間で熱交換される量が少なくなり、蓄熱剤36の熱交換効率は悪くなる。したがって、熱交換効率を向上させるためには、蓄熱槽本体46内における蓄熱剤36の温度を均一化させて圧縮機6との温度差を確保して蓄熱量の増大化を図ると共に、蓄熱槽32の内壁表面や蓄熱熱交換器34の外表面の温度境界層の厚みを減少させ、圧縮機6と蓄熱剤36との間、および蓄熱剤36と蓄熱熱交換器34との間の熱伝達率を向上させることが好ましい。   On the other hand, the temperature of the heat storage agent 36 is generally higher as it is positioned higher in the heat storage tank body 46 and lower as it is positioned lower (for example, a temperature difference of 10 ° C.). Thus, when there is a temperature difference in the heat storage agent 36, the amount of heat exchange between the heat storage agent 36, the compressor 6 and the heat storage heat exchanger 34 decreases, and the heat exchange efficiency of the heat storage agent 36 deteriorates. . Therefore, in order to improve the heat exchange efficiency, the temperature of the heat storage agent 36 in the heat storage tank main body 46 is made uniform to secure a temperature difference with the compressor 6 to increase the amount of heat storage, and the heat storage tank The thickness of the temperature boundary layer on the inner wall surface of 32 and the outer surface of the heat storage heat exchanger 34 is reduced, and heat transfer between the compressor 6 and the heat storage agent 36 and between the heat storage agent 36 and the heat storage heat exchanger 34 is performed. It is preferable to improve the rate.

そこで、本実施の形態にかかる蓄熱装置31では、まずモータ68を駆動して、回転軸66を中心として攪拌部材54を回転させる。前述したように、攪拌部材54を構成する回転羽根は、蓄熱剤36に対して上から下に向かう推力を付与し、同方向へ向かう蓄熱剤36の軸流を生じさせるように構成されている。したがって、攪拌部材54を回転させると、仕切り部材56内を上から下に向かう蓄熱剤36の流れが生じ、仕切り部材56の上方に設けられた吸込口60からは、蓄熱剤36が吸い込まれる。吸い込まれた蓄熱剤36は仕切り部材56内を下方へ流れ、仕切り部材56の下端に設けられた吐出口62から下方へ吐き出される。仕切り部材56の吐出口62は、前述したように、攪拌装置52が設けられる蓄熱槽本体46内の端部とは逆方向の端部に向くように開口しているため、吐出口62から吐き出される蓄熱剤36は、図6に示すように、斜め下方へ向かって流れる。その後、蓄熱剤36は蓄熱槽本体46の底壁に沿って蓄熱槽本体46内の反対側端部へ流れる。   Therefore, in the heat storage device 31 according to the present embodiment, the motor 68 is first driven to rotate the stirring member 54 around the rotation shaft 66. As described above, the rotating blades constituting the stirring member 54 are configured to apply a thrust from the top to the bottom with respect to the heat storage agent 36 to generate an axial flow of the heat storage agent 36 in the same direction. . Therefore, when the stirring member 54 is rotated, the heat storage agent 36 flows from the top to the bottom in the partition member 56, and the heat storage agent 36 is sucked from the suction port 60 provided above the partition member 56. The sucked heat storage agent 36 flows downward in the partition member 56 and is discharged downward from the discharge port 62 provided at the lower end of the partition member 56. As described above, the discharge port 62 of the partition member 56 is opened so as to face the end in the direction opposite to the end in the heat storage tank main body 46 where the stirring device 52 is provided. The stored heat storage agent 36 flows diagonally downward as shown in FIG. Thereafter, the heat storage agent 36 flows along the bottom wall of the heat storage tank body 46 to the opposite end in the heat storage tank body 46.

反対側の端部に流れてきた蓄熱剤36は、蓄熱槽本体46の内壁に衝突することにより斜め上方向に流れ、その後、蓄熱槽本体46の内壁に沿って上方向に流れる。液面付近に到達した蓄熱剤36は、再度、蓄熱剤36の液面に沿って攪拌装置52が配置される端部に向かって流れる。   The heat storage agent 36 that has flowed to the opposite end flows in an obliquely upward direction by colliding with the inner wall of the heat storage tank body 46, and then flows upward along the inner wall of the heat storage tank body 46. The heat storage agent 36 that has reached the vicinity of the liquid surface again flows toward the end where the stirring device 52 is disposed along the liquid surface of the heat storage agent 36.

攪拌装置52による蓄熱剤36への作用によって、図6中の矢印に示すように、蓄熱剤36が蓄熱槽本体46内を全体的に巡回するように流れ、蓄熱槽本体46内にて蓄熱剤36が攪拌される。なお、蓄熱剤36の上に設けられたオイル層は蓄熱剤36との比重が異なり、蓄熱剤36とは分離されているため、攪拌されず、蓄熱剤36のみが攪拌される。   Due to the action of the stirrer 52 on the heat storage agent 36, the heat storage agent 36 flows so as to circulate in the heat storage tank body 46 as a whole as shown by the arrows in FIG. 36 is stirred. Note that the oil layer provided on the heat storage agent 36 has a specific gravity different from that of the heat storage agent 36 and is separated from the heat storage agent 36, and thus is not stirred, and only the heat storage agent 36 is stirred.

上述したように、本実施の形態にかかる蓄熱装置31では、攪拌装置52を用いて蓄熱剤36を攪拌することにより、蓄熱槽本体46内における蓄熱剤36の温度を均一化させている。これにより、蓄熱剤36の温度差を例えば1℃以内とすることができ、蓄熱層32内の蓄熱剤36の熱交換効率を向上させることができる。また、本実施の形態にかかる蓄熱装置31では、従来の蓄熱装置31のように温度差を利用した自然対流の促進ではなく、攪拌装置52を用いて強制的に蓄熱剤36の対流を発生させて攪拌を行っている。これにより、蓄熱剤36の対流をより促進することで、効率的な蓄熱剤36の攪拌を行い、蓄熱量の増大化を図ると共に、蓄熱槽32の内壁表面や蓄熱熱交換器34の外表面の温度境界層の厚みを減少させ、圧縮機6と蓄熱剤36との間、および蓄熱剤36と蓄熱熱交換器34との間の熱伝達率を向上させ、蓄熱剤36の熱交換効率を向上させることができる。   As described above, in the heat storage device 31 according to the present embodiment, the temperature of the heat storage agent 36 in the heat storage tank main body 46 is made uniform by stirring the heat storage agent 36 using the stirring device 52. Thereby, the temperature difference of the thermal storage agent 36 can be made into 1 degreeC or less, for example, and the heat exchange efficiency of the thermal storage agent 36 in the thermal storage layer 32 can be improved. Further, in the heat storage device 31 according to the present embodiment, the convection of the heat storage agent 36 is forcibly generated using the stirring device 52 instead of promoting natural convection using a temperature difference as in the conventional heat storage device 31. Stirring. Thus, the convection of the heat storage agent 36 is further promoted to efficiently stir the heat storage agent 36 to increase the amount of heat storage, and the inner wall surface of the heat storage tank 32 and the outer surface of the heat storage heat exchanger 34. The heat transfer efficiency of the heat storage agent 36 is improved by improving the heat transfer rate between the compressor 6 and the heat storage agent 36 and between the heat storage agent 36 and the heat storage heat exchanger 34. Can be improved.

また、本実施の形態にかかる蓄熱装置31では、攪拌装置52が蓄熱槽本体46の端部に配置されているため、蓄熱槽本体46内において全体的な蓄熱剤36の流れを生じさせることで、効率的な蓄熱剤36の攪拌を行い、蓄熱剤36の熱交換効率を向上させることができる。   Moreover, in the heat storage apparatus 31 concerning this Embodiment, since the stirring apparatus 52 is arrange | positioned at the edge part of the heat storage tank main body 46, it produces the flow of the whole heat storage agent 36 in the heat storage tank main body 46. The heat storage agent 36 can be efficiently stirred, and the heat exchange efficiency of the heat storage agent 36 can be improved.

また、本実施の形態にかかる蓄熱装置31では、攪拌装置52を蓄熱槽本体46の内部に配置しているため、蓄熱槽本体46の外部に配置した場合と異なり、攪拌装置52と蓄熱槽本体46とを配管で接続する構成を取らずに済み、蓄熱槽本体46内からの蓄熱剤36の漏洩を防止すると共に蓄熱した熱量の無駄な漏洩を防止することができる。   Further, in the heat storage device 31 according to the present embodiment, since the stirring device 52 is arranged inside the heat storage tank main body 46, unlike the case where it is arranged outside the heat storage tank main body 46, the stirring device 52 and the heat storage tank main body. Therefore, it is possible to prevent the heat storage agent 36 from leaking from the inside of the heat storage tank main body 46 and to prevent unnecessary leakage of the stored heat quantity.

また、本実施の形態にかかる蓄熱装置31では、攪拌装置52は蓄熱剤36を上方から下方へ移動させることにより蓄熱剤36を攪拌している。このように、蓄熱剤36の攪拌方向を上から下とすることで効率的な攪拌を行い、蓄熱剤36の熱交換効率を向上させることができる。   Further, in the heat storage device 31 according to the present embodiment, the stirring device 52 is stirring the heat storage agent 36 by moving the heat storage agent 36 from above to below. Thus, efficient stirring is performed by setting the stirring direction of the heat storage agent 36 from top to bottom, and the heat exchange efficiency of the heat storage agent 36 can be improved.

また、攪拌装置52の吸込口60の上端は蓄熱剤36の液面よりも下方に位置されるため、攪拌装置52は、蓄熱剤36を確実に吸い込んで吐き出すことができる。これにより、効率的な蓄熱剤36の攪拌を行い、蓄熱剤36の熱交換効率を向上させることができる。   Further, since the upper end of the suction port 60 of the stirring device 52 is positioned below the liquid level of the heat storage agent 36, the stirring device 52 can reliably suck in and discharge the heat storage agent 36. Thereby, the heat storage agent 36 can be efficiently stirred and the heat exchange efficiency of the heat storage agent 36 can be improved.

さらに、攪拌装置52の吸込口60の上端は蓄熱熱交換器の上端よりも下方に位置されるため、蓄熱剤36の液面が攪拌装置52の攪拌によって受ける影響を少なくすることができる。   Furthermore, since the upper end of the suction port 60 of the stirring device 52 is positioned below the upper end of the heat storage heat exchanger, the influence of the liquid level of the heat storage agent 36 on the stirring of the stirring device 52 can be reduced.

また、本実施の形態にかかる蓄熱装置31では、攪拌装置52は、攪拌部材54と、攪拌部材54および蓄熱熱交換器34の間を仕切る仕切り部材56を備え、攪拌装置52と蓄熱熱交換器34とは蓄熱槽本体の延在方向に併設されている。このような構成によれば、仕切り部材56の周囲を流れる蓄熱剤36の流路を形成することができるため、効率的な蓄熱剤36の攪拌を行い、蓄熱剤36の熱交換効率を向上させることができる。   Further, in the heat storage device 31 according to the present embodiment, the stirring device 52 includes the stirring member 54 and a partition member 56 that partitions the stirring member 54 and the heat storage heat exchanger 34, and the stirring device 52 and the heat storage heat exchanger are provided. 34 is provided in the extending direction of the heat storage tank main body. According to such a configuration, since the flow path of the heat storage agent 36 flowing around the partition member 56 can be formed, the heat storage agent 36 is efficiently stirred and the heat exchange efficiency of the heat storage agent 36 is improved. be able to.

また、本実施の形態にかかる蓄熱装置31では、攪拌装置52において、モータ68の軸(モータ軸72)と回転軸66とは絶縁部材70を介して連結されるか、絶縁部材で構成した回転軸66で構成されているため、蓄熱装置31の運転時における雷サージの発生を抑制し、攪拌装置52のモータ68を保護することができる。   Further, in the heat storage device 31 according to the present embodiment, in the stirring device 52, the shaft of the motor 68 (motor shaft 72) and the rotating shaft 66 are connected via an insulating member 70 or a rotation constituted by an insulating member. Since it is comprised by the axis | shaft 66, generation | occurrence | production of the lightning surge at the time of operation | movement of the thermal storage apparatus 31 can be suppressed, and the motor 68 of the stirring apparatus 52 can be protected.

また、本実施の形態にかかる蓄熱装置31では、攪拌装置52内の絶縁部材70の周囲にフランジ76が設けられているため、沿面距離を増大させることにより、絶縁部材70の絶縁性を向上させることができる。   Further, in the heat storage device 31 according to the present embodiment, since the flange 76 is provided around the insulating member 70 in the stirring device 52, the insulating property of the insulating member 70 is improved by increasing the creepage distance. be able to.

次に、上述した作用を有する蓄熱装置31を用いて除霜運転を行った場合の空気調和機の除霜運転シーケンスの一例について、図9を用いて説明する。   Next, an example of a defrosting operation sequence of the air conditioner when the defrosting operation is performed using the heat storage device 31 having the above-described action will be described with reference to FIG.

図9に示すように、本実施の形態にかかる蓄熱装置31の除霜運転シーケンスは、除霜運転を行う除霜運転モードに加えて、除霜運転モード前の準備運転モード、および除霜運転モード後の立ち上がり運転モードの3つのモードで構成される。   As shown in FIG. 9, the defrosting operation sequence of the heat storage device 31 according to the present embodiment includes the defrosting operation mode in which the defrosting operation is performed, the preparatory operation mode before the defrosting operation mode, and the defrosting operation. It consists of three modes, the rising operation mode after the mode.

第1に、準備運転モードは、圧縮機6の回転数や膨張弁12のパルス数を所定の値に固定した上で通常暖房運転と同じサイクルにて運転を行う。準備運転モードが所定時間実施されると、準備運転モードから除霜運転モードに移行される。除霜運転モードでは、上記で説明した蓄熱装置31を用いた除霜・暖房運転が行われる。すなわち、蓄熱装置31の熱を利用して室外熱交換器14の除霜が行われる。その後、例えば温度センサ44の温度検知手段や予め設定した除霜時間などの除霜完了検知手段により除霜が完了したと判断されたら、立ち上がり運転モードへと移行される。立ち上がり運転モードは、準備運転モードと同様に、圧縮機6の回転数や膨張弁12のパルス数を所定の値に固定した上で通常暖房運転と同じサイクルにて運転を行う。立ち上がり運転モードを所定時間実施したら、立ち上がり運転モードを終了し、除霜運転シーケンスが終了する。   First, in the preparatory operation mode, the rotation speed of the compressor 6 and the pulse number of the expansion valve 12 are fixed to predetermined values, and then the operation is performed in the same cycle as the normal heating operation. When the preparation operation mode is performed for a predetermined time, the preparation operation mode is shifted to the defrosting operation mode. In the defrosting operation mode, the defrosting / heating operation using the heat storage device 31 described above is performed. That is, defrosting of the outdoor heat exchanger 14 is performed using the heat of the heat storage device 31. After that, for example, when it is determined that the defrosting is completed by the defrosting completion detecting means such as the temperature detecting means of the temperature sensor 44 or a preset defrosting time, the operation mode is shifted to the rising operation mode. In the start-up operation mode, as in the preparation operation mode, the rotation speed of the compressor 6 and the pulse number of the expansion valve 12 are fixed to predetermined values, and the operation is performed in the same cycle as the normal heating operation. When the rising operation mode is carried out for a predetermined time, the rising operation mode is ended and the defrosting operation sequence is ended.

本実施の形態にかかる蓄熱装置31によれば、除霜運転シーケンスの間、蓄熱装置31の攪拌装置52による蓄熱剤36の攪拌を継続的に行っている。このように、攪拌装置52による蓄熱剤36の攪拌を少なくとも除霜運転時において継続的に行うことにより、蓄熱剤36と蓄熱熱交換器34との熱交換効率を向上させながら除霜運転を実施することができる。これにより、除霜時間を短縮することができる。   According to the heat storage device 31 according to the present embodiment, the heat storage agent 36 is continuously stirred by the stirring device 52 of the heat storage device 31 during the defrosting operation sequence. Thus, the defrosting operation is performed while improving the heat exchange efficiency between the heat storage agent 36 and the heat storage heat exchanger 34 by continuously stirring the heat storage agent 36 by the stirring device 52 at least during the defrosting operation. can do. Thereby, defrosting time can be shortened.

また、除霜運転時だけなく、除霜運転前の準備運転時においても攪拌装置52による蓄熱剤36の攪拌を行って、予め蓄熱剤36の温度を均一化した状態にて除霜運転が行われる。これにより、効率的な熱交換状態を最初から維持することができるため、蓄熱剤36と蓄熱熱交換機34との熱交換効率をさらに向上させることができ、尚且つ、蓄熱量を予め最大まで蓄えておくことができるため、除霜に用いることができる熱量が増え、除霜時間をさらに短縮することができる。   Further, not only during the defrosting operation but also during the preparatory operation before the defrosting operation, the heat storage agent 36 is stirred by the stirrer 52 and the defrosting operation is performed in a state where the temperature of the heat storage agent 36 is equalized in advance. Is called. Thereby, since an efficient heat exchange state can be maintained from the beginning, the heat exchange efficiency between the heat storage agent 36 and the heat storage heat exchanger 34 can be further improved, and the heat storage amount can be stored in advance to the maximum. Therefore, the amount of heat that can be used for defrosting increases, and the defrosting time can be further shortened.

さらに、立ち上がり運転モードのように蓄熱回路を構成しない通常暖房運転時にも攪拌装置52による蓄熱剤36の攪拌を行うことにより、効率的に熱を蓄積することができる。   Furthermore, heat can be efficiently stored by stirring the heat storage agent 36 by the stirring device 52 even during normal heating operation in which the heat storage circuit is not configured as in the rising operation mode.

なお、本発明は上記実施の形態に限定されるものではなく、その他種々の態様で実施できる。例えば、本実施の形態では、3方弁42を用いる場合について説明したが、このような場合に限らず例えば、3方弁42の代わりに2方弁を用いても良い。   In addition, this invention is not limited to the said embodiment, It can implement in another various aspect. For example, although the case where the three-way valve 42 is used has been described in the present embodiment, the present invention is not limited to such a case, and for example, a two-way valve may be used instead of the three-way valve 42.

また、本実施の形態では、仕切り部材56が中空の略円筒形状で形成される場合について説明したが、このような場合に限らず例えば、図10に示すように、上下方向に延在する板形状の仕切り部材84を用いても良い。このような仕切り部材84を備える蓄熱装置80においても、攪拌部材86が回転軸66を中心として回転する攪拌装置82を採用することにより、仕切り部材84によって遮られた空間において蓄熱剤36に対して上から下に向かう推力を与えて、蓄熱剤36の流路を形成することができる。これにより、蓄熱剤36を攪拌することができる。   In the present embodiment, the case where the partition member 56 is formed in a hollow, substantially cylindrical shape has been described. However, the present invention is not limited to such a case. For example, as shown in FIG. A partition member 84 having a shape may be used. Also in the heat storage device 80 provided with such a partition member 84, the stirrer 86 rotates around the rotation shaft 66 so that the stirrer 86 rotates around the rotation shaft 66. A flow path of the heat storage agent 36 can be formed by applying a thrust from above to below. Thereby, the heat storage agent 36 can be stirred.

また、本実施の形態では、攪拌部材54が軸流を形成する場合について説明したが、このような場合に限らず例えば、図11に示すような斜流を形成する攪拌装置90を用いても良い。攪拌装置90は、斜流を形成する攪拌部材92と、吸込口60および吐出口62が設けられた仕切り部材94とを備える。仕切り部材94は下方部分が絞られた円筒形状を有するとともに、吸込口60の下端部には、中央部が開口した蓋を有する。このような形状の仕切り部材94内において、攪拌部材92が回転されると、仕切り部材94内にて上から下へ向かう蓄熱剤36の斜流を流すことができ、蓄熱層本体46内で蓄熱剤36を攪拌することができる。   In the present embodiment, the case where the stirring member 54 forms an axial flow has been described. However, the present invention is not limited to such a case. For example, a stirring device 90 that forms a mixed flow as shown in FIG. 11 may be used. good. The stirring device 90 includes a stirring member 92 that forms a mixed flow, and a partition member 94 provided with a suction port 60 and a discharge port 62. The partition member 94 has a cylindrical shape with a lower portion squeezed, and a lid having a central portion opened at the lower end of the suction port 60. When the stirring member 92 is rotated in the partition member 94 having such a shape, a diagonal flow of the heat storage agent 36 from the top to the bottom can be caused to flow in the partition member 94, and heat storage is performed in the heat storage layer main body 46. The agent 36 can be stirred.

また、本実施の形態では、攪拌装置52が蓄熱剤36を上から下へ向かうように推力を与える場合について説明したが、このような場合に限らず例えば、横方向に推力を与える場合であっても良い。   In the present embodiment, the case where the stirring device 52 applies the thrust so that the heat storage agent 36 is directed from the top to the bottom has been described. However, the present invention is not limited to such a case. May be.

なお、上記様々な実施の形態のうちの任意の実施の形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。   It is to be noted that, by appropriately combining any of the above-described various embodiments, the effects possessed by them can be produced.

本発明は、圧縮機で発生した熱を蓄熱剤に効率的に蓄積することができるので、空気調和機、冷蔵庫、給湯器、ヒートポンプ式洗濯機等に適用することができる。   Since this invention can accumulate | store efficiently the heat | fever which generate | occur | produced with the compressor in a thermal storage agent, it can be applied to an air conditioner, a refrigerator, a water heater, a heat pump washing machine, etc.

2 室外機
4 室内機
6 圧縮機
8 四方弁
10 ストレーナ
12 膨張弁
14 室外熱交換器
16 室内熱交換器
18 第1配管
20 第2配管
22 第3配管
24 第4配管
25 第5配管
26 アキュームレータ
28 第6配管
30 電磁弁
31 蓄熱装置
32 蓄熱槽
34 蓄熱熱交換器
36 蓄熱剤
38 第7配管
40 第8配管
42 三方弁
43 キャピラリチューブ
44 温度センサ
46 蓄熱槽本体
48 蓋体
50 パッキン
52 攪拌装置
54 攪拌部材
56 仕切り部材
58 取付け部材
60 吸込口
62 吐出口
64 係合部
66 回転軸
68 モータ
70 絶縁部材
72 モータ軸
74 開口
76 フランジ
78 係合部
DESCRIPTION OF SYMBOLS 2 Outdoor unit 4 Indoor unit 6 Compressor 8 Four-way valve 10 Strainer 12 Expansion valve 14 Outdoor heat exchanger 16 Indoor heat exchanger 18 1st piping 20 2nd piping 22 3rd piping 24 4th piping 25 5th piping 26 Accumulator 28 Sixth pipe 30 Solenoid valve 31 Heat storage device 32 Heat storage tank 34 Heat storage heat exchanger 36 Heat storage agent 38 Seventh pipe 40 Eighth pipe 42 Three-way valve 43 Capillary tube 44 Temperature sensor 46 Heat storage tank body 48 Lid 50 Packing 52 Stirrer 54 Agitation member 56 Partition member 58 Mounting member 60 Suction port 62 Discharge port 64 Engaging portion 66 Rotating shaft 68 Motor 70 Insulating member 72 Motor shaft 74 Opening 76 Flange 78 Engaging portion

Claims (4)

圧縮機に接触するように配設され、圧縮機で発生した熱を蓄積するための蓄熱装置であって、
圧縮機で発生した熱を蓄積する蓄熱剤を収容する蓄熱槽本体を有する蓄熱槽と、
蓄熱槽本体に収容され、蓄熱槽本体内の蓄熱剤と熱交換を行う蓄熱熱交換器と、
蓄熱槽本体内の蓄熱剤を攪拌する攪拌装置とを備え、
攪拌装置は、中空の仕切り部材と、仕切り部材の内部に設けられた攪拌羽根である攪拌部材とを有し、仕切り部材の側面には蓄熱剤を吸い込むための吸込口が、仕切り部材の下端には吸い込んだ蓄熱剤を吐き出すための吐出口が設けられており、吸込口の上端は、蓄熱剤の液面よりも下方に位置されており、
攪拌装置の吸込口の上端は、蓄熱熱交換器の上端よりも下方に位置される、蓄熱装置。
A heat storage device arranged to contact the compressor and for storing heat generated by the compressor,
A heat storage tank having a heat storage tank body for storing a heat storage agent for storing heat generated by the compressor;
A heat storage heat exchanger that is housed in the heat storage tank body and exchanges heat with the heat storage agent in the heat storage tank body;
A stirring device for stirring the heat storage agent in the heat storage tank body,
The stirring device has a hollow partition member and a stirring member that is a stirring blade provided inside the partition member, and a suction port for sucking a heat storage agent is formed on a side surface of the partition member at a lower end of the partition member. Is provided with a discharge port for discharging the stored heat storage agent, the upper end of the suction port is located below the liquid level of the heat storage agent ,
The heat storage device in which the upper end of the suction port of the stirring device is located below the upper end of the heat storage heat exchanger .
攪拌装置は蓄熱槽本体に収容される、請求項1に記載の蓄熱装置。   The heat storage device according to claim 1, wherein the stirring device is accommodated in the heat storage tank main body. 攪拌装置は、蓄熱剤を上方から下方へ移動させることにより蓄熱剤を攪拌する、請求項1又は2に記載の蓄熱装置。   The heat storage device according to claim 1 or 2, wherein the stirring device stirs the heat storage agent by moving the heat storage agent from above to below. 請求項1からのいずれか1つに記載の蓄熱装置を備える空気調和機。 An air conditioner comprising the heat storage device according to any one of claims 1 to 3 .
JP2012222794A 2012-10-05 2012-10-05 Heat storage device and air conditioner equipped with the same Expired - Fee Related JP5324692B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012222794A JP5324692B1 (en) 2012-10-05 2012-10-05 Heat storage device and air conditioner equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012222794A JP5324692B1 (en) 2012-10-05 2012-10-05 Heat storage device and air conditioner equipped with the same

Publications (2)

Publication Number Publication Date
JP5324692B1 true JP5324692B1 (en) 2013-10-23
JP2014074553A JP2014074553A (en) 2014-04-24

Family

ID=49595897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012222794A Expired - Fee Related JP5324692B1 (en) 2012-10-05 2012-10-05 Heat storage device and air conditioner equipped with the same

Country Status (1)

Country Link
JP (1) JP5324692B1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51161656U (en) * 1975-06-17 1976-12-23
JPH04268143A (en) * 1991-02-22 1992-09-24 Sharp Corp Air-conditioner
JPH04340038A (en) * 1991-05-14 1992-11-26 Chubu Electric Power Co Inc Cold storage device
JPH0611158A (en) * 1992-06-24 1994-01-21 Kansai Electric Power Co Inc:The Internal melting type ice heat storing tank for heat pump
JPH1019318A (en) * 1996-07-02 1998-01-23 Chubu Electric Power Co Inc Ice packing factor adjusting device
JP2001116477A (en) * 1999-10-13 2001-04-27 Mitsubishi Electric Corp Heat storage air conditioner
JP2002333166A (en) * 2001-05-09 2002-11-22 Nkk Corp Method for taking out hydrate slurry
JP2005207640A (en) * 2004-01-21 2005-08-04 Toshiba Kyaria Kk Cold heat storage device
JP2007132568A (en) * 2005-11-09 2007-05-31 Kurimoto Ltd Latent heat storage device
JP2008230988A (en) * 2007-03-19 2008-10-02 Jfe Engineering Kk Method for promoting phase separation of clathrate compound or its guest molecule in solution
JP2009072771A (en) * 2007-08-29 2009-04-09 Univ Nihon Power saturator
JP2011240230A (en) * 2010-05-17 2011-12-01 Hitachi Plant Technologies Ltd Operation method of agitator
JP2012063076A (en) * 2010-09-16 2012-03-29 Panasonic Corp Heat storage apparatus and air conditioning apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51161656U (en) * 1975-06-17 1976-12-23
JPH04268143A (en) * 1991-02-22 1992-09-24 Sharp Corp Air-conditioner
JPH04340038A (en) * 1991-05-14 1992-11-26 Chubu Electric Power Co Inc Cold storage device
JPH0611158A (en) * 1992-06-24 1994-01-21 Kansai Electric Power Co Inc:The Internal melting type ice heat storing tank for heat pump
JPH1019318A (en) * 1996-07-02 1998-01-23 Chubu Electric Power Co Inc Ice packing factor adjusting device
JP2001116477A (en) * 1999-10-13 2001-04-27 Mitsubishi Electric Corp Heat storage air conditioner
JP2002333166A (en) * 2001-05-09 2002-11-22 Nkk Corp Method for taking out hydrate slurry
JP2005207640A (en) * 2004-01-21 2005-08-04 Toshiba Kyaria Kk Cold heat storage device
JP2007132568A (en) * 2005-11-09 2007-05-31 Kurimoto Ltd Latent heat storage device
JP2008230988A (en) * 2007-03-19 2008-10-02 Jfe Engineering Kk Method for promoting phase separation of clathrate compound or its guest molecule in solution
JP2009072771A (en) * 2007-08-29 2009-04-09 Univ Nihon Power saturator
JP2011240230A (en) * 2010-05-17 2011-12-01 Hitachi Plant Technologies Ltd Operation method of agitator
JP2012063076A (en) * 2010-09-16 2012-03-29 Panasonic Corp Heat storage apparatus and air conditioning apparatus

Also Published As

Publication number Publication date
JP2014074553A (en) 2014-04-24

Similar Documents

Publication Publication Date Title
US20120096887A1 (en) Defrosting heater for refregerator and refregerator having the same
JP6687384B2 (en) refrigerator
EP3372921B1 (en) Evaporator and refrigerator having same
JP7090198B2 (en) refrigerator
JP2008070015A (en) Refrigerator
JP4760996B1 (en) Heat storage device and air conditioner equipped with the heat storage device
JP6591786B2 (en) refrigerator
JP6894389B2 (en) refrigerator
JP2012078012A (en) Heat storage apparatus and air conditioner with the same
JP2020101299A (en) refrigerator
JP5324692B1 (en) Heat storage device and air conditioner equipped with the same
JP6131476B2 (en) Heat storage device and air conditioner equipped with the same
JP6131461B2 (en) Heat storage device and air conditioner equipped with the same
JP2016099021A (en) Air conditioner
JP2008070014A (en) Refrigerator
JP2016090133A (en) Heat storage device and air conditioner including the same
CN216132002U (en) Spraying system for outdoor heat exchanger and air conditioner
JP2016109402A (en) Thermal storage device and air conditioner including the same
JP2010144965A (en) Heat pump type hot-water heater
JP5376796B2 (en) refrigerator
WO2024122126A1 (en) Refrigerator
WO2023095527A1 (en) Refrigerator
JP7369520B2 (en) refrigerator
WO2023210200A1 (en) Cooler
JP2019132494A (en) refrigerator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees