WO2020174684A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2020174684A1
WO2020174684A1 PCT/JP2019/007924 JP2019007924W WO2020174684A1 WO 2020174684 A1 WO2020174684 A1 WO 2020174684A1 JP 2019007924 W JP2019007924 W JP 2019007924W WO 2020174684 A1 WO2020174684 A1 WO 2020174684A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
flow path
refrigerant
temperature
refrigeration cycle
Prior art date
Application number
PCT/JP2019/007924
Other languages
French (fr)
Japanese (ja)
Inventor
拓未 西山
伊東 大輔
健太 村田
幹 佐藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021501515A priority Critical patent/JP6972422B2/en
Priority to PCT/JP2019/007924 priority patent/WO2020174684A1/en
Publication of WO2020174684A1 publication Critical patent/WO2020174684A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Definitions

  • the present invention relates to a refrigeration cycle device in which a heat storage material is formed around a compressor.
  • Patent Document 1 discloses a refrigeration cycle device in which a heat storage material is formed around a compressor.
  • Patent Document 2 discloses a refrigeration cycle device in which a heat storage material is formed around a compressor.
  • the refrigeration cycle apparatus in the defrosting operation, a flow path that guides the refrigerant from the outdoor heat exchanger to the suction port of the compressor via the heat storage material formed around the compressor is formed. According to the refrigeration cycle apparatus, it is possible to shorten the defrosting time, suppress a decrease in room temperature due to the defrosting operation, and improve comfort.
  • Patent Document 1 does not consider suppressing the temperature of the refrigerant flowing out of the evaporator during normal heating operation.
  • R290 is used for the refrigeration cycle device disclosed in Patent Document 1
  • the performance of the refrigeration cycle device may be reduced.
  • the present invention has been made to solve the above problems, and an object thereof is to suppress performance deterioration of a refrigeration cycle apparatus while reducing GWP.
  • the refrigerant containing R290 circulates in the first circulation direction of the compressor, the first heat exchanger, the first pressure reducing device, and the second heat exchanger.
  • the refrigeration cycle device includes a heat storage material and a first flow path switching unit.
  • the heat storage material is arranged around the compressor and receives heat from the compressor.
  • the first flow path switching unit can form a first flow path and a second flow path for guiding the refrigerant from the second heat exchanger to the compressor.
  • the refrigerant containing R290 is used, and the flow path can be formed so that the refrigerant from the second heat exchanger reaches the compressor via the heat storage material. It is possible to suppress the performance deterioration of the refrigeration cycle device while reducing the GWP.
  • FIG. 3 is a functional block diagram showing the configuration of the refrigeration cycle device according to the first embodiment. It is the figure which planarly viewed the heat storage material of FIG. 1 from the normal direction of the side surface of the compressor 1. It is a figure which shows an example of the flow path formed in the inside of the heat storage material of FIG. It is a figure which shows many examples of the flow path formed inside the heat storage material of FIG. It is a figure which shows the relationship between the superheat degree of the refrigerant suck
  • FIG. 9 is a ph diagram showing the relationship between enthalpy, pressure, and temperature in a cooling operation under a low load of the refrigeration cycle apparatus according to the comparative example.
  • FIG. 6 is a flowchart showing a flow of processing performed on the flow path switching unit by the control device of FIG. 1. It is a figure which shows the concrete structure of the flow-path switching part of FIG. It is a figure which shows the concrete structure of the other example of the flow-path switching part of FIG. It is a figure which shows an example of the heat storage material of FIG. It is a figure which shows the other example of the heat storage material of FIG. It is a functional block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 2. 13 is a flowchart showing a flow of processing performed on the flow path switching unit by the control device of FIG. 12 in a cooling operation.
  • FIG. 1 shows the concrete structure of the flow-path switching part of FIG.
  • FIG. 12 shows the concrete structure of the other example of the flow-path switching part of FIG.
  • FIG. 13 is a functional block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 2.
  • 13 is a flowchart
  • 13 is a ph diagram showing the relationship between enthalpy, pressure, and temperature when the cooling operation is performed in the refrigeration cycle device according to the modification of the second embodiment. It is a functional block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 3. 16 is a flowchart showing the flow of processing performed by the control device of FIG. 15 on the flow path switching unit during heating operation. It is a functional block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on the modification 1 of Embodiment 3. It is a functional block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on the modification 2 of Embodiment 3.
  • FIG. 1 is a functional block diagram showing the configuration of the refrigeration cycle device 100 according to the first embodiment.
  • the refrigeration cycle apparatus 100 includes an outdoor unit 110 and an indoor unit 120.
  • the outdoor unit 110 includes a compressor 1, a four-way valve 2 (second flow path switching unit), an outdoor heat exchanger 3 (first heat exchanger), an electromagnetic expansion valve 31 (first pressure reducing device), and a flow path.
  • the path switching unit 20 (first flow path switching unit), the outdoor fan 41, the control device 90, and the temperature sensors 11 to 15 are included.
  • the indoor unit 120 includes the indoor heat exchanger 4 (second heat exchanger), the indoor fan 42, and the temperature sensors 16-18.
  • the control device 90 may be included in the indoor unit 120, or may be provided separately from the outdoor unit 110 and the indoor unit 120.
  • the refrigeration cycle apparatus 100 can perform cooling operation and heating operation on the space in which the indoor unit 120 is arranged.
  • R290 is used as a refrigerant.
  • the four-way valve 2 connects the discharge port Pd of the compressor 1 with the outdoor heat exchanger 3 and also connects the indoor heat exchanger 4 with the flow path switching unit 20.
  • the refrigerant is discharged from the discharge port Pd of the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the electromagnetic expansion valve 31, the indoor heat exchanger 4, the four-way valve 2, the flow path switching unit 20, and the compressor 1. It circulates in the order of the suction port Ps.
  • the four-way valve 2 connects the discharge port Pd of the compressor 1 with the indoor heat exchanger 4, and also connects the outdoor heat exchanger 3 with the flow path switching unit 20.
  • the refrigerant is discharged from the discharge port Pd of the compressor 1, the four-way valve 2, the indoor heat exchanger 4, the electromagnetic expansion valve 31, the outdoor heat exchanger 3, the four-way valve 2, the flow path switching unit 20, and the compressor 1. It circulates in the order of the suction port Ps.
  • a heat storage material 10 that receives heat from the compressor 1 is arranged around the compressor 1.
  • the heat storage material 10 covers the side surface of the compressor 1 except for the portion where the suction port Ps is formed.
  • a metal, grease, gel sheet or the like having high thermal conductivity may be provided between the compressor 1 and the heat storage material 10.
  • the heat exchange between the heat storage material 10 and the refrigerant may be promoted by tightening the outer peripheral portion of the heat storage material 10 with a belt or the like and bringing the heat storage material 10 into close contact with the compressor 1.
  • the flow path switching unit 20 can form a flow path FP1 (first flow path) and a flow path FP2 (second flow path). At least one of the flow paths FP1 and FP2 is open.
  • the refrigerant flowing out of the flow path FP1 reaches the suction port Ps of the compressor 1 without passing through the heat storage material 10.
  • the refrigerant flowing out of the flow path FP2 reaches the suction port Ps of the compressor 1 via the heat storage material 10.
  • the flow paths in the heat storage material 10 may be formed so as to meander as shown in FIG. 3, or a plurality of flow paths may be formed in parallel as shown in FIG.
  • the control device 90 acquires from the temperature sensor 11 the temperature T11 of the refrigerant flowing between the outdoor heat exchanger 3 and the electromagnetic expansion valve 31.
  • the control device 90 acquires the temperature T12 of the refrigerant flowing through the outdoor heat exchanger 3 from the temperature sensor 12 installed in the middle portion of the outdoor heat exchanger 3.
  • the control device 90 acquires the temperature T13 of the outdoor space in which the outdoor unit 110 is arranged from the temperature sensor 13.
  • the control device 90 acquires the temperature T14 of the heat storage material 10 from the temperature sensor 14.
  • the temperature T14 measured by the temperature sensor 14 is used to determine whether heating by the heat storage material 10 is possible.
  • the temperature measured by the temperature sensor 14 is preferably the temperature of the portion of the heat storage material 10 where the fluid having the lowest temperature can be collected.
  • the temperature sensor 14 is preferably installed at a position that is 1 ⁇ 3 or less of the height of the heat storage material 10 from the top of the heat storage material 10. It is more preferable that the temperature sensor 14 is installed at a position that is 1 ⁇ 2 or less of the height of the heat storage material 10 from the top of the heat storage material 10.
  • the temperature sensor 14 be able to directly measure the temperature inside the heat storage material 10.
  • the other end of the object having a high thermal conductivity for example, a rod-shaped metal
  • the temperature of the one end of the object may be measured by the temperature sensor 14.
  • the control device 90 acquires the temperature T15 of the refrigerant passing through the suction port Ps from the temperature sensor 15.
  • the control device 90 acquires the temperature T16 of the refrigerant flowing between the indoor heat exchanger 4 and the electromagnetic expansion valve 31 from the temperature sensor 16.
  • the control device 90 acquires the temperature T17 of the refrigerant passing through the indoor heat exchanger 4 from the temperature sensor 17 installed in the middle portion of the indoor heat exchanger 4.
  • the control device 90 acquires the indoor temperature T18 of the indoor space in which the indoor unit 120 is arranged from the temperature sensor 18.
  • the control device 90 controls the drive frequency of the compressor 1 to control the amount of refrigerant that the compressor 1 discharges per unit time so that the indoor temperature T18 reaches a target temperature (for example, a temperature set by the user). To do.
  • the control device 90 controls the four-way valve 2 to switch the circulation direction of the refrigerant.
  • the controller 90 controls the flow passage switching unit 20 to adjust the amount of refrigerant passing through each of the flow passages FP1 and FP2 per unit time.
  • the control device 90 electromagnetically expands so that one or both of the degree of superheat of the refrigerant sucked into the compressor 1 and the degree of supercooling of the refrigerant flowing out of the heat exchanger functioning as a condenser have a value within a desired range.
  • the opening degree of the valve 31 is controlled.
  • the heat exchanger functioning as a condenser is the outdoor heat exchanger 3 in the cooling operation and the indoor heat exchanger 4 in the heating operation.
  • the superheat degree of the refrigerant sucked into the compressor 1 is set to a value in a desired range
  • the temperature T15 of the refrigerant sucked into the compressor 1 and the temperature (temperature T12 or T12) flowing through the heat exchanger functioning as an evaporator is controlled based on the temperature difference from T17).
  • the heat exchanger functioning as an evaporator is the indoor heat exchanger 4 in the cooling operation and the outdoor heat exchanger 3 in the heating operation.
  • the degree of supercooling of the refrigerant flowing out from the heat exchanger functioning as the condenser is set to a value within a desired range
  • the temperature of the refrigerant flowing through the heat exchanger functioning as the condenser (temperature T12 or T17) and the heat exchanger concerned.
  • the opening degree of the electromagnetic expansion valve 31 is controlled based on the temperature difference from the temperature (temperature T11 or T16) of the refrigerant flowing out from the.
  • the control device 90 controls the amount of air blown by the outdoor fan 41 and the indoor fan 42 per unit time.
  • the outdoor fan 41 according to an operation mode (for example, a rated mode of high-speed rotation or an intermediate mode of low-speed rotation) that is automatically set from the temperature difference between the indoor target temperature and the indoor temperature T18, for each operation mode, The fan is driven at a preset rotational speed.
  • the indoor fan 42 the fan is driven at a rotation speed according to a setting (for example, a weak wind mode or a strong wind mode) by the user.
  • a setting for example, a weak wind mode or a strong wind mode
  • a temperature sensor that detects the temperature of the refrigerant passing through the discharge port Pd of the compressor 1 may be installed. Based on the temperature difference between the detection result of the temperature sensor and the preset target discharge temperature, the drive frequency of the compressor 1, the amount of air blown per unit time by the outdoor fan 41 and the indoor fan 42, and the electromagnetic expansion valve. The opening degree of 31 may be controlled.
  • refrigerants with lower GWP Global Warming Potential
  • refrigerant that can reduce the GWP more than the conventionally used refrigerant include R32 or R290.
  • R32 Since R32 has a high operating pressure, the refrigeration effect of the refrigeration cycle device can be enhanced even with a relatively small compressor. In addition, R32 has no toxicity. However, the GWP of R32 is insufficient for the F-gas regulation or the regulation value of the Montreal Protocol. On the other hand, the GWP of R290 is lower than the GWP of R32. R290 is known as one of the effective refrigerants for these regulations.
  • R290 has the characteristic that the greater the degree of superheat of the refrigerant sucked into the compressor, the greater the theoretical COP (Coefficient of Performance) of the refrigeration cycle device (see Fig. 5).
  • COP Coefficient of Performance
  • FIG. 6 is a ph diagram showing the relationship between the enthalpy, the pressure, and the temperature in the cooling operation of the refrigeration cycle apparatus according to the comparative example at a low load.
  • curves LC and GC represent a saturated liquid line and a saturated vapor line, respectively.
  • the saturated liquid line and the saturated vapor line are connected at the critical point CP.
  • the process from the states C1 to C2 shows the adiabatic compression process by the compressor.
  • the process from state C2 to C3 represents the condensation process with the heat exchanger functioning as a condenser.
  • the process from the state C3 to C4 represents the depressurization process by the expansion valve.
  • the process from state C4 to C1 represents the evaporation process by the heat exchanger functioning as an evaporator.
  • FIG. 6 shows an isotherm of the outdoor temperature T1.
  • the refrigerant is sucked into the compressor through the depressurization process and the evaporation process.
  • the state C1 representing the state of the refrigerant may be on the isotherm of the outdoor temperature T1.
  • the degree of superheat of the refrigerant drawn into the compressor may be lower than expected.
  • the heat generated in the compressor 1 is stored in the heat storage material 10, and the flow path FP2 is formed so that the refrigerant is sucked into the compressor 1 via the heat storage material 10.
  • the heat accumulated in the heat storage material 10 it is possible to increase the degree of superheat of the refrigerant sucked into the compressor 1 while suppressing an increase in the temperature of the refrigerant flowing out from the heat exchanger functioning as an evaporator. it can.
  • FIG. 7 is a flowchart showing the flow of processing performed by the control device 90 of FIG. 1 for the flow path switching unit 20.
  • the process shown in FIG. 7 is called at regular time intervals by a main routine (not shown) that performs integrated control of the refrigeration cycle apparatus 100.
  • the step will be simply referred to as S.
  • the control device 90 determines in S101 whether the condition (specific condition) that the temperature T14 of the heat storage material 10 is equal to or higher than the reference temperature Tr1 is satisfied.
  • the control device 90 causes the amount of the refrigerant per unit time passing through the flow path FP1 to pass through the flow path FP2 in S102.
  • the flow path switching unit 20 is controlled so that the amount of refrigerant becomes greater than the amount of refrigerant per unit time, and the process is returned to the main routine.
  • the control device 90 When the temperature T14 of the heat storage material 10 is equal to or higher than the reference temperature Tr1 (YES in S101), the control device 90 accumulates in the heat storage material 10 heat capable of heating the refrigerant flowing out from the heat exchanger functioning as the evaporator.
  • the flow passage switching unit 20 is controlled so that the amount of the refrigerant passing through the flow passage FP2 per unit time is larger than the amount of the refrigerant passing through the flow passage FP1 per unit time, and the process is performed in the main routine. return.
  • the specific heat of the heat storage material 10 is preferably lower than the specific heat of water in order to shorten the time for the temperature T14 of the heat storage material 10 to reach the reference temperature Tr1.
  • the reference temperature Tr1 is a temperature indicating that heat capable of heating the refrigerant flowing out from the heat exchanger functioning as an evaporator is accumulated in the heat storage material 10, and can be appropriately calculated by an actual machine experiment or simulation.
  • FIG. 8 is a diagram showing a specific configuration of the flow path switching unit 20 of FIG.
  • the flow path switching unit 20 includes electromagnetic opening/closing valves 21 and 22.
  • the electromagnetic opening/closing valve 21 is provided in the flow path FP1.
  • the electromagnetic opening/closing valve 21 is open, the refrigerant can pass through the flow path FP1.
  • the electromagnetic opening/closing valve 21 is closed, the refrigerant cannot pass through the flow path FP1.
  • the electromagnetic opening/closing valve 22 is provided in the flow path FP2.
  • the electromagnetic opening/closing valve 22 When the electromagnetic opening/closing valve 22 is opened, the refrigerant can pass through the flow path FP2.
  • the electromagnetic opening/closing valve 22 is closed, the refrigerant cannot pass through the flow path FP2.
  • the controller 90 opens the electromagnetic opening/closing valve 21 and closes the electromagnetic opening/closing valve 22 in S102 of FIG. 7.
  • the control device 90 closes the electromagnetic opening/closing valve 21 and opens the electromagnetic opening/closing valve 22 in S103 of FIG. 7.
  • FIG. 9 is a diagram showing a specific configuration of a flow path switching unit 20A which is another example of the flow path switching unit 20 in FIG.
  • the flow path switching unit 20A includes electromagnetic expansion valves 21A and 22A.
  • the electromagnetic expansion valve 21A is provided in the flow path FP1.
  • the controller 90 adjusts the amount of the refrigerant per unit time passing through the flow path FP1 by adjusting the opening degree of the electromagnetic expansion valve 21A.
  • the electromagnetic expansion valve 22A is provided in the flow path FP2.
  • the controller 90 adjusts the amount of the refrigerant per unit time passing through the flow path FP2 by adjusting the opening degree of the electromagnetic expansion valve 22A.
  • the control device 90 adjusts the opening degree of each of the electromagnetic expansion valves 21A and 22A, so that the refrigerant passing through the flow path FP1 per unit time.
  • the flow rate ratio between the amount and the amount of refrigerant passing through the flow path FP2 per unit time is controlled.
  • the heat generated from the compressor 1 is used to heat the refrigerant via the heat storage material 10, so the energy efficiency of the refrigeration cycle apparatus is improved. Further, the heating of the refrigerant by the heat storage material 10 can increase the degree of superheat of the refrigerant drawn into the compressor 1 even in the heating operation and the low load cooling operation.
  • the amount of refrigerant dissolved in the lubricating oil of the compressor 1 decreases as the temperature of the refrigerant increases. Since the temperature of the refrigerant discharged from the compressor 1 also rises as the temperature of the refrigerant drawn into the compressor 1 rises, the amount of the refrigerant dissolved in the lubricating oil decreases. Since it is possible to suppress a decrease in the amount of the refrigerant circulating in the refrigeration cycle device due to the dissolution of the refrigerant in the lubricating oil, it is possible to reduce the amount of the refrigerant required for stable operation of the refrigeration cycle device.
  • the temperature of the heat storage material 10 may be lower than the temperature of the refrigerant flowing out from the heat exchanger functioning as the evaporator.
  • the refrigerant passes through the heat storage material 10 in such a case, the refrigerant is cooled by the heat storage material 10.
  • the refrigerant may condense into a liquid refrigerant (liquid refrigerant).
  • the refrigeration cycle apparatus 100 can return the refrigerant to the compressor 1 without passing through the heat storage material 10. As a result, the performance degradation of the compressor 1 can be suppressed.
  • the side surface of the compressor 1 covered by the heat storage material may be limited to the side surface portion around the motor in the compressor 1 that generates a large amount of heat, such as the heat storage material 10A shown in FIG. Further, the side surface of the compressor 1 covered by the heat storage material is limited to a portion around the flow path that guides the refrigerant from the flow path FP2 to the suction port Ps of the compressor 1 as in the heat storage material 10B shown in FIG. May be. By thus limiting the side surface on which the heat storage material is formed, the cost of the heat storage material can be reduced.
  • the refrigerant used in the refrigeration cycle device according to the first embodiment is such that the larger the degree of superheat of the refrigerant sucked into the compressor, the greater the theoretical COP (Coefficient of Performance) of the refrigeration cycle device is not lost.
  • R290 may be included.
  • the refrigeration cycle device including one outdoor unit and one indoor unit has been described.
  • the refrigeration cycle apparatus may be configured to include a plurality of indoor units or may be configured to include a plurality of outdoor units.
  • the refrigeration cycle device such as the room air conditioner or the package air conditioner capable of switching between the cooling operation and the heating operation has been described.
  • the refrigeration cycle apparatus may not have a flow path switching valve such as a four-way valve and may be configured only for cooling operation such as a refrigerator.
  • the refrigeration cycle device According to the refrigeration cycle device according to the first embodiment, it is possible to suppress the performance deterioration of the refrigeration cycle device while reducing the GWP.
  • Embodiment 2 a refrigeration cycle apparatus including an internal heat exchanger (third heat exchanger) will be described.
  • the refrigerant high-pressure side refrigerant
  • the refrigerant low-pressure side refrigerant
  • the degree of superheat of the refrigerant sucked into the compressor is further increased. Those who can do it are selected.
  • FIG. 12 is a functional block diagram showing the configuration of the refrigeration cycle device 200 according to the second embodiment.
  • the configuration of the refrigeration cycle apparatus 200 is that the internal heat exchanger 51 and the temperature sensor 19 are added to the refrigeration cycle apparatus 100 of FIG. 1, and the control device 90 is replaced with 92. Other than these, it is the same, and therefore the description will not be repeated.
  • the internal heat exchanger 51 is connected between the flow path FP1 and the suction port Ps of the compressor 1, and between the outdoor heat exchanger 3 and the electromagnetic expansion valve 31. It is connected.
  • the control device 92 acquires the temperature T19 of the refrigerant flowing between the internal heat exchanger 51 and the electromagnetic expansion valve 31 from the temperature sensor 19.
  • heat exchange is performed between the high pressure side refrigerant from the outdoor heat exchanger 3 functioning as a condenser and the low pressure side refrigerant from the flow path FP1.
  • the low pressure side refrigerant is heated by the high pressure side refrigerant.
  • FIG. 13 is a flowchart showing a flow of processing performed on the flow path switching unit 20 by the control device 92 of FIG. 12 in the cooling operation.
  • the process shown in FIG. 13 is called at regular time intervals by a main routine (not shown) that performs integrated control of the refrigeration cycle apparatus 200.
  • the flowchart shown in FIG. 13 is a flowchart in which S101 of the flowchart shown in FIG. 7 is replaced with S201.
  • the process shown in FIG. 7 is performed in the heating operation.
  • the control device 92 satisfies the condition (specific condition) that the temperature T14 is equal to or higher than the reference temperature Tr1 and the difference between the temperatures T11 and T19 is equal to or lower than the reference value Tdr2 in S201. It is determined whether to do.
  • the condition that the difference between the temperatures T11 and T19 is less than or equal to the reference value Tdr2 is a condition that indicates that the heat exchange amount in the internal heat exchanger 51 is smaller than the reference amount.
  • the reference value Tdr2 is appropriately calculated by an actual machine experiment or simulation.
  • control device 92 When temperature T14 is lower than reference temperature Tr1 or the difference between temperatures T11 and T19 is higher than reference value Tdr2 (NO in S201), control device 92 performs S102 similarly to the first embodiment to perform the process. Return to main routine. When temperature T14 is equal to or higher than reference temperature Tr1 and the difference between temperatures T11 and T19 is equal to or lower than reference value Tdr2 (YES in S201), control device 92 performs S103 similarly to the first embodiment to perform processing. Is returned to the main routine. In S201, the condition that the temperature T14 is equal to or higher than the reference temperature Tr1 or the difference between the temperatures T11 and T19 is equal to or lower than the reference value Tdr2 may be determined.
  • Modification of the second embodiment In the second embodiment, the case has been described where whether or not the heat exchange amount in the internal heat exchanger 51 is smaller than the reference amount is compared with the temperature difference and the reference value Tdr2.
  • the temperature difference serving as an index of the amount of heat exchange in the internal heat exchanger 51 may change depending on the operating environment of the refrigeration cycle device 200 (for example, the outdoor temperature T13).
  • the accuracy of determining whether or not the heat exchange amount in internal heat exchanger 51 is smaller than the reference amount is easily affected by the operating environment of refrigeration cycle apparatus 200.
  • whether the amount of heat exchange in the internal heat exchanger 51 is smaller than the reference amount or not is a temperature ratio or an enthalpy ratio that is difficult to change due to changes in the operating environment of the refrigeration cycle apparatus 200.
  • the accuracy of determining whether the heat exchange amount in the internal heat exchanger 51 is smaller than the reference amount is maintained regardless of the operating environment of the refrigeration cycle apparatus. be able to.
  • condition of T11-T19 ⁇ Tdr2 in S201 of FIG. 13 is changed to a condition related to temperature ratio or a condition related to enthalpy ratio.
  • the refrigeration cycle apparatus 200 of FIG. 13 will be described below as appropriate.
  • FIG. 14 is a ph diagram showing the relationship between the enthalpy, the pressure, and the temperature when the cooling operation is performed in the refrigeration cycle apparatus according to the modified example of the second embodiment.
  • the process from the states C21 to C22 shows the adiabatic compression process by the compressor 1.
  • the process from the state C22 to C25 represents the condensation process by the outdoor heat exchanger 3.
  • the process from state C25 to C26 represents the depressurization process by the electromagnetic expansion valve 31.
  • the process from state C26 to C21 represents the evaporation process by the indoor heat exchanger 4.
  • an isotherm of the outdoor temperature T13 is shown.
  • the temperature in the state C23 of the condensation process is the temperature T12 detected by the temperature sensor 12. Since the temperature of the single refrigerant R290 in the gas-liquid two-phase state is almost constant, the temperature of the state C24 of the condensation process on the saturated liquid line (the temperature of the saturated liquid) is the same temperature T12 as the state C23. The temperature in the state C25 is the temperature T19 detected by the temperature sensor 19.
  • the enthalpy ratio ⁇ h is set to the enthalpy h12 (first enthalpy) of the saturated liquid state C24 and the enthalpy h24 of the state C25 (first enthalpy) and the enthalpy h19 (second enthalpy) of the liquid refrigerant at the outdoor temperature T13.
  • the condition of T11-T19 ⁇ Tdr2 in S201 of FIG. 13 is replaced with the condition of ⁇ T ⁇ Rr1 or ⁇ h ⁇ Rr2 using the reference ratios Rr1 and Rr2. ..
  • a predetermined reference ratio for example, 0.8
  • the reference ratios Rr1 and Rr2 are appropriately calculated by actual machine experiments or simulations.
  • the reference ratios Rr1 and Rr2 may be the same.
  • the refrigeration cycle apparatus According to the refrigeration cycle apparatus according to the second embodiment and the first modification, even when the heating by the heat storage material cannot be performed in the cooling operation, the superheat degree of the refrigerant sucked into the compressor by the internal heat exchanger is increased. Can be raised. As a result, it is possible to further reduce the performance deterioration of the refrigeration cycle apparatus as compared with the first embodiment while reducing the GWP.
  • Embodiment 3 when the cooling operation is performed, of the heating of the refrigerant by the internal heat exchanger and the heating of the refrigerant by the heat storage material, the degree of superheat of the refrigerant sucked into the compressor is further increased. The case where the person who can do is selected is explained.
  • the third embodiment even in the heating operation, one of the heating of the refrigerant by the internal heat exchanger and the heating of the refrigerant by the heat storage material that can further increase the degree of superheat of the refrigerant sucked into the compressor is selected. The case will be described.
  • FIG. 15 is a functional block diagram showing the configuration of the refrigeration cycle device 300 according to the third embodiment.
  • the refrigeration cycle apparatus 300 has a configuration in which the electromagnetic expansion valve 32 (second pressure reducing apparatus) and the temperature sensor 19A are added to the refrigeration cycle apparatus 200 of FIG. 12, and the control device 92 is replaced with 93. Other than these, it is the same, and therefore the description will not be repeated.
  • the electromagnetic expansion valve 32 is connected between the outdoor heat exchanger 3 and the internal heat exchanger 51.
  • the control device 93 acquires the temperature T19A of the refrigerant flowing between the electromagnetic expansion valve 32 and the internal heat exchanger 51 from the temperature sensor 19A.
  • the controller 93 fully opens the electromagnetic expansion valve 32 that does not reduce the pressure of the refrigerant during the cooling operation, and controls the opening degree of the electromagnetic expansion valve 31.
  • the controller 93 fully opens the electromagnetic expansion valve 31 that does not reduce the pressure of the refrigerant during the heating operation, and controls the opening degree of the electromagnetic expansion valve 32.
  • FIG. 16 is a flowchart showing the flow of processing performed on the flow path switching unit 20 in the heating operation by the control device 93 of FIG.
  • the flowchart shown in FIG. 16 is a flowchart in which S201 in FIG. 13 is replaced with S301. Note that the processing shown in FIG. 13 is performed in the cooling operation.
  • the control device 93 satisfies the condition (specific condition) that the temperature T14 is equal to or higher than the reference temperature Tr1 and the difference between the temperatures T16 and T19A is equal to or lower than the reference value Tdr3 in S301. It is determined whether to do.
  • the condition that the difference between the temperatures T16 and T19A is the reference value Tdr3 or less is a condition that indicates that the heat exchange amount in the internal heat exchanger 51 is smaller than the reference amount.
  • the reference value Tdr3 can be appropriately calculated by an actual machine experiment or simulation.
  • control device 93 performs S102 similarly to the first embodiment to perform the process. Return to main routine.
  • control device 93 performs S103 similarly to the first embodiment. Is returned to the main routine.
  • the condition that the temperature T14 is equal to or higher than the reference temperature Tr1 or the difference between the temperatures T16 and T19A is equal to or lower than the reference value Tdr3 may be determined.
  • the condition regarding the temperature ratio or the condition regarding the enthalpy ratio may be used. In that case, temperatures T12, T13, and T19 in the modification of the second embodiment are replaced with temperatures T17, T18, and T19A, respectively.
  • Modification 1 of the third embodiment In the first modification of the third embodiment, a configuration in which a pressure loss is reduced by connecting a check valve in parallel to each of the two electromagnetic expansion valves will be described.
  • FIG. 17 is a functional block diagram showing the configuration of the refrigeration cycle apparatus 300A according to the first modification of the third embodiment.
  • the refrigeration cycle apparatus 300A has a configuration in which the check valves 61 and 62 are added to the refrigeration cycle apparatus 300 of FIG. 15 and the control device 93 is replaced with 93A. Other than these, it is the same, and therefore the description will not be repeated.
  • the check valve 61 is connected in parallel to the electromagnetic expansion valve 31 between the indoor heat exchanger 4 and the internal heat exchanger 51.
  • the forward direction of the check valve 61 is the direction from the indoor heat exchanger 4 to the internal heat exchanger 51.
  • the pressure loss when the refrigerant flows in the forward direction of the check valve 61 is smaller than the pressure loss when the refrigerant flows through the fully-opened electromagnetic expansion valve 31.
  • the check valve 62 is connected in parallel to the electromagnetic expansion valve 32 between the outdoor heat exchanger 3 and the internal heat exchanger 51.
  • the forward direction of the check valve 62 is the direction from the outdoor heat exchanger 3 to the internal heat exchanger 51.
  • the pressure loss when the refrigerant flows in the forward direction of the check valve 62 is smaller than the pressure loss when the refrigerant flows in the fully-opened electromagnetic expansion valve 32.
  • the control device 93A closes the electromagnetic expansion valve 32.
  • the refrigerant from the outdoor heat exchanger 3 passes through the check valve 62, the internal heat exchanger 51, and the electromagnetic expansion valve 31 in this order.
  • the control device 93A closes the electromagnetic expansion valve 31.
  • the refrigerant from the indoor heat exchanger 4 passes through the check valve 61, the internal heat exchanger 51, and the electromagnetic expansion valve 32 in this order.
  • the electromagnetic expansion valve that does not reduce the pressure of the refrigerant is closed, and the flow path is formed so that the refrigerant passes through the check valve with the smaller pressure loss. Performance deterioration due to pressure loss of the electromagnetic expansion valve can be suppressed.
  • the user can appropriately select the refrigeration cycle devices 300 and 300A in consideration of the cost increase and the performance improvement due to the addition of the two check valves.
  • Modification 2 of the third embodiment In the third embodiment and the first modification, in the internal heat exchanger 51, heat exchange is performed between the high pressure side refrigerant from the heat exchanger functioning as a condenser and the low pressure side refrigerant from the flow path FP1. The case was explained. In the second modification of the third embodiment, the case where the high-pressure side refrigerant is the refrigerant discharged from the compressor 1 will be described.
  • FIG. 18 is a functional block diagram showing a configuration of a refrigeration cycle apparatus 300B according to Modification 2 of Embodiment 3.
  • the configuration of the refrigeration cycle apparatus 300B is such that an internal heat exchanger 51B and a temperature sensor 19B are added in place of the internal heat exchanger 51 and the temperature sensor 19 of FIG. 12, the control device 92 is replaced by 93B, and the temperature sensor 11B and the electromagnetic sensor.
  • This is a configuration in which an expansion valve 32B is added. Other than these, it is the same, and therefore the description will not be repeated.
  • the internal heat exchanger 51B is connected between the flow path FP1 and the suction port Ps of the compressor 1.
  • the internal heat exchanger 51B and the electromagnetic expansion valve 32B are connected in series in this order between the discharge port Pd of the compressor 1 and the flow path between the outdoor heat exchanger 3 and the electromagnetic expansion valve 31.
  • heat is exchanged between the high pressure side refrigerant discharged from the compressor 1 and the low pressure side refrigerant from the flow path FP1, and the low pressure side refrigerant is heated by the high pressure side refrigerant.
  • the control device 93B controls the opening degree of the electromagnetic expansion valve 32B.
  • the controller 93B acquires the temperature T19B of the refrigerant flowing between the internal heat exchanger 51B and the electromagnetic expansion valve 32B from the temperature sensor 19B.
  • the control device 93B acquires the temperature T11B of the refrigerant passing through the discharge port Pd of the compressor 1 from the temperature sensor 11B.
  • the process flow for the flow path switching unit 20 performed in the cooling operation and the heating operation by the control device 93B is configured such that the temperatures T11, T19 and the reference value Tdr2 in FIG. 13 are replaced with the temperatures T11B, T19B and the reference value Tdr4, respectively.
  • the reference value Tdr4 is appropriately determined by an actual machine experiment or simulation.
  • the reference value Tdr4 may be the same as the reference value Tdr2.
  • the internal heat exchanger causes the compressor to operate.
  • the degree of superheat of the drawn refrigerant can be increased. As a result, it is possible to further suppress the performance deterioration of the refrigeration cycle apparatus as compared with the second embodiment while reducing the GWP.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

In a refrigeration cycle device (100) according to the present invention, a refrigerant containing R290 is circulated in a first circulation direction through a compressor (1), a first heat exchanger (3), a first pressure reduction device (31), and a second heat exchanger (4). The refrigeration cycle device (100) comprises a heat storage material (10) and a first flow path switching part (20). The heat storage material (10) is positioned around the compressor (1) and receives heat from the compressor (1). The first flow path switching part (20) can form a first flow path (FP1) and a second flow path (FP2) for leading the refrigerant from the second heat exchanger (4) to the compressor (1). When the first flow path (FP1) is formed, refrigerant flowing from the first flow path (FP1) reaches the compressor (1) without passing through the heat storage material (10). When the second flow path (FP2) is formed, refrigerant flowing from the second flow path (FP2) passes through the heat storage material (10) and then reaches the compressor (1).

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、圧縮機の周囲に蓄熱材が形成された冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle device in which a heat storage material is formed around a compressor.
 従来、圧縮機の周囲に蓄熱材が形成された冷凍サイクル装置が知られている。たとえば、国際公開第2013/065233号(特許文献1)には、圧縮機の周囲に蓄熱材が形成された冷凍サイクル装置が開示されている。当該冷凍サイクル装置では、除霜運転において、室外熱交換器からの冷媒を圧縮機の周囲に形成された蓄熱材を経由させて圧縮機の吸入口へ導く流路が形成される。当該冷凍サイクル装置によれば、除霜時間を短縮し、除霜運転による室温の低下を抑制して快適性を向上させることができる。 Conventionally, a refrigeration cycle device in which a heat storage material is formed around a compressor is known. For example, International Publication No. 2013/065233 (Patent Document 1) discloses a refrigeration cycle device in which a heat storage material is formed around a compressor. In the refrigeration cycle apparatus, in the defrosting operation, a flow path that guides the refrigerant from the outdoor heat exchanger to the suction port of the compressor via the heat storage material formed around the compressor is formed. According to the refrigeration cycle apparatus, it is possible to shorten the defrosting time, suppress a decrease in room temperature due to the defrosting operation, and improve comfort.
国際公開第2013/065233号International Publication No. 2013/065233
 近年、地球温暖化防止の観点から、GWP(地球温暖化係数:Global Warming Potential)のより低い冷媒が求められている。従来よりもGWPを低減可能な冷媒には、たとえばR290(プロパン)のように、圧縮機に吸入される冷媒の過熱度が大きいほど、冷凍サイクル装置の理論COP(Coefficient of Performance)が向上する冷媒がある。しかし、圧縮機に吸入される冷媒の過熱度を大きくするために蒸発器から流出する冷媒の温度を上昇させると、蒸発器の性能が低下することが知られている。 In recent years, from the perspective of preventing global warming, refrigerants with lower GWP (Global Warming Potential) have been demanded. For refrigerants that can reduce GWP more than before, such as R290 (propane), the refrigerant with which the superheat degree of the refrigerant drawn into the compressor increases, the theoretical COP (Coefficient of Performance) of the refrigeration cycle device improves. There is. However, it is known that if the temperature of the refrigerant flowing out of the evaporator is increased in order to increase the degree of superheat of the refrigerant drawn into the compressor, the performance of the evaporator is deteriorated.
 特許文献1においては、通常の暖房運転において蒸発器から流出する冷媒の温度を抑制することについては考慮されていない。特許文献1に開示されている冷凍サイクル装置にR290を使用した場合、冷凍サイクル装置の性能が低下し得る。 Patent Document 1 does not consider suppressing the temperature of the refrigerant flowing out of the evaporator during normal heating operation. When R290 is used for the refrigeration cycle device disclosed in Patent Document 1, the performance of the refrigeration cycle device may be reduced.
 本発明は、上述のような課題を解決するためになされたものであり、その目的は、GWPを低減しながら、冷凍サイクル装置の性能低下を抑制することである。 The present invention has been made to solve the above problems, and an object thereof is to suppress performance deterioration of a refrigeration cycle apparatus while reducing GWP.
 本発明に係る冷凍サイクル装置においては、R290を含む冷媒が圧縮機、第1熱交換器、第1減圧装置、および第2熱交換器の第1循環方向に循環する。冷凍サイクル装置は、蓄熱材と、第1流路切替部とを備える。蓄熱材は、圧縮機の周囲に配置され、圧縮機からの熱を受ける。第1流路切替部は、第2熱交換器からの冷媒を圧縮機に導くための、第1流路および第2流路を形成可能である。第1流路が形成されている場合、第1流路から流出する冷媒は、蓄熱材を経由せずに圧縮機に至る。第2流路が形成されている場合、第2流路から流出する冷媒は、蓄熱材を経由して圧縮機に至る。 In the refrigeration cycle device according to the present invention, the refrigerant containing R290 circulates in the first circulation direction of the compressor, the first heat exchanger, the first pressure reducing device, and the second heat exchanger. The refrigeration cycle device includes a heat storage material and a first flow path switching unit. The heat storage material is arranged around the compressor and receives heat from the compressor. The first flow path switching unit can form a first flow path and a second flow path for guiding the refrigerant from the second heat exchanger to the compressor. When the first flow path is formed, the refrigerant flowing out from the first flow path reaches the compressor without passing through the heat storage material. When the second flow path is formed, the refrigerant flowing out from the second flow path reaches the compressor via the heat storage material.
 本発明に係る冷凍サイクル装置によれば、R290を含む冷媒が使用されるとともに、第2熱交換器からの冷媒が蓄熱材を経由して圧縮機に至るように流路を形成可能なため、GWPを低減しながら、冷凍サイクル装置の性能低下を抑制することができる。 According to the refrigeration cycle apparatus of the present invention, the refrigerant containing R290 is used, and the flow path can be formed so that the refrigerant from the second heat exchanger reaches the compressor via the heat storage material. It is possible to suppress the performance deterioration of the refrigeration cycle device while reducing the GWP.
実施の形態1に係る冷凍サイクル装置の構成を示す機能ブロック図である。FIG. 3 is a functional block diagram showing the configuration of the refrigeration cycle device according to the first embodiment. 図1の蓄熱材を圧縮機1の側面の法線方向から平面視した図である。It is the figure which planarly viewed the heat storage material of FIG. 1 from the normal direction of the side surface of the compressor 1. 図1の蓄熱材の内部に形成された流路の一例を示す図である。It is a figure which shows an example of the flow path formed in the inside of the heat storage material of FIG. 図1の蓄熱材の内部に形成された流路の多の例を示す図である。It is a figure which shows many examples of the flow path formed inside the heat storage material of FIG. 圧縮機に吸入される冷媒の過熱度と理論COPとの関係を示す図である。It is a figure which shows the relationship between the superheat degree of the refrigerant suck|inhaled by the compressor, and theoretical COP. 比較例に係る冷凍サイクル装置の低負荷での冷房運転におけるエンタルピ、圧力、および温度の関係を示すp-h線図である。FIG. 9 is a ph diagram showing the relationship between enthalpy, pressure, and temperature in a cooling operation under a low load of the refrigeration cycle apparatus according to the comparative example. 図1の制御装置によって行なわれる流路切替部に対する処理の流れを示すフローチャートである。6 is a flowchart showing a flow of processing performed on the flow path switching unit by the control device of FIG. 1. 図1の流路切替部の具体的な構成を示す図である。It is a figure which shows the concrete structure of the flow-path switching part of FIG. 図1の流路切替部の他の例の具体的な構成を示す図である。It is a figure which shows the concrete structure of the other example of the flow-path switching part of FIG. 図1の蓄熱材の一例を示す図である。It is a figure which shows an example of the heat storage material of FIG. 図1の蓄熱材の他の例を示す図である。It is a figure which shows the other example of the heat storage material of FIG. 実施の形態2に係る冷凍サイクル装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 2. 図12の制御装置によって冷房運転において行なわれる流路切換部に対する処理の流れを示すフローチャートである。13 is a flowchart showing a flow of processing performed on the flow path switching unit by the control device of FIG. 12 in a cooling operation. 実施の形態2の変形例に係る冷凍サイクル装置において冷房運転が行なわれている場合のエンタルピ、圧力、および温度の関係を示すp-h線図である。FIG. 13 is a ph diagram showing the relationship between enthalpy, pressure, and temperature when the cooling operation is performed in the refrigeration cycle device according to the modification of the second embodiment. 実施の形態3に係る冷凍サイクル装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on Embodiment 3. 図15の制御装置によって暖房運転において行なわれる流路切換部に対する処理の流れを示すフローチャートである。16 is a flowchart showing the flow of processing performed by the control device of FIG. 15 on the flow path switching unit during heating operation. 実施の形態3の変形例1に係る冷凍サイクル装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on the modification 1 of Embodiment 3. 実施の形態3の変形例2に係る冷凍サイクル装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the refrigerating-cycle apparatus which concerns on the modification 2 of Embodiment 3.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts will be denoted by the same reference symbols and description thereof will not be repeated in principle.
 実施の形態1.
 図1は、実施の形態1に係る冷凍サイクル装置100の構成を示す機能ブロック図である。図1に示されるように、冷凍サイクル装置100は、室外機110と、室内機120とを備える。室外機110は、圧縮機1と、四方弁2(第2流路切替部)と、室外熱交換器3(第1熱交換器)と、電磁膨張弁31(第1減圧装置)と、流路切替部20(第1流路切替部)と、室外ファン41と、制御装置90と、温度センサ11~15とを含む。室内機120は、室内熱交換器4(第2熱交換器)と、室内ファン42と、温度センサ16~18とを含む。制御装置90は、室内機120に含まれていてもよいし、室外機110および室内機120とは別個に設けられていてもよい。
Embodiment 1.
FIG. 1 is a functional block diagram showing the configuration of the refrigeration cycle device 100 according to the first embodiment. As shown in FIG. 1, the refrigeration cycle apparatus 100 includes an outdoor unit 110 and an indoor unit 120. The outdoor unit 110 includes a compressor 1, a four-way valve 2 (second flow path switching unit), an outdoor heat exchanger 3 (first heat exchanger), an electromagnetic expansion valve 31 (first pressure reducing device), and a flow path. The path switching unit 20 (first flow path switching unit), the outdoor fan 41, the control device 90, and the temperature sensors 11 to 15 are included. The indoor unit 120 includes the indoor heat exchanger 4 (second heat exchanger), the indoor fan 42, and the temperature sensors 16-18. The control device 90 may be included in the indoor unit 120, or may be provided separately from the outdoor unit 110 and the indoor unit 120.
 冷凍サイクル装置100は、室内機120が配置されている空間に対して冷房運転および暖房運転が可能である。冷凍サイクル装置100においては、冷媒としてR290が使用される。 The refrigeration cycle apparatus 100 can perform cooling operation and heating operation on the space in which the indoor unit 120 is arranged. In the refrigeration cycle device 100, R290 is used as a refrigerant.
 冷房運転において四方弁2は、圧縮機1の吐出口Pdと室外熱交換器3とを連通させるとともに、室内熱交換器4と流路切替部20とを連通させる。冷房運転において冷媒は、圧縮機1の吐出口Pd、四方弁2、室外熱交換器3、電磁膨張弁31、室内熱交換器4、四方弁2、流路切替部20、および圧縮機1の吸入口Psの順に循環する。 During cooling operation, the four-way valve 2 connects the discharge port Pd of the compressor 1 with the outdoor heat exchanger 3 and also connects the indoor heat exchanger 4 with the flow path switching unit 20. In the cooling operation, the refrigerant is discharged from the discharge port Pd of the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the electromagnetic expansion valve 31, the indoor heat exchanger 4, the four-way valve 2, the flow path switching unit 20, and the compressor 1. It circulates in the order of the suction port Ps.
 暖房運転において四方弁2は、圧縮機1の吐出口Pdと室内熱交換器4とを連通させるとともに、室外熱交換器3と流路切替部20とを連通させる。暖房運転において冷媒は、圧縮機1の吐出口Pd、四方弁2、室内熱交換器4、電磁膨張弁31、室外熱交換器3、四方弁2、流路切替部20、および圧縮機1の吸入口Psの順に循環する。 During heating operation, the four-way valve 2 connects the discharge port Pd of the compressor 1 with the indoor heat exchanger 4, and also connects the outdoor heat exchanger 3 with the flow path switching unit 20. In the heating operation, the refrigerant is discharged from the discharge port Pd of the compressor 1, the four-way valve 2, the indoor heat exchanger 4, the electromagnetic expansion valve 31, the outdoor heat exchanger 3, the four-way valve 2, the flow path switching unit 20, and the compressor 1. It circulates in the order of the suction port Ps.
 図1とともに図2も併せて参照しながら、圧縮機1の周囲には、圧縮機1からの熱を受ける蓄熱材10が配置されている。蓄熱材10は、吸入口Psが形成されている部分を除いて、圧縮機1の側面を覆っている。圧縮機1と蓄熱材10との間には、蓄熱材10と冷媒との熱交換を促進するため、熱伝導性の高い、金属、グリス、あるいはジェル状シート等が設けられてもよい。蓄熱材10の外周部をベルト等で締めて圧縮機1に密着させることによって、蓄熱材10と冷媒との熱交換を促進してもよい。 Referring to FIG. 2 together with FIG. 1, a heat storage material 10 that receives heat from the compressor 1 is arranged around the compressor 1. The heat storage material 10 covers the side surface of the compressor 1 except for the portion where the suction port Ps is formed. Between the compressor 1 and the heat storage material 10, in order to promote heat exchange between the heat storage material 10 and the refrigerant, a metal, grease, gel sheet or the like having high thermal conductivity may be provided. The heat exchange between the heat storage material 10 and the refrigerant may be promoted by tightening the outer peripheral portion of the heat storage material 10 with a belt or the like and bringing the heat storage material 10 into close contact with the compressor 1.
 流路切替部20は、流路FP1(第1流路)および流路FP2(第2流路)を形成可能である。流路FP1およびFP2の少なくとも一方は開放されている。流路FP1から流出する冷媒は、蓄熱材10を経由せずに圧縮機1の吸入口Psに至る。流路FP2から流出する冷媒は、蓄熱材10を経由して圧縮機1の吸入口Psに至る。蓄熱材10内の流路は、図3に示されるように蛇行するように形成されてもよいし、図4に示されるように複数の流路が並列に形成されてもよい。 The flow path switching unit 20 can form a flow path FP1 (first flow path) and a flow path FP2 (second flow path). At least one of the flow paths FP1 and FP2 is open. The refrigerant flowing out of the flow path FP1 reaches the suction port Ps of the compressor 1 without passing through the heat storage material 10. The refrigerant flowing out of the flow path FP2 reaches the suction port Ps of the compressor 1 via the heat storage material 10. The flow paths in the heat storage material 10 may be formed so as to meander as shown in FIG. 3, or a plurality of flow paths may be formed in parallel as shown in FIG.
 再び図1を参照しながら、制御装置90は、室外熱交換器3と電磁膨張弁31との間を流れる冷媒の温度T11を温度センサ11から取得する。制御装置90は、室外熱交換器3を流れる冷媒の温度T12を室外熱交換器3の中間部に設置された温度センサ12から取得する。制御装置90は、室外機110が配置されている室外空間の温度T13を温度センサ13から取得する。 Referring again to FIG. 1, the control device 90 acquires from the temperature sensor 11 the temperature T11 of the refrigerant flowing between the outdoor heat exchanger 3 and the electromagnetic expansion valve 31. The control device 90 acquires the temperature T12 of the refrigerant flowing through the outdoor heat exchanger 3 from the temperature sensor 12 installed in the middle portion of the outdoor heat exchanger 3. The control device 90 acquires the temperature T13 of the outdoor space in which the outdoor unit 110 is arranged from the temperature sensor 13.
 制御装置90は、蓄熱材10の温度T14を温度センサ14から取得する。蓄熱材10が加熱されると蓄熱材10の内部で対流が生じ、密度が小さい高温の流体が蓄熱材10の上部に集まる。後に説明するように、温度センサ14によって計測される温度T14は、蓄熱材10による加熱が可能かどうかの判定に用いられる。温度センサ14が蓄熱材10の上部に設置されると、蓄熱材10全体としては十分な熱が蓄積されていないにも関わらず、蓄熱材10による加熱が可能と判定され得る。そのため、温度センサ14によって測定される温度は、できるだけ低温の流体が集まる蓄熱材10の部分の温度であることが好ましい。温度センサ14は、蓄熱材10の上部から蓄熱材の高さの1/3以下の位置に設置されることが好ましい。温度センサ14は、蓄熱材10の上部から蓄熱材の高さの1/2以下の位置に設置されることがさらに好ましい。 The control device 90 acquires the temperature T14 of the heat storage material 10 from the temperature sensor 14. When the heat storage material 10 is heated, convection occurs inside the heat storage material 10, and a high-temperature fluid having a low density gathers at the top of the heat storage material 10. As described later, the temperature T14 measured by the temperature sensor 14 is used to determine whether heating by the heat storage material 10 is possible. When the temperature sensor 14 is installed above the heat storage material 10, it can be determined that heating by the heat storage material 10 is possible, although the heat storage material 10 as a whole does not store sufficient heat. Therefore, the temperature measured by the temperature sensor 14 is preferably the temperature of the portion of the heat storage material 10 where the fluid having the lowest temperature can be collected. The temperature sensor 14 is preferably installed at a position that is ⅓ or less of the height of the heat storage material 10 from the top of the heat storage material 10. It is more preferable that the temperature sensor 14 is installed at a position that is ½ or less of the height of the heat storage material 10 from the top of the heat storage material 10.
 冷媒は、蓄熱材10の内部に形成された流路を通過する。そのため、温度センサ14は、蓄熱材10の内部の温度を直接計測可能であることが好ましい。蓄熱材10の内部の温度を直接計測することが困難な場合には、熱伝導率の高い物体(たとえば棒状の金属)の一方端が蓄熱材10の外部に露出するように当該物体の他方端を蓄熱材10の内部に挿入し、当該物体の一方端の温度を温度センサ14によって計測してもよい。 The refrigerant passes through the flow path formed inside the heat storage material 10. Therefore, it is preferable that the temperature sensor 14 be able to directly measure the temperature inside the heat storage material 10. When it is difficult to directly measure the temperature inside the heat storage material 10, the other end of the object having a high thermal conductivity (for example, a rod-shaped metal) is exposed to the outside of the heat storage material 10. May be inserted into the heat storage material 10, and the temperature of the one end of the object may be measured by the temperature sensor 14.
 制御装置90は、吸入口Psを通過する冷媒の温度T15を温度センサ15から取得する。制御装置90は、室内熱交換器4と電磁膨張弁31との間を流れる冷媒の温度T16を温度センサ16から取得する。制御装置90は、室内熱交換器4を通過する冷媒の温度T17を室内熱交換器4の中間部に設置された温度センサ17から取得する。制御装置90は、室内機120が配置されている室内空間の室内温度T18を温度センサ18から取得する。 The control device 90 acquires the temperature T15 of the refrigerant passing through the suction port Ps from the temperature sensor 15. The control device 90 acquires the temperature T16 of the refrigerant flowing between the indoor heat exchanger 4 and the electromagnetic expansion valve 31 from the temperature sensor 16. The control device 90 acquires the temperature T17 of the refrigerant passing through the indoor heat exchanger 4 from the temperature sensor 17 installed in the middle portion of the indoor heat exchanger 4. The control device 90 acquires the indoor temperature T18 of the indoor space in which the indoor unit 120 is arranged from the temperature sensor 18.
 制御装置90は、圧縮機1の駆動周波数を制御することにより、室内温度T18が目標温度(たとえばユーザによって設定された温度)となるように圧縮機1が単位時間あたりに吐出する冷媒量を制御する。制御装置90は、四方弁2を制御して、冷媒の循環方向を切り替える。制御装置90は、流路切替部20を制御して、流路FP1および流路FP2各々を単位時間当たりに通過する冷媒量を調節する。 The control device 90 controls the drive frequency of the compressor 1 to control the amount of refrigerant that the compressor 1 discharges per unit time so that the indoor temperature T18 reaches a target temperature (for example, a temperature set by the user). To do. The control device 90 controls the four-way valve 2 to switch the circulation direction of the refrigerant. The controller 90 controls the flow passage switching unit 20 to adjust the amount of refrigerant passing through each of the flow passages FP1 and FP2 per unit time.
 制御装置90は、圧縮機1に吸入される冷媒の過熱度、および凝縮器として機能する熱交換器から流出する冷媒の過冷却度の一方あるいは両方が所望の範囲の値となるように電磁膨張弁31の開度を制御する。凝縮器として機能する熱交換器は、冷房運転においては室外熱交換器3であり、暖房運転においては室内熱交換器4である。 The control device 90 electromagnetically expands so that one or both of the degree of superheat of the refrigerant sucked into the compressor 1 and the degree of supercooling of the refrigerant flowing out of the heat exchanger functioning as a condenser have a value within a desired range. The opening degree of the valve 31 is controlled. The heat exchanger functioning as a condenser is the outdoor heat exchanger 3 in the cooling operation and the indoor heat exchanger 4 in the heating operation.
 たとえば、圧縮機1に吸入される冷媒の過熱度を所望の範囲の値とする場合、圧縮機1に吸入される冷媒の温度T15と蒸発器として機能する熱交換器を流れる温度(温度T12またはT17)との温度差に基づいて電磁膨張弁31の開度を制御する。蒸発器として機能する熱交換器は、冷房運転においては室内熱交換器4であり、暖房運転においては室外熱交換器3である。凝縮器として機能する熱交換器から流出する冷媒の過冷却度を所望の範囲の値とする場合、凝縮器として機能する熱交換器を流れる冷媒の温度(温度T12またはT17)と当該熱交換器から流出する冷媒の温度(温度T11またはT16)との温度差に基づいて電磁膨張弁31の開度を制御する。 For example, when the superheat degree of the refrigerant sucked into the compressor 1 is set to a value in a desired range, the temperature T15 of the refrigerant sucked into the compressor 1 and the temperature (temperature T12 or T12) flowing through the heat exchanger functioning as an evaporator. The opening degree of the electromagnetic expansion valve 31 is controlled based on the temperature difference from T17). The heat exchanger functioning as an evaporator is the indoor heat exchanger 4 in the cooling operation and the outdoor heat exchanger 3 in the heating operation. When the degree of supercooling of the refrigerant flowing out from the heat exchanger functioning as the condenser is set to a value within a desired range, the temperature of the refrigerant flowing through the heat exchanger functioning as the condenser (temperature T12 or T17) and the heat exchanger concerned. The opening degree of the electromagnetic expansion valve 31 is controlled based on the temperature difference from the temperature (temperature T11 or T16) of the refrigerant flowing out from the.
 制御装置90は、室外ファン41および室内ファン42の単位時間当たりの送風量を制御する。室外ファン41に関しては、室内の目標温度と室内温度T18との温度差から自動的に設定される運転モード(たとえば高速回転の定格モードあるいは低速回転の中間モード)に応じて、各運転モードに対して予め設定された回転速度でファンが駆動される。室内ファン42に関しては、ユーザによる設定(たとえば弱風モードあるいは強風モード)に応じた回転速度でファンが駆動される。なお、室内ファン42に関しても、たとえばユーザによって自動モードが選択された場合等、制御装置90による自動的なファンの回転速度の変更が許容される場合には、室外ファンと同様にファンが駆動されてもよい。 The control device 90 controls the amount of air blown by the outdoor fan 41 and the indoor fan 42 per unit time. Regarding the outdoor fan 41, according to an operation mode (for example, a rated mode of high-speed rotation or an intermediate mode of low-speed rotation) that is automatically set from the temperature difference between the indoor target temperature and the indoor temperature T18, for each operation mode, The fan is driven at a preset rotational speed. As for the indoor fan 42, the fan is driven at a rotation speed according to a setting (for example, a weak wind mode or a strong wind mode) by the user. Regarding the indoor fan 42 as well, when the controller 90 allows automatic change of the rotation speed of the fan, for example, when the user selects the automatic mode, the fan is driven in the same manner as the outdoor fan. May be.
 なお、圧縮機1の吐出口Pdを通過する冷媒の温度を検出する温度センサを設置してもよい。当該温度センサの検出結果と予め設定されている目標吐出温度との温度差に基づいて、圧縮機1の駆動周波数、室外ファン41および室内ファン42各々の単位時間当たりの送風量、および電磁膨張弁31の開度が制御されてもよい。 A temperature sensor that detects the temperature of the refrigerant passing through the discharge port Pd of the compressor 1 may be installed. Based on the temperature difference between the detection result of the temperature sensor and the preset target discharge temperature, the drive frequency of the compressor 1, the amount of air blown per unit time by the outdoor fan 41 and the indoor fan 42, and the electromagnetic expansion valve. The opening degree of 31 may be controlled.
 近年、地球温暖化防止の観点から、GWP(地球温暖化係数:Global Warming Potential)のより低い冷媒が求められている。従来から使用されていた冷媒(たとえばR410A)よりもGWPを低減可能な冷媒には、たとえばR32あるいはR290を挙げることができる。 In recent years, from the perspective of preventing global warming, refrigerants with lower GWP (Global Warming Potential) have been demanded. Examples of the refrigerant that can reduce the GWP more than the conventionally used refrigerant (for example, R410A) include R32 or R290.
 R32は、動作圧力が高いため、比較的小型の圧縮機によっても冷凍サイクル装置の冷凍効果を高めることができる。また、R32は、毒性を有さない。しかし、R32のGWPは、F-gas規制あるいはモントリオール議定書の規制値に対しては不十分である。一方、R290のGWPは、R32のGWPよりも低い。R290は、これらの規制に対して有効な冷媒の一つとして知られている。 Since R32 has a high operating pressure, the refrigeration effect of the refrigeration cycle device can be enhanced even with a relatively small compressor. In addition, R32 has no toxicity. However, the GWP of R32 is insufficient for the F-gas regulation or the regulation value of the Montreal Protocol. On the other hand, the GWP of R290 is lower than the GWP of R32. R290 is known as one of the effective refrigerants for these regulations.
 R290には、R32およびR410Aと異なり、圧縮機に吸入される冷媒の過熱度が大きいほど冷凍サイクル装置の理論COP(Coefficient of Performance)が大きいという特性を有する(図5参照)。しかし、圧縮機に吸入される冷媒の過熱度を大きくするために蒸発器として機能する熱交換器から流出する冷媒の温度を上昇させると、当該熱交換器の性能が低下することが知られている。 Unlike R32 and R410A, R290 has the characteristic that the greater the degree of superheat of the refrigerant sucked into the compressor, the greater the theoretical COP (Coefficient of Performance) of the refrigeration cycle device (see Fig. 5). However, it is known that when the temperature of the refrigerant flowing out of the heat exchanger functioning as the evaporator is increased in order to increase the degree of superheat of the refrigerant sucked into the compressor, the performance of the heat exchanger is deteriorated. There is.
 また、凝縮器として機能する熱交換器から流出する冷媒の温度と蒸発器として機能する熱交換器から流出する冷媒の温度との温度差がほとんどない場合、圧縮機に吸入される冷媒の過熱度を確保し難くなる。このような状況は、たとえば低負荷での冷房運転に生じ得る。 Further, when there is almost no temperature difference between the temperature of the refrigerant flowing out of the heat exchanger functioning as the condenser and the temperature of the refrigerant flowing out of the heat exchanger functioning as the evaporator, the degree of superheat of the refrigerant drawn into the compressor. Becomes difficult to secure. Such a situation may occur, for example, in a cooling operation at a low load.
 図6は、比較例に係る冷凍サイクル装置の低負荷での冷房運転におけるエンタルピ、圧力、および温度の関係を示すp-h線図である。図6において、曲線LC,GCは、それぞれ飽和液線、および飽和蒸気線を表す。飽和液線および飽和蒸気線は、臨界点CPにおいて接続されている。後に説明する図14においても同様である。状態C1からC2の過程は、圧縮機による断熱圧縮過程を示す。状態C2からC3への過程は、凝縮器として機能する熱交換器による凝縮過程を表す。状態C3からC4への過程は、膨張弁による減圧過程を表す。状態C4からC1への過程は、蒸発器として機能する熱交換器による蒸発過程を表す。図6には、室外温度T1の等温線が示されている。 FIG. 6 is a ph diagram showing the relationship between the enthalpy, the pressure, and the temperature in the cooling operation of the refrigeration cycle apparatus according to the comparative example at a low load. In FIG. 6, curves LC and GC represent a saturated liquid line and a saturated vapor line, respectively. The saturated liquid line and the saturated vapor line are connected at the critical point CP. The same applies to FIG. 14 described later. The process from the states C1 to C2 shows the adiabatic compression process by the compressor. The process from state C2 to C3 represents the condensation process with the heat exchanger functioning as a condenser. The process from the state C3 to C4 represents the depressurization process by the expansion valve. The process from state C4 to C1 represents the evaporation process by the heat exchanger functioning as an evaporator. FIG. 6 shows an isotherm of the outdoor temperature T1.
 図6に示されるように、凝縮器として機能する熱交換器から流出する冷媒の状態を表す状態C3の温度が室外温度T1に近い場合、減圧過程、および蒸発過程を経て圧縮機に吸入される冷媒の状態を表す状態C1は、室外温度T1の等温線上の状態となり得る。低負荷の冷房運転においては、圧縮機に吸入される冷媒の過熱度が想定よりも小さくなり得る。 As shown in FIG. 6, when the temperature of the state C3 representing the state of the refrigerant flowing out of the heat exchanger functioning as the condenser is close to the outdoor temperature T1, the refrigerant is sucked into the compressor through the depressurization process and the evaporation process. The state C1 representing the state of the refrigerant may be on the isotherm of the outdoor temperature T1. In the low load cooling operation, the degree of superheat of the refrigerant drawn into the compressor may be lower than expected.
 そこで、冷凍サイクル装置100においては、圧縮機1に発生した熱を蓄熱材10に蓄積し、冷媒が当該蓄熱材10を経由して圧縮機1に吸入されるように流路FP2を形成する。蓄熱材10に蓄積された熱を利用することによって、蒸発器として機能する熱交換器から流出する冷媒の温度の上昇を抑制しながら、圧縮機1に吸入される冷媒の過熱度を高めることができる。その結果、蒸発器として機能する熱交換器の性能低下を抑制しながら、GWPを低減するためにR290が使用される冷凍サイクル装置100の理論COPを向上させることができる。 Therefore, in the refrigeration cycle apparatus 100, the heat generated in the compressor 1 is stored in the heat storage material 10, and the flow path FP2 is formed so that the refrigerant is sucked into the compressor 1 via the heat storage material 10. By using the heat accumulated in the heat storage material 10, it is possible to increase the degree of superheat of the refrigerant sucked into the compressor 1 while suppressing an increase in the temperature of the refrigerant flowing out from the heat exchanger functioning as an evaporator. it can. As a result, it is possible to improve the theoretical COP of the refrigeration cycle apparatus 100 in which the R290 is used to reduce the GWP while suppressing the performance degradation of the heat exchanger that functions as the evaporator.
 図7は、図1の制御装置90によって行なわれる流路切替部20に対する処理の流れを示すフローチャートである。図7に示される処理は、冷凍サイクル装置100の統合的な制御を行なう不図示のメインルーチンによって一定時間間隔毎に呼び出される。なお、以下ではステップを単にSと記載する。 FIG. 7 is a flowchart showing the flow of processing performed by the control device 90 of FIG. 1 for the flow path switching unit 20. The process shown in FIG. 7 is called at regular time intervals by a main routine (not shown) that performs integrated control of the refrigeration cycle apparatus 100. In the following, the step will be simply referred to as S.
 制御装置90は、S101において蓄熱材10の温度T14が基準温度Tr1以上であるという条件(特定条件)が成立するか否かを判定する。蓄熱材10の温度T14が基準温度Tr1(たとえば30°)より小さい場合(S101においてNO)、制御装置90は、S102において流路FP1を通過する単位時間当たりの冷媒量が流路FP2を通過する単位時間当たりの冷媒量よりも多くなるように流路切替部20を制御して処理をメインルーチンに返す。蓄熱材10の温度T14が基準温度Tr1以上である場合(S101においてYES)、制御装置90は、蒸発器として機能する熱交換器から流出する冷媒を加熱可能な熱が蓄熱材10に蓄積されているとして、S103において流路FP2を通過する単位時間当たりの冷媒量が流路FP1を通過する単位時間当たりの冷媒量よりも多くなるように流路切替部20を制御して処理をメインルーチンに返す。 The control device 90 determines in S101 whether the condition (specific condition) that the temperature T14 of the heat storage material 10 is equal to or higher than the reference temperature Tr1 is satisfied. When the temperature T14 of the heat storage material 10 is lower than the reference temperature Tr1 (for example, 30°) (NO in S101), the control device 90 causes the amount of the refrigerant per unit time passing through the flow path FP1 to pass through the flow path FP2 in S102. The flow path switching unit 20 is controlled so that the amount of refrigerant becomes greater than the amount of refrigerant per unit time, and the process is returned to the main routine. When the temperature T14 of the heat storage material 10 is equal to or higher than the reference temperature Tr1 (YES in S101), the control device 90 accumulates in the heat storage material 10 heat capable of heating the refrigerant flowing out from the heat exchanger functioning as the evaporator. In step S103, the flow passage switching unit 20 is controlled so that the amount of the refrigerant passing through the flow passage FP2 per unit time is larger than the amount of the refrigerant passing through the flow passage FP1 per unit time, and the process is performed in the main routine. return.
 なお、蓄熱材10の温度T14が基準温度Tr1に達する時間を短縮するため、蓄熱材10の比熱は、水の比熱よりも低いことが好ましい。基準温度Tr1は、蒸発器として機能する熱交換器から流出する冷媒を加熱可能な熱が蓄熱材10に蓄積されていることを示す温度であり、実機実験あるいはシミュレーションによって適宜算出することができる。 Note that the specific heat of the heat storage material 10 is preferably lower than the specific heat of water in order to shorten the time for the temperature T14 of the heat storage material 10 to reach the reference temperature Tr1. The reference temperature Tr1 is a temperature indicating that heat capable of heating the refrigerant flowing out from the heat exchanger functioning as an evaporator is accumulated in the heat storage material 10, and can be appropriately calculated by an actual machine experiment or simulation.
 図8は、図1の流路切替部20の具体的な構成を示す図である。図8に示されるように、流路切替部20は、電磁開閉弁21および22を含む。電磁開閉弁21は、流路FP1に設けられている。電磁開閉弁21が開放されている場合、冷媒は流路FP1を通過することができる。電磁開閉弁21が閉止されている場合、冷媒は流路FP1を通過することができない。電磁開閉弁22は、流路FP2に設けられている。電磁開閉弁22が開放されている場合、冷媒は流路FP2を通過することができる。電磁開閉弁22が閉止されている場合、冷媒は流路FP2を通過することができない。制御装置90は、図7のS102において電磁開閉弁21を開放するとともに、電磁開閉弁22を閉止する。制御装置90は、図7のS103において電磁開閉弁21を閉止するとともに、電磁開閉弁22を開放する。 FIG. 8 is a diagram showing a specific configuration of the flow path switching unit 20 of FIG. As shown in FIG. 8, the flow path switching unit 20 includes electromagnetic opening/ closing valves 21 and 22. The electromagnetic opening/closing valve 21 is provided in the flow path FP1. When the electromagnetic opening/closing valve 21 is open, the refrigerant can pass through the flow path FP1. When the electromagnetic opening/closing valve 21 is closed, the refrigerant cannot pass through the flow path FP1. The electromagnetic opening/closing valve 22 is provided in the flow path FP2. When the electromagnetic opening/closing valve 22 is opened, the refrigerant can pass through the flow path FP2. When the electromagnetic opening/closing valve 22 is closed, the refrigerant cannot pass through the flow path FP2. The controller 90 opens the electromagnetic opening/closing valve 21 and closes the electromagnetic opening/closing valve 22 in S102 of FIG. 7. The control device 90 closes the electromagnetic opening/closing valve 21 and opens the electromagnetic opening/closing valve 22 in S103 of FIG. 7.
 図9は、図1の流路切替部20の他の例である流路切替部20Aの具体的な構成を示す図である。図9に示されるように、流路切替部20Aは、電磁膨張弁21Aおよび22Aを含む。電磁膨張弁21Aは、流路FP1に設けられている。制御装置90は、電磁膨張弁21Aの開度を調節することにより、流路FP1を通過する単位時間当たりの冷媒量を調節する。電磁膨張弁22Aは、流路FP2に設けられている。制御装置90は、電磁膨張弁22Aの開度を調節することにより、流路FP2を通過する単位時間当たりの冷媒量を調節する。 FIG. 9 is a diagram showing a specific configuration of a flow path switching unit 20A which is another example of the flow path switching unit 20 in FIG. As shown in FIG. 9, the flow path switching unit 20A includes electromagnetic expansion valves 21A and 22A. The electromagnetic expansion valve 21A is provided in the flow path FP1. The controller 90 adjusts the amount of the refrigerant per unit time passing through the flow path FP1 by adjusting the opening degree of the electromagnetic expansion valve 21A. The electromagnetic expansion valve 22A is provided in the flow path FP2. The controller 90 adjusts the amount of the refrigerant per unit time passing through the flow path FP2 by adjusting the opening degree of the electromagnetic expansion valve 22A.
 図1の流路切替部20が流路切替部20Aである場合、制御装置90は、電磁膨張弁21Aおよび22A各々の開度を調節することにより、流路FP1を通過する単位時間当たりの冷媒量と流路FP2を通過する単位時間当たりの冷媒量との流量比率を制御する。 When the flow path switching unit 20 of FIG. 1 is the flow path switching unit 20A, the control device 90 adjusts the opening degree of each of the electromagnetic expansion valves 21A and 22A, so that the refrigerant passing through the flow path FP1 per unit time. The flow rate ratio between the amount and the amount of refrigerant passing through the flow path FP2 per unit time is controlled.
 冷凍サイクル装置100によれば、圧縮機1から発生した熱を、蓄熱材10を介して冷媒の加熱に用いるため、冷凍サイクル装置のエネルギー効率が向上する。また、蓄熱材10による冷媒の加熱により、暖房運転および低負荷の冷房運転においても圧縮機1に吸入される冷媒の過熱度を大きくすることができる。 According to the refrigeration cycle apparatus 100, the heat generated from the compressor 1 is used to heat the refrigerant via the heat storage material 10, so the energy efficiency of the refrigeration cycle apparatus is improved. Further, the heating of the refrigerant by the heat storage material 10 can increase the degree of superheat of the refrigerant drawn into the compressor 1 even in the heating operation and the low load cooling operation.
 圧縮機1の潤滑油への冷媒の溶解量は冷媒の温度が高いほど少ない。圧縮機1に吸入される冷媒の温度が上昇することに伴って圧縮機1から吐出される冷媒の温度も上昇するため、潤滑油への冷媒の溶解量が低下する。冷媒が潤滑油へ溶解することによる冷凍サイクル装置を循環する冷媒量の低下を抑制することができるため、冷凍サイクル装置の安定的な運転に必要な冷媒量を削減することができる。 The amount of refrigerant dissolved in the lubricating oil of the compressor 1 decreases as the temperature of the refrigerant increases. Since the temperature of the refrigerant discharged from the compressor 1 also rises as the temperature of the refrigerant drawn into the compressor 1 rises, the amount of the refrigerant dissolved in the lubricating oil decreases. Since it is possible to suppress a decrease in the amount of the refrigerant circulating in the refrigeration cycle device due to the dissolution of the refrigerant in the lubricating oil, it is possible to reduce the amount of the refrigerant required for stable operation of the refrigeration cycle device.
 室外温度が比較的低い場合(たとえば冬季)において、蓄熱材10の温度が蒸発器として機能する熱交換器から流出する冷媒の温度よりも低くなり得る。そのような場合に冷媒が蓄熱材10を通過すると、冷媒が蓄熱材10によって冷却される。蓄熱材10の温度によっては、冷媒が凝縮して液体の冷媒(液冷媒)となる可能性がある。液冷媒が圧縮機1に吸入されると、圧縮機1の性能が低下するとともに故障の可能性が高まる。冷凍サイクル装置100においては、そのような場合(図7のS101においてNO)、蓄熱材10を経由せずに圧縮機1に冷媒を戻すことができる。その結果、圧縮機1の性能低下を抑制することができる。 When the outdoor temperature is relatively low (for example, in winter), the temperature of the heat storage material 10 may be lower than the temperature of the refrigerant flowing out from the heat exchanger functioning as the evaporator. When the refrigerant passes through the heat storage material 10 in such a case, the refrigerant is cooled by the heat storage material 10. Depending on the temperature of the heat storage material 10, the refrigerant may condense into a liquid refrigerant (liquid refrigerant). When the liquid refrigerant is sucked into the compressor 1, the performance of the compressor 1 deteriorates and the possibility of failure increases. In such a case (in step S101 of FIG. 7, NO), the refrigeration cycle apparatus 100 can return the refrigerant to the compressor 1 without passing through the heat storage material 10. As a result, the performance degradation of the compressor 1 can be suppressed.
 蓄熱材が覆う圧縮機1の側面は、たとえば図10に示される蓄熱材10Aのように、発熱量が多い圧縮機1内のモータの周囲の側面部分に限定されてもよい。また、蓄熱材が覆う圧縮機1の側面は、図11に示される蓄熱材10Bのように、流路FP2からの冷媒を圧縮機1の吸入口Psに導く流路の周囲の部分に限定されていてもよい。このように蓄熱材の形成される側面を限定することにより、蓄熱材のコストを削減することができる。 The side surface of the compressor 1 covered by the heat storage material may be limited to the side surface portion around the motor in the compressor 1 that generates a large amount of heat, such as the heat storage material 10A shown in FIG. Further, the side surface of the compressor 1 covered by the heat storage material is limited to a portion around the flow path that guides the refrigerant from the flow path FP2 to the suction port Ps of the compressor 1 as in the heat storage material 10B shown in FIG. May be. By thus limiting the side surface on which the heat storage material is formed, the cost of the heat storage material can be reduced.
 実施の形態1に係る冷凍サイクル装置に使用される冷媒は、圧縮機に吸入される冷媒の過熱度が大きいほど冷凍サイクル装置の理論COP(Coefficient of Performance)が大きいという特性が失われない程度に、R290以外の冷媒を含んでいてもよい。 The refrigerant used in the refrigeration cycle device according to the first embodiment is such that the larger the degree of superheat of the refrigerant sucked into the compressor, the greater the theoretical COP (Coefficient of Performance) of the refrigeration cycle device is not lost. , R290 may be included.
 実施の形態1においては、1つの室外機と1つの室内機とを備える冷凍サイクル装置について説明した。冷凍サイクル装置は、複数の室内機を備える構成であってもよいし、複数の室外機を備える構成でもよい。 In the first embodiment, the refrigeration cycle device including one outdoor unit and one indoor unit has been described. The refrigeration cycle apparatus may be configured to include a plurality of indoor units or may be configured to include a plurality of outdoor units.
 実施の形態1においては冷房運転および暖房運転が切替可能なルームエアコンあるいはパッケージエアコンのような冷凍サイクル装置について説明した。冷凍サイクル装置は、四方弁のような流路切替弁を含まない、冷凍機のような冷却運転専用の構成であってもよい。 In the first embodiment, the refrigeration cycle device such as the room air conditioner or the package air conditioner capable of switching between the cooling operation and the heating operation has been described. The refrigeration cycle apparatus may not have a flow path switching valve such as a four-way valve and may be configured only for cooling operation such as a refrigerator.
 以上、実施の形態1に係る冷凍サイクル装置によれば、GWPを低減しながら、冷凍サイクル装置の性能低下を抑制することができる。 As described above, according to the refrigeration cycle device according to the first embodiment, it is possible to suppress the performance deterioration of the refrigeration cycle device while reducing the GWP.
 実施の形態2.
 実施の形態2においては、内部熱交換器(第3熱交換器)を備える冷凍サイクル装置について説明する。内部熱交換器においては、冷房運転が行われている場合に、圧縮機から吐出された後、膨張弁による減圧が行なわれる前の冷媒(高圧側冷媒)と、膨張弁による減圧が行なわれた後、圧縮機に吸入されるまでの冷媒(低圧側冷媒)との間で熱交換が行なわれる。実施の形態2においては、冷房運転が行われている場合に、内部熱交換器による冷媒の加熱および蓄熱材による冷媒の加熱のうち、圧縮機に吸入される冷媒の過熱度をより上昇させることができる方が選択される。
Embodiment 2.
In Embodiment 2, a refrigeration cycle apparatus including an internal heat exchanger (third heat exchanger) will be described. In the internal heat exchanger, when the cooling operation is performed, the refrigerant (high-pressure side refrigerant) after being discharged from the compressor and before being decompressed by the expansion valve and the decompression by the expansion valve are performed. After that, heat is exchanged with the refrigerant (low-pressure side refrigerant) until it is taken into the compressor. In the second embodiment, when the cooling operation is performed, of the heating of the refrigerant by the internal heat exchanger and the heating of the refrigerant by the heat storage material, the degree of superheat of the refrigerant sucked into the compressor is further increased. Those who can do it are selected.
 図12は、実施の形態2に係る冷凍サイクル装置200の構成を示す機能ブロック図である。冷凍サイクル装置200の構成は、図1の冷凍サイクル装置100に内部熱交換器51と、温度センサ19が追加されているとともに、制御装置90が92に置き換えられている点である。これら以外は同様であるため、説明を繰り返さない。 FIG. 12 is a functional block diagram showing the configuration of the refrigeration cycle device 200 according to the second embodiment. The configuration of the refrigeration cycle apparatus 200 is that the internal heat exchanger 51 and the temperature sensor 19 are added to the refrigeration cycle apparatus 100 of FIG. 1, and the control device 90 is replaced with 92. Other than these, it is the same, and therefore the description will not be repeated.
 図12に示されるように、内部熱交換器51は、流路FP1と圧縮機1の吸入口Psとの間に接続されているとともに、室外熱交換器3と電磁膨張弁31との間に接続されている。制御装置92は、内部熱交換器51と電磁膨張弁31との間を流れる冷媒の温度T19を温度センサ19から取得する。冷房運転が行なわれている場合、内部熱交換器51において、凝縮器として機能する室外熱交換器3からの高圧側冷媒と、流路FP1からの低圧側冷媒との間で熱交換が行なわれ、低圧側冷媒が高圧側冷媒によって加熱される。 As shown in FIG. 12, the internal heat exchanger 51 is connected between the flow path FP1 and the suction port Ps of the compressor 1, and between the outdoor heat exchanger 3 and the electromagnetic expansion valve 31. It is connected. The control device 92 acquires the temperature T19 of the refrigerant flowing between the internal heat exchanger 51 and the electromagnetic expansion valve 31 from the temperature sensor 19. When the cooling operation is performed, in the internal heat exchanger 51, heat exchange is performed between the high pressure side refrigerant from the outdoor heat exchanger 3 functioning as a condenser and the low pressure side refrigerant from the flow path FP1. The low pressure side refrigerant is heated by the high pressure side refrigerant.
 図13は、図12の制御装置92によって冷房運転において行なわれる流路切換部20に対する処理の流れを示すフローチャートである。図13に示される処理は、冷凍サイクル装置200の統合的な制御を行なう不図示のメインルーチンによって一定時間間隔毎に呼び出される。図13に示されるフローチャートは、図7に示されるフローチャートのS101がS201に置き換えられたフローチャートである。なお、暖房運転においては図7に示される処理が行われる。 FIG. 13 is a flowchart showing a flow of processing performed on the flow path switching unit 20 by the control device 92 of FIG. 12 in the cooling operation. The process shown in FIG. 13 is called at regular time intervals by a main routine (not shown) that performs integrated control of the refrigeration cycle apparatus 200. The flowchart shown in FIG. 13 is a flowchart in which S101 of the flowchart shown in FIG. 7 is replaced with S201. The process shown in FIG. 7 is performed in the heating operation.
 図13に示されるように、制御装置92は、S201において、温度T14が基準温度Tr1以上であり、かつ、温度T11とT19との差が基準値Tdr2以下であるという条件(特定条件)が成立するか否かを判定する。温度T11とT19との差が基準値Tdr2以下であるという条件は、内部熱交換器51における熱交換量が基準量よりも小さいことを示す条件である。基準値Tdr2は、実機実験あるいはシミュレーションによって適宜算出される。 As shown in FIG. 13, the control device 92 satisfies the condition (specific condition) that the temperature T14 is equal to or higher than the reference temperature Tr1 and the difference between the temperatures T11 and T19 is equal to or lower than the reference value Tdr2 in S201. It is determined whether to do. The condition that the difference between the temperatures T11 and T19 is less than or equal to the reference value Tdr2 is a condition that indicates that the heat exchange amount in the internal heat exchanger 51 is smaller than the reference amount. The reference value Tdr2 is appropriately calculated by an actual machine experiment or simulation.
 温度T14が基準温度Tr1より小さいか、または、温度T11とT19との差が基準値Tdr2より大きい場合(S201においてNO)、制御装置92は、実施の形態1と同様にS102を行なって処理をメインルーチンに返す。温度T14が基準温度Tr1以上であり、かつ、温度T11とT19との差が基準値Tdr2以下である場合(S201においてYES)、制御装置92は、実施の形態1と同様にS103を行なって処理をメインルーチンに返す。なお、S201においては、温度T14が基準温度Tr1以上であるか、または、温度T11とT19との差が基準値Tdr2以下であるという条件が判定されてもよい。 When temperature T14 is lower than reference temperature Tr1 or the difference between temperatures T11 and T19 is higher than reference value Tdr2 (NO in S201), control device 92 performs S102 similarly to the first embodiment to perform the process. Return to main routine. When temperature T14 is equal to or higher than reference temperature Tr1 and the difference between temperatures T11 and T19 is equal to or lower than reference value Tdr2 (YES in S201), control device 92 performs S103 similarly to the first embodiment to perform processing. Is returned to the main routine. In S201, the condition that the temperature T14 is equal to or higher than the reference temperature Tr1 or the difference between the temperatures T11 and T19 is equal to or lower than the reference value Tdr2 may be determined.
 実施の形態2の変形例.
 実施の形態2においては、内部熱交換器51における熱交換量が基準量よりも小さいか否かを温度差と基準値Tdr2との比較によって行なう場合について説明した。内部熱交換器51における熱交換量の指標となる温度差は、冷凍サイクル装置200の動作環境(たとえば室外温度T13)によって変化し得る。実施の形態2においては、内部熱交換器51における熱交換量が基準量よりも小さいか否かの判定精度が、冷凍サイクル装置200の動作環境の影響を受け易い。
Modification of the second embodiment.
In the second embodiment, the case has been described where whether or not the heat exchange amount in the internal heat exchanger 51 is smaller than the reference amount is compared with the temperature difference and the reference value Tdr2. The temperature difference serving as an index of the amount of heat exchange in the internal heat exchanger 51 may change depending on the operating environment of the refrigeration cycle device 200 (for example, the outdoor temperature T13). In the second embodiment, the accuracy of determining whether or not the heat exchange amount in internal heat exchanger 51 is smaller than the reference amount is easily affected by the operating environment of refrigeration cycle apparatus 200.
 そこで、実施の形態2の変形例においては、内部熱交換器51における熱交換量が基準量よりも小さいか否かを、冷凍サイクル装置200の動作環境の変化によって変化し難い温度比率あるいはエンタルピ比率を用いて判定する。実施の形態2の変形例に係る冷凍サイクル装置によれば、冷凍サイクル装置の動作環境によらず、内部熱交換器51における熱交換量が基準量よりも小さいか否かの判定精度を維持することができる。 Therefore, in the modification of the second embodiment, whether the amount of heat exchange in the internal heat exchanger 51 is smaller than the reference amount or not is a temperature ratio or an enthalpy ratio that is difficult to change due to changes in the operating environment of the refrigeration cycle apparatus 200. To determine. According to the refrigeration cycle apparatus according to the modified example of the second embodiment, the accuracy of determining whether the heat exchange amount in the internal heat exchanger 51 is smaller than the reference amount is maintained regardless of the operating environment of the refrigeration cycle apparatus. be able to.
 実施の形態2の変形例に係る冷凍サイクル装置の構成は、図13のS201のT11-T19≦Tdr2という条件が温度比率に関する条件あるいはエンタルピ比率に関する条件に変更された構成である。それ以外は同様であるため、以下では図13の冷凍サイクル装置200も適宜参照しながら説明する。 In the configuration of the refrigeration cycle apparatus according to the modification of the second embodiment, the condition of T11-T19≦Tdr2 in S201 of FIG. 13 is changed to a condition related to temperature ratio or a condition related to enthalpy ratio. Other than that, since it is the same, the refrigeration cycle apparatus 200 of FIG. 13 will be described below as appropriate.
 図14は、実施の形態2の変形例に係る冷凍サイクル装置において冷房運転が行なわれている場合のエンタルピ、圧力、および温度の関係を示すp-h線図である。状態C21からC22の過程は、圧縮機1による断熱圧縮過程を示す。状態C22からC25への過程は、室外熱交換器3による凝縮過程を表す。状態C25からC26への過程は、電磁膨張弁31による減圧過程を表す。状態C26からC21への過程は、室内熱交換器4による蒸発過程を表す。図14においては、室外温度T13の等温線が示されている。 FIG. 14 is a ph diagram showing the relationship between the enthalpy, the pressure, and the temperature when the cooling operation is performed in the refrigeration cycle apparatus according to the modified example of the second embodiment. The process from the states C21 to C22 shows the adiabatic compression process by the compressor 1. The process from the state C22 to C25 represents the condensation process by the outdoor heat exchanger 3. The process from state C25 to C26 represents the depressurization process by the electromagnetic expansion valve 31. The process from state C26 to C21 represents the evaporation process by the indoor heat exchanger 4. In FIG. 14, an isotherm of the outdoor temperature T13 is shown.
 図14に示されるように、凝縮過程の状態C23の温度は、温度センサ12によって検出される温度T12である。単一冷媒のR290の気液二相状態における温度はほぼ一定であるため、飽和液線上にある凝縮過程の状態C24の温度(飽和液の温度)は状態C23と同じ温度T12である。状態C25の温度は、温度センサ19によって検出される温度T19である。 As shown in FIG. 14, the temperature in the state C23 of the condensation process is the temperature T12 detected by the temperature sensor 12. Since the temperature of the single refrigerant R290 in the gas-liquid two-phase state is almost constant, the temperature of the state C24 of the condensation process on the saturated liquid line (the temperature of the saturated liquid) is the same temperature T12 as the state C23. The temperature in the state C25 is the temperature T19 detected by the temperature sensor 19.
 以下では、温度比率ΔTを、温度T12(第1温度)および室外温度T13の温度差ΔT1に対する温度T12および温度T19の温度差Δ2の比率とする。すなわち、ΔT=ΔT2/ΔT1である。また、エンタルピ比率Δhを、飽和液の状態C24のエンタルピh12(第1エンタルピ)および室外温度T13における液冷媒のエンタルピh13(第2エンタルピ)のエンタルピ差Δh1に対するエンタルピh24および状態C25のエンタルピh19(第3エンタルピ)のエンタルピ差Δh2の比率であるとする。すなわち、Δh=Δh2/Δh1である。 In the following, the temperature ratio ΔT is the ratio of the temperature difference Δ2 between the temperature T12 and the temperature T19 to the temperature difference ΔT1 between the temperature T12 (first temperature) and the outdoor temperature T13. That is, ΔT=ΔT2/ΔT1. Further, the enthalpy ratio Δh is set to the enthalpy h12 (first enthalpy) of the saturated liquid state C24 and the enthalpy h24 of the state C25 (first enthalpy) and the enthalpy h19 (second enthalpy) of the liquid refrigerant at the outdoor temperature T13. 3) Enthalpy difference Δh2. That is, Δh=Δh2/Δh1.
 冷凍サイクル装置の動作環境が変化した場合、温度差ΔT1およびΔT2の双方が同程度の割合で変化することが多い。温度比率ΔTの分母および分子の双方が同程度の割合で変化する場合、温度比率ΔTはほとんど変化しない。エンタルピ比率に関しても同様である。 When the operating environment of the refrigeration cycle device changes, both temperature differences ΔT1 and ΔT2 often change at the same rate. When both the denominator and the numerator of the temperature ratio ΔT change at the same rate, the temperature ratio ΔT hardly changes. The same applies to the enthalpy ratio.
 実施の形態2の変形例に係る冷凍サイクル装置においては、図13のS201のT11-T19≦Tdr2という条件が、基準比率Rr1およびRr2を用いて、ΔT≧Rr1あるいはΔh≧Rr2という条件に置き換えられる。温度比率あるいはエンタルピ比率が予め定められた基準比率(たとえば0.8)と比較されることにより、冷凍サイクル装置の動作環境によらず、内部熱交換器51における熱交換量が基準量よりも小さいか否かの判定精度を維持することができる。基準比率Rr1およびRr2は、実機実験あるいはシミュレーションによって適宜算出される。基準比率Rr1およびRr2は、同じでもよい。 In the refrigeration cycle apparatus according to the modification of the second embodiment, the condition of T11-T19≦Tdr2 in S201 of FIG. 13 is replaced with the condition of ΔT≧Rr1 or Δh≧Rr2 using the reference ratios Rr1 and Rr2. .. By comparing the temperature ratio or the enthalpy ratio with a predetermined reference ratio (for example, 0.8), the heat exchange amount in the internal heat exchanger 51 is smaller than the reference amount regardless of the operating environment of the refrigeration cycle device. It is possible to maintain the determination accuracy of whether or not. The reference ratios Rr1 and Rr2 are appropriately calculated by actual machine experiments or simulations. The reference ratios Rr1 and Rr2 may be the same.
 以上、実施の形態2および変形例1に係る冷凍サイクル装置によれば、冷房運転において蓄熱材による加熱が行うことができない場合でも、内部熱交換器によって圧縮機に吸入される冷媒の過熱度を上昇させることができる。その結果、GWPを低減しながら、冷凍サイクル装置の性能低下を実施の形態1よりもさらに抑制することができる。 As described above, according to the refrigeration cycle apparatus according to the second embodiment and the first modification, even when the heating by the heat storage material cannot be performed in the cooling operation, the superheat degree of the refrigerant sucked into the compressor by the internal heat exchanger is increased. Can be raised. As a result, it is possible to further reduce the performance deterioration of the refrigeration cycle apparatus as compared with the first embodiment while reducing the GWP.
 実施の形態3.
 実施の形態2においては、冷房運転が行われている場合に、内部熱交換器による冷媒の加熱および蓄熱材による冷媒の加熱のうち、圧縮機に吸入される冷媒の過熱度をより上昇させることができる方が選択される場合について説明した。実施の形態3においては、暖房運転においても、内部熱交換器による冷媒の加熱および蓄熱材による冷媒の加熱のうち、圧縮機に吸入される冷媒の過熱度をより上昇させることができる方が選択される場合について説明する。
Embodiment 3.
In the second embodiment, when the cooling operation is performed, of the heating of the refrigerant by the internal heat exchanger and the heating of the refrigerant by the heat storage material, the degree of superheat of the refrigerant sucked into the compressor is further increased. The case where the person who can do is selected is explained. In the third embodiment, even in the heating operation, one of the heating of the refrigerant by the internal heat exchanger and the heating of the refrigerant by the heat storage material that can further increase the degree of superheat of the refrigerant sucked into the compressor is selected. The case will be described.
 図15は、実施の形態3に係る冷凍サイクル装置300の構成を示す機能ブロック図である。冷凍サイクル装置300の構成は、図12の冷凍サイクル装置200に電磁膨張弁32(第2減圧装置)および温度センサ19Aが追加されているとともに、制御装置92が93に置き換えられた構成である。これら以外は同様であるため、説明を繰り返さない。 FIG. 15 is a functional block diagram showing the configuration of the refrigeration cycle device 300 according to the third embodiment. The refrigeration cycle apparatus 300 has a configuration in which the electromagnetic expansion valve 32 (second pressure reducing apparatus) and the temperature sensor 19A are added to the refrigeration cycle apparatus 200 of FIG. 12, and the control device 92 is replaced with 93. Other than these, it is the same, and therefore the description will not be repeated.
 図15に示されるように、電磁膨張弁32は、室外熱交換器3と内部熱交換器51との間に接続されている。制御装置93は、電磁膨張弁32と内部熱交換器51との間を流れる冷媒の温度T19Aを温度センサ19Aから取得する。制御装置93は、冷房運転においては冷媒の減圧を行なわない電磁膨張弁32を全開とし、電磁膨張弁31の開度を制御する。制御装置93は、暖房運転においては冷媒の減圧を行なわない電磁膨張弁31を全開とし、電磁膨張弁32の開度を制御する。 As shown in FIG. 15, the electromagnetic expansion valve 32 is connected between the outdoor heat exchanger 3 and the internal heat exchanger 51. The control device 93 acquires the temperature T19A of the refrigerant flowing between the electromagnetic expansion valve 32 and the internal heat exchanger 51 from the temperature sensor 19A. The controller 93 fully opens the electromagnetic expansion valve 32 that does not reduce the pressure of the refrigerant during the cooling operation, and controls the opening degree of the electromagnetic expansion valve 31. The controller 93 fully opens the electromagnetic expansion valve 31 that does not reduce the pressure of the refrigerant during the heating operation, and controls the opening degree of the electromagnetic expansion valve 32.
 図16は、図15の制御装置93によって暖房運転において行なわれる流路切換部20に対する処理の流れを示すフローチャートである。図16に示されるフローチャートは、図13のS201がS301に置き換えられたフローチャートである。なお、冷房運転においては図13に示される処理が行われる。 FIG. 16 is a flowchart showing the flow of processing performed on the flow path switching unit 20 in the heating operation by the control device 93 of FIG. The flowchart shown in FIG. 16 is a flowchart in which S201 in FIG. 13 is replaced with S301. Note that the processing shown in FIG. 13 is performed in the cooling operation.
 図16に示されるように、制御装置93は、S301において、温度T14が基準温度Tr1以上であり、かつ、温度T16とT19Aとの差が基準値Tdr3以下であるという条件(特定条件)が成立するか否かを判定する。温度T16とT19Aとの差が基準値Tdr3以下であるという条件は、内部熱交換器51における熱交換量が基準量よりも小さいことを示す条件である。基準値Tdr3は、実機実験あるいはシミュレーションによって適宜算出することができる。 As shown in FIG. 16, the control device 93 satisfies the condition (specific condition) that the temperature T14 is equal to or higher than the reference temperature Tr1 and the difference between the temperatures T16 and T19A is equal to or lower than the reference value Tdr3 in S301. It is determined whether to do. The condition that the difference between the temperatures T16 and T19A is the reference value Tdr3 or less is a condition that indicates that the heat exchange amount in the internal heat exchanger 51 is smaller than the reference amount. The reference value Tdr3 can be appropriately calculated by an actual machine experiment or simulation.
 温度T14が基準温度Tr1より小さいか、または、温度T16とT19Aとの差が基準値Tdr3より大きい場合(S301においてNO)、制御装置93は、実施の形態1と同様にS102を行なって処理をメインルーチンに返す。温度T14が基準温度Tr1以上であり、かつ、温度T16とT19Aとの差が基準値Tdr3以下である場合(S301においてYES)、制御装置93は、実施の形態1と同様にS103を行なって処理をメインルーチンに返す。 If temperature T14 is lower than reference temperature Tr1 or the difference between temperatures T16 and T19A is higher than reference value Tdr3 (NO in S301), control device 93 performs S102 similarly to the first embodiment to perform the process. Return to main routine. When temperature T14 is equal to or higher than reference temperature Tr1 and the difference between temperatures T16 and T19A is equal to or lower than reference value Tdr3 (YES in S301), control device 93 performs S103 similarly to the first embodiment. Is returned to the main routine.
 なお、S301においては、温度T14が基準温度Tr1以上であるか、または、温度T16とT19Aとの差が基準値Tdr3以下であるという条件が判定されてもよい。また、S301においては、実施の形態2の変形例と同様に、温度比率に関する条件あるいはエンタルピ比率に関する条件が用いられてもよい。その場合、実施の形態2の変形例の温度T12、T13、およびT19が、それぞれ温度T17、T18、およびT19Aにそれぞれ置き換えられる。 Note that in S301, the condition that the temperature T14 is equal to or higher than the reference temperature Tr1 or the difference between the temperatures T16 and T19A is equal to or lower than the reference value Tdr3 may be determined. Further, in S301, similarly to the modification of the second embodiment, the condition regarding the temperature ratio or the condition regarding the enthalpy ratio may be used. In that case, temperatures T12, T13, and T19 in the modification of the second embodiment are replaced with temperatures T17, T18, and T19A, respectively.
 実施の形態3の変形例1.
 実施の形態3の変形例1においては、2つの電磁膨張弁の各々に並列に逆止弁を接続することにより、圧力損失が低減される構成について説明する。
Modification 1 of the third embodiment.
In the first modification of the third embodiment, a configuration in which a pressure loss is reduced by connecting a check valve in parallel to each of the two electromagnetic expansion valves will be described.
 図17は、実施の形態3の変形例1に係る冷凍サイクル装置300Aの構成を示す機能ブロック図である。冷凍サイクル装置300Aの構成は、図15の冷凍サイクル装置300に逆止弁61および62が追加されているとともに、制御装置93が93Aに置き換えられた構成である。これら以外は同様であるため、説明を繰り返さない。 FIG. 17 is a functional block diagram showing the configuration of the refrigeration cycle apparatus 300A according to the first modification of the third embodiment. The refrigeration cycle apparatus 300A has a configuration in which the check valves 61 and 62 are added to the refrigeration cycle apparatus 300 of FIG. 15 and the control device 93 is replaced with 93A. Other than these, it is the same, and therefore the description will not be repeated.
 図17に示されるように、逆止弁61は、室内熱交換器4と内部熱交換器51との間において電磁膨張弁31に対して並列に接続されている。逆止弁61の順方向は、室内熱交換器4から内部熱交換器51に向かう方向である。逆止弁61の順方向に冷媒が流れる場合の圧力損失は、全開の電磁膨張弁31を冷媒が流れる場合の圧力損失よりも小さい。 As shown in FIG. 17, the check valve 61 is connected in parallel to the electromagnetic expansion valve 31 between the indoor heat exchanger 4 and the internal heat exchanger 51. The forward direction of the check valve 61 is the direction from the indoor heat exchanger 4 to the internal heat exchanger 51. The pressure loss when the refrigerant flows in the forward direction of the check valve 61 is smaller than the pressure loss when the refrigerant flows through the fully-opened electromagnetic expansion valve 31.
 逆止弁62は、室外熱交換器3と内部熱交換器51との間において電磁膨張弁32に対して並列に接続されている。逆止弁62の順方向は、室外熱交換器3から内部熱交換器51へ向かう方向である。逆止弁62の順方向に冷媒が流れる場合の圧力損失は、全開の電磁膨張弁32を冷媒が流れる場合の圧力損失よりも小さい。 The check valve 62 is connected in parallel to the electromagnetic expansion valve 32 between the outdoor heat exchanger 3 and the internal heat exchanger 51. The forward direction of the check valve 62 is the direction from the outdoor heat exchanger 3 to the internal heat exchanger 51. The pressure loss when the refrigerant flows in the forward direction of the check valve 62 is smaller than the pressure loss when the refrigerant flows in the fully-opened electromagnetic expansion valve 32.
 冷房運転において制御装置93Aは、電磁膨張弁32を閉止する。冷房運転において、室外熱交換器3からの冷媒は、逆止弁62、内部熱交換器51、および電磁膨張弁31の順に通過する。暖房運転において制御装置93Aは、電磁膨張弁31を閉止する。暖房運転において、室内熱交換器4からの冷媒は、逆止弁61、内部熱交換器51、および電磁膨張弁32の順に通過する。 During the cooling operation, the control device 93A closes the electromagnetic expansion valve 32. In the cooling operation, the refrigerant from the outdoor heat exchanger 3 passes through the check valve 62, the internal heat exchanger 51, and the electromagnetic expansion valve 31 in this order. In the heating operation, the control device 93A closes the electromagnetic expansion valve 31. In the heating operation, the refrigerant from the indoor heat exchanger 4 passes through the check valve 61, the internal heat exchanger 51, and the electromagnetic expansion valve 32 in this order.
 冷凍サイクル装置300Aにおいては、冷媒の減圧を行なわない電磁膨張弁を閉止して、圧力損失がより小さい逆止弁を冷媒が通過するように流路を形成することにより、冷凍サイクル装置300よりも電磁膨張弁の圧力損失による性能低下を抑制することができる。ユーザは、2つの逆止弁の追加することによるコストの上昇および性能の向上を考慮して、冷凍サイクル装置300および300Aを適宜選択することができる。 In the refrigeration cycle apparatus 300A, the electromagnetic expansion valve that does not reduce the pressure of the refrigerant is closed, and the flow path is formed so that the refrigerant passes through the check valve with the smaller pressure loss. Performance deterioration due to pressure loss of the electromagnetic expansion valve can be suppressed. The user can appropriately select the refrigeration cycle devices 300 and 300A in consideration of the cost increase and the performance improvement due to the addition of the two check valves.
 実施の形態3の変形例2.
 実施の形態3および変形例1においては、内部熱交換器51において、凝縮器として機能する熱交換器からの高圧側冷媒と、流路FP1からの低圧側冷媒との間で熱交換が行なわれる場合について説明した。実施の形態3の変形例2においては、高圧側冷媒が圧縮機1から吐出された冷媒である場合について説明する。
Modification 2 of the third embodiment.
In the third embodiment and the first modification, in the internal heat exchanger 51, heat exchange is performed between the high pressure side refrigerant from the heat exchanger functioning as a condenser and the low pressure side refrigerant from the flow path FP1. The case was explained. In the second modification of the third embodiment, the case where the high-pressure side refrigerant is the refrigerant discharged from the compressor 1 will be described.
 図18は、実施の形態3の変形例2に係る冷凍サイクル装置300Bの構成を示す機能ブロック図である。冷凍サイクル装置300Bの構成は、図12の内部熱交換器51および温度センサ19に替えて内部熱交換器51Bおよび温度センサ19Bが追加され、制御装置92が93Bに置き換えられ、温度センサ11Bおよび電磁膨張弁32Bが追加された構成である。これら以外は同様であるため、説明を繰り返さない。 FIG. 18 is a functional block diagram showing a configuration of a refrigeration cycle apparatus 300B according to Modification 2 of Embodiment 3. The configuration of the refrigeration cycle apparatus 300B is such that an internal heat exchanger 51B and a temperature sensor 19B are added in place of the internal heat exchanger 51 and the temperature sensor 19 of FIG. 12, the control device 92 is replaced by 93B, and the temperature sensor 11B and the electromagnetic sensor. This is a configuration in which an expansion valve 32B is added. Other than these, it is the same, and therefore the description will not be repeated.
 図18に示されるように、内部熱交換器51Bは、流路FP1と圧縮機1の吸入口Psとの間に接続されている。内部熱交換器51Bおよび電磁膨張弁32Bは、圧縮機1の吐出口Pdと、室外熱交換器3および電磁膨張弁31の間の流路との間においてこの順に直列に接続されている。内部熱交換器51Bにおいては、圧縮機1から吐出された高圧側冷媒と、流路FP1からの低圧側冷媒との間で熱交換が行なわれ、低圧側冷媒が高圧側冷媒によって加熱される。 As shown in FIG. 18, the internal heat exchanger 51B is connected between the flow path FP1 and the suction port Ps of the compressor 1. The internal heat exchanger 51B and the electromagnetic expansion valve 32B are connected in series in this order between the discharge port Pd of the compressor 1 and the flow path between the outdoor heat exchanger 3 and the electromagnetic expansion valve 31. In the internal heat exchanger 51B, heat is exchanged between the high pressure side refrigerant discharged from the compressor 1 and the low pressure side refrigerant from the flow path FP1, and the low pressure side refrigerant is heated by the high pressure side refrigerant.
 制御装置93Bは、電磁膨張弁32Bの開度を制御する。制御装置93Bは、内部熱交換器51Bと電磁膨張弁32Bとの間を流れる冷媒の温度T19Bを温度センサ19Bから取得する。制御装置93Bは、圧縮機1の吐出口Pdを通過する冷媒の温度T11Bを温度センサ11Bから取得する。 The control device 93B controls the opening degree of the electromagnetic expansion valve 32B. The controller 93B acquires the temperature T19B of the refrigerant flowing between the internal heat exchanger 51B and the electromagnetic expansion valve 32B from the temperature sensor 19B. The control device 93B acquires the temperature T11B of the refrigerant passing through the discharge port Pd of the compressor 1 from the temperature sensor 11B.
 制御装置93Bによって冷房運転および暖房運転において行なわれる流路切換部20に対する処理の流れは、図13の温度T11、T19および基準値Tdr2が、温度T11B、T19Bおよび基準値Tdr4にそれぞれ置き換えられた構成である。基準値Tdr4は、実機実験あるいはシミュレーションによって適宜決定される。基準値Tdr4は、基準値Tdr2と同じでもよい。 The process flow for the flow path switching unit 20 performed in the cooling operation and the heating operation by the control device 93B is configured such that the temperatures T11, T19 and the reference value Tdr2 in FIG. 13 are replaced with the temperatures T11B, T19B and the reference value Tdr4, respectively. Is. The reference value Tdr4 is appropriately determined by an actual machine experiment or simulation. The reference value Tdr4 may be the same as the reference value Tdr2.
 以上、実施の形態3、変形例1および2に係る冷凍サイクル装置によれば、冷房運転および暖房運転の双方において、蓄熱材による加熱が行うことができない場合でも、内部熱交換器によって圧縮機に吸入される冷媒の過熱度を上昇させることができる。その結果、GWPを低減しながら、冷凍サイクル装置の性能低下を実施の形態2よりもさらに抑制することができる。 As described above, according to the refrigeration cycle apparatus according to the third embodiment and the modified examples 1 and 2, even when heating by the heat storage material cannot be performed in both the cooling operation and the heating operation, the internal heat exchanger causes the compressor to operate. The degree of superheat of the drawn refrigerant can be increased. As a result, it is possible to further suppress the performance deterioration of the refrigeration cycle apparatus as compared with the second embodiment while reducing the GWP.
 今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わせて実施することも予定されている。今回開示された各実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 -Each embodiment disclosed this time is also planned to be appropriately combined and implemented within a range where there is no contradiction. It should be considered that the embodiments disclosed this time are exemplifications in all points and not restrictive. The scope of the present invention is shown not by the above description but by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.
 1 圧縮機、2 四方弁、3 室外熱交換器、4 室内熱交換器、10,10A,10B 蓄熱材、11~19,11B,19A,19B 温度センサ、20,20A 流路切替部、21,22 電磁開閉弁、21A,22A,31,32,32B 電磁膨張弁、41 室外ファン、42 室内ファン、51,51B 内部熱交換器、61,62 逆止弁、90,92,93,93A,93B 制御装置、100,200,300,300A,300B 冷凍サイクル装置、110 室外機、120 室内機、FP1,FP2 流路、Pd 吐出口、Ps 吸入口。 1 compressor, 2 four-way valve, 3 outdoor heat exchanger, 4 indoor heat exchanger, 10, 10A, 10B heat storage material, 11-19, 11B, 19A, 19B temperature sensor, 20, 20A flow path switching part 21, 22 electromagnetic on-off valve, 21A, 22A, 31, 32, 32B electromagnetic expansion valve, 41 outdoor fan, 42 indoor fan, 51, 51B internal heat exchanger, 61, 62 check valve, 90, 92, 93, 93A, 93B Control device, 100, 200, 300, 300A, 300B refrigeration cycle device, 110 outdoor unit, 120 indoor unit, FP1, FP2 flow path, Pd discharge port, Ps suction port.

Claims (10)

  1.  R290を含む冷媒が圧縮機、第1熱交換器、第1減圧装置、および第2熱交換器の第1循環方向に循環する冷凍サイクル装置であって、
     前記圧縮機の周囲に配置され、前記圧縮機からの熱を受ける蓄熱材と、
     前記第2熱交換器からの前記冷媒を前記圧縮機に導くための、第1流路および第2流路を形成可能な第1流路切替部とを備え、
     前記第1流路が形成されている場合、前記第1流路から流出する前記冷媒は、前記蓄熱材を経由せずに前記圧縮機に至り、
     前記第2流路が形成されている場合、前記第2流路から流出する前記冷媒は、前記蓄熱材を経由して前記圧縮機に至る、冷凍サイクル装置。
    A refrigeration cycle apparatus in which a refrigerant containing R290 circulates in a first circulation direction of a compressor, a first heat exchanger, a first pressure reducing device, and a second heat exchanger,
    A heat storage material that is arranged around the compressor and receives heat from the compressor,
    A first flow path switching unit capable of forming a first flow path and a second flow path for guiding the refrigerant from the second heat exchanger to the compressor,
    When the first flow path is formed, the refrigerant flowing out of the first flow path reaches the compressor without passing through the heat storage material,
    A refrigeration cycle apparatus in which, when the second flow path is formed, the refrigerant flowing out of the second flow path reaches the compressor via the heat storage material.
  2.  前記第1流路切替部を制御する制御装置をさらに備え、
     前記制御装置は、
     特定条件が成立する場合、前記第1流路切替部を制御して前記第1流路を閉止するとともに前記第2流路を開放し、
     前記特定条件が成立しない場合、前記第1流路切替部を制御して前記第1流路を開放するとともに前記第2流路を閉止し、
     前記特定条件は、前記蓄熱材の温度が基準温度よりも高いという条件を含む、請求項1に記載の冷凍サイクル装置。
    Further comprising a control device for controlling the first flow path switching unit,
    The control device is
    When the specific condition is satisfied, the first flow path switching unit is controlled to close the first flow path and open the second flow path,
    When the specific condition is not satisfied, the first flow path switching unit is controlled to open the first flow path and close the second flow path,
    The refrigeration cycle apparatus according to claim 1, wherein the specific condition includes a condition that the temperature of the heat storage material is higher than a reference temperature.
  3.  前記第1熱交換器からの前記冷媒と前記第1流路からの前記冷媒との間で熱交換が行なわれる第3熱交換器と、
     前記第1流路切替部を制御する制御装置とをさらに備え、
     前記制御装置は、
     特定条件が成立する場合、前記第2流路を通過する単位時間当たりの前記冷媒の量が前記第1流路を通過する単位時間当たりの前記冷媒の量よりも多くなるように前記第1流路切替部を制御し、
     前記特定条件が成立しない場合、前記第1流路を通過する単位時間当たりの前記冷媒の量が前記第2流路を通過する単位時間当たりの前記冷媒の量よりも多くなるように前記第1流路切替部を制御し、
     前記特定条件は、前記第3熱交換器における熱交換量が基準量よりも小さいことを示す条件を含む、請求項1に記載の冷凍サイクル装置。
    A third heat exchanger in which heat is exchanged between the refrigerant from the first heat exchanger and the refrigerant from the first flow path;
    Further comprising a control device for controlling the first flow path switching unit,
    The control device is
    When the specific condition is satisfied, the first flow is adjusted so that the amount of the refrigerant per unit time passing through the second flow path is larger than the amount of the refrigerant per unit time passing through the first flow path. Controls the path switching unit,
    If the specific condition is not satisfied, the amount of the refrigerant per unit time passing through the first flow path may be greater than the amount of the refrigerant per unit time passing through the second flow path. Controls the flow path switching unit,
    The refrigeration cycle apparatus according to claim 1, wherein the specific condition includes a condition indicating that a heat exchange amount in the third heat exchanger is smaller than a reference amount.
  4.  前記第3熱交換器における熱交換量が基準量よりも小さいことを示す条件は、前記第1熱交換器および前記第3熱交換器の間を流れる前記冷媒の温度と前記第3熱交換器および前記第1減圧装置の間を流れる前記冷媒の温度との差が基準値よりも小さいという条件を含む、請求項3に記載の冷凍サイクル装置。 The condition indicating that the amount of heat exchange in the third heat exchanger is smaller than the reference amount is that the temperature of the refrigerant flowing between the first heat exchanger and the third heat exchanger and the third heat exchanger. The refrigeration cycle apparatus according to claim 3, further comprising a condition that a difference between the refrigerant and the temperature of the refrigerant flowing between the first pressure reducing devices is smaller than a reference value.
  5.  前記第1熱交換器は、室外に配置され、
     前記第3熱交換器における熱交換量が基準量よりも小さいことを示す条件は、前記第1熱交換器を通過する前記冷媒の飽和液の第1温度および室外温度の差に対する前記第1温度および前記第3熱交換器から流出する前記冷媒の温度の差の比率が、基準比率より大きいという条件を含む、請求項3に記載の冷凍サイクル装置。
    The first heat exchanger is arranged outdoors,
    The condition indicating that the amount of heat exchange in the third heat exchanger is smaller than the reference amount is that the first temperature with respect to the difference between the first temperature and the outdoor temperature of the saturated liquid of the refrigerant passing through the first heat exchanger. The refrigeration cycle apparatus according to claim 3, further comprising a condition that a ratio of a difference in temperature of the refrigerant flowing out from the third heat exchanger is larger than a reference ratio.
  6.  前記第1熱交換器は、室外に配置され、
     前記第3熱交換器における熱交換量が基準量よりも小さいことを示す条件は、前記第1熱交換器を通過する前記冷媒の飽和液の第1エンタルピおよび室外温度における液体の前記冷媒の第2エンタルピの差に対する前記第1エンタルピおよび前記第3熱交換器から流出する前記冷媒の第3エンタルピの差の比率が、基準比率より大きいという条件を含む、請求項3に記載の冷凍サイクル装置。
    The first heat exchanger is arranged outdoors,
    The condition indicating that the amount of heat exchange in the third heat exchanger is smaller than the reference amount is that the first enthalpy of the saturated liquid of the refrigerant passing through the first heat exchanger and the first of the liquid refrigerant at the outdoor temperature. The refrigeration cycle apparatus according to claim 3, further comprising a condition that a ratio of a difference between the first enthalpy and the third enthalpy of the refrigerant flowing out of the third heat exchanger with respect to a difference between two enthalpies is larger than a reference ratio.
  7.  前記特定条件は、前記蓄熱材の温度が基準温度よりも高いという条件をさらに含む、請求項3~6のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 3 to 6, wherein the specific condition further includes a condition that the temperature of the heat storage material is higher than a reference temperature.
  8.  前記冷媒の循環方向を、前記第1循環方向および前記第1循環方向とは逆の第2循環方向の間で切り替える第2流路切替部と、
     前記第1熱交換器と前記第3熱交換器との間に接続された第2減圧装置とをさらに備え、
     前記冷媒の循環方向が前記第1循環方向である場合、前記制御装置は、前記第2減圧装置の開度を全開とし、
     前記冷媒の循環方向が前記第2循環方向である場合、前記制御装置は、前記第1減圧装置を全開とする、請求項3に記載の冷凍サイクル装置。
    A second flow path switching unit that switches the circulation direction of the refrigerant between the first circulation direction and a second circulation direction opposite to the first circulation direction;
    Further comprising a second pressure reducing device connected between the first heat exchanger and the third heat exchanger,
    When the circulation direction of the refrigerant is the first circulation direction, the control device fully opens the opening degree of the second pressure reducing device,
    The refrigeration cycle apparatus according to claim 3, wherein when the circulation direction of the refrigerant is the second circulation direction, the control device fully opens the first decompression device.
  9.  前記冷媒の循環方向を、前記第1循環方向および前記第1循環方向とは逆の第2循環方向の間で切り替える第2流路切替部と、
     前記第1熱交換器と前記第3熱交換器との間に接続された第2減圧装置と、
     前記第2熱交換器と前記第3熱交換器との間で前記第1減圧装置に対して並列に接続された第1逆止弁と、
     前記第1熱交換器と前記第3熱交換器との間で前記第2減圧装置に対して並列に接続された第2逆止弁とをさらに備え、
     前記第1逆止弁の順方向は、前記第2熱交換器から前記第3熱交換器へ向かう方向であり、
     前記第2逆止弁の順方向は、前記第1熱交換器から前記第3熱交換器へ向かう方向であり、
     前記冷媒の循環方向が前記第1循環方向である場合、前記制御装置は、前記第2減圧装置を閉止し、
     前記冷媒の循環方向が前記第2循環方向である場合、前記制御装置は、前記第1減圧装置を閉止する、請求項3に記載の冷凍サイクル装置。
    A second flow path switching unit that switches the circulation direction of the refrigerant between the first circulation direction and a second circulation direction opposite to the first circulation direction;
    A second pressure reducing device connected between the first heat exchanger and the third heat exchanger;
    A first check valve connected in parallel to the first pressure reducing device between the second heat exchanger and the third heat exchanger;
    Further comprising a second check valve connected in parallel to the second pressure reducing device between the first heat exchanger and the third heat exchanger,
    The forward direction of the first check valve is a direction from the second heat exchanger to the third heat exchanger,
    The forward direction of the second check valve is a direction from the first heat exchanger to the third heat exchanger,
    When the circulation direction of the refrigerant is the first circulation direction, the control device closes the second pressure reducing device,
    The refrigeration cycle apparatus according to claim 3, wherein the control device closes the first pressure reducing device when the circulation direction of the refrigerant is the second circulation direction.
  10.  前記圧縮機からの前記冷媒と前記第1流路からの前記冷媒との間で熱交換が行なわれる第3熱交換器と、
     前記第3熱交換器と前記第1減圧装置および前記第1熱交換器の間の流路との間に接続された第2減圧装置と、
     前記第1流路切替部を制御する制御装置とをさらに備え、
     前記制御装置は、
     特定条件が成立する場合、前記第1流路を通過する単位時間当たりの前記冷媒の量を減少させるとともに前記第2流路を開放し、
     前記特定条件が成立しない場合、前記第1流路を通過する単位時間当たりの前記冷媒の量を増加させるとともに前記第2流路を閉止し、
     前記特定条件は、前記第3熱交換器における熱交換量が基準量よりも小さいことを示す条件を含む、請求項1に記載の冷凍サイクル装置。
    A third heat exchanger in which heat is exchanged between the refrigerant from the compressor and the refrigerant from the first flow path,
    A second pressure reducing device connected between the third heat exchanger and the flow path between the first pressure reducing device and the first heat exchanger;
    Further comprising a control device for controlling the first flow path switching unit,
    The control device is
    When the specific condition is satisfied, the amount of the refrigerant passing through the first flow path per unit time is reduced and the second flow path is opened,
    If the specific condition is not satisfied, the amount of the refrigerant per unit time passing through the first flow path is increased and the second flow path is closed,
    The refrigeration cycle apparatus according to claim 1, wherein the specific condition includes a condition indicating that a heat exchange amount in the third heat exchanger is smaller than a reference amount.
PCT/JP2019/007924 2019-02-28 2019-02-28 Refrigeration cycle device WO2020174684A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021501515A JP6972422B2 (en) 2019-02-28 2019-02-28 Refrigeration cycle device
PCT/JP2019/007924 WO2020174684A1 (en) 2019-02-28 2019-02-28 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/007924 WO2020174684A1 (en) 2019-02-28 2019-02-28 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020174684A1 true WO2020174684A1 (en) 2020-09-03

Family

ID=72239639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007924 WO2020174684A1 (en) 2019-02-28 2019-02-28 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6972422B2 (en)
WO (1) WO2020174684A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117062A (en) * 1983-11-30 1985-06-24 株式会社東芝 Refrigeration cycle
JPH03230060A (en) * 1990-02-05 1991-10-14 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
JP2006242506A (en) * 2005-03-04 2006-09-14 Chubu Electric Power Co Inc Thermal storage type air conditioner
JP2009162403A (en) * 2007-12-28 2009-07-23 Toshiba Carrier Corp Air conditioner
JP2012013349A (en) * 2010-07-02 2012-01-19 Panasonic Corp Refrigerating cycle device
JP2012087945A (en) * 2010-10-15 2012-05-10 Panasonic Corp Air conditioner
CN103344068A (en) * 2013-07-31 2013-10-09 哈尔滨工业大学 Energy-saving defrosting air source heat pump system
JP2014047954A (en) * 2012-08-30 2014-03-17 Toshiba Corp Refrigeration cycle device
CN104976715A (en) * 2015-06-02 2015-10-14 珠海格力电器股份有限公司 Air-conditioning system and control method thereof
CN205481964U (en) * 2016-03-24 2016-08-17 西安交通大学 Take gas -liquid separation's regenerator structure and use refrigeration air conditioner system of this regenerator
CN106369720A (en) * 2016-09-30 2017-02-01 广东美的制冷设备有限公司 Air conditioning system, air conditioner and air conditioning method
WO2018198275A1 (en) * 2017-04-27 2018-11-01 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025563A (en) * 2013-07-24 2015-02-05 パナソニック株式会社 Air conditioner
NZ728139A (en) * 2014-07-17 2018-08-31 Electrolux Hangzhou Home Appliance Co Ltd Heat pump system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60117062A (en) * 1983-11-30 1985-06-24 株式会社東芝 Refrigeration cycle
JPH03230060A (en) * 1990-02-05 1991-10-14 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
JP2006242506A (en) * 2005-03-04 2006-09-14 Chubu Electric Power Co Inc Thermal storage type air conditioner
JP2009162403A (en) * 2007-12-28 2009-07-23 Toshiba Carrier Corp Air conditioner
JP2012013349A (en) * 2010-07-02 2012-01-19 Panasonic Corp Refrigerating cycle device
JP2012087945A (en) * 2010-10-15 2012-05-10 Panasonic Corp Air conditioner
JP2014047954A (en) * 2012-08-30 2014-03-17 Toshiba Corp Refrigeration cycle device
CN103344068A (en) * 2013-07-31 2013-10-09 哈尔滨工业大学 Energy-saving defrosting air source heat pump system
CN104976715A (en) * 2015-06-02 2015-10-14 珠海格力电器股份有限公司 Air-conditioning system and control method thereof
CN205481964U (en) * 2016-03-24 2016-08-17 西安交通大学 Take gas -liquid separation's regenerator structure and use refrigeration air conditioner system of this regenerator
CN106369720A (en) * 2016-09-30 2017-02-01 广东美的制冷设备有限公司 Air conditioning system, air conditioner and air conditioning method
WO2018198275A1 (en) * 2017-04-27 2018-11-01 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JP6972422B2 (en) 2021-11-24
JPWO2020174684A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP6847299B2 (en) Refrigeration cycle equipment
JP3925545B2 (en) Refrigeration equipment
WO2013144996A1 (en) Air conditioning device
CN110337570B (en) Air conditioner
JP2002147823A (en) Air conditioner
JP2014089004A (en) Air conditioning equipment
JP2007263440A (en) Air conditioner
JP5908183B1 (en) Air conditioner
JPWO2021014640A1 (en) Refrigeration cycle device
JP2008241065A (en) Refrigerating device and oil returning method of refrigerating device
JP5506433B2 (en) Multi-type air conditioner
JP5192883B2 (en) Multi-type air conditioner
JP5765990B2 (en) Indoor unit and air conditioner
JP6758506B2 (en) Air conditioner
JP2009243842A (en) Operation method of multiple-type air conditioner and outdoor unit
JP5672290B2 (en) Air conditioner
JP3668750B2 (en) Air conditioner
JP6288146B2 (en) Refrigeration equipment
JP6991388B2 (en) Refrigeration cycle device
WO2020174684A1 (en) Refrigeration cycle device
JP6410935B2 (en) Air conditioner
JP2007327717A (en) Air conditioner
JP3945949B2 (en) Air conditioner
JP7444199B2 (en) air conditioner
JP2010236712A (en) Refrigerating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917395

Country of ref document: EP

Kind code of ref document: A1