JP2001174078A - Controlling device of outlet-side refrigerant of evaporator - Google Patents
Controlling device of outlet-side refrigerant of evaporatorInfo
- Publication number
- JP2001174078A JP2001174078A JP36137799A JP36137799A JP2001174078A JP 2001174078 A JP2001174078 A JP 2001174078A JP 36137799 A JP36137799 A JP 36137799A JP 36137799 A JP36137799 A JP 36137799A JP 2001174078 A JP2001174078 A JP 2001174078A
- Authority
- JP
- Japan
- Prior art keywords
- evaporator
- refrigerant
- outlet
- expansion valve
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 title claims abstract description 124
- 238000010438 heat treatment Methods 0.000 claims abstract description 24
- 238000005057 refrigeration Methods 0.000 claims abstract description 10
- 239000007788 liquid Substances 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 2
- 238000004781 supercooling Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2341/00—Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
- F25B2341/06—Details of flow restrictors or expansion valves
- F25B2341/068—Expansion valves combined with a sensor
- F25B2341/0683—Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
Landscapes
- Air-Conditioning For Vehicles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、蒸発器入口側の
冷媒流路に温度式膨張弁を介在させた冷凍サイクルにお
ける蒸発器出口側冷媒の制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a refrigerant at an evaporator outlet side in a refrigeration cycle in which a temperature type expansion valve is interposed in a refrigerant flow path at an evaporator inlet side.
【0002】[0002]
【従来の技術】一般に、カーエアコン等の冷凍サイクル
では、図5に示すように、圧縮機(1)から吐出された
高温高圧のガス冷媒が凝縮器(2)に入り、強制的に外
気と熱交換して冷却し、凝縮液化すると共に過冷却(サ
ブクール)状態でレシーバータンク(3)に流入し、こ
のレシーバータンク(3)より液冷媒のみが導出され、
減圧膨張手段(4)にて急速に膨張させられて蒸発器
(5)に入り、低圧低温の霧状の冷媒として流れる過程
で周囲の空気から蒸発のための潜熱を奪って盛んに蒸発
し、冷やされた空気が所要部位へ送られて冷房作用を行
う。2. Description of the Related Art Generally, in a refrigeration cycle of a car air conditioner or the like, as shown in FIG. 5, a high-temperature and high-pressure gas refrigerant discharged from a compressor (1) enters a condenser (2) and is forcibly removed from outside air. It cools by heat exchange, condenses and liquefies, flows into the receiver tank (3) in a supercooled (subcooled) state, and only the liquid refrigerant is discharged from the receiver tank (3).
It is rapidly expanded by the decompression and expansion means (4), enters the evaporator (5), and in the process of flowing as a low-pressure and low-temperature mist-like refrigerant, takes away latent heat for evaporation from the surrounding air and evaporates vigorously. The cooled air is sent to a required part to perform a cooling action.
【0003】そして、蒸発器(5)を出た冷媒は圧縮機
(1)に戻され、再び高温高圧のガス冷媒として前記の
ように凝縮器(2)へ送られることになるが、圧縮機
(1)に入る冷媒は液圧縮を防止する上で完全にガス成
分のみとする必要がある。このため、減圧膨張手段
(4)として温度式膨張弁を用いる冷凍サイクルでは、
蒸発器(5)から圧縮機(1)へ至る冷媒流路(6)の
蒸発器出口近傍に設けた感温筒(4a)を介して検知さ
れる出口冷媒の温度に基づいて、蒸発器(5)内におけ
る出口側近傍がスーパーヒート部となるように該膨張弁
のオリフィス開度を設定し、蒸発器(5)の出口から冷
媒がスーパーヒートガス(過熱蒸気)として導出される
ようにするのが一般的である。[0003] The refrigerant that has exited the evaporator (5) is returned to the compressor (1), and is sent again to the condenser (2) as a high-temperature and high-pressure gas refrigerant as described above. The refrigerant entering (1) must be completely gaseous in order to prevent liquid compression. For this reason, in a refrigeration cycle using a temperature type expansion valve as the pressure reducing expansion means (4),
Based on the temperature of the outlet refrigerant detected via the temperature-sensitive cylinder (4a) provided near the evaporator outlet in the refrigerant flow path (6) from the evaporator (5) to the compressor (1), the evaporator ( 5) The orifice opening of the expansion valve is set so that the vicinity of the outlet side in the inside becomes a superheat portion, and the refrigerant is led out as superheat gas (superheated steam) from the outlet of the evaporator (5). It is common.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記の
ように蒸発器内にスーパーヒート部を構成した場合、該
スーパーヒート部では液冷媒成分の潜熱分を熱交換に利
用できなくなるため、蒸発器の空気側出口における温度
分布が不均一になると共に、該スーパーヒート部での急
激な比体積の増加によって冷媒側の圧力損失が増大し、
冷媒循環量の減少を招き、結果として蒸発器の性能が低
下することになり、また蒸発器内の冷媒回路構成に制約
を受けて設計自由度も低下するという問題があった。However, when the superheat section is formed in the evaporator as described above, the latent heat component of the liquid refrigerant component cannot be used for heat exchange in the superheat section. As the temperature distribution at the air side outlet becomes non-uniform, the pressure loss on the refrigerant side increases due to the sudden increase in specific volume in the superheat section,
This causes a reduction in the amount of circulating refrigerant, resulting in a reduction in the performance of the evaporator, and also has a problem in that the degree of freedom in design is reduced due to restrictions on the configuration of the refrigerant circuit in the evaporator.
【0005】この発明は、上述の事情に鑑みて、蒸発器
へ送る液冷媒の減圧膨張手段として温度式膨張弁を用い
る冷凍サイクルにおいて、蒸発器の性能を充分に確保し
て、空気側出口の温度分布を均一にすると共に、冷媒側
の圧力損失を抑制して冷媒循環量の減少を防止し、しか
も冷媒をスーパーヒートガスとして圧縮機へ導くことを
可能にする手段を提供することを目的としている。SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a refrigeration cycle using a temperature-type expansion valve as a means for reducing and expanding a liquid refrigerant sent to an evaporator. Aiming to provide a means for making the temperature distribution uniform, suppressing pressure loss on the refrigerant side, preventing a decrease in the amount of refrigerant circulating, and guiding the refrigerant as a superheat gas to the compressor. I have.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、蒸発器入口側の冷媒流路に温度
式膨張弁を介在させた冷凍サイクルにおいて、該蒸発器
の出口から温度式膨張弁の感温部に至る冷媒流路に、冷
媒にスーパーヒートを付与する加熱手段が介在してなる
蒸発器出口側冷媒の制御装置を要旨としている。In order to achieve the above object, the present invention is directed to a refrigeration cycle in which a temperature type expansion valve is interposed in a refrigerant flow path on the inlet side of an evaporator. The gist of the present invention is a control device for an evaporator outlet-side refrigerant, in which a heating means for applying superheat to the refrigerant is interposed in a refrigerant flow path from the to a temperature-sensitive part of a temperature-type expansion valve.
【0007】すなわち、上記構成によれば、該蒸発器の
出口から温度式膨張弁の感温部に至る冷媒流路に介在す
る加熱手段によって、当該冷媒流路を流れる冷媒にスー
パーヒートを付与できるから、蒸発器内部にスーパーヒ
ート部を構成しなくとも、冷媒をスーパーヒートガスと
して圧縮機へ導くことが可能になる。したがって、温度
式膨張弁によって蒸発器内でのスーパーヒート部が減少
ないし除去されるように制御することにより、蒸発器内
の出口近傍まで液冷媒成分の潜熱分が熱交換に利用され
るように設定し、もって空気側出口の温度分布を均一に
すると共に冷媒側の圧力損失を抑制して蒸発器本来の性
能を向上させることができる。That is, according to the above configuration, the superheat can be applied to the refrigerant flowing through the refrigerant flow path by the heating means interposed in the refrigerant flow path from the outlet of the evaporator to the temperature sensing portion of the temperature type expansion valve. Therefore, it is possible to guide the refrigerant as a superheat gas to the compressor without forming a superheat section inside the evaporator. Therefore, by controlling the superheat portion in the evaporator to be reduced or removed by the temperature type expansion valve, the latent heat component of the liquid refrigerant component is used for heat exchange to the vicinity of the outlet in the evaporator. By setting, the temperature distribution at the air-side outlet can be made uniform, and the pressure loss on the refrigerant side can be suppressed to improve the intrinsic performance of the evaporator.
【0008】請求項2の発明では、上記請求項1の蒸発
器出口側冷媒の制御装置において、前記加熱手段がヒー
ターである構成としているから、圧縮機へ導く冷媒を確
実にスーパーヒートガスとすることが可能となる。According to the second aspect of the present invention, in the control device for the refrigerant on the evaporator outlet side according to the first aspect, the heating means is a heater, so that the refrigerant guided to the compressor is surely a superheat gas. It becomes possible.
【0009】請求項3の発明では、上記請求項1の蒸発
器出口側冷媒の制御装置において、蒸発器の出口から温
度式膨張弁の感温部に至る冷媒流路が当該蒸発器への空
気流入域を経由して配管されると共に、この配管の前記
空気流入域通過部分に受熱用フィンを備え、前記加熱手
段が該受熱用フィンを介して蒸発器への入口空気と冷媒
との間で熱交換を行うものとしている。この場合、蒸発
器外でのスーパーヒートをとるための熱源として蒸発器
へ流入させる入口空気を利用できるから、別途に加熱用
熱源を用いる必要がない。According to a third aspect of the present invention, in the control device for an evaporator outlet-side refrigerant according to the first aspect, the refrigerant flow path from the outlet of the evaporator to the temperature-sensitive portion of the thermal expansion valve is provided with air to the evaporator. A pipe is provided via the inflow area, and a heat receiving fin is provided at a portion of the pipe passing through the air inflow area, and the heating means is provided between the inlet air to the evaporator and the refrigerant via the heat receiving fin. Heat exchange is to be performed. In this case, since the inlet air flowing into the evaporator can be used as a heat source for taking superheat outside the evaporator, it is not necessary to use a separate heating heat source.
【0010】請求項4の発明では、上記請求項1の蒸発
器出口側冷媒の制御装置において、凝縮器から温度式膨
張弁に至る冷媒配管と、蒸発器の出口から温度式膨張弁
の感温部に至る冷媒配管との配管接触部を有し、前記加
熱手段が該配管接触部における両配管中の冷媒同士の間
で熱交換を行うものとしている。この場合、凝縮器から
温度式膨張弁に至る冷媒配管中を流れる冷媒は高温高圧
であるのに対し、蒸発器の出口から温度式膨張弁の感温
部に至る冷媒配管中を流れる冷媒は低温低圧で温度差が
大きいことから、上記の配管接触部での熱交換により、
後者の配管中の冷媒を確実にスーパーヒートガスになし
得ると共に、前者の配管中の冷媒もサブクール(過冷
却)度が増すことになる。According to a fourth aspect of the present invention, in the control apparatus for an evaporator outlet-side refrigerant according to the first aspect, the refrigerant pipe extending from the condenser to the thermal expansion valve, and the temperature sensing of the thermal expansion valve from the evaporator outlet. The heating means performs heat exchange between the refrigerants in the two pipes at the pipe contact portion. In this case, the refrigerant flowing in the refrigerant pipe from the condenser to the temperature type expansion valve has a high temperature and a high pressure, whereas the refrigerant flowing in the refrigerant pipe from the outlet of the evaporator to the temperature sensitive part of the temperature type expansion valve has a low temperature. Since the temperature difference is large at low pressure, the heat exchange at the pipe contact area
The refrigerant in the latter pipe can be surely turned into a superheat gas, and the refrigerant in the former pipe also has an increased degree of subcooling (supercooling).
【0011】[0011]
【発明の実施の形態】以下、この発明に係る蒸発器出口
側冷媒の制御装置の実施例について、図面を参照して具
体的に説明する。図1は第一実施例、図2は第二実施
例、図3は第三実施例、図4は第五実施例をそれぞれ示
す。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a control device for an evaporator outlet-side refrigerant according to the present invention will be specifically described below with reference to the drawings. 1 shows a first embodiment, FIG. 2 shows a second embodiment, FIG. 3 shows a third embodiment, and FIG. 4 shows a fifth embodiment.
【0012】図1に示す第一実施例では、凝縮器(図示
省略)側から蒸発器(5)の入口へ向かう導入側冷媒流
路(7)と、該蒸発器(5)の出口から圧縮機(図示省
略)へ向かう導出側冷媒流路(6)とが接近した部分に
温度式膨張弁(41)の感温部(42)を含む膨張弁ユニッ
ト(40)が取り付けられており、導出側冷媒流路(6)
における蒸発器(5)から温度式膨張弁(41)の感温部
(42)までの冷媒流路(6a)の途中にヒーター(8
A)が介在している。In the first embodiment shown in FIG. 1, an inlet-side refrigerant flow path (7) from the condenser (not shown) side to the inlet of the evaporator (5), and a compressor from the outlet of the evaporator (5). An expansion valve unit (40) including a temperature-sensitive part (42) of a temperature-type expansion valve (41) is attached to a portion close to the outlet-side refrigerant flow path (6) toward a machine (not shown). Side refrigerant channel (6)
In the middle of the refrigerant flow path (6a) from the evaporator (5) to the temperature sensing part (42) of the temperature-type expansion valve (41) in the heater (8).
A) is interposed.
【0013】また、図2に示す第二実施例では、導入側
冷媒流路(7)及び導出側冷媒流路(6)の膨張弁ユニ
ット(40)を含む流路構成は前記第一実施例と同様であ
るが、蒸発器(5)の側方外部にヒーター(8B)が取
り付けられており、蒸発器(5)の出口からの冷媒流路
(6a)は該ヒーター(8B)を経て外部へ導出して温
度式膨張弁(41)の感温部(42)に至るように構成され
ている。In the second embodiment shown in FIG. 2, the flow path configuration including the expansion valve unit (40) of the inlet side refrigerant flow path (7) and the outlet side refrigerant flow path (6) is the same as that of the first embodiment. Same as above, except that a heater (8B) is attached to the outside of the evaporator (5), and the refrigerant flow path (6a) from the outlet of the evaporator (5) passes through the heater (8B) to the outside. To reach the temperature sensing part (42) of the temperature type expansion valve (41).
【0014】これら第一実施例及び第二実施例の構成で
は、ヒーター(8A)(8B)による加熱によって蒸発
器(5)を出た冷媒にスーパーヒートを付与し、該冷媒
を完全なスーパーヒートガスとして圧縮機(図示省略)
へ導くことができる。従って、蒸発器(5)において
は、温度式膨張弁(41)によって内部のスーパーヒート
部が減少ないし除去されるように制御し、もって蒸発器
内の出口近傍まで液冷媒成分の潜熱分を熱交換に利用で
きるようにして、空気側出口の温度分布の均一化と冷媒
側の圧力損失の抑制を図ることが可能となり、もって蒸
発器本来の性能を向上させることができる。In the constructions of the first and second embodiments, the superheat is given to the refrigerant exiting the evaporator (5) by heating by the heaters (8A) and (8B), and the refrigerant is completely superheated. Compressor (not shown) as gas
Can lead to Therefore, in the evaporator (5), the superheat portion inside the evaporator (41) is controlled so as to be reduced or removed by the temperature type expansion valve (41). By making the evaporator usable for replacement, it is possible to equalize the temperature distribution at the air-side outlet and suppress the pressure loss at the refrigerant side, thereby improving the intrinsic performance of the evaporator.
【0015】上記のヒーター(8A)(8B)として
は、その種類は特に制約されないが、電熱式のものが構
成的に簡素で取付けも容易であるために推奨される。特
に第一実施例のように冷媒流路(6a)の途中に介在さ
せるヒーター(8)としては、該流路(6a)の配管に
電熱線を巻き付ける方式が最も簡素である。しかして、
これらヒーター(8A)(8B)は、冷媒のスーパーヒ
ートを一定に保つように、冷媒流量に応じて出力を制御
することが望ましい。The type of the heaters (8A) and (8B) is not particularly limited, but an electrothermal type is recommended because it is structurally simple and easy to mount. In particular, as the heater (8) interposed in the middle of the refrigerant channel (6a) as in the first embodiment, the simplest method is to wind a heating wire around the pipe of the channel (6a). Then
It is desirable to control the output of these heaters (8A) (8B) in accordance with the refrigerant flow rate so as to keep the superheat of the refrigerant constant.
【0016】第三実施例においては、図3(A)に示す
ように、前記第一及び第二実施例と同様に、蒸発器
(5)の入口へ向かう導入側冷媒流路(7)と該蒸発器
(5)の出口からの導出側冷媒流路(6)とが接近した
部分に、温度式膨張弁(41)の感温部(42)を含む膨張
弁ユニット(40)が取り付けられている。しかして、導
出側冷媒流路(6)における蒸発器(5)から温度式膨
張弁(41)の感温部(42)までの冷媒流路(6a)の配
管(61)は、図中の大きな矢印(9)で示すように蒸発
器(5)を通過する熱交換用空気の当該蒸発器(5)へ
の空気流入域(90)を経由すると共に、この空気流入域
(90)の通過部分に受熱用フィン(10A)を設けてあ
る。In the third embodiment, as shown in FIG. 3 (A), as in the first and second embodiments, an inlet-side refrigerant flow path (7) leading to the inlet of the evaporator (5) is provided. An expansion valve unit (40) including a temperature-sensitive portion (42) of a temperature-type expansion valve (41) is attached to a portion where the refrigerant flow path (6) on the outlet side from the outlet of the evaporator (5) approaches. ing. Thus, the piping (61) of the refrigerant flow path (6a) from the evaporator (5) to the temperature sensing part (42) of the temperature type expansion valve (41) in the outlet side refrigerant flow path (6) is shown in FIG. As shown by the large arrow (9), the heat exchange air passing through the evaporator (5) passes through the air inflow area (90) to the evaporator (5) and passes through the air inflow area (90). A heat receiving fin (10A) is provided in the portion.
【0017】この第三実施例の構成では、空気流入域
(90)にある熱交換前の入口空気は蒸発器(5)を出る
冷媒の温度よりも格段に高温であるから、配管(61)を
流れる冷媒が空気流入域(90)を通過する過程で受熱用
フィン(10A)を介して前記入口空気と熱交換し、もっ
て該冷媒がスーパーヒートガスとして圧縮機(図示省
略)へ導くことができる。従って、前記第一及び第二実
施例の場合と同様に、温度式膨張弁(41)にて蒸発器
(5)内部のスーパーヒート部が減少ないし除去される
ように制御し、空気側出口の温度分布の均一化と冷媒側
の圧力損失の抑制によって蒸発器本来の性能を向上させ
ることができる。In the configuration of the third embodiment, the inlet air before the heat exchange in the air inflow area (90) is much higher than the temperature of the refrigerant exiting the evaporator (5). When the refrigerant flowing through the air passes through the air inflow area (90), the refrigerant exchanges heat with the inlet air through the heat receiving fins (10A), thereby leading the refrigerant to a compressor (not shown) as a superheat gas. it can. Therefore, similarly to the first and second embodiments, the superheated portion inside the evaporator (5) is controlled by the thermal expansion valve (41) so as to be reduced or eliminated, and the air side outlet is controlled. The inherent performance of the evaporator can be improved by making the temperature distribution uniform and suppressing the pressure loss on the refrigerant side.
【0018】なお、図3(A)に示す受熱用フィン(10
A)は鍔状のラジアルフィンを表しているが、これに代
えて、同図(B)に示すような配管(61)の周囲に放射
状に配置する条片状のフィン(10B)や、同図(C)に
示すように配管(61)の偏平部(61a)を挟むように配
置して外側にカバー(11)を設けるようにした蛇行状フ
ィン(10C)等、様々な形態の受熱用フィンを採用可能
である。The heat receiving fin (10) shown in FIG.
A) shows a flange-shaped radial fin. Instead, a strip-shaped fin (10B) radially arranged around a pipe (61) as shown in FIG. Various forms of heat receiving, such as meandering fins (10C) arranged so as to sandwich the flat part (61a) of the pipe (61) and providing the cover (11) on the outside as shown in FIG. Fins can be employed.
【0019】図4に示す第四実施例では、前記第一〜第
三実施例と同様に、凝縮器(2)からレシーバータンク
(3)を経て蒸発器(5)の入口へ向かう導入側冷媒流
路(7)と、該蒸発器(5)の出口から圧縮機(1)へ
向かう導出側冷媒流路(6)とが接近した部分に、温度
式膨張弁(41)の感温部(42)を含む膨張弁ユニット
(40)が取り付けられている。しかして、導出側冷媒流
路(6)における蒸発器(5)から温度式膨張弁(41)
の感温部(42)までの冷媒流路(6a)の途中に配管接
触部(12)が設けられており、この配管接触部(12)に
おいて、該冷媒流路(6a)の配管(61)が導入側冷媒
流路(7)のレシーバータンク(3)から温度式膨張弁
(41)に至る配管(71)と接触するように構成されてい
る。In the fourth embodiment shown in FIG. 4, as in the first to third embodiments, the inlet-side refrigerant flowing from the condenser (2) to the inlet of the evaporator (5) via the receiver tank (3). The temperature-sensitive part (41) of the temperature-type expansion valve (41) is located in a portion where the flow path (7) and the outlet-side refrigerant flow path (6) from the outlet of the evaporator (5) to the compressor (1) are close to each other. An expansion valve unit (40), including 42), is mounted. The evaporator (5) in the outlet-side refrigerant flow path (6) is connected to the thermal expansion valve (41).
A pipe contact part (12) is provided in the middle of the refrigerant flow path (6a) up to the temperature sensing part (42). In the pipe contact part (12), the pipe (61) of the refrigerant flow path (6a) is provided. ) Is configured to be in contact with a pipe (71) extending from the receiver tank (3) in the introduction-side refrigerant flow path (7) to the temperature-type expansion valve (41).
【0020】この第四実施例の構成においては、配管
(71)中を流れる冷媒が高温高圧であるのに対し、配管
(61)中を流れる冷媒は低温低圧で温度差が大きいこと
から、上記の配管接触部(12)において両配管(61)
(71)中を流れる冷媒間で熱交換が行われ、配管(61)
中の冷媒は受熱して確実にスーパーヒートガスになると
共に、配管(71)中の冷媒は熱を奪われてサブクール
(過冷却)度が増すことになる。この場合、蒸発器
(5)内のスーパーヒート部を減少ないし除去して蒸発
器本来の性能を向上させ得ることは前記第一〜第三実施
例と同様であるが、温度式膨張弁(41)に供給される液
冷媒のサブクール度が高いことによっても蒸発器(5)
の冷凍効果が向上するから、蒸発器(5)はより優れた
熱交換性能を発揮するものとなる。In the structure of the fourth embodiment, the refrigerant flowing in the pipe (71) has a high temperature and a high pressure, while the refrigerant flowing in the pipe (61) has a low temperature and a low pressure and a large temperature difference. Both pipes (61) at the pipe contact area (12)
Heat exchange is performed between the refrigerant flowing in (71) and piping (61)
The refrigerant inside receives the heat to surely become a superheat gas, and the refrigerant in the pipe (71) is deprived of heat, and the degree of subcooling (supercooling) increases. In this case, the superheat section in the evaporator (5) can be reduced or eliminated to improve the intrinsic performance of the evaporator as in the first to third embodiments, but the temperature type expansion valve (41) can be used. The subcooling of the liquid refrigerant supplied to the evaporator (5) is also high.
Therefore, the evaporator (5) exhibits more excellent heat exchange performance.
【0021】なお、この発明においては、蒸発器(5)
の出口から温度式膨張弁(41)の感温部(42)に至る冷
媒流路に介在させる加熱手段として、前記第一〜第四実
施例で例示した以外の熱放射式や熱交換式の種々の加熱
手段を採用できる。また、前記第一〜第四実施例では温
度式膨張弁(41)とその感温部(42)とが膨張弁ユニッ
ト(40)に一体化されているが、両者(41)(42)が分
離した構成であってもよい。更に蒸発器(5)の種類及
び構造については特に制約はない。In the present invention, the evaporator (5)
Heating means other than those exemplified in the first to fourth embodiments may be used as a heating means interposed in the refrigerant flow passage from the outlet of the thermostatic expansion valve (41) to the temperature sensing portion (42) of the temperature type expansion valve (41). Various heating means can be employed. In the first to fourth embodiments, the temperature type expansion valve (41) and its temperature sensing part (42) are integrated into the expansion valve unit (40). It may have a separated configuration. Further, there is no particular limitation on the type and structure of the evaporator (5).
【0022】[0022]
【発明の効果】請求項1の発明に係る蒸発器出口側冷媒
の制御装置によれば、蒸発器へ送る液冷媒の減圧膨張手
段として温度式膨張弁を用いる冷凍サイクルにおいて、
該蒸発器の出口から温度式膨張弁の感温部に至る冷媒流
路に、冷媒にスーパーヒートを付与する加熱手段が介在
することから、蒸発器内部にスーパーヒート部を構成し
なくとも、冷媒をスーパーヒートガスとして圧縮機へ導
くことが可能となり、温度式膨張弁によって蒸発器内で
のスーパーヒート部が減少ないし除去されるように制御
して、空気側出口の温度分布を均一にすると共に、冷媒
側の圧力損失を抑制して冷媒循環量の減少を防止し、も
って蒸発器本来の性能を向上させることができる。According to the first aspect of the present invention, there is provided a refrigeration cycle using a temperature type expansion valve as a means for reducing and expanding a liquid refrigerant to be sent to an evaporator.
Since a heating means for applying superheat to the refrigerant is interposed in the refrigerant flow path from the outlet of the evaporator to the temperature-sensitive part of the temperature-type expansion valve, the refrigerant can be provided without forming a superheat part inside the evaporator. To the compressor as a superheat gas, and the temperature-type expansion valve controls the superheat section in the evaporator to be reduced or eliminated, making the temperature distribution at the air side outlet uniform and In addition, the pressure loss on the refrigerant side can be suppressed to prevent a decrease in the amount of circulating refrigerant, thereby improving the intrinsic performance of the evaporator.
【0023】請求項2の発明によれば、上記の蒸発器出
口側冷媒の制御装置において、前記加熱手段にヒーター
を用いることから、圧縮機へ導く冷媒に確実にスーパー
ヒートを付与できる。According to the second aspect of the present invention, in the evaporator outlet-side refrigerant control device, since a heater is used as the heating means, superheat can be reliably applied to the refrigerant guided to the compressor.
【0024】請求項3の発明によれば、上記の蒸発器出
口側冷媒の制御装置において、蒸発器の出口から温度式
膨張弁の感温部に至る冷媒流路が当該蒸発器への空気流
入域を経由して配管され、この配管の空気流入域通過部
分に設けた受熱用フィンを介して蒸発器への入口空気と
冷媒との間で熱交換を行うようにしているから、蒸発器
外でのスーパーヒートをとるため別途に加熱用熱源を用
いる必要がなく、前記加熱手段による運転コストの増加
を回避できるという利点がある。According to the third aspect of the present invention, in the control device for the refrigerant on the outlet side of the evaporator, the refrigerant flow path from the outlet of the evaporator to the temperature sensing part of the temperature type expansion valve flows into the evaporator. Since the heat is exchanged between the refrigerant and the inlet air to the evaporator through the heat receiving fins provided in the air inflow area of the pipe, the heat exchange is performed outside the evaporator. Therefore, there is no need to use a separate heat source for heating in order to take the superheat, and there is an advantage that an increase in operating cost due to the heating means can be avoided.
【0025】請求項4の発明によれば、上記の蒸発器出
口側冷媒の制御装置において、凝縮器から温度式膨張弁
に至る冷媒配管と、蒸発器の出口から温度式膨張弁の感
温部に至る冷媒配管とを接触させ、この接触部における
両配管中の冷媒同士の間で熱交換を行うことにより、後
者の配管中の冷媒にスーパーヒートを付与すると同時
に、前者の配管中の冷媒のサブクール度を増すようにし
ているから、蒸発器の性能がより優れたものになる。According to the fourth aspect of the present invention, in the control device for the refrigerant on the outlet side of the evaporator, the refrigerant pipe from the condenser to the thermal expansion valve, and the temperature sensing part of the thermal expansion valve from the outlet of the evaporator. And superheat is applied to the refrigerant in the latter pipe by simultaneously exchanging heat between the refrigerants in both pipes at this contact portion, and at the same time, the refrigerant in the former pipe is Since the degree of subcooling is increased, the performance of the evaporator is further improved.
【図1】この発明の第一実施例に係る蒸発器出口側冷媒
の制御装置を示す冷媒回路図である。FIG. 1 is a refrigerant circuit diagram showing an evaporator outlet-side refrigerant control device according to a first embodiment of the present invention.
【図2】同第二実施例に係る蒸発器出口側冷媒の制御装
置を示す冷媒回路図である。FIG. 2 is a refrigerant circuit diagram showing an evaporator outlet-side refrigerant control device according to the second embodiment.
【図3】同第三実施例に係る蒸発器出口側冷媒の制御装
置を示し、(A)図は冷媒回路図、(B)は該制御装置
に用いる受熱用フィンの他の構成を示す縦断側面図、
(C)は同受熱用フィンの更に他の構成を示す側面図で
ある。FIG. 3 shows a control device for the evaporator outlet side refrigerant according to the third embodiment, FIG. 3 (A) is a refrigerant circuit diagram, and FIG. 3 (B) is a longitudinal section showing another configuration of a heat receiving fin used in the control device. Side view,
(C) is a side view which shows further another structure of the heat receiving fin.
【図4】同第四実施例に係る蒸発器出口側冷媒の制御装
置を示す冷凍サイクル全体の冷媒回路図である。FIG. 4 is a refrigerant circuit diagram of the entire refrigeration cycle showing the control device for the evaporator outlet-side refrigerant according to the fourth embodiment.
【図5】冷凍サイクルの基本原理を示す冷媒回路図であ
る。FIG. 5 is a refrigerant circuit diagram showing a basic principle of a refrigeration cycle.
1・・・・・・・・・圧縮機 2・・・・・・・・・凝縮器 3・・・・・・・・・レシーバータンク 5・・・・・・・・・蒸発器 40・・・・・・・・膨張弁ユニット 41・・・・・・・・温度式膨張弁 42・・・・・・・・感温部 6・・・・・・・・・導出側冷媒流路 6a・・・・・・・・温度式膨張弁の感温部に至る冷媒
流路 61・・・・・・・・配管 7・・・・・・・・・導入側冷媒流路(凝縮器入口側の
冷媒流路) 71・・・・・・・・配管 8A,8B・・・・・ヒーター(加熱手段) 9・・・・・・・・・熱交換用空気 90・・・・・・・・空気流入域 10A〜10C・・・受熱用フィン(加熱手段) 12・・・・・・・・配管接触部(加熱手段)1 ... Compressor 2 ... Condenser 3 ... Receiver tank 5 ... Evaporator 40 ... ······· Expansion valve unit 41 ······ Temperature expansion valve 42 ··········································································································································· 6a ························ Piping 7 ······················ Introducing refrigerant path (condenser) …………………………………………………………………………………… Pipes 8A, 8B… ················ Heat exchange air 90 ········ ... Air inflow area 10A to 10C ... Heat receiving fins (Heating means) 12 ... Pipe contact part (Heating means)
Claims (4)
を介在させた冷凍サイクルにおいて、該蒸発器の出口か
ら温度式膨張弁の感温部に至る冷媒流路に、冷媒にスー
パーヒートを付与する加熱手段が介在してなる蒸発器出
口側冷媒の制御装置。In a refrigeration cycle in which a temperature type expansion valve is interposed in a refrigerant flow path on an evaporator inlet side, a supercooled refrigerant flows in a refrigerant flow path from an outlet of the evaporator to a temperature sensing part of the temperature type expansion valve. An evaporator outlet-side refrigerant control device including a heating means for applying heat.
記載の蒸発器出口側冷媒の制御装置。2. The heating device according to claim 1, wherein said heating means is a heater.
A control device for an evaporator outlet-side refrigerant as described in the above.
に至る冷媒流路が当該蒸発器への空気流入域を経由して
配管されると共に、この配管の前記空気流入域通過部分
に受熱用フィンを備え、前記加熱手段が該受熱用フィン
を介して蒸発器への入口空気と冷媒との間で熱交換を行
うものである請求項1記載の蒸発器出口側冷媒の制御装
置。3. A refrigerant flow path from an outlet of the evaporator to a temperature sensing part of the temperature type expansion valve is piped through an air inflow area to the evaporator, and a portion of the pipe passing through the air inflow area. The evaporator outlet-side refrigerant control device according to claim 1, wherein a heat receiving fin is provided, and the heating means exchanges heat between the refrigerant and the inlet air to the evaporator via the heat receiving fin. .
と、蒸発器の出口から温度式膨張弁の感温部に至る冷媒
配管との配管接触部を有し、前記加熱手段が該配管接触
部における両配管中の冷媒同士の間で熱交換を行うもの
である請求項1記載の蒸発器出口側冷媒の制御装置。4. A piping contact portion between a refrigerant pipe extending from a condenser to a thermal expansion valve and a refrigerant piping extending from an outlet of an evaporator to a temperature-sensitive section of the thermal expansion valve, wherein the heating means is connected to the piping. The evaporator outlet-side refrigerant control device according to claim 1, wherein heat exchange is performed between the refrigerants in the two pipes at the contact portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36137799A JP2001174078A (en) | 1999-12-20 | 1999-12-20 | Controlling device of outlet-side refrigerant of evaporator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36137799A JP2001174078A (en) | 1999-12-20 | 1999-12-20 | Controlling device of outlet-side refrigerant of evaporator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001174078A true JP2001174078A (en) | 2001-06-29 |
Family
ID=18473331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36137799A Pending JP2001174078A (en) | 1999-12-20 | 1999-12-20 | Controlling device of outlet-side refrigerant of evaporator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001174078A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011088520A (en) * | 2009-10-21 | 2011-05-06 | Mihama Kk | Air conditioning system |
JP2012026686A (en) * | 2010-07-27 | 2012-02-09 | Mitsubishi Electric Corp | Load-side device and refrigeration/cold-storage system |
CN102980334A (en) * | 2011-09-05 | 2013-03-20 | F·波尔希名誉工学博士公司 | Refrigerating circuit for use in a motor vehicle |
US20160023538A1 (en) * | 2014-07-24 | 2016-01-28 | C.R.F. Società Consortile Per Azioni | Air conditioning system for motor-vehicles |
-
1999
- 1999-12-20 JP JP36137799A patent/JP2001174078A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011088520A (en) * | 2009-10-21 | 2011-05-06 | Mihama Kk | Air conditioning system |
JP2012026686A (en) * | 2010-07-27 | 2012-02-09 | Mitsubishi Electric Corp | Load-side device and refrigeration/cold-storage system |
CN102980334A (en) * | 2011-09-05 | 2013-03-20 | F·波尔希名誉工学博士公司 | Refrigerating circuit for use in a motor vehicle |
JP2013052862A (en) * | 2011-09-05 | 2013-03-21 | Dr Ing Hcf Porsche Ag | Refrigeration circuit for use in automobile |
US20160023538A1 (en) * | 2014-07-24 | 2016-01-28 | C.R.F. Società Consortile Per Azioni | Air conditioning system for motor-vehicles |
CN105299972A (en) * | 2014-07-24 | 2016-02-03 | C.R.F.阿西安尼顾问公司 | Air conditioning system for motor-vehicles |
US9789749B2 (en) * | 2014-07-24 | 2017-10-17 | C.R.F. Società Consortile Per Azioni | Air conditioning system for motor-vehicles |
CN105299972B (en) * | 2014-07-24 | 2019-05-17 | C.R.F.阿西安尼顾问公司 | Air handling system for motor vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7099392B2 (en) | In-vehicle temperature control device | |
KR100893117B1 (en) | Method and arrangement for defrosting a vapor compression system | |
WO2012060164A1 (en) | Heat pump-type air-warming device | |
US20140373560A1 (en) | Internal Heat Exchanger with Integrated Receiver/Dryer and Thermal Expansion Valve | |
JP2007503565A (en) | Defrosting method for heat pump hot water system | |
US4932221A (en) | Air-cooled cooling apparatus | |
KR101737365B1 (en) | Air conditioner | |
JP6491791B2 (en) | Double pipe | |
JP2007139244A (en) | Refrigeration device | |
JP3662238B2 (en) | Cooling device and thermostatic device | |
JP2008025915A (en) | Absorption refrigerator system | |
WO2012101515A2 (en) | Three-media evaporator for a cooling unit | |
WO2002025179A1 (en) | Refrigeration cycle | |
JP2001174078A (en) | Controlling device of outlet-side refrigerant of evaporator | |
KR20080060521A (en) | System for car air conditioner have auxiliary cooling apparatus | |
JP2002349979A (en) | Co2 gas compressing system | |
JP3735338B2 (en) | Refrigeration apparatus for vehicle and control method thereof | |
KR100984305B1 (en) | Heat pump for supplying cool and hot water | |
CN109341126A (en) | Refrigeration system and control method | |
KR0155652B1 (en) | Refrigeration apparatus applying liquid gas heat exchanger | |
KR100447195B1 (en) | cooling apparatus and method of controling the apparatus in the refrigerator | |
KR200291600Y1 (en) | control device for air conditioning and heating apparatus refrigerant-pressure | |
KR200405714Y1 (en) | Heat-pump type heating apparatus | |
JP2006342994A (en) | Ice heat storage air conditioner | |
KR20020057158A (en) | Heat exchanging cycle of car air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060522 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090224 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090929 |