JP2015025563A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2015025563A
JP2015025563A JP2013153456A JP2013153456A JP2015025563A JP 2015025563 A JP2015025563 A JP 2015025563A JP 2013153456 A JP2013153456 A JP 2013153456A JP 2013153456 A JP2013153456 A JP 2013153456A JP 2015025563 A JP2015025563 A JP 2015025563A
Authority
JP
Japan
Prior art keywords
heat
heat storage
refrigerant
air conditioner
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013153456A
Other languages
Japanese (ja)
Inventor
川邉 義和
Yoshikazu Kawabe
義和 川邉
藤高 章
Akira Fujitaka
章 藤高
一彦 丸本
Kazuhiko Marumoto
一彦 丸本
広田 正宣
Masanori Hirota
正宣 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013153456A priority Critical patent/JP2015025563A/en
Publication of JP2015025563A publication Critical patent/JP2015025563A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve cooling performance by releasing heat of a heat storage tank during a cooling operation which does not require heat storage in an air conditioner using the heat storage during defrosting.SOLUTION: During a cooling operation, a heat release control valve 17 of a heat pipe 16 is in an open state, and an inner working refrigerant is heated by a portion disposed in a heat storage tank 11 so as to evaporate, is condensed by a heat release portion arranged within an upper air course, and is returned again to the portion disposed in the heat storage tank 11 on the lower side. Therefore, heat of the heat storage tank 11 is released by the heat pipe 16, so as to cool a compressor 5. Due to this configuration, motor efficiency of the compressor 5 is enhanced, and thus a device having excellent operability can be provided.

Description

本発明は、冷媒を用いて冷凍、ヒートポンプサイクルを構成して冷暖房を行い、圧縮機の熱を蓄熱材に貯めて除霜時に利用する空気調和機において、冷房運転時などにおける運転性能の向上をもたらす技術に関するものである。   The present invention is an air conditioner that uses a refrigerant to form a refrigeration and heat pump cycle for cooling and heating, stores the heat of the compressor in a heat storage material, and uses it during defrosting. It is about the technology to bring.

近年はヒートポンプによる暖房が普及してきており、真冬でもエアコンにより暖をとる事例が増加している。ヒートポンプにより暖房を行うと、外気温が低いために蒸発器である室外熱交換器に霜が付着する。付着した霜を取り除くため、室内外の送風機を停止し、四方弁を逆転して冷房時と同様の方向に冷媒を循環させ、室外熱交換器を凝縮器とすることで霜を融かす除霜運転を行う。このとき、室内機から冷風は吹かないものの冷たい空気が落下するコールドドラフトが生じ、暖房感の低下をまねくことがある。   In recent years, heating by a heat pump has become widespread, and cases of warming by an air conditioner are increasing even in the winter. When heating is performed with a heat pump, frost adheres to the outdoor heat exchanger, which is an evaporator, because the outside air temperature is low. To remove the attached frost, stop the blower indoors and outdoors, reverse the four-way valve, circulate the refrigerant in the same direction as during cooling, and use the outdoor heat exchanger as a condenser to defrost the frost Do the driving. At this time, although cold air is not blown from the indoor unit, a cold draft in which cold air falls may be generated, which may reduce the feeling of heating.

これを解決するため、特許文献1のように圧縮機に接触して熱を得るように蓄熱槽を設け、除霜運転時に蓄熱槽の熱を利用するような装置が発明されている。   In order to solve this, an apparatus has been invented in which a heat storage tank is provided so as to obtain heat by contacting a compressor as in Patent Document 1, and the heat of the heat storage tank is used during the defrosting operation.

また、製品化された発明の最新例では、図2に示すように、室内機1には、室内熱交換器2、室内送風機3が配備されており、室外機4には、圧縮機5、四方弁6、室外熱交換器7、膨張弁8、アキュムレータ9、室外送風機10、蓄熱槽11、蓄熱熱交換器12、流路切替弁13が配備されている。そして、蓄熱除霜運転になると、四方弁6は暖房運転状態のままで、室外熱交換器7と四方弁6の間に設けられた流路切替弁13は、全開の膨張弁8を経て室外熱交換器7から流路切替弁13へ流れてきた冷媒を減圧し、蓄熱熱交換器12へ送る。その結果、蓄熱除霜運転時にすべての液冷媒が蓄熱熱交換器12通ることになり液戻りを抑えることができる。   In the latest example of the commercialized invention, as shown in FIG. 2, the indoor unit 1 is provided with an indoor heat exchanger 2 and an indoor blower 3, and the outdoor unit 4 includes a compressor 5, A four-way valve 6, an outdoor heat exchanger 7, an expansion valve 8, an accumulator 9, an outdoor fan 10, a heat storage tank 11, a heat storage heat exchanger 12, and a flow path switching valve 13 are provided. In the heat storage defrosting operation, the four-way valve 6 remains in the heating operation state, and the flow path switching valve 13 provided between the outdoor heat exchanger 7 and the four-way valve 6 passes through the fully-opened expansion valve 8 to the outdoor. The refrigerant flowing from the heat exchanger 7 to the flow path switching valve 13 is depressurized and sent to the heat storage heat exchanger 12. As a result, all the liquid refrigerants pass through the heat storage heat exchanger 12 during the heat storage defrosting operation, and liquid return can be suppressed.

圧縮機は液冷媒を大量に吸い込むと液圧縮を起こし信頼性を確保できなくなることがあるため、従来の装置においては、気液分離を行い主に気相の冷媒を吸い込むようアキュムレータを設けている。   If a compressor sucks a large amount of liquid refrigerant, it may cause liquid compression and reliability may not be ensured. Therefore, in conventional devices, an accumulator is provided to perform gas-liquid separation and mainly suck gas-phase refrigerant. .

アキュムレータに液冷媒が大量に戻るという現象は、除霜運転時はもちろん、起動時、運転を止めたものの、すぐに運転を再開した再起動時や急激な暖房能力上昇時などによく発生する。   The phenomenon that a large amount of liquid refrigerant returns to the accumulator often occurs not only during defrosting operation, but also at the time of start-up and operation stop, but at the time of restarting immediately after operation or when the heating capacity is suddenly increased.

また、近年では、トップランナーなど社会的な背景から空気調和機の性能向上が強く要請されており、熱交換器などは年々大きくなり封入冷媒量も増加の傾向にある。   Further, in recent years, there has been a strong demand for improving the performance of air conditioners from the social background such as top runners, and heat exchangers and the like have become larger year by year and the amount of enclosed refrigerant tends to increase.

特開2011−153812号公報JP 2011-153812 A

上記従来の空気調和機において、蓄熱槽は冷房運転時に仕事をすることはなく、無用の長物と化している。   In the conventional air conditioner described above, the heat storage tank does not work during cooling operation, and is a useless long product.

従って本発明は、こうした課題を解決し、圧縮機に接触して蓄熱槽を設け、除霜運転時に蓄熱槽の熱を利用する空気調和機において、蓄熱を必要としない冷房運転時に蓄熱槽を
利用して性能の向上を図り、省エネ性に優れる装置を提供するものである。
Therefore, the present invention solves such problems, and in the air conditioner that uses the heat of the heat storage tank at the time of the defrost operation, provides the heat storage tank in contact with the compressor, and uses the heat storage tank at the cooling operation that does not require heat storage. Thus, the performance is improved and an apparatus with excellent energy saving is provided.

上記従来の課題を解決するために、本発明の空気調和機は、蒸気圧縮式のヒートポンプサイクルを構成して暖房あるいは冷暖房を行う空気調和機であって、蓄熱材と前記蓄熱材と冷媒との熱交換を行う蓄熱熱交換器とを内包し、圧縮機に接触して互いに熱の移動を行うよう構成された蓄熱槽と、冷媒を前記圧縮機吸入口へ直接送るか前記蓄熱熱交換器を通過させるか否かを切替える流路制御手段と、前記蓄熱槽の熱を放出する蓄熱放出手段を備え、冷房運転時に前記蓄熱放出手段により放熱することで、前記蓄熱槽の温度を下げるものである。   In order to solve the above-described conventional problems, an air conditioner of the present invention is an air conditioner that performs heating or cooling / heating by configuring a vapor compression heat pump cycle, and includes a heat storage material, the heat storage material, and a refrigerant. A heat storage tank that includes a heat storage heat exchanger that performs heat exchange, and is configured to contact the compressor and transfer heat to each other; and a refrigerant is sent directly to the compressor inlet or the heat storage heat exchanger It comprises a flow path control means for switching whether to pass or not, and a heat storage discharge means for releasing the heat of the heat storage tank, and radiates heat by the heat storage discharge means during cooling operation, thereby lowering the temperature of the heat storage tank. .

これにより、前記圧縮機が冷却され、前記圧縮機のモーター効率が向上する。   Thereby, the compressor is cooled, and the motor efficiency of the compressor is improved.

本発明の空気調和機は、冷房運転時に、冷房運転時に前記蓄熱放出手段により放熱することで、前記蓄熱槽の温度を下げ、つまりは前記圧縮機を冷却し、前記圧縮機のモーター効率を向上させることができる。従って、蓄熱を必要としない冷房運転時に蓄熱槽を利用して性能の向上を図り、省エネ性に優れる装置を提供することができる。   The air conditioner of the present invention reduces the temperature of the heat storage tank by cooling heat during the cooling operation by the heat storage discharge means during the cooling operation, that is, cooling the compressor and improving the motor efficiency of the compressor. Can be made. Therefore, the performance can be improved by using the heat storage tank during the cooling operation that does not require heat storage, and an apparatus with excellent energy saving can be provided.

本発明の実施の形態1における空気調和機の構成図The block diagram of the air conditioner in Embodiment 1 of this invention 従来の空気調和機の構成図Configuration diagram of conventional air conditioner

第1の発明は、圧縮機と四方弁と室外熱交換器と膨張弁と室外送風機を有する室外機と室内熱交換器を有する室内機を連環して冷媒を循環させ、蒸気圧縮式のヒートポンプサイクルを構成し、冷暖房を行う空気調和機であって、蓄熱材と前記蓄熱材と前記冷媒との熱交換を行う蓄熱熱交換器とを内包し、圧縮機に接触して互いに熱の移動を行うよう構成された蓄熱槽と、前記圧縮機の吸入口へ前記冷媒を直接流すか前記蓄熱熱交換器を経由させるかの前記冷媒の流れを切替える流路制御弁と、前記蓄熱槽の熱を放出する蓄熱放出手段を備え、冷房運転時に前記蓄熱槽の熱を放出するものである。   A first invention is a vapor compression heat pump cycle in which a refrigerant is circulated by connecting an outdoor unit having an compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, an outdoor fan, and an indoor unit having an indoor heat exchanger. And an air conditioner that performs air conditioning, including a heat storage material, a heat storage heat exchanger that performs heat exchange between the heat storage material and the refrigerant, and contacts the compressor to transfer heat to each other A heat storage tank configured as described above, a flow path control valve that switches the flow of the refrigerant to flow directly to the suction port of the compressor or through the heat storage heat exchanger, and to release the heat of the heat storage tank The heat storage discharge means is provided, and the heat of the heat storage tank is discharged during the cooling operation.

これにより、冷房運転時に前記圧縮機の温度を下げることができる。従って、モーターの運転効率を高め、性能の優れた装置を提供することができる。   Thereby, the temperature of the compressor can be lowered during the cooling operation. Therefore, the driving efficiency of the motor can be increased and a device with excellent performance can be provided.

第2の発明は、第1の発明において、前記蓄熱放出手段が、前記蓄熱槽内部に設けられた吸熱部と、前記蓄熱槽外部に放熱する放熱部を有し、状態変化を伴いながら内部を移動する第2の冷媒を内包したヒートパイプで構成するものである。   According to a second invention, in the first invention, the heat storage and discharge means includes a heat absorption part provided inside the heat storage tank and a heat radiation part that radiates heat to the outside of the heat storage tank, and the inside is accompanied with a state change. It comprises a heat pipe enclosing a moving second refrigerant.

これにより、前記第2の冷媒を、ポンプなどを使用せずに循環させることができる。従って、装置をコンパクトに構成でき、効率的に運転することができる。   Thereby, the second refrigerant can be circulated without using a pump or the like. Therefore, the apparatus can be configured compactly and can be operated efficiently.

第3の発明は、第2の発明において、前記蓄熱放出手段の前記放熱部が、前記室外送風機によって吹出される、前記室外熱交換器を通過後の気流中に放熱するものである。   According to a third invention, in the second invention, the heat radiating portion of the heat storage and release means radiates heat into the airflow after passing through the outdoor heat exchanger blown out by the outdoor blower.

これにより、前記室外熱交換器の放熱に影響を及ぼさず、放熱することができる。従って、優れた性能を有する装置を実現することができる。   Thus, heat can be radiated without affecting the heat radiated from the outdoor heat exchanger. Therefore, an apparatus having excellent performance can be realized.

第4の発明は、第3の発明において、前記蓄熱放出手段が、前記放熱部に放熱フィンを有するものである。   In a fourth aspect based on the third aspect, the heat storage and release means has a heat radiating fin in the heat radiating portion.

これにより、前記放熱部の放熱能力を向上させることができる。従って、優れた性能を有する装置を実現することができる。   Thereby, the heat dissipation capability of the heat dissipation part can be improved. Therefore, an apparatus having excellent performance can be realized.

第5の発明は、第3の発明において、前記蓄熱放出手段が、放熱の有無を制御する放熱制御手段を備えるものである。   According to a fifth invention, in the third invention, the heat storage and release means includes a heat release control means for controlling the presence or absence of heat release.

これにより、放熱の有無を有効に制御して、蓄熱、放熱の効率的な運用を行うことができる。従って、暖房時の蓄熱利用に悪影響を及ぼすことなく性能の優れた装置を提供することができる。   Thereby, the presence or absence of heat dissipation can be controlled effectively, and efficient operation of heat storage and heat dissipation can be performed. Therefore, it is possible to provide a device with excellent performance without adversely affecting the use of heat storage during heating.

以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1は、本発明の第1の実施の形態における空気調和機の構成図を示すものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 shows a configuration diagram of an air conditioner according to a first embodiment of the present invention.

図1に示すように、第1の実施の形態における空気調和機では、室内機1には、室内熱交換器2、室内送風機3が配備されており、室外機4には、圧縮機5、四方弁6、室外熱交換器7、膨張弁8、アキュムレータ9、室外送風機10、蓄熱材15と蓄熱熱交換器12を内包し圧縮機5と接している蓄熱槽11、流路制御弁14が配備されている。   As shown in FIG. 1, in the air conditioner of the first embodiment, the indoor unit 1 is provided with an indoor heat exchanger 2 and an indoor fan 3, and the outdoor unit 4 includes a compressor 5, A four-way valve 6, an outdoor heat exchanger 7, an expansion valve 8, an accumulator 9, an outdoor fan 10, a heat storage tank 11 including a heat storage material 15 and a heat storage heat exchanger 12 and in contact with the compressor 5, and a flow path control valve 14 Has been deployed.

アキュムレータ9は、円筒形の胴体を持った容器に冷媒を導入し、冷媒の流速を遅くするとともに重力の効果により、液冷媒を容器の下部に溜め、上部の気相の冷媒を選択的に吸い込み圧縮機5などへ送る冷媒出口管が設けられている。サイクル中に吐出されて戻ってきた冷凍機油を圧縮機へ戻すため、冷媒出口管の下部には小穴が設けられており、気相の冷媒に混ぜられて圧縮機へ送られる。このとき、液冷媒が溜まっていれば液冷媒も少量ずつ圧縮機5へ送られる。   The accumulator 9 introduces the refrigerant into a container having a cylindrical body, slows down the flow rate of the refrigerant, stores the liquid refrigerant in the lower part of the container by the effect of gravity, and selectively sucks the gas-phase refrigerant in the upper part. A refrigerant outlet pipe to be sent to the compressor 5 or the like is provided. In order to return the refrigeration oil discharged and returned during the cycle to the compressor, a small hole is provided in the lower part of the refrigerant outlet pipe, and is mixed with the gas-phase refrigerant and sent to the compressor. At this time, if the liquid refrigerant is accumulated, the liquid refrigerant is also sent to the compressor 5 little by little.

蓄熱材15としては、例えばパラフィン系の材料や、塩化カルシウム水和物、硫酸ナトリウム水和物、酢酸ナトリウム水和物などの水和物、水系の顕熱蓄熱材など様々な物が考えられるが、安価で、広い温度レンジにおいて蓄熱量が確保でき、腐食等の問題も発生しにくい水系の顕熱蓄熱材が用い易い。   Examples of the heat storage material 15 include various materials such as paraffin materials, hydrates such as calcium chloride hydrate, sodium sulfate hydrate, sodium acetate hydrate, and water-based sensible heat storage materials. It is easy to use a water-based sensible heat storage material that is inexpensive, can secure a heat storage amount in a wide temperature range, and does not easily cause problems such as corrosion.

さらに、蓄熱放手段として、第2の冷媒である作動冷媒が封入されたヒートパイプ16が、蓄熱槽11から室外熱交換器7と室外送風機10の間の風路内にかけて配備されている。   Furthermore, a heat pipe 16 in which a working refrigerant that is a second refrigerant is enclosed is provided as a heat storage release means from the heat storage tank 11 to the air path between the outdoor heat exchanger 7 and the outdoor blower 10.

ヒートパイプ16の一端側は蓄熱槽11に熱的に接続された吸熱部19が、他端側には放熱部20が設けられており、略中央部には内部の作動冷媒の動きを制御する放熱制御バルブ17が設けられている。   One end side of the heat pipe 16 is provided with a heat absorption part 19 thermally connected to the heat storage tank 11, and the other end side is provided with a heat radiation part 20, and the movement of the internal working refrigerant is controlled at a substantially central part. A heat dissipation control valve 17 is provided.

放熱部20は室外熱交換器7と室外送風機10の間の風路内に配置されている。そして、放熱部20には、空気への放熱を促進するため放熱フィン18が、設けられている。   The heat radiating unit 20 is disposed in the air path between the outdoor heat exchanger 7 and the outdoor fan 10. And in the thermal radiation part 20, the thermal radiation fin 18 is provided in order to accelerate the thermal radiation to air.

通常の冷房運転時や、暖房運転時には、流路制御弁14は図1の実線で示すように、四方弁6とアキュムレータ9を接続する状態である。蓄熱除霜運転になると、四方弁6は暖房運転状態(圧縮機5の吐出口と室内熱交換器2とを接続するとともに、室外熱交換器7と流路制御弁14とを接続した状態)のままで、室外熱交換器7と四方弁6の間に設けられた流路制御弁14は、全開の膨張弁8を経て室外熱交換器7から流路制御弁14へ流れてきた冷媒を減圧し、蓄熱熱交換器12へ送る。その後、蓄熱熱交換器12で冷媒は蒸発しつつ、アキュムレータ9へ流れる。その結果、蓄熱除霜運転時にすべての液冷媒が蓄熱
熱交換器12通ることになり液戻りを抑えることができる。
During normal cooling operation or heating operation, the flow path control valve 14 is in a state where the four-way valve 6 and the accumulator 9 are connected as shown by the solid line in FIG. In the heat storage defrosting operation, the four-way valve 6 is in a heating operation state (a state in which the discharge port of the compressor 5 and the indoor heat exchanger 2 are connected, and the outdoor heat exchanger 7 and the flow path control valve 14 are connected). In this state, the flow path control valve 14 provided between the outdoor heat exchanger 7 and the four-way valve 6 allows the refrigerant flowing from the outdoor heat exchanger 7 to the flow path control valve 14 via the fully-opened expansion valve 8. The pressure is reduced and sent to the heat storage heat exchanger 12. Thereafter, the refrigerant flows into the accumulator 9 while evaporating in the heat storage heat exchanger 12. As a result, all the liquid refrigerants pass through the heat storage heat exchanger 12 during the heat storage defrosting operation, and liquid return can be suppressed.

ここで、アキュムレータ9については、あってもなくても発明の本質には関係がなく、アキュムレータ9への液戻りが減るということは、圧縮機5への液戻りが減るということと本質的には同義である。   Here, the accumulator 9 has nothing to do with the essence of the invention, and the fact that the liquid return to the accumulator 9 is reduced essentially means that the liquid return to the compressor 5 is reduced. Is synonymous.

図1を用い、冷房運転時の動作について説明する。室外機4の圧縮機5を出た高温高圧のガス冷媒は、四方弁6から室外熱交換器7に至り、凝縮して液冷媒となる。膨張弁8で減圧されて二相となり、室内機1の室内熱交換器2で蒸発した後、四方弁6から流路制御弁14を経てアキュムレータ9に導かれ、圧縮機5の吸入口へ戻る。   The operation during the cooling operation will be described with reference to FIG. The high-temperature and high-pressure gas refrigerant exiting the compressor 5 of the outdoor unit 4 reaches the outdoor heat exchanger 7 from the four-way valve 6 and condenses into a liquid refrigerant. After being reduced in pressure by the expansion valve 8 to become two-phase and evaporated in the indoor heat exchanger 2 of the indoor unit 1, it is guided from the four-way valve 6 to the accumulator 9 through the flow path control valve 14 and returned to the suction port of the compressor 5. .

このとき、ヒートパイプ16の放熱制御バルブ17は開状態となっており、内部の作動冷媒は、蓄熱槽11に配置された吸熱部19で加熱されて蒸発し、上部の風路内に配置された放熱部20で凝縮し再び下部の蓄熱槽11に配置された部分へと戻ってくる。   At this time, the heat release control valve 17 of the heat pipe 16 is in an open state, and the internal working refrigerant is heated and evaporated by the heat absorbing portion 19 disposed in the heat storage tank 11 and is disposed in the upper air passage. It is condensed in the heat radiating part 20 and returned to the part arranged in the lower heat storage tank 11 again.

従って、蓄熱槽11の熱がヒートパイプ16により放熱され、圧縮機5が冷やされることになる。圧縮機5が冷やされると、圧縮機5のモーター効率が上昇し、運転性能の優れた装置を提供することができる。   Therefore, the heat of the heat storage tank 11 is radiated by the heat pipe 16 and the compressor 5 is cooled. When the compressor 5 is cooled, the motor efficiency of the compressor 5 increases, and a device with excellent driving performance can be provided.

さらに、ヒートパイプ16は、温度差さえあれば封入された作動冷媒が自然と循環するため、ポンプなどが不要で、装置をコンパクトに構成できるうえに、動力も必要ないので効率的な運転を行うことができる。   Furthermore, since the enclosed working refrigerant circulates naturally as long as there is a temperature difference, the heat pipe 16 does not require a pump, and the apparatus can be configured compactly and does not require power, so it operates efficiently. be able to.

さらに、ヒートパイプ16の放熱は室外熱交換器7を通過した後の空気中になされるので、冷凍サイクルなどへの悪影響がなく、安定して優れた性能を有する装置を実現することができる。   Furthermore, since the heat radiation of the heat pipe 16 is performed in the air after passing through the outdoor heat exchanger 7, there is no adverse effect on the refrigeration cycle and the like, and a device having stable and excellent performance can be realized.

さらに、ヒートパイプ16の放熱部20には放熱フィン18が設けられているので、放熱性能が大幅に向上し、コンパクトで優れた性能を有する装置を実現することができる。   Further, since the heat radiating fins 18 are provided in the heat radiating portion 20 of the heat pipe 16, the heat radiating performance is greatly improved, and a compact and excellent device can be realized.

次に、暖房運転時の動作について説明する。暖房運転時は、四方弁6が反転し、圧縮機5から出た高温高圧のガス冷媒は、四方弁6から室内機1の室内熱交換器2へ至り、凝縮し液冷媒となる。室外機4へ戻ると、膨張弁8で減圧膨張して室外熱交換器7で蒸発し、四方弁6からアキュムレータ9、圧縮機5の吸入口へと戻る。圧縮機5の熱は蓄熱材15へと伝わり、ヒートパイプ16の作動冷媒が移動すると熱は空気へ捨てられてしまう。暖房時は、圧縮機5の熱は暖房能力へと転化されるうえ、蓄熱槽11は除霜運転時のために熱を貯めておく必要がある。従って、余計な放熱を避けるために、放熱制御バルブ17を閉状態とし、作動冷媒の動きを止める。   Next, operation during heating operation will be described. At the time of heating operation, the four-way valve 6 is reversed, and the high-temperature and high-pressure gas refrigerant discharged from the compressor 5 reaches the indoor heat exchanger 2 of the indoor unit 1 from the four-way valve 6 and condenses to become liquid refrigerant. When returning to the outdoor unit 4, the expansion valve 8 decompresses and expands, evaporates in the outdoor heat exchanger 7, and returns from the four-way valve 6 to the accumulator 9 and the suction port of the compressor 5. The heat of the compressor 5 is transmitted to the heat storage material 15, and when the working refrigerant of the heat pipe 16 moves, the heat is thrown away into the air. During heating, the heat of the compressor 5 is converted into heating capacity, and the heat storage tank 11 needs to store heat for the defrosting operation. Therefore, in order to avoid unnecessary heat dissipation, the heat dissipation control valve 17 is closed to stop the movement of the working refrigerant.

従って、放熱の有無を有効に制御して、蓄熱、放熱の効率的な運用を行い、暖房時の蓄熱利用に悪影響を及ぼすことなく暖房、除霜の性能に優れた装置を提供できる。   Accordingly, it is possible to effectively control the presence / absence of heat dissipation to efficiently operate heat storage and heat dissipation, and to provide an apparatus having excellent heating and defrosting performance without adversely affecting the use of heat storage during heating.

なおここで、使用する冷媒について特に触れてはいないが、種類を問わず本発明は有効に機能する。   Here, the refrigerant to be used is not particularly mentioned, but the present invention functions effectively regardless of the type.

以上のように、本発明にかかる空気調和機は、装置を大型化することなく、圧縮機への液戻りを抑え、高い信頼性をもって使用することができる空気調和機を提供するもので、空気調和機だけに止まらず、セパレート型のショーケース、冷蔵庫などに広く適用することができ、効果をもたらすものである。   As described above, the air conditioner according to the present invention provides an air conditioner that suppresses liquid return to the compressor and can be used with high reliability without increasing the size of the apparatus. Not only the harmony machine, it can be widely applied to separate-type showcases, refrigerators, etc., and brings about effects.

1 室内機
2 室内熱交換器
3 室内送風機
4 室外機
5 圧縮機
6 四方弁
7 室外熱交換器
8 膨張弁
9 アキュムレータ
10 室外送風機
11 蓄熱槽
12 蓄熱熱交換器
14 流路制御弁
15 蓄熱材
16 ヒートパイプ
17 放熱制御バルブ
18 放熱フィン
19 吸熱部
20 放熱部
DESCRIPTION OF SYMBOLS 1 Indoor unit 2 Indoor heat exchanger 3 Indoor fan 4 Outdoor unit 5 Compressor 6 Four-way valve 7 Outdoor heat exchanger 8 Expansion valve 9 Accumulator 10 Outdoor fan 11 Heat storage tank 12 Heat storage heat exchanger 14 Flow control valve 15 Heat storage material 16 Heat pipe 17 Heat radiation control valve 18 Heat radiation fin 19 Heat absorption part 20 Heat radiation part

Claims (5)

圧縮機と四方弁と室外熱交換器と膨張弁と室外送風機を有する室外機と室内熱交換器を有する室内機を連環して冷媒を循環させ、蒸気圧縮式のヒートポンプサイクルを構成し、冷暖房を行う空気調和機であって、蓄熱材と除霜運転時に前記蓄熱材と前記冷媒との熱交換を行う蓄熱熱交換器とを内包し、前記圧縮機に接触して互いに熱の移動を行うよう構成された蓄熱槽と、前記圧縮機の吸入口へ前記冷媒を直接流すか前記蓄熱熱交換器を経由させるかの前記冷媒の流れを切替える流路制御弁と、前記蓄熱槽の熱を放熱する蓄熱放出手段を備え、冷房運転時に、前記蓄熱放出手段により前記蓄熱槽の熱を放出することを特徴とする空気調和機。 A refrigerant, a four-way valve, an outdoor heat exchanger, an expansion valve, an outdoor unit having an outdoor blower, and an indoor unit having an indoor heat exchanger are circulated to circulate refrigerant to form a vapor compression heat pump cycle. An air conditioner that performs heat transfer between the heat storage material and the heat storage heat exchanger that performs heat exchange between the heat storage material and the refrigerant during defrosting operation, and makes heat transfer to each other in contact with the compressor Dissipates heat from the heat storage tank, a flow path control valve that switches the flow of the refrigerant to flow the refrigerant directly to the suction port of the compressor or through the heat storage heat exchanger, and An air conditioner comprising heat storage discharge means and discharging heat from the heat storage tank by the heat storage discharge means during cooling operation. 前記蓄熱放出手段が、前記蓄熱槽内部に設けられた吸熱部と、前記蓄熱槽外部に放熱する放熱部を有し、状態変化を伴いながら内部を移動する第2の冷媒を内包したヒートパイプであることを特徴とする請求項1に記載の空気調和機。 The heat storage discharge means is a heat pipe that includes a heat absorption part provided inside the heat storage tank and a heat radiation part that radiates heat to the outside of the heat storage tank, and includes a second refrigerant that moves inside while changing the state. The air conditioner according to claim 1, wherein the air conditioner is provided. 前記蓄熱放出手段の前記放熱部が、前記室外送風機によって吹出される、前記室外熱交換器を通過後の気流中に放熱することを特徴とする請求項2に記載の空気調和機。 3. The air conditioner according to claim 2, wherein the heat radiating unit of the heat storage and release unit radiates heat into the airflow after passing through the outdoor heat exchanger blown out by the outdoor blower. 前記蓄熱放出手段が、前記放熱部に放熱フィンを有することを特徴とする請求項3に記載の空気調和機。 The air conditioner according to claim 3, wherein the heat storage and release means has a heat radiating fin in the heat radiating portion. 前記蓄熱放出手段が、放熱の有無を切替える放熱制御手段を備えることを特徴とする請求項3に記載の空気調和機。 The air conditioner according to claim 3, wherein the heat storage / release means includes a heat release control means for switching presence / absence of heat release.
JP2013153456A 2013-07-24 2013-07-24 Air conditioner Pending JP2015025563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013153456A JP2015025563A (en) 2013-07-24 2013-07-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013153456A JP2015025563A (en) 2013-07-24 2013-07-24 Air conditioner

Publications (1)

Publication Number Publication Date
JP2015025563A true JP2015025563A (en) 2015-02-05

Family

ID=52490358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013153456A Pending JP2015025563A (en) 2013-07-24 2013-07-24 Air conditioner

Country Status (1)

Country Link
JP (1) JP2015025563A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241160A (en) * 2015-05-11 2016-01-13 北京工业大学 Heat storage defrosting system and method used for air-cooled refrigerator
CN107606844A (en) * 2017-08-18 2018-01-19 青岛海尔股份有限公司 Refrigerator
KR20190023011A (en) * 2017-08-25 2019-03-07 제주대학교 산학협력단 Continuous heating Air Conditioner system for green house
JP2019513966A (en) * 2016-03-25 2019-05-30 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Low GWP cascade cooling system
CN110057123A (en) * 2019-04-25 2019-07-26 北京建筑大学 Pulsating heat pipe drives the steam compression type circulatory system of heat of compressor defrosting
CN112050293A (en) * 2020-09-14 2020-12-08 西安交通大学 Air conditioning system for compensating indoor temperature change during defrosting based on phase-change material
JPWO2020174684A1 (en) * 2019-02-28 2021-09-30 三菱電機株式会社 Refrigeration cycle equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241160A (en) * 2015-05-11 2016-01-13 北京工业大学 Heat storage defrosting system and method used for air-cooled refrigerator
JP2019513966A (en) * 2016-03-25 2019-05-30 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Low GWP cascade cooling system
CN107606844A (en) * 2017-08-18 2018-01-19 青岛海尔股份有限公司 Refrigerator
CN107606844B (en) * 2017-08-18 2022-01-25 海尔智家股份有限公司 Refrigerator with a door
KR20190023011A (en) * 2017-08-25 2019-03-07 제주대학교 산학협력단 Continuous heating Air Conditioner system for green house
KR101990392B1 (en) 2017-08-25 2019-06-20 제주대학교 산학협력단 Continuous heating Air Conditioner system for green house
JPWO2020174684A1 (en) * 2019-02-28 2021-09-30 三菱電機株式会社 Refrigeration cycle equipment
CN110057123A (en) * 2019-04-25 2019-07-26 北京建筑大学 Pulsating heat pipe drives the steam compression type circulatory system of heat of compressor defrosting
CN112050293A (en) * 2020-09-14 2020-12-08 西安交通大学 Air conditioning system for compensating indoor temperature change during defrosting based on phase-change material
CN112050293B (en) * 2020-09-14 2021-07-16 西安交通大学 Air conditioning system for compensating indoor temperature change during defrosting based on phase-change material

Similar Documents

Publication Publication Date Title
JP2015025563A (en) Air conditioner
JP6125000B2 (en) Dual refrigeration equipment
JP3235997U (en) Movable air conditioner and its cooling method
JP5914845B2 (en) Refrigeration equipment
WO2013051166A1 (en) Refrigeration cycle device
JP2005249258A (en) Cooling system
JP6888102B2 (en) Heat exchanger unit and refrigeration cycle equipment
JP2008002759A (en) Binary refrigerating system and cold storage
JPWO2015008452A1 (en) Refrigeration equipment
JP2016044964A (en) Refrigeration cycle device
JP2007163013A (en) Refrigerating cycle device
JP5402176B2 (en) refrigerator
JP5636871B2 (en) Refrigeration equipment
JP2010196963A (en) Dual type heat pump and refrigerating device
CN110594897B (en) Mobile air conditioner
JP2023115228A (en) Refrigeration cycle device
JP2009162403A (en) Air conditioner
JP6298992B2 (en) Air conditioner
CN216481291U (en) Air conditioner
JP2006170536A (en) Vapor compression type heat pump
JP2018059655A (en) Refrigeration cycle device
JP2006162226A (en) Freezing device
JP2005180768A (en) Temperature control system
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
JP3896705B2 (en) Refrigeration cycle and refrigeration cycle control method