JPH03230060A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPH03230060A
JPH03230060A JP2537590A JP2537590A JPH03230060A JP H03230060 A JPH03230060 A JP H03230060A JP 2537590 A JP2537590 A JP 2537590A JP 2537590 A JP2537590 A JP 2537590A JP H03230060 A JPH03230060 A JP H03230060A
Authority
JP
Japan
Prior art keywords
compressor
heat exchanger
way valve
heat
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2537590A
Other languages
Japanese (ja)
Inventor
Koji Murozono
宏治 室園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2537590A priority Critical patent/JPH03230060A/en
Publication of JPH03230060A publication Critical patent/JPH03230060A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To improve a defrosting capability by a method wherein the first bypassing circuit for bypassing a pipe extending from an outdoor heat exchanger to a compressor through a four-way valve and the second bypassing circuit connected at one end to a piping for the four-way valve from a discharging side of the compressor and at the other end to the pipe from the pressure reducing device to the outdoor heat exchanger are provided and then the first bypassing circuit and a heat accumulation tank are connected to each other in a heat exchanging manner. CONSTITUTION:The first bypassing circuit 6 for bypassing a part of a pipe ranging from a four-way valve 2 to a compressor 1 is provided with a three-way valve 7, a check valve 8 and a heat exchanger 9. A heat accumulation tank 10 is arranged around the compressor 1, latent heat accumulation material 11 is filled in it and a heat exchanger 9 is arranged in such a way as it can be heat exchanged with the thermal accumulation material 11. The second bypassing circuit 12 connected at one end to a pipe ranging from a discharging side of the compressor 1 to the four-way valve 2 and at the other end to a pipe ranging from a capillary tube 4 to the putdoor heat exchanger 5 is provided with a two-way valve 13 and a check valve 14. In defrosting operation the three-way valve 7 on the first valve circuit 6 side and the two-way valve 13 are opened. A part of the coolant fed from the compressor 1 is flowed to the second bypassing circuit 12 and the outdoor heat exchanger 5 so as to perform a defrosting operation. Heat radiated from the compressor 1 can be recovered and utilized for a defrosting operation, so that an energy efficiency can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(表 蓄熱を利用したヒートポンプ式空気調和機
に関するものであム 従来の技術 従来 空気熱源ヒートポンプ式空気調和機の室外熱交換
器の除霜方法(よ 大半が四方弁を切り換えて冷房サイ
クルとし 室外熱交換器を凝縮器室内熱交換器を蒸発器
とする逆サイクル除霜方式で、この時コールドドラフト
防止のために室内ファンを停止していた この方式で4
1  基本的に冷凍サイクル中の冷媒循環量が少なく圧
縮機の電気入力の増大がそれほど期待できないので、除
霜時間が長くなること、並びに除霜中の数分間は室内フ
ァンが停止するので暖房感が欠如し快適性が損なわれる
こと、さらには除霜運転終了機 四方弁を切り換えて暖
房運転に復帰してからち室内熱交換器の温度が上昇する
までに時間を要するなど使用者からすれば満足できるも
のではなかつ九 近鍛 このような欠点を有する逆サイ
クル除霜方式にかわって圧縮機周囲に蓄熱材を充填した
蓄熱槽を設置す、暖房中に圧縮機廃熱をこの蓄熱槽に蓄
え除霜時にこの熱を利用する除霜方式が提案されている
(例えば特開昭63−169457号公報)。以下、図
面を参照しながら上記従来のヒートポンプ式空気調和機
について説明すも 第3図は従来のヒートポンプ式空気
調和機における冷凍サイクル図であム 同図において1
は圧縮a 2は四方弁、 3は室内熱交換器 4はキャ
ピラリチューブ、 5は室外熱交換器であム まり15
はキャピラリチューブ4をバイパスするバイパス回路で
あり、このバイパス回路15には二方弁1a、逆止弁1
7、熱交換器9が備えられていも まり10は蓄熱槽で
、この蓄熱槽10は圧縮機1の周囲に熱交換可能なよう
に接触されて配設され内部に潜熱蓄熱材(NaCHs 
−COo・3HeO)IIが充填されており、この蓄熱
材11と熱交換可能なように前記熱交換器9が配設され
ていもそして、さらにその周囲を断熱材18で囲んでい
もこの冷凍サイクルにおいて、暖房運転時には二方弁1
6は閉の状態であり、圧縮機1から吐出された冷媒1表
 四方弁2、室内熱交換器3、キャピラリチューブ4、
室外熱交換器5、四方弁2と流れ圧縮機1に吸入されも
 この時、前述の構造により、従来は圧縮機lから外気
へ放熱されていた熱を蓄熱槽10に蓄えることが可能で
あも 次l、:、除霜運転時は三方弁16を開とすも 
これにより、圧縮機1から吐出された冷媒Cム  四方
弁2、室内熱交換器3へと流れ 暖房に利用された後わ
ずかの冷媒はキャピラリチューブ4を通って室外熱交換
器5へと流れ 残りの大部分の冷媒はバイパス回路15
へ流入し 二方弁16を通って熱交換器9へと流れて蓄
熱材11より熱を奪1.%  逆止弁17を通った後キ
ャピラリチューブ4を通過した冷媒と合流して室外熱交
換器5へと流れも そして、ここで冷媒が持つ熱を利用
して除霜を行1.(さらに四方弁2を通過して圧縮機l
に吸入されも このようJQ従来圧縮機から外気へ放熱
していた熱を回収して除霜に利用することができるので
エネルギ効率を高めることができ、また高い暖房能力を
保ちながら除霜を行うことができも 発明が解決しようとする課題 しかしなが収 上記従来のヒートポンプ式空気調和機に
は以下のような課題があっ九 すなわ板除霜時に大部分
の冷媒は室内熱交換器3よりバイパス回路15へと流れ
 蓄熱槽10内の熱交換器9にて蓄熱材llより熱を奪
って高温の過熱ガスとなるので熱交換器9内での圧力損
失が大きくなも まな 室内機と室外機とを分離して設
置し 接続配管で接続するいわゆるセパレートタイプの
ヒートポンプ式空気調和機の場合(上 室内熱交換器3
とキャピラリチューブ4とを結ぶ接続配管での圧力損失
も加わり、室外熱交換器5の入口での冷媒圧力が低くな
るため霜と冷媒の温度差が小さくなり、除霜能力があま
り大きくなかっ九 したがって、高い暖房能力を保ちな
がら除霜を行なうことはできるパ 除霜時間を短縮する
のは困難であっ九特く 蓄熱槽にあまり蓄熱されていな
い状態で除霜を行う場合や着霜量が多くて除霜途中で蓄
熱された熱を使いきってしまった場合などは 完全に除
霜することができないおそれがあっ九 また除霜時には
 冷媒は室外熱交換器5の入口で高温の過熱ガスとなる
ので室外熱交換器5を通過する際の圧力損失も大きく、
これも除霜能力を低下させる原因となっていk 本発明
は上記課題に鑑へ蓄熱を利用した簡単な構成の冷凍サイ
クルで、極めて短時間に除霜を終えることで暖房区間及
び除霜区間を含めた積算の暖房能力(以下、積算暖房能
力と称す)を高めることを目的としていも また本発明
Ji  蓄熱槽にあまり蓄熱されていない状態で除霜を
行う場合東 着霜量が多くて除霜途中で蓄熱された熱を
使いきってしまった場合で叡完全に除霜することができ
ることを目的としている。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a heat pump type air conditioner using heat storage.Prior art Technique Conventional method for defrosting an outdoor heat exchanger of an air source heat pump type air conditioner (The majority of defrosting systems use a reverse cycle defrosting system in which a four-way valve is switched to create a cooling cycle, an outdoor heat exchanger is used as a condenser, and an indoor heat exchanger is used as an evaporator. At this time, the indoor fan is stopped to prevent cold drafts.) In this method, 4
1 Basically, the amount of refrigerant circulating during the refrigeration cycle is small and it is not possible to expect much increase in the electrical input to the compressor, so defrosting time will be longer, and the indoor fan will stop for several minutes during defrosting, resulting in a feeling of heating. From the user's point of view, comfort is impaired due to a lack of defrosting operation, and it takes time for the temperature of the indoor heat exchanger to rise after switching the four-way valve of the defrosting operation and returning to heating operation. In place of the reverse cycle defrosting system, which has these drawbacks, a heat storage tank filled with heat storage material is installed around the compressor, and waste heat from the compressor is stored in this heat storage tank during heating. A defrosting method that utilizes this heat during defrosting has been proposed (for example, Japanese Patent Laid-Open No. 169457/1983). The conventional heat pump air conditioner will be explained below with reference to the drawings. Figure 3 is a diagram of the refrigeration cycle in the conventional heat pump air conditioner.
is compression a, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a capillary tube, 5 is an outdoor heat exchanger, and 15
is a bypass circuit that bypasses the capillary tube 4, and this bypass circuit 15 includes a two-way valve 1a and a check valve 1.
7. A heat exchanger 9 is provided. A heat storage tank 10 is disposed around the compressor 1 in contact with the compressor 1 to enable heat exchange, and contains a latent heat storage material (NaCHs) inside.
-COo.3HeO) II, and the heat exchanger 9 is disposed so as to be able to exchange heat with the heat storage material 11, and the refrigeration cycle of the potato is further surrounded by a heat insulating material 18. , two-way valve 1 is turned off during heating operation.
6 is in a closed state, and the refrigerant discharged from the compressor 1 is shown in Table 1. Four-way valve 2, indoor heat exchanger 3, capillary tube 4,
Even if the heat is drawn into the outdoor heat exchanger 5, the four-way valve 2, and the flow compressor 1, the above-mentioned structure makes it possible to store the heat, which was conventionally radiated from the compressor 1 to the outside air, in the heat storage tank 10. Also, the three-way valve 16 is opened during defrosting operation.
As a result, the refrigerant C discharged from the compressor 1 flows to the four-way valve 2 and the indoor heat exchanger 3. After being used for heating, a small amount of the refrigerant flows through the capillary tube 4 to the outdoor heat exchanger 5. Most of the refrigerant is in the bypass circuit 15.
It flows into the heat exchanger 9 through the two-way valve 16 and removes heat from the heat storage material 11.1. % After passing through the check valve 17, it joins with the refrigerant that has passed through the capillary tube 4 and flows to the outdoor heat exchanger 5.Here, defrosting is performed using the heat of the refrigerant.1. (Furthermore, it passes through the four-way valve 2 and the compressor l
In this way, the heat that was previously radiated from the JQ compressor to the outside air can be recovered and used for defrosting, increasing energy efficiency and defrosting while maintaining high heating capacity. However, the above-mentioned conventional heat pump type air conditioners have the following problems: When defrosting the board, most of the refrigerant is transferred from the indoor heat exchanger 3. The gas flows into the bypass circuit 15, takes heat from the heat storage material 11 in the heat exchanger 9 in the heat storage tank 10, and becomes a high-temperature superheated gas, so the pressure loss in the heat exchanger 9 is large. In the case of a so-called separate type heat pump air conditioner, which is installed separately from the heat exchanger and connected with connection piping (indoor heat exchanger 3
In addition to the pressure loss in the connecting pipe connecting the and capillary tubes 4, the refrigerant pressure at the inlet of the outdoor heat exchanger 5 becomes lower, so the temperature difference between the frost and the refrigerant becomes smaller, and the defrosting capacity is not very large. However, it is difficult to shorten the defrosting time, especially when defrosting is performed when there is not much heat stored in the heat storage tank or when there is a large amount of frost. If the stored heat is used up during defrosting, there is a risk that complete defrosting will not be possible. Also, during defrosting, the refrigerant turns into high-temperature superheated gas at the inlet of the outdoor heat exchanger 5. Therefore, the pressure loss when passing through the outdoor heat exchanger 5 is also large.
This is also a cause of deterioration of the defrosting ability. In view of the above problem, the present invention is a refrigeration cycle with a simple configuration that utilizes heat storage, and by completing defrosting in an extremely short time, the heating section and the defrosting section can be separated. Even if the purpose is to increase the integrated heating capacity (hereinafter referred to as integrated heating capacity), the present invention may also be used to defrost when there is not much heat stored in the heat storage tank. The purpose is to be able to completely defrost even if the heat stored in the process is used up.

課題を解決するための手段 上記課題を解決するために本発明のヒートポンプ式空気
調和機ζよ 圧縮阪 四方弁、室内熱交換器 減圧器 
室外熱交換器等を連結して冷媒回路を構成し 内部に蓄
熱材を充填した蓄熱槽を前記圧縮機の周囲に前記圧縮機
と熱交換的に配設し前記室外熱交換器から前記四方弁を
介して前記圧縮機に至る配管の一部をバイパスする第1
バイパス回路及び前記圧縮機の吐出側から前記四方弁を
介して前記室内熱交換器へ至る配管に一端を接続し他端
を前記減圧器から前記室外熱交換器へ至る配管に接続し
た第2バイパス回路を設け、前記第1バイパス回路と前
記室外熱交換器から前記四方弁を介して前記圧縮機に至
る配管の一部との冷媒流路を切換可能とするか若しくは
前記第1バイパス回路の冷媒流路を開閉可能とし かつ
前記第2バイパス回路の冷媒流路を開閉可能とする流路
制御手段を有し 前記第1バイパス回路と前記蓄熱槽を
熱交換的に接続したものであム 作用 本発明は上記手段により、次のような作用を有する。す
なわ板 内部に蓄熱材を充填した蓄熱槽を圧縮機の周囲
に圧縮機と熱交換的に配設し 室外熱交換器から四方弁
を介して圧縮機に至る配管の一部をバイパスする第1バ
イパス回路及び圧縮機の吐出側から四方弁を介して室内
熱交換器へ至る配管に一端を接続し他端を減圧器から室
外熱交換器へ至る配管に接続した第2バイパス回路を投
法 第1バイパス回路と蓄熱槽を熱交換的に接続するこ
とで、除霜時に圧縮機から吐出されたホットガスを室外
熱交換器に導き、かつ室外熱交換器に流入する冷媒の圧
力を従来より高く保つことができるので除霜能力を高へ
 極めて短時間に除霜を終えることができも したがっ
て、暖房時に圧縮機の廃熱を蓄熱しておき、除霜時にこ
の蓄熱した熱を利用することで極めて短時間に除霜を終
えて再び暖房を行うため積算暖房能力の向上を図ること
ができも また 蓄熱槽にあまり蓄熱されていない状態
で除霜を行う場合へ 着霜量が多くて除霜途中で蓄熱さ
れた熱を使いきってしまった場合でL 完全に除霜する
ことができも 実施例 以下、本発明の一実施例について第1図及び第2図を参
考に説明すも なお本実施例を説明するに当り、第3図
に示す従来のものと同一の機能を有するものには同一の
番号を付して説明を省略する。まず、第1図と第2図に
より、本発明の第1の実施例について説明する。第1図
は本発明の第1の実施例における冷凍サイクル医 第2
図は第1図における圧縮機周囲の概略横断面図であム同
図において、 6は四方弁2から圧縮機1に至る配管の
一部をバイパスする第1バイパス回路であり、この第1
バイパス回路6には三方弁7、逆止弁8、熱交換器9が
備えられていも まf−10は蓄熱槽で、この蓄熱槽1
0は圧縮機1の周囲に熱交換可能なように接触されて配
設され内部に潜熱蓄熱材(NaCHs ・COo・3H
aO)11が充填されており、この蓄熱材11と熱交換
、可能なように前記熱交換器9が配設されていも また
12は圧縮機1の吐出側から四方弁2を介して室内熱交
換器3へ至る配管に一端を接続し他端をキャピラリチュ
ーブ4から室外熱交換器5へ至る配管に接続した第2バ
イパス回路であり、この第2バイパス回路12には二方
弁13゜逆止弁I4が備えられていも この冷凍サイク
ルにおいて、暖房運転時には三方弁7の第1バイパス回
路6側及び二方弁13は閉の状態であり、圧縮機■から
吐出された冷媒は 四方弁2、室内熱交換器3、キャピ
ラリチューブ4、室外熱交換器5、四方弁2と流れ 圧
縮機lに吸入されも この啄前述の構造により、従来は
圧縮機1から外気へ放熱されていた熱を蓄熱槽10に蓄
えることが可能であム 次ζq 除霜運転時は三方弁7
の第1バイパス回路6側および二方弁13を開とすム 
これにより、圧縮機1から吐出された冷媒の一部は第2
バイパス回路12に流れ 残りの冷媒は四方弁2、室内
熱交換器3へと流れて暖房に利用された喪 キャピラリ
チューブ4を通って第2バイパス回路12を通過した冷
媒と合流して室外熱交換器5へと流れ ここで冷媒が持
つ熱を利用して除霜を行−\四方弁2を通過した後さら
に三方弁7より第1バイパス回路6へ流入し 熱交換器
9へと流れて蓄熱材11より熱を奪って圧縮機1に吸入
されも このようへ 従来圧縮機工から外気は放熱して
いた熱を回収して除霜に利用することができるのでエネ
ルギ効率を高めることができ、さらに第2バイパス回路
12を設けることで、除霜時に圧縮機lから吐出された
ホットガスを室外熱交換器5に導き、かつ室外熱交換器
5に流入する冷媒の圧力を従来より高く保つことができ
るので、室外熱交換器5に流入する冷媒の圧力を従来よ
り高く保つことができるので冷媒の飽和温度と霜の温度
との差が大きくなって除霜能力が高まり、極めて短時間
に除霜を終えることができる。また 蓄熱槽にあまり蓄
熱されていない状態で除霜を行う場合や、着霜量が多く
て除霜途中で蓄熱された熱を使いきってしまった場合で
L 室外熱交換器5に流入する冷媒の飽和温度のほうを
霜の温度より高く保つことができるので完全に除霜する
ことができる。な耘実施例に示した圧縮機1については
一定容量のものでもよい力丈 例えばインバータを用い
た周波数可変型圧縮機のような可変容量型のものを用い
てもよしも この場合、除霜時に大容量運転をすること
で、さらに除霜時間の短縮を図ることができる。
Means for Solving the Problems In order to solve the above problems, the heat pump type air conditioner ζ of the present invention includes a compressor, a four-way valve, an indoor heat exchanger, and a pressure reducer.
A refrigerant circuit is constructed by connecting an outdoor heat exchanger, etc., and a heat storage tank filled with a heat storage material is disposed around the compressor so as to exchange heat with the compressor, and the four-way valve is connected to the outdoor heat exchanger. a first bypassing part of the piping leading to the compressor via the
a bypass circuit and a second bypass having one end connected to a pipe leading from the discharge side of the compressor to the indoor heat exchanger via the four-way valve and the other end connected to a pipe leading from the pressure reducer to the outdoor heat exchanger; A refrigerant flow path between the first bypass circuit and a part of the piping from the outdoor heat exchanger to the compressor via the four-way valve can be switched. The first bypass circuit and the heat storage tank are connected in a heat exchange manner, and the first bypass circuit and the heat storage tank are connected in a heat exchange manner. Through the above means, the invention has the following effects. In other words, a heat storage tank filled with heat storage material inside is arranged around the compressor for heat exchange with the compressor, and a part of the piping from the outdoor heat exchanger to the compressor via the four-way valve is bypassed. 1 bypass circuit and a 2nd bypass circuit with one end connected to the piping from the discharge side of the compressor to the indoor heat exchanger via a four-way valve, and the other end connected to the piping from the pressure reducer to the outdoor heat exchanger. By connecting the first bypass circuit and the heat storage tank in a heat exchange manner, hot gas discharged from the compressor during defrosting can be guided to the outdoor heat exchanger, and the pressure of the refrigerant flowing into the outdoor heat exchanger can be lowered than before. Therefore, the waste heat of the compressor can be stored during heating, and this stored heat can be used during defrosting. It is possible to improve the cumulative heating capacity by finishing defrosting in a very short time and heating again. If the heat stored during frosting is used up, complete defrosting may not be possible.Example: An example of the present invention will be described below with reference to Figures 1 and 2. In describing this embodiment, parts having the same functions as those of the conventional system shown in FIG. 3 are given the same numbers and their explanations will be omitted. First, a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 shows a refrigeration cycle doctor according to a first embodiment of the present invention.
The figure is a schematic cross-sectional view of the area around the compressor in FIG.
The bypass circuit 6 is equipped with a three-way valve 7, a check valve 8, and a heat exchanger 9.
0 is disposed around the compressor 1 in contact with the compressor 1 for heat exchange, and contains latent heat storage material (NaCHs, COo, 3H) inside.
aO) 11 is filled, and even if the heat exchanger 9 is installed to enable heat exchange with the heat storage material 11, the indoor heat source 12 is supplied from the discharge side of the compressor 1 via the four-way valve 2. This is a second bypass circuit in which one end is connected to the pipe leading to the exchanger 3 and the other end is connected to the pipe leading from the capillary tube 4 to the outdoor heat exchanger 5. Even if the stop valve I4 is provided, in this refrigeration cycle, the first bypass circuit 6 side of the three-way valve 7 and the two-way valve 13 are closed during heating operation, and the refrigerant discharged from the compressor ■ flows through the four-way valve 2. , the indoor heat exchanger 3, the capillary tube 4, the outdoor heat exchanger 5, the four-way valve 2, and the flow. It is possible to store heat in the heat storage tank 10. During defrosting operation, the three-way valve 7
The first bypass circuit 6 side and the two-way valve 13 are opened.
As a result, a part of the refrigerant discharged from the compressor 1 is transferred to the second
The remaining refrigerant flows to the four-way valve 2 and the indoor heat exchanger 3 and is used for heating.The remaining refrigerant flows through the capillary tube 4 and joins with the refrigerant that has passed through the second bypass circuit 12 for outdoor heat exchange. The heat of the refrigerant is used to defrost the coolant.After passing through the four-way valve 2, it flows into the first bypass circuit 6 through the three-way valve 7, and flows to the heat exchanger 9, where it stores heat. Even if heat is taken away from the material 11 and sucked into the compressor 1, the heat that was conventionally radiated to the outside air from the compressor can be recovered and used for defrosting, increasing energy efficiency. By providing the second bypass circuit 12, hot gas discharged from the compressor 1 during defrosting can be guided to the outdoor heat exchanger 5, and the pressure of the refrigerant flowing into the outdoor heat exchanger 5 can be maintained higher than before. As a result, the pressure of the refrigerant flowing into the outdoor heat exchanger 5 can be maintained higher than before, which increases the difference between the saturation temperature of the refrigerant and the frost temperature, increasing the defrosting ability and defrosting in an extremely short time. can finish. In addition, when defrosting is performed when there is not much heat stored in the heat storage tank, or when the amount of frost is large and the stored heat is used up during defrosting, the refrigerant flows into the outdoor heat exchanger 5. Since the saturation temperature of the frost can be kept higher than the frost temperature, complete defrosting can be achieved. As for the compressor 1 shown in the embodiment, it may be of a fixed capacity or a variable capacity type, such as a variable frequency compressor using an inverter.In this case, when defrosting By operating at a high capacity, the defrosting time can be further shortened.

また 上記実施例では圧縮機1の周囲に蓄熱槽10を取
り付けた力交 蓄熱槽10は内部に蓄熱材11を充填し
 熱交換器9及び圧縮機1を収納した密閉容器としても
よ(t あるいは圧縮機lの外周面の一部を蓄熱槽の一
部としてもよし−また 上記実施例に示したキャピラリ
チューブ4のかわりに例えばステッピングモータ等で駆
動される電動膨張弁のような可変絞りを用いてもよ賎 
この場合、除霜時に電動膨張弁を全開とすることで室内
熱交換器3での冷媒溜りがなくなり除霜時間を短縮する
ことができも また 本実施例には示していない力丈 
第2バイパス回路12にキャピラリチューブ等の補助減
圧器を設けて冷媒循環量を調整してもより℃ さらに 
上記実施例では第2バイパス回路12の冷媒流路の切替
は三方弁7を用いて行なった力曵二方弁の組合せ等の他
の方式を用いてもよu%発明の効果 上記実施例より明らかなように本発明(友 内部に蓄熱
材を充填した蓄熱槽を圧縮機の周囲に圧縮機と熱交換的
に配設し 室外熱交換器から前記四方弁を介して前記圧
縮機に至る配管の一部をバイパスする第1バイパス回路
及び圧縮機の吐出側から四方弁を介して室内熱交換器へ
至る配管に一端を接続し他端を減圧器から室外熱交換器
へ至る配管に接続した第2バイパス回路を投法 第1バ
イパス回路と蓄熱槽を熱交換的に接続することで、除霜
時に圧縮機から吐出されたホットガスを室外熱交換器に
導き、かつ室外熱交換器に流入する冷媒の圧力を従来よ
り高く保つことができるので除霜能力を高へ 極めて短
時間に除霜を終えることができも さら凶 本発明は暖
房時に圧縮機の廃熱を蓄熱しておき、除霜時にこの蓄熱
した熱を利用することで極めて短時間に除霜を終えて再
び暖房を行うため積算暖房能力の向上を図ることができ
も また 蓄熱槽にあまり蓄熱されていない状態で除霜
を行う場合東 着霜量が多くて除霜途中で蓄熱された熱
を使いきってしまった場合で耘完全に除霜することがで
きも したがって、特に低外温時に暖房を行う場合の快
適性を大幅に向上させることが可能であも
In addition, in the above embodiment, the heat storage tank 10 is attached around the compressor 1. A part of the outer peripheral surface of the compressor 1 may be used as a part of the heat storage tank.Also, instead of the capillary tube 4 shown in the above embodiment, a variable throttle such as an electric expansion valve driven by a stepping motor or the like may be used. Temoyo Sei
In this case, by fully opening the electric expansion valve during defrosting, the refrigerant will not accumulate in the indoor heat exchanger 3, and the defrosting time can be shortened.
Even if an auxiliary pressure reducer such as a capillary tube is installed in the second bypass circuit 12 to adjust the refrigerant circulation amount, the
In the above embodiment, the refrigerant flow path of the second bypass circuit 12 is switched using the three-way valve 7, but other methods such as a combination of a two-way valve and a force-operated valve may be used.u% Effect of the invention From the above embodiment As is clear, the present invention (component) is characterized in that a heat storage tank filled with a heat storage material inside is disposed around a compressor in a heat exchange manner with the compressor, and piping runs from an outdoor heat exchanger to the compressor via the four-way valve. The first bypass circuit bypasses a part of the compressor, and one end is connected to the pipe leading from the discharge side of the compressor to the indoor heat exchanger via a four-way valve, and the other end is connected to the pipe leading from the pressure reducer to the outdoor heat exchanger. By connecting the first bypass circuit and the heat storage tank in a heat exchange manner, the hot gas discharged from the compressor during defrosting is guided to the outdoor heat exchanger and flows into the outdoor heat exchanger. Since the pressure of the refrigerant used for heating can be maintained higher than before, the defrosting capacity can be increased. By using this stored heat during frost, it is possible to finish defrosting in an extremely short time and start heating again, thereby increasing the cumulative heating capacity. However, if there is a large amount of frost and the stored heat is used up during defrosting, it may not be possible to completely defrost the air. Although it is possible to significantly improve

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すヒートポンプ式空気調
和機の冷凍サイクル医 第2図は同ヒートポンプ式空気
調和機の圧縮機周囲の概略断面医第3図は従来のヒート
ポンプ式空気調和機の冷凍サイクル図である。 1・・・・圧縮@2・・・・四方弁、 3・・・・室内
熱交換器 4・・・・キャピラリチューブ(減圧器)、
 5・・・・室外熱交換器 6・・・・第1バイパス回
区 7・・・・三方弁(流路制御手段)、 9・・・・
熱交換器10・・・・蓄熱[11・・・・蓄熱材、12
・・・・第2バイパス回区13・・・・二方弁(流路制
御手段)。
Fig. 1 shows a refrigeration cycle diagram of a heat pump air conditioner showing an embodiment of the present invention. Fig. 2 shows a schematic cross-section around the compressor of the same heat pump air conditioner. Fig. 3 shows a conventional heat pump air conditioner. It is a refrigeration cycle diagram. 1... Compression@2... Four-way valve, 3... Indoor heat exchanger 4... Capillary tube (pressure reducer),
5... Outdoor heat exchanger 6... First bypass circuit 7... Three-way valve (flow path control means), 9...
Heat exchanger 10... Heat storage [11... Heat storage material, 12
...Second bypass circuit 13...Two-way valve (flow path control means).

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方弁、室内熱交換器、減圧器、室外熱交換器
等を連結して冷媒回路を構成し、内部に蓄熱材を充填し
た蓄熱槽を前記圧縮機の周囲に前記圧縮機と熱交換的に
配設し、前記室外熱交換器から前記四方弁を介して前記
圧縮機に至る配管の一部をバイパスする第1バイパス回
路および前記圧縮機の吐出側から前記四方弁を介して前
記室内熱交換器へ至る配管に一端を接続し他端を前記減
圧器から前記室外熱交換器へ至る配管に接続した第2バ
イパス回路を設け、前記第1バイパス回路と前記室外熱
交換器から前記四方弁を介して前記圧縮機に至る配管の
一部との冷媒流路を切換可能とするかもしくは前記第1
バイパス回路の冷媒流路を開閉可能とし、かつ前記第2
バイパス回路の冷媒流路を開閉可能とする流路制御手段
を有し、前記第1バイパス回路と前記蓄熱槽を熱交換に
接続したヒートポンプ式空気調和機。
A refrigerant circuit is constructed by connecting a compressor, a four-way valve, an indoor heat exchanger, a pressure reducer, an outdoor heat exchanger, etc., and a heat storage tank filled with a heat storage material is placed around the compressor to connect the compressor and the heat exchanger. a first bypass circuit which is arranged in an exchange manner and bypasses a part of the piping from the outdoor heat exchanger to the compressor via the four-way valve; A second bypass circuit is provided, one end of which is connected to the piping leading to the indoor heat exchanger, and the other end connected to the piping leading from the pressure reducer to the outdoor heat exchanger. The refrigerant flow path with a part of the piping leading to the compressor can be switched via a four-way valve, or the first
The refrigerant flow path of the bypass circuit can be opened and closed, and the second
A heat pump type air conditioner having a flow path control means for opening and closing a refrigerant flow path of a bypass circuit, and connecting the first bypass circuit and the heat storage tank for heat exchange.
JP2537590A 1990-02-05 1990-02-05 Heat pump type air conditioner Pending JPH03230060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2537590A JPH03230060A (en) 1990-02-05 1990-02-05 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2537590A JPH03230060A (en) 1990-02-05 1990-02-05 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPH03230060A true JPH03230060A (en) 1991-10-14

Family

ID=12164100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2537590A Pending JPH03230060A (en) 1990-02-05 1990-02-05 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPH03230060A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838368B1 (en) * 2007-06-11 2008-06-13 (주)일진기건 Heat pump system of air heat source
US8491794B2 (en) 2007-10-23 2013-07-23 Siemens Industry, Inc. Process for enhanced total organic carbon removal while maintaining optimum membrane filter performance
WO2020174684A1 (en) * 2019-02-28 2020-09-03 三菱電機株式会社 Refrigeration cycle device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838368B1 (en) * 2007-06-11 2008-06-13 (주)일진기건 Heat pump system of air heat source
US8491794B2 (en) 2007-10-23 2013-07-23 Siemens Industry, Inc. Process for enhanced total organic carbon removal while maintaining optimum membrane filter performance
WO2020174684A1 (en) * 2019-02-28 2020-09-03 三菱電機株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JPH0331666A (en) Heat pump type air conditioner
JP3237187B2 (en) Air conditioner
CN101438109A (en) Multi-loop air conditioner system with variable capacity
WO1999026028A1 (en) Refrigerating apparatus
JP4269397B2 (en) Refrigeration equipment
JP2989491B2 (en) Air conditioner
JP3047831B2 (en) Heat pump system
JP3010934B2 (en) Air conditioner
JP3646401B2 (en) Air conditioner
JPH03230060A (en) Heat pump type air conditioner
JP3284905B2 (en) Heat pump system
JPS5885043A (en) Operation control apparatus for cold insulation type air conditioner
EP1878985A2 (en) Air conditioning system and method of controlling the same
JP3511161B2 (en) Air conditioner
JP3480217B2 (en) Air conditioner
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JPH04203776A (en) Heat pump type air conditioner
JPH08313096A (en) Air conditioner
JP3195991B2 (en) Multi-room air conditioning system
JPH04136669A (en) Multi-room air conditioner
JPS63187042A (en) Air conditioner
JPH10205932A (en) Air conditioner
JP2001033126A (en) Air conditioner
JP2007051795A (en) Air conditioner
CA1111645A (en) Split system air conditioner adapted to receive a water preheater