KR100838368B1 - Heat pump system of air heat source - Google Patents

Heat pump system of air heat source Download PDF

Info

Publication number
KR100838368B1
KR100838368B1 KR1020070056519A KR20070056519A KR100838368B1 KR 100838368 B1 KR100838368 B1 KR 100838368B1 KR 1020070056519 A KR1020070056519 A KR 1020070056519A KR 20070056519 A KR20070056519 A KR 20070056519A KR 100838368 B1 KR100838368 B1 KR 100838368B1
Authority
KR
South Korea
Prior art keywords
heat
compressor
temperature
low
heat exchanger
Prior art date
Application number
KR1020070056519A
Other languages
Korean (ko)
Inventor
윤차주
윤태준
Original Assignee
(주)일진기건
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)일진기건 filed Critical (주)일진기건
Priority to KR1020070056519A priority Critical patent/KR100838368B1/en
Application granted granted Critical
Publication of KR100838368B1 publication Critical patent/KR100838368B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02731Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one three-way valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

A heat pump system employing an air heat source is provided to improve thermal efficiency of a refrigerant cycle system by transferring high-temperature heat generated from a compressor to low-temperature refrigerant. A heat pump system employing an air heat source comprises a compressor(1) and a condenser(3), which receives high-temperature and high-pressure steam from the compressor through a three-way valve(2). The steam is shifted into a high-temperature and high-pressure refrigerant liquid in the condenser through heat transfer. The high-temperature and high-pressure refrigerant liquid is introduced into a liquid preheater(6) through a liquid collector(4) and a first electronic valve(5) to perform heat transferring to low-temperature and low-pressure steam discharged from an outdoor unit(9) and then introduced into an expansion valve(8) through a second electronic valve(7). The low-temperature and low-pressure liquid is introduced into the outdoor unit to perform heat transferring to low-temperature air, so that refrigerant steam is introduced into the compressor through the three-way valve and the liquid preheater.

Description

공기열원 히트펌프 시스템{heat pump system of air heat source}Heat pump system of air heat source

도 1 은 본 발명에 따른 공기히트펌프 시스템의 난방 모드를 설명하기 위한 도면1 is a view for explaining the heating mode of the air heat pump system according to the present invention

도 2 는 도 1 의 냉방 모드를 설명하기 위한 도면2 is a view for explaining the cooling mode of FIG.

본 발명은 공기열원 히트펌프 시스템에 관한 것으로서, 특히 냉방과 난방을 하나의 시스템으로서 운전이 가능한 공기열원 히트펌프 시스템에 관한 것이다The present invention relates to an air heat source heat pump system, and more particularly, to an air heat source heat pump system capable of operating cooling and heating as a system.

특히, 본 발명에 따른 시스템은, 직접 팽창식 열교환 방식을 취하지 않고 간접팽창식 열교환 방식을 이용하여, 냉방과 난방을 수행할 수 있는 공기열원 히트펌프 시스템에 관한 것이다In particular, the system according to the present invention relates to an air heat source heat pump system capable of performing cooling and heating by using an indirect expansion heat exchange method without using a direct expansion heat exchange method.

종래의 공기열원 히트펌프 시스템은, 난방모드에서 외부공기의 온도가 약 7℃ 정도로 낮아질 경우에는, 열교환기측에 착상이 발생하여, 저압측 부하가 낮아지므로 시스템의 난방능력이 급격하게 떨어지는 문제가 발생한다.In the conventional air heat source heat pump system, when the temperature of the external air is lowered to about 7 ° C. in the heating mode, an frost is generated on the heat exchanger side, and a low pressure side load is lowered. do.

좀더 상세히 설명하면, 난방 모드시에는 실외측 열교환기가 증발기 역할을 하게되어 있다. 따라서 증발기내(튜브 내)로 저온 저압의 냉매액이 흐르고 핀측으 로는 외부 공기가 흘러 서로 열교환을 하여 공기측 열을 냉매가 증발하는데 사용한다. 따라서 종래의 공기열원 히트펌프에서는 외부 공기 온도가 7도 이하로 되면, 열교환기 핀 표면에 상(서리)이 끼이는 착상 현상이 발생하게 된다. 이와 같이 핀에 상이 끼이므로, 열전달율이 나빠져 저압측 압력이 떨어져 버린다. 따라서 공기로 부터 많은 열을 빼앗아 오지 못하므로 난방 능력이 떨어진다In more detail, in the heating mode, the outdoor side heat exchanger serves as an evaporator. Therefore, the coolant liquid of low temperature and low pressure flows into the evaporator (in the tube) and the outside air flows to the fin side to exchange heat with each other, and the air side heat is used to evaporate the refrigerant. Therefore, in the conventional air heat source heat pump, when the external air temperature is 7 degrees or less, an frost phenomenon occurs that causes an image (frost) to be caught on the surface of the heat exchanger fin. In this way, the phase is pinched in the fin, whereby the heat transfer rate worsens and the low pressure side pressure drops. Therefore, it does not take much heat from the air, so the heating capacity is reduced.

다시 한번 설명하면, 히트펌프는, 공기로 부터 빼앗은 열은 Q1이라하고, 압축기의 일량을 Q2 라 할때, 이 둘을 합하여 난방측으로 Q1+Q2 만큼의 열을 방출하게 되는데, 공기로 부터 많은 열을 빼앗아 오지 못하기 때문에, 그 만큼 난방 능력이 떨어지게 되는 것이다 Once again, the heat pump, when the heat taken from the air is Q1, and when the amount of work of the compressor is Q2, the two are combined to emit as much heat as Q1 + Q2 to the heating side. Because it does not take away, the heating capacity is reduced by that much

본 발명은 종래의 상기와 같은 시스템적인 단점을 보완하기 위하여, 압축기에서 발생하는 폐열을 회수하여, 압축기 흡입측의 저온냉매에 공급할 수 있는 부하조절용 사이클을 형성하였다.The present invention, in order to supplement the conventional system disadvantages as described above, to form a cycle for load control to recover the waste heat generated in the compressor, it can be supplied to the low-temperature refrigerant on the compressor suction side.

즉, 외부 공기 온도가 낮을 경우엔, 상술한 바와 같이, 저압측 부하가 작아어지므로(저압축 압력이 떨어지므로), 압축기에서 발생되는 버려지는 열을 부가하여 저압측 부하를 올려주는 시스템이다. That is, when the outside air temperature is low, as described above, since the low pressure side load becomes small (low compression pressure drops), it is a system that raises the low pressure side load by adding waste heat generated by the compressor.

본 발명은, 냉방과 난방을 하나의 시스템으로서 운전이 가능한 공기열원 히트펌프 시스템에 관한 것으로, 특히 압축기(1)에서 발생되어 대기로 방출되는 고열을, 저온냉매에 공급함으로서, 압축기(1)가 고열에 의해 효율이 떨어지거나 손상되는 것을 방지할 뿐만 아니라, 폐열 회수에 의해 냉매사이클 시스템의 열효율을 향상시킬 수 있게 구성한 것으로, 그 주요 구성은, 압축기(1)를 나온 고온,고압의 증기가 응축기(3)로 유입되며, 응축기(3)에서는 저온의 급수와 열교환을 통하여 고온고압의 냉매액 상태로 되고, 고온,고압의 냉매액은 수액기(4)로 들어와 액열기(6)로 유입되어 실외기(9)를 통해서 나오는 저온저압의 증기와 열교환을 한 후, 저온저압의 냉매액은 실외기(9)로 들어가, 저온의 공기와 열교환을 수행하여 냉매증기 상태로 되어, 삼방밸브(2)를 거쳐 액열기(6)를 통하여 열을 취득한 후, 증기상태로 압축기(1)로 유입되게 구성하며, 상기한 수액기(4)를 거쳐 나오는 냉매액의 일부를 압축기(1)에서 발생되는 고온의 폐열과 열교환시키는, 압축기 흡입측의 부하조절용 사이클을 구성하기 위해, 상기한 수액기(4)를 거쳐 나오는 냉매액의 일부를 전자밸브(11)로 보내어 모세관(12)을 거쳐 저온저압의 냉매액 상태로 만들어 압축기(1)로 보내는 것을 특징으로 하며, 상기한 모세관(12)을 거친 저온저압의 냉매액은 판형열교환기(31)로 유입되어, 실외기(9)에서 삼방밸브(2)를 거쳐 액열기(6)로 들어가는 배관으로 들어가, 압축기(1)로 보내지는 것을 특징으로 하며, 상기한 압축기(1) 쪽에는, 팬(34)과 열교환기(33)가 설치되어, 압축기(1)에서 발생되는 고온의 폐열을 흡수할 수 있게 구성하며, 열교환기(33)는 판형열교환기(31)와 연결되어, 열교환기(33) 내의 열매체가 판형열교환기(31)에서 열교환되게 구성한 것을 특징으로 하며, 상기한 열교환기(33)는 핀 또는 코일형 열교환기인 것을 특징으로 한다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air heat source heat pump system capable of operating cooling and heating as one system, and in particular, by supplying high temperature generated by the compressor (1) to the low temperature refrigerant to the low temperature refrigerant, In addition to preventing the loss of efficiency or damage due to high heat, the heat efficiency of the refrigerant cycle system can be improved by recovering the waste heat. The main structure is that the high temperature and high pressure steam from the compressor 1 is condenser. (3), the condenser (3) is a high-temperature, high-pressure refrigerant liquid state through the low temperature water supply and heat exchange, the high-temperature, high-pressure refrigerant liquid enters the receiver (4) is introduced into the liquid heater (6) After exchanging heat with the low temperature and low pressure steam from the outdoor unit 9, the low temperature low pressure refrigerant liquid enters the outdoor unit 9, performs heat exchange with the low temperature air, and becomes a refrigerant vapor state. After acquiring heat through the liquid heater (6), the heat is introduced into the compressor (1) in a vapor state, and a portion of the refrigerant liquid passing through the fluid receiver (4) is generated at a high temperature generated by the compressor (1). Part of the refrigerant liquid passing through the receiver 4 to the solenoid valve 11 to form a cycle for regulating the load on the compressor suction side to exchange heat with the waste heat of the compressor. It is characterized in that the liquid state is sent to the compressor (1), the low-temperature low-pressure refrigerant liquid through the capillary tube 12 is introduced into the plate heat exchanger 31, the three-way valve (2) in the outdoor unit (9) It is characterized in that it enters into the pipe entering the liquid heater (6), and is sent to the compressor (1). A fan (34) and a heat exchanger (33) are provided on the compressor (1) side, and the compressor (1) is provided. Heat absorber 33 is configured to absorb high temperature waste heat generated from Exchanger is connected to 31, the heating medium in the heat exchanger 33, and characterized in that is configured to be heat-exchanged by the plate heat exchanger (31), wherein a heat exchanger (33) is characterized in that the pin or coil type heat exchanger group.

상기한 특징 외의 다른 특징 및 구성에 대하여, 이하, 첨부 도면에 의거 추추가로 상술한다Other features and configurations other than those described above will be further described below based on the accompanying drawings.

도 1 은 공기열 히트펌프의 난방 모드를 설명하기 위한 시스템 흐름도이다1 is a system flow chart for explaining the heating mode of the air heat heat pump.

먼저, 압축기(1)를 나온 고온,고압의 증기는, 삼방밸브(2)를 거쳐 응축기(3)로 유입되며, 응축기(3)에서는 저온의 급수(공급수)와 열교환을 통하여 고온고압의 냉매액 상태로 된다. First, the high temperature and high pressure steam from the compressor 1 flows into the condenser 3 through the three-way valve 2, and the high temperature and high pressure refrigerant is exchanged through the low temperature water supply (supply water) and heat exchange in the condenser 3. It becomes the liquid state.

고온,고압의 냉매액은 수액기(4)로 들어와 전자밸브(5)를 거쳐, 액열기(6)로 유입되어 실외기(9)를 통해서 나오는 저온저압의 증기와 열교환을 한 후, 전자밸브(7)를 거쳐 팽창밸브(8)를 통하게 된다. 액열기(6)의 전열 성능 향상을 위해 전열관을 주름관으로 사용하는 것이 바람직하다The high temperature and high pressure refrigerant liquid enters the receiver 4, passes through the solenoid valve 5, enters the liquid heater 6, heat exchanges with the low temperature and low pressure steam that exits the outdoor unit 9, and then the solenoid valve ( 7) through the expansion valve (8). It is preferable to use a heat transfer pipe as a corrugated pipe in order to improve the heat transfer performance of the liquid heater 6.

팽창밸브(8)를 통하여 나온 저온저압의 냉매액은 실외기(9)로 들어가 저온의 공기와 열교환을 수행하여 냉매증기 상태로 되어, 삼방밸브(2)를 거쳐 액열기(6)를 통하여 열을 취득한 후, 증기상태로 압축기(1)로 유입되는 시스템이다. The refrigerant liquid of low temperature and low pressure discharged through the expansion valve (8) enters the outdoor unit (9) and performs heat exchange with the low temperature air to become a refrigerant vapor state, and heats through the liquid heater (6) via the three-way valve (2). After the acquisition, the system is introduced into the compressor 1 in a vapor state.

특히, 본 사이클에서는 외기온도가 낮아질 경우, 저압측 부하가 부족하기 때문에 시스템의 성능에 치명적인 결과를 초래한다, In particular, in this cycle, when the outside temperature is lowered, the low pressure side load is insufficient, which causes a fatal effect on the performance of the system.

따라서, 이러한 문제점을 극복하기 위해, 수액기(4)를 거쳐 나오는 냉매액의 일부를 전자밸브(11)로 보내어 모세관(12)을 거쳐 저온저압의 냉매액 상태로 만들어 압축기(1)에서 발생되는 고온의 폐열과 열교환을 시키는, 부하조절용 사이클을 구성하였다Therefore, in order to overcome such a problem, a part of the refrigerant liquid passing through the receiver 4 is sent to the solenoid valve 11 to be made into the refrigerant liquid at low temperature and low pressure via the capillary tube 12 to be generated in the compressor 1. Cycle for load regulation to exchange heat with high temperature waste heat Configured

즉, 모세관(12)을 거친 저온저압의 냉매액은 판형열교환기(31)로 유입되어, 실외기(9)에서 삼방밸브(2)를 거쳐 액열기(6)로 들어가는 배관으로 들어 간다. 그리고 압축기(1) 내의 열교환기(33) 내부를 흐르는 열매체는 펌프(32)에 의해 열교환기(33)와 판형열교환기(31) 사이를 순환한다. 그리하여, 판형열교환기(31)에서 압축기(1)의 폐열이 열교환된다.
압축기(1) 쪽에는 팬(34)과 열교환기(33)가 설치되어 압축기(1)에서 발생되는 고온의 폐열을 흡수할 수 있게 하였다. 열교환기(33)는 예를들어, 핀 및/또는 코일형 열교환기를 사용하며, 열교환기(33) 내부에는 열매체가 충전되어 있다.
That is, the low-temperature low-pressure refrigerant liquid passing through the capillary tube 12 flows into the plate heat exchanger 31 and enters the pipe from the outdoor unit 9 through the three-way valve 2 to the liquid heater 6. The heat medium flowing inside the heat exchanger 33 in the compressor 1 circulates between the heat exchanger 33 and the plate heat exchanger 31 by the pump 32. Thus, the waste heat of the compressor 1 is heat-exchanged in the plate heat exchanger 31.
A fan 34 and a heat exchanger 33 are installed on the compressor 1 side to absorb high temperature waste heat generated by the compressor 1. The heat exchanger 33 uses, for example, a fin and / or coil type heat exchanger, and the heat medium is filled in the heat exchanger 33.

한편, 공기열 히트 펌프의 냉방 모드일 경우엔 도 2 와 같다On the other hand, as shown in Figure 2 in the cooling mode of the air heat heat pump.

도시한 바와 같이, 압축기(1)를 나온 고온고압의 증기는 삼방밸브(2)를 거쳐 실외기(9)로 유입되어 대기열원과 열교환을 하게 된다.As shown, the high-temperature, high-pressure steam exiting the compressor 1 is introduced into the outdoor unit 9 through the three-way valve 2 to exchange heat with the queue source.

열교환을 통하여 냉매증기는, 고온고압의 냉매액으로 되어, 수액기(4)로 유입되게 된다. 수액기(4)로 유입된 냉매액은 전자밸브(21)를 통하여 팽창밸브(8)로 유입되어 저온저압의 냉매액 상태로 되어 증발기(3)로 유입이 된다. Through the heat exchange, the refrigerant vapor becomes a refrigerant liquid of high temperature and high pressure, and flows into the receiver 4. The refrigerant liquid introduced into the receiver 4 flows into the expansion valve 8 through the solenoid valve 21 to become a refrigerant liquid at low temperature and low pressure, and then flows into the evaporator 3.

증발기(3)에서는 급수와의 열교환을 통하여, 저온,저압의 증기상태로 되어 삼방밸브(2)를 통하여 액열기(6)로 유입되어 압축기(1)로 흡입되는 일반적인 시스템이라 할 수 있다. In the evaporator (3) is a general system in which a low-temperature, low-pressure steam state through the heat exchange with the water supply, enters the liquid heater (6) through the three-way valve (2) and is sucked into the compressor (1).

특히, 본 사이클에서는 냉방모드이기 때문에, 저압측 부하 조절용 사이클의 가동이 필요없으므로, 압축기 발생되는 고온의 폐열은 단순히 팬만 가동시켜 외부로 방출시키는 공랭식 형태이다. In particular, in this cycle, since the cooling mode is used, operation of the low pressure side load adjustment cycle is not necessary. Therefore, the high-temperature waste heat generated by the compressor is simply air-cooled by releasing only the fan.

이상과 같은 본 발명에 따른 냉매사이클 시스템에 의하면, 외기 온도가 낮을 경우, 압축기(1)에서 발생되어 대기로 방출되는 고열을, 저온냉매에 공급함으로서, 압축기(1)가 고열에 의해 효율이 떨어지거나 손상되는 것을 방지할 뿐만 아니라, 폐열 회수에 의해 냉매사이클 시스템의 열효율을 향상시킬 수가 있다. According to the refrigerant cycle system according to the present invention as described above, when the outside air temperature is low, by supplying the high temperature generated by the compressor 1 and discharged to the atmosphere to the low-temperature refrigerant, the compressor 1 is inefficient due to the high temperature In addition to preventing the damage or damage, the heat efficiency of the refrigerant cycle system can be improved by recovering the waste heat.

또한 시스템의 성능향상을 위해 액열기(6)를 설치하여, 고온고압의 냉매액과 저온저압의 냉매증기와 열교환시켜 과냉 및 과열도에 따른 제어가 가능하여 시스템 성능향상을 도모할 수 있다In addition, by installing a liquid heater (6) to improve the performance of the system, it is possible to control the system according to the degree of supercooling and superheating by heat exchange with the refrigerant liquid of high temperature and high pressure and the refrigerant steam of low temperature and low pressure to improve the system performance.

Claims (5)

냉방과 난방을 하나의 시스템으로서 운전이 가능한 공기열원 히트펌프 시스템에 있어서,In the air heat source heat pump system capable of operating cooling and heating as a system, 압축기(1)를 나온 고온,고압의 증기가 응축기(3)로 유입되며, The high temperature, high pressure steam from the compressor (1) flows into the condenser (3), 응축기(3)에서는 저온의 급수와 열교환을 통하여 고온고압의 냉매액 상태로 되고, 고온,고압의 냉매액은 수액기(4)로 들어와 액열기(6)로 유입되어 실외기(9)를 통해서 나오는 저온저압의 증기와 열교환을 한 후, 저온저압의 냉매액은 실외기(9)로 들어가, 저온의 공기와 열교환을 수행하여 냉매증기 상태로 되어, 삼방밸브(2)를 거쳐 액열기(6)를 통하여 열을 취득한 후, 증기상태로 압축기(1)로 유입되게 구성하며,In the condenser (3) is a high-temperature, high-pressure refrigerant liquid state through the low temperature water supply and heat exchange, the high-temperature, high-pressure refrigerant liquid enters the receiver (4), flows into the liquid heater (6) and exits through the outdoor unit (9) After heat exchange with the low temperature low pressure steam, the low temperature low pressure refrigerant liquid enters the outdoor unit (9), performs heat exchange with the low temperature air, and becomes a refrigerant vapor state, and passes through the three-way valve (2). After acquiring heat through, it is configured to flow into the compressor (1) in the vapor state, 상기한 수액기(4)를 거쳐 나오는 냉매액의 일부를 압축기(1)에서 발생되는 고온의 폐열과 열교환시키는, 압축기 흡입측의 부하조절용 사이클을 구성하기 위해, 상기한 수액기(4)를 거쳐 나오는 냉매액의 일부를 전자밸브(11)로 보내어 모세관(12)을 거쳐 저온저압의 냉매액 상태로 만들어 압축기(1)로 보내는 것을 특징으로 하는 공기열원 히트펌프 시스템In order to configure a load adjustment cycle on the compressor suction side, a part of the refrigerant liquid passing through the receiver 4 is heat-exchanged with the high temperature waste heat generated by the compressor 1, and then, through the receiver 4 above. Air heat source heat pump system, characterized in that by sending a portion of the refrigerant liquid to the solenoid valve (11) through the capillary tube (12) to form a refrigerant liquid of low temperature and low pressure to the compressor (1) 삭제delete 제 1 항에 있어서,The method of claim 1, 상기한 모세관(12)을 거친 저온저압의 냉매액은 판형열교환기(31)로 유입되어, 실외기(9)에서 삼방밸브(2)를 거쳐 액열기(6)로 들어가는 배관으로 들어가, 압축기(1)로 보내지는 것을 특징으로 하는 공기열원 히트펌프 시스템The low temperature and low pressure refrigerant liquid passing through the capillary tube 12 flows into the plate heat exchanger 31, and enters the pipe from the outdoor unit 9 through the three-way valve 2 to the liquid heater 6 and enters the compressor 1. Air heat source heat pump system 제 1 항 또는 제 3 항에 있어서,The method according to claim 1 or 3, 상기한 압축기(1) 쪽에는, 팬(34)과 열교환기(33)가 설치되어, 압축기(1)에서 발생되는 고온의 폐열을 흡수할 수 있게 구성하며, 열교환기(33)는 판형열교환기(31)와 연결되어, 열교환기(33) 내의 열매체가 판형열교환기(31)에서 열교환되게 구성한 것을 특징으로 하는 공기열원 히트펌프 시스템On the compressor 1 side, a fan 34 and a heat exchanger 33 are installed to absorb high temperature waste heat generated by the compressor 1, and the heat exchanger 33 is a plate heat exchanger. Connected to (31), the heat source heat pump system, characterized in that the heat medium in the heat exchanger 33 is configured to heat exchange in the plate heat exchanger (31) 제 4 항에 있어서,The method of claim 4, wherein 상기한 열교환기(33)는 핀 또는 코일형 열교환기인 것을 특징으로 하는 공 기 열원 히트펌프 시스템The heat exchanger 33 is an air heat source heat pump system, characterized in that the fin or coil type heat exchanger.
KR1020070056519A 2007-06-11 2007-06-11 Heat pump system of air heat source KR100838368B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070056519A KR100838368B1 (en) 2007-06-11 2007-06-11 Heat pump system of air heat source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070056519A KR100838368B1 (en) 2007-06-11 2007-06-11 Heat pump system of air heat source

Publications (1)

Publication Number Publication Date
KR100838368B1 true KR100838368B1 (en) 2008-06-13

Family

ID=39771335

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070056519A KR100838368B1 (en) 2007-06-11 2007-06-11 Heat pump system of air heat source

Country Status (1)

Country Link
KR (1) KR100838368B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102154465B1 (en) 2020-03-06 2020-09-09 이종문 Expansion valve for air-conditioning and heating system using multiple heat-source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118080A (en) * 1987-10-30 1989-05-10 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
JPH03230060A (en) * 1990-02-05 1991-10-14 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
KR100436029B1 (en) * 2001-11-23 2004-06-23 홍성섭 Hot water generating apparatus using heat pump
JP2005083711A (en) * 2003-09-10 2005-03-31 Shinko Kogyo Co Ltd Defrosting device of heat pump type air conditioner and defrosting method
JP2005308344A (en) 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Heat pump water heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118080A (en) * 1987-10-30 1989-05-10 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
JPH03230060A (en) * 1990-02-05 1991-10-14 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
KR100436029B1 (en) * 2001-11-23 2004-06-23 홍성섭 Hot water generating apparatus using heat pump
JP2005083711A (en) * 2003-09-10 2005-03-31 Shinko Kogyo Co Ltd Defrosting device of heat pump type air conditioner and defrosting method
JP2005308344A (en) 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Heat pump water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102154465B1 (en) 2020-03-06 2020-09-09 이종문 Expansion valve for air-conditioning and heating system using multiple heat-source

Similar Documents

Publication Publication Date Title
KR101270616B1 (en) Co-generation
KR101270615B1 (en) Co-generation and Control method of the same
KR101336012B1 (en) Ground source heat pump and its control for heating cooling and hot water
CN105042672A (en) Air source CO2 heat pump system suitable for connecting heating radiators
CN102759193B (en) Air source heat pump system
KR20100038551A (en) Heat pump system using terrestrial heat source
KR101271355B1 (en) Heat pump system using two step heat pump unit
KR100838368B1 (en) Heat pump system of air heat source
CN102305496B (en) Air-cooled heat pump unit
KR100945452B1 (en) Heat pump system
JP5571978B2 (en) Heat pump system
CN109869942B (en) Flat pipe sleeve type heat recovery heat pump air conditioning system and working method thereof
KR101280442B1 (en) Duality cold cycle heat pump system of control method
CN108488963B (en) Heat energy recovery system
CN203432144U (en) Early vendor involvement (EVI) trigeneration system
CN101625174B (en) Multi-functional modularization heat pump machine set
CN106766333B (en) Low-temperature jet enthalpy-increasing air conditioning system
CN105783331A (en) Heat efficient recovery device for air source water chilling unit
CN101608845B (en) Parallel connection type modularized heat pump unit
KR20100005736U (en) Heat pump system
CN110234941B (en) Absorption refrigerator
KR101175635B1 (en) An air conditioning system with non-defrost
CN215808805U (en) Composite heat recovery system
KR20140067513A (en) Heat pump system which is not needed defrosting cycle
KR101177430B1 (en) Heat pump system with cooling and heating using renewable energy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130603

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140609

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150622

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160908

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170707

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20181011

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190910

Year of fee payment: 12