JPS60117062A - Refrigeration cycle - Google Patents
Refrigeration cycleInfo
- Publication number
- JPS60117062A JPS60117062A JP22403683A JP22403683A JPS60117062A JP S60117062 A JPS60117062 A JP S60117062A JP 22403683 A JP22403683 A JP 22403683A JP 22403683 A JP22403683 A JP 22403683A JP S60117062 A JPS60117062 A JP S60117062A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- refrigeration cycle
- compressor
- valve
- heat storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は室内を冷暖房するど令凍ザイクルに係り、特
に蓄熱槽を備えたヒートポンプ式冷凍サイクルに関する
。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a refrigeration cycle for cooling and heating a room, and more particularly to a heat pump refrigeration cycle equipped with a heat storage tank.
従来、この種のヒートポンプ式冷凍サイクルは、第1図
に示すように、コンプレツ?1、四方弁2、室外熱交換
器3.膨張弁4、室内熱交換器5を順次接続して構成さ
れ、四方弁2を切換操作することにより室内を冷暖房す
るようになっている。Conventionally, this type of heat pump type refrigeration cycle is a complete type refrigeration cycle, as shown in Figure 1. 1. Four-way valve 2. Outdoor heat exchanger 3. It is constructed by sequentially connecting an expansion valve 4 and an indoor heat exchanger 5, and the room is heated and cooled by switching the four-way valve 2.
一方、冷凍サイクルは途中に蓄熱剤を充填した蓄熱槽6
が備えられている。この蓄熱槽内には放熱(蓄熱)用熱
交換コイル7および吸熱用熱交換コイル8が収容される
。放熱用熱交換コイル7を備、tた放熱用配管9はコン
プレッサ1の吐出側高圧配置toに並設される。そして
、弁11を閉じることにより吐出冷媒を放熱用熱交換コ
イル7に案内し、吐出冷媒からの放熱により蓄熱される
。また、吸熱用熱交換コイル8を備えた吸熱用配管」2
はコンプレッサ1の吸込側低圧配管(3に接続される。On the other hand, the refrigeration cycle has a heat storage tank 6 filled with a heat storage agent in the middle.
is provided. A heat exchange coil 7 for heat radiation (heat storage) and a heat exchange coil 8 for heat absorption are housed in this heat storage tank. A heat-radiating heat exchange coil 7 is provided, and a heat-radiating pipe 9 is arranged in parallel to the discharge side high-pressure arrangement to of the compressor 1. Then, by closing the valve 11, the discharged refrigerant is guided to the heat exchange coil 7 for heat radiation, and heat is stored by the heat radiation from the discharged refrigerant. In addition, heat absorption piping equipped with heat exchange coil 8 for heat absorption" 2
is connected to the suction side low pressure pipe (3) of the compressor 1.
しかして、−弁14を閉じることにより戻り冷媒を吸熱
用熱交換コイル8に案内し、これを加熱している。By closing the -valve 14, the return refrigerant is guided to the endothermic heat exchange coil 8 and heated.
しかして、従来のヒートポンプ式冷凍サイクルでの除(
“44転は、四方弁2を切換え、反転除霜することによ
り行なわれる。しかし、この反転除霜運転時には、コン
プレッサ1へ還流される冷媒を加熱し、蒸発させるため
、戻り冷媒を蓄熱槽6内に案内し、この蓄熱槽6内を通
る間に吸熱して、加熱される。However, in conventional heat pump refrigeration cycles,
The 44-way rotation is performed by switching the four-way valve 2 and performing reverse defrosting. However, during this reverse defrosting operation, the refrigerant returned to the compressor 1 is heated and evaporated, so the returned refrigerant is transferred to the heat storage tank 6. While passing through the heat storage tank 6, it absorbs heat and is heated.
しかしながら、上記ヒートポンプ式冷凍サイクルでは、
蓄熱槽6が独立して設置され、その蓄熱はコンプレッサ
1からの高温吐出冷媒を弁操作によシ1放熱用熱交換コ
1イル7vC案内することによって行なわれる。この罠
め、蓄熱槽6での蓄熱や冷媒加熱のだめの放熱の切換操
作が面倒で、複雑になったり、冷凍サイクル内に種々の
弁類が配IMされるため配管が複雑でコスト高の要因と
なったり、また、蓄熱槽6が独立しているため、設置ス
ペースも大きくなり、小型化を図ることが困難であった
。However, in the above heat pump type refrigeration cycle,
A heat storage tank 6 is installed independently, and heat storage is carried out by guiding the high-temperature discharged refrigerant from the compressor 1 through the heat exchange coil 7vC through valve operation. Due to this trap, switching operations between heat storage in the heat storage tank 6 and heat radiation in the refrigerant heating tank are troublesome and complicated, and piping is complicated because various valves are arranged in the refrigeration cycle, leading to high costs. Moreover, since the heat storage tank 6 is independent, the installation space becomes large, making it difficult to achieve miniaturization.
しかも、コンプレッサの運転によるコンプレッサケース
からの放熱による熱はそのまま外部へ放出され、有効に
利用することができなかった。Moreover, the heat radiated from the compressor case during operation of the compressor is directly radiated to the outside and cannot be used effectively.
この発明は上述した点を考慮し、コンプレッサからの放
熱を有効かつ積極的に利用して、コンプレッサに還流さ
れる冷媒の加熱を可能にし、かっ大きな設置スペースを
必要とせず、小型で簡単な購造の冷凍サイクルを提供す
ることを目的とする。This invention takes the above-mentioned points into consideration, effectively and proactively utilizes the heat radiation from the compressor, makes it possible to heat the refrigerant that is returned to the compressor, and does not require a large installation space and is small and easy to purchase. The purpose is to provide a built-in refrigeration cycle.
この発明の他の目的は、コンプレッサからの騒音を低減
させるとともに、除)゛i運転を効率よく行ない得るよ
うにした冷凍サイクルを提供することを目的とする。Another object of the present invention is to provide a refrigeration cycle that can reduce noise from a compressor and efficiently carry out non-i operation.
上述した目的を11成するために、この発明に係る冷凍
サイクルは、コンプレッサ、四方弁、室外熱交i火器、
膨張機構および室内熱交換器を接続してト1り成された
ものにおいて、上記四方弁からコンプレッサ吸内側に至
る低圧側冷媒配管に、吸熱用熱交換コイルを備えた蓄熱
用配管を並列にかつ切換可能に接続し、上記熱交換コイ
ルを収容した蓄熱槽をコンプレッサと熱交換可能に配設
したものである。In order to achieve the above objects, the refrigeration cycle according to the present invention includes a compressor, a four-way valve, an outdoor heat exchanger,
In a system formed by connecting an expansion mechanism and an indoor heat exchanger, a heat storage pipe equipped with a heat exchange coil for heat absorption is connected in parallel to the low pressure side refrigerant pipe from the four-way valve to the compressor suction side. A heat storage tank that is switchably connected and houses the heat exchange coil is disposed so as to be able to exchange heat with the compressor.
以下、この発明に係る冷凍サイクルの好ましい実捲例に
ついて添付図面を参照して説明する。Hereinafter, preferred embodiments of the refrigeration cycle according to the present invention will be described with reference to the accompanying drawings.
第2図は、この発明に係るヒートポンプ式冷凍サイクル
を示し、この冷凍サイクルは冷暖房用空気調和機に適用
され、コンプレッサ加、四方弁211室外熱交換器n、
膨張機構としての膨張弁(キャピラリチューブでもよい
。)る、室内熱交換器aを順次接続して構成されておシ
、閉じた冷媒循環回路ゐを形成している。FIG. 2 shows a heat pump type refrigeration cycle according to the present invention, and this refrigeration cycle is applied to an air conditioner for heating and cooling.
It is constructed by sequentially connecting an expansion valve (a capillary tube may be used) as an expansion mechanism and an indoor heat exchanger a to form a closed refrigerant circulation circuit.
一方、コンプレッサ題の吐出4111からホットガスバ
イパス配管加が分岐されており、このバイパス配管あは
途中に設けられたバイパス弁nを介して室外熱交換器n
と膨張弁おとの間の冷媒配管6aに接続され、ホットガ
スバイパス回路を構成している。On the other hand, hot gas bypass piping is branched from the discharge 4111 of the compressor, and this bypass piping is connected to the outdoor heat exchanger n via a bypass valve n provided in the middle.
The hot gas bypass circuit is connected to the refrigerant pipe 6a between the expansion valve and the expansion valve.
また、四方弁21からコンプレッサ加の吸込側に至る低
圧側冷媒配置25bに蓄熱用配管路が並列に接続される
。蓄熱用配管拠は途中に吸熱用熱交換コイル四を備え、
この熱交換コイル29は蓄熱剤が充填された蓄熱槽刃内
に収容される。蓄熱槽(9)は、第3図に示すようにコ
ンプレッサ加を外側から覆い、そのコンプレッサケース
20aに一体あるいは一体的に設けられる。蓄熱槽I内
に収容される吸熱用熱交換コイル29は周方向に延び、
その他端側は蓄熱槽(至)から出てコンプレッサ加のサ
クションカップ;31に接続される。Further, a heat storage piping path is connected in parallel to the low pressure side refrigerant arrangement 25b extending from the four-way valve 21 to the suction side of the compressor. The heat storage piping base is equipped with four heat exchange coils for heat absorption in the middle,
This heat exchange coil 29 is housed in a heat storage tank blade filled with a heat storage agent. As shown in FIG. 3, the heat storage tank (9) covers the compressor case 20a from the outside and is provided integrally or integrally with the compressor case 20a. The heat exchange coil 29 for heat absorption accommodated in the heat storage tank I extends in the circumferential direction,
The other end comes out of the heat storage tank and is connected to a suction cup 31 of a compressor.
ところで、前記低圧側冷媒配管25bと蓄熱用配管路と
の分岐部には切換用三方弁33が設けられる。By the way, a three-way switching valve 33 is provided at the branching point between the low-pressure side refrigerant pipe 25b and the heat storage pipe.
この三方弁33は第4図に示すように溝底され、弁ケー
ンンダ、34に1つの流入ボー)35と2つの流出ポー
ト36a、36bが形成される。両流出ボート:36a
、36 bは弁体37により選択的に開口される。The three-way valve 33 has a grooved bottom as shown in FIG. 4, and one inflow port 35 and two outflow ports 36a and 36b are formed in the valve cannula 34. Both outflow boats: 36a
, 36b are selectively opened by the valve body 37.
弁体37は弁棒、38を介してプランジャ39に一体的
に連結され、プランジャ39はスプリング40によりば
ね付勢され、弁体37を一方の弁シート41側に押圧さ
れる。また、上記プランジャ39は電磁コイル42への
通電により、スプリング40のばね力に抗して移動され
、弁体37を他方の弁シート43側に押し付ける。The valve body 37 is integrally connected to a plunger 39 via a valve stem 38, and the plunger 39 is biased by a spring 40 to press the valve body 37 toward one valve seat 41. Moreover, the plunger 39 is moved against the spring force of the spring 40 by energizing the electromagnetic coil 42, and presses the valve body 37 toward the other valve seat 43.
しかして、切換用三方弁−幻は電磁コイル乾への通電に
より、弁体37は弁シート36 mを閉基し、流入ボー
)35は一方の流出ボー)36bに連通され、通電を解
除することにより他方の流出ポート36 aに連通され
る。この三方弁あの切換の際、三方弁33の各流出入ボ
ー)35.36龜、36bに作用する冷媒圧力は低圧で
、流出入ボートの圧力差はほとんどないため、三方弁3
3が大口径のものであっても、弁の切換操作は小さな切
換力でスムーズに行なうことができる。このため、三方
弁おけ簡単かつ単純購造の直動弁でよく、しかも電磁コ
イル40も小さなもので足りる。また、三方弁33は切
換部からの冷媒洩れが少々化じても不都合がないので、
低コストで製造できる。By energizing the electromagnetic coil of the three-way switching valve, the valve element 37 closes the valve seat 36m, and the inlet bow (35) is communicated with one outlet bow (36b), thereby canceling the energization. This communicates with the other outflow port 36a. When this three-way valve is switched, the refrigerant pressure acting on each of the three-way valve 33's inflow and outflow ports (35, 36, and 36b) is low pressure, and there is almost no pressure difference between the outflow and inflow ports, so the three-way valve
Even if the valve 3 has a large diameter, the valve switching operation can be performed smoothly with a small switching force. Therefore, the three-way valve can be a simple and simply purchased direct-acting valve, and the electromagnetic coil 40 can also be small. In addition, since the three-way valve 33 does not cause any inconvenience even if a small amount of refrigerant leaks from the switching part,
Can be manufactured at low cost.
次に、この発明の冷凍サイクルの作用について述べる。Next, the operation of the refrigeration cycle of this invention will be described.
冷房運転時には、四方弁21、三方弁おけ第2図に示す
状態にセットされる。しかして、コンプレッサ頷から吐
出された冷媒は四方弁21を経て室外熱交換器認に送ら
れ、ここで周囲に放熱して凝縮される。この凝縮冷媒は
膨張弁乙を通って膨張作用を受けた後、室内熱交換器2
4に案内され、ここで吸熱し、周囲の空気を冷却する。During cooling operation, the four-way valve 21 and the three-way valve are set to the state shown in FIG. 2. The refrigerant discharged from the compressor nozzle is sent to the outdoor heat exchanger via the four-way valve 21, where it radiates heat to the surroundings and is condensed. This condensed refrigerant passes through the expansion valve B, undergoes an expansion action, and then enters the indoor heat exchanger 2.
4, where it absorbs heat and cools the surrounding air.
冷却された空気は冷却風となって室内に吹き出され、室
内を冷房する。The cooled air is blown into the room as cooling air, cooling the room.
一方、暖房運転時には、四方弁21を暖房運転側に切り
換える。この切′換により、コンプレッサ加から吐出さ
れる高温高圧冷媒は西方弁21を経て室外熱交換器調に
送られ、ここで放熱して周囲の空気を暖める。暖められ
た空気は温風となって室内に吹き出され、室内を暖房し
ている。On the other hand, during heating operation, the four-way valve 21 is switched to the heating operation side. By this switching, the high-temperature, high-pressure refrigerant discharged from the compressor is sent to the outdoor heat exchanger via the west valve 21, where it radiates heat and warms the surrounding air. The heated air is blown into the room as hot air, heating the room.
室内を暖房することにより、凝縮された冷媒は、膨張弁
すを経て室外熱交換器nに送られ、ここで周囲から熱を
算って蒸発され、蒸発したガス冷媒は四方弁21から三
方弁33、低圧側冷媒配管25bおよびサクションカッ
プ31を経てコングレツサ加内にiW流さiLる。By heating the room, the condensed refrigerant is sent to the outdoor heat exchanger n via the expansion valve, where it is evaporated by calculating heat from the surroundings, and the evaporated gas refrigerant is transferred from the four-way valve 21 to the three-way valve. 33, iW flows into the congress chamber through the low-pressure side refrigerant pipe 25b and the suction cup 31.
ところで、コンプレッサ加の運転時、コンブレツザケー
ス20aから放熱される熱は、熱伝導により蓄熱槽30
内に伝達され、蓄熱槽;幻内に時間をかけて蓄熱される
。蓄熱槽刃内の蓄熱は三方弁あが蓄熱用量g281則に
切り換えられない限り、放熱されない。By the way, when the compressor is running, the heat radiated from the compressor case 20a is transferred to the heat storage tank 30 by thermal conduction.
The heat is transferred to the inside and stored in the heat storage tank over time. The heat stored in the heat storage tank blade will not be radiated unless the three-way valve is switched to the heat storage amount g281 rule.
次に、除霜運転を行なう場合には、四方弁21を暖房運
転側にセットしたままで、三方弁おを蓄熱用配管路を選
択するように切換え、バイパス弁nを開く。Next, when performing a defrosting operation, the four-way valve 21 is left set to the heating operation side, the three-way valve O is switched to select the heat storage piping path, and the bypass valve n is opened.
これにより、コンブレッジ”加からの高温高圧冷媒はホ
ットガスバイパス回路かを経て室外熱交換器認に直接案
内され、ここで放熱し、室内熱交換器四のフィンに付着
した霜を取#)除く。室外熱交換器22を除霜すること
により、凝縮された冷媒は四方弁21、三方弁33を経
て蓄熱槽(支)内に案内され、吸熱用熱交換コイル29
を通る間に吸熱作用を受けて蒸発し、ガス冷媒となり、
このガス冷媒がサタンヨンカッグ31を経てコンプレッ
サ加に還流される。したがって、室外熱交換器22に付
着した1゛6を急速に除霜することができる。As a result, the high-temperature, high-pressure refrigerant from the combination is guided directly to the outdoor heat exchanger via the hot gas bypass circuit, where it radiates heat and removes the frost that has adhered to the fins of the indoor heat exchanger. By defrosting the outdoor heat exchanger 22, the condensed refrigerant is guided into the heat storage tank (branch) via the four-way valve 21 and the three-way valve 33, and is transferred to the heat exchange coil 29 for heat absorption.
While passing through, it undergoes an endothermic action and evaporates, becoming a gas refrigerant.
This gas refrigerant is returned to the compressor through the satanyong bag 31. Therefore, it is possible to rapidly defrost the 1-6 adhering to the outdoor heat exchanger 22.
その際、バイパス弁27の弁開度を調節することにより
、ホットガスバイパス回路あを流れる冷媒流量を調節す
ることができ、コンプレッサ茄からの高温高圧吐出冷媒
の一部をホットガスバイパス回路あに流し、残りを四方
弁21を介して室外熱交換器翼に案内することにより、
暖房運転を継続させながら、除痛運転を行なうことがで
き、暖房運転を連続的に行なうことができる。At that time, by adjusting the valve opening degree of the bypass valve 27, the flow rate of refrigerant flowing through the hot gas bypass circuit can be adjusted, and a portion of the high temperature and high pressure discharged refrigerant from the compressor is transferred to the hot gas bypass circuit. By directing the remainder to the outdoor heat exchanger blades via the four-way valve 21,
Pain relief operation can be performed while heating operation is continued, and heating operation can be performed continuously.
な、b−、この′J6明の一実癩例の説明においては、
低圧11111 ?令媒配管と蓄熱用配管との分岐部に
三方弁を備えた例について説明したが、各配管に通常の
開閉弁を備えるようにしてもよい。Na, b-, in the explanation of this case of 'J6 Ming's leprosy,
Low pressure 11111? Although an example has been described in which a three-way valve is provided at the branching portion between the reagent pipe and the heat storage pipe, each pipe may be provided with a normal on-off valve.
また、除4“if運転はホントガスバイパス回路26ヲ
利II」シた例について説明したが、この代りに、四)
5jPをluJ侠えることによる反転除1′dの場合に
も、同様にしてI商用することができる。In addition, although we have explained an example in which ``if operation is true gas bypass circuit 26 II'', instead of this, 4)
In the case of inversion division 1'd by using 5jP by luJ, I can be used in the same way.
以ヒに1!’Gべたように、この発明に係る冷凍サイク
ルVCかいては、四方弁からコンプレッサ吸込側に至る
低圧側冷媒配管に、吸熱用熱交換コイルをイノmえた蓄
熱用配管を並列にかつ切換可能に接続し、上記熱交換コ
イルを収容した蓄熱槽をコンプレツナと熱父換可能に配
設したから、コンプレッサケースからの放熱を積極的に
利用して蓄熱槽内を蓄熱させることができるので、蓄熱
槽内に放熱用熱交換コイルを設ける必要がなく、その分
だけ蓄熱槽内命簡素化することができる。また、蓄熱槽
はコンプレッサと熱交換可能に配設されているので、そ
の分だけ近接した配置構造となり、設置スペースの有効
利用を図ることができるので、大きな設置スペースを必
要とせず、小型化を図ることができる。One more time! As mentioned above, in the refrigeration cycle VC according to the present invention, a heat storage pipe with an innovative heat absorption heat exchange coil can be connected in parallel and switchably to the low pressure side refrigerant pipe from the four-way valve to the compressor suction side. Since the heat storage tank housing the above-mentioned heat exchange coil is connected and arranged so that it can exchange heat with the compressor, the heat dissipated from the compressor case can be actively used to store heat in the heat storage tank. There is no need to provide a heat exchange coil for heat radiation inside the tank, and the life inside the heat storage tank can be simplified accordingly. In addition, since the heat storage tank is arranged so that it can exchange heat with the compressor, it can be placed closer to the compressor, and the installation space can be used more effectively, so it does not require a large installation space and can be downsized. can be achieved.
また、蓄熱槽でコンプレッサケースを覆い、両者を一体
化した場合には、スペースをより一層有効的に利用を図
ることができるとともに、コンプレッサからの騒音を蓄
熱槽で吸収することができ、コンプレッサの防音効果を
向上させることができる。In addition, if the compressor case is covered with a heat storage tank and the two are integrated, space can be used more effectively, and the noise from the compressor can be absorbed by the heat storage tank. The soundproofing effect can be improved.
さらに、コンプレッサからの高温高圧の吐出冷媒で蓄熱
槽内を蓄熱する必要がないため、吐出冷媒を冷暖房用等
に有効的に利用できるとともに、冷凍サイクルのサイク
ル構造が簡素化される。Furthermore, since there is no need to store heat in the heat storage tank with the high-temperature, high-pressure discharged refrigerant from the compressor, the discharged refrigerant can be effectively used for heating and cooling purposes, and the cycle structure of the refrigeration cycle is simplified.
第1図は従来のヒートポンプ式冷凍サイクルを示す図、
第2図はこの発明に係る冷凍サイクルの一実細例を示す
図、第3図は上記冷凍サイクルに組み込まれるコンプレ
ッサと蓄熱槽との配置関係を示す簡略図、第4図は上記
冷凍サイクルに組み込捷れる切換用三方弁の弁溝造を示
す断面図である。
肋・・・コンプレッサ、加a・・・コンプレッサケース
、21・・四方弁、22・・・室外熱交換器、腐・・・
室内熱交換器、5b・・・低圧側冷媒配d1測・・・蓄
熱用配・ば、29・・吸熱用熱交換コイル、I・・・蓄
熱槽、お・・切換用三方弁。
代理人弁理士 則 近 憲 佑(ほか1名)弔1図
3
第2図
・第 3 図
第4図Figure 1 shows a conventional heat pump refrigeration cycle.
FIG. 2 is a diagram showing a detailed example of the refrigeration cycle according to the present invention, FIG. 3 is a simplified diagram showing the arrangement relationship between the compressor and the heat storage tank incorporated in the refrigeration cycle, and FIG. FIG. 3 is a sectional view showing the valve groove structure of the three-way switching valve that is assembled and disconnected. ribs...compressor, a...compressor case, 21...four-way valve, 22...outdoor heat exchanger, corrosion...
Indoor heat exchanger, 5b...low pressure side refrigerant distribution d1 measurement...heat storage distribution, 29...heat exchange coil for heat absorption, I...heat storage tank,...three-way switching valve. Representative Patent Attorney Kensuke Chika (and 1 other person) Condolences Figure 1 Figure 3 Figure 2, Figure 3 Figure 4
Claims (1)
l’i4および室内熱交換器を接続して哨戒された冷凍
サイクルにおいて、上記四方弁からコンプレツザ吸込側
に至る低圧側冷媒配管に、吸熱用熱交換コイルを備えた
蓄熱用品けを並列にかつ切換可能に接続し、上記熱交換
コイルを収容した蓄熱q+、!をコンプレッサと熱交換
可能に配設したことを11♀徴とする冷(東サイクル。 2、解熱槽はコンプレッサケースを覆うように一体ある
いは一体的に設けられ、この蓄熱槽内に、コンプレッサ
ケースからの放熱による熱伝導により蓄熱するように購
成された特許請求の範囲第1項に記載の冷凍サイクル。 3、蓄熱槽に収納される吸熱用熱交換コイルは、蓄熱槽
内を周方向に延びるように延設された特許請求の範囲第
2項に記載の冷凍サイクル。 4、低圧側冷媒配管と蓄熱用配肯との分岐部には切換用
三方弁が設けられ、この三方弁の切換操作により低圧側
冷媒配管および樅熱用配げが択一的に選択される特許請
求の範囲第1項に記載の冷凍サイクル。 5、コンプレッサの吐出1則にはホットガスバイパス配
管が分岐されており、このバイパス配貨は途中にバイパ
ス弁を備え、その先端は室外側熱交換器と膨張機溝との
間に接続された特許請求の範囲第1項に記載の冷凍サイ
クル。[Claims] l Compressor, four-way valve, outdoor heat exchanger, expansion +J
In a refrigeration cycle patrolled by connecting L'i4 and an indoor heat exchanger, a heat storage device equipped with a heat exchange coil for heat absorption is connected in parallel and switched to the low pressure side refrigerant piping from the four-way valve to the compressor suction side. Thermal storage q+, which can be connected and housed the above heat exchange coil,! The cooling (east cycle) is characterized in that it is arranged so as to be able to exchange heat with the compressor. The refrigeration cycle according to claim 1, which is purchased so as to store heat by heat conduction due to heat radiation. 3. The heat exchange coil for absorbing heat stored in the heat storage tank extends in the circumferential direction inside the heat storage tank. The refrigeration cycle according to claim 2, which is extended as follows. 4. A three-way switching valve is provided at the branching point between the low-pressure side refrigerant pipe and the heat storage pipe, and the switching operation of the three-way valve is provided. The refrigeration cycle according to claim 1, wherein the low pressure side refrigerant piping and the fir heat distribution are alternatively selected. The refrigeration cycle according to claim 1, wherein this bypass distribution is provided with a bypass valve in the middle, the tip of which is connected between the outdoor heat exchanger and the expander groove.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22403683A JPS60117062A (en) | 1983-11-30 | 1983-11-30 | Refrigeration cycle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22403683A JPS60117062A (en) | 1983-11-30 | 1983-11-30 | Refrigeration cycle |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5076411A Division JPH0827092B2 (en) | 1993-03-11 | 1993-03-11 | Refrigeration cycle |
JP5076413A Division JP2530094B2 (en) | 1993-03-11 | 1993-03-11 | Refrigeration cycle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60117062A true JPS60117062A (en) | 1985-06-24 |
JPH0428983B2 JPH0428983B2 (en) | 1992-05-15 |
Family
ID=16807584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22403683A Granted JPS60117062A (en) | 1983-11-30 | 1983-11-30 | Refrigeration cycle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60117062A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63108173A (en) * | 1986-10-27 | 1988-05-13 | 松下電器産業株式会社 | Defrostation method of heat pump type air conditioner |
JPS63108174A (en) * | 1986-10-27 | 1988-05-13 | 松下電器産業株式会社 | Defrostation method of heat pump type air conditioner |
JPH05223410A (en) * | 1992-07-17 | 1993-08-31 | Toshiba Corp | Heat pump |
WO2020174684A1 (en) * | 2019-02-28 | 2020-09-03 | 三菱電機株式会社 | Refrigeration cycle device |
-
1983
- 1983-11-30 JP JP22403683A patent/JPS60117062A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63108173A (en) * | 1986-10-27 | 1988-05-13 | 松下電器産業株式会社 | Defrostation method of heat pump type air conditioner |
JPS63108174A (en) * | 1986-10-27 | 1988-05-13 | 松下電器産業株式会社 | Defrostation method of heat pump type air conditioner |
JPH0578744B2 (en) * | 1986-10-27 | 1993-10-29 | Matsushita Electric Ind Co Ltd | |
JPH05223410A (en) * | 1992-07-17 | 1993-08-31 | Toshiba Corp | Heat pump |
WO2020174684A1 (en) * | 2019-02-28 | 2020-09-03 | 三菱電機株式会社 | Refrigeration cycle device |
Also Published As
Publication number | Publication date |
---|---|
JPH0428983B2 (en) | 1992-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6931880B2 (en) | Method and arrangement for defrosting a vapor compression system | |
JP3966044B2 (en) | Air conditioner | |
US4311020A (en) | Combination reversing valve and expansion device for a reversible refrigeration circuit | |
US4381798A (en) | Combination reversing valve and expansion device for a reversible refrigeration circuit | |
JP2530094B2 (en) | Refrigeration cycle | |
JPS60117062A (en) | Refrigeration cycle | |
JPH0774709B2 (en) | Air conditioner | |
JPS5819677A (en) | Refrigerator | |
JPH0626724A (en) | Refrigeration cycle | |
JP2504416B2 (en) | Refrigeration cycle | |
JP2003072362A (en) | Adsorption type refrigerator | |
JPH1047836A (en) | Refrigerator having freezing function | |
JPS5813820B2 (en) | air conditioner | |
JP2001174078A (en) | Controlling device of outlet-side refrigerant of evaporator | |
JP3004773B2 (en) | Air conditioner | |
JPH05187735A (en) | Heat pump | |
JPS6036539B2 (en) | Refrigeration equipment capable of cooling and dehumidifying | |
JPS6143194Y2 (en) | ||
JPH0212541Y2 (en) | ||
JPH04244562A (en) | Air conditioner | |
JPS6115978B2 (en) | ||
JPS6026948B2 (en) | air conditioner | |
JPS5815821Y2 (en) | air conditioner | |
JPS6287768A (en) | Defroster for refrigeration cycle | |
JPS59195068A (en) | Method of dehumidification-operating air conditioner |