JP2002349979A - Co2 gas compressing system - Google Patents

Co2 gas compressing system

Info

Publication number
JP2002349979A
JP2002349979A JP2001163706A JP2001163706A JP2002349979A JP 2002349979 A JP2002349979 A JP 2002349979A JP 2001163706 A JP2001163706 A JP 2001163706A JP 2001163706 A JP2001163706 A JP 2001163706A JP 2002349979 A JP2002349979 A JP 2002349979A
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide gas
refrigerant
compression system
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001163706A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Yokomizo
剛志 横溝
Masaaki Ishiyama
正昭 石山
Shinji Kuramoto
新治 蔵本
Koji Shimazaki
幸治 島崎
Kenji Tojo
健司 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Air Conditioning Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Air Conditioning Systems Co Ltd filed Critical Hitachi Air Conditioning Systems Co Ltd
Priority to JP2001163706A priority Critical patent/JP2002349979A/en
Publication of JP2002349979A publication Critical patent/JP2002349979A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Abstract

PROBLEM TO BE SOLVED: To enable high precision control by reducing the pressure applied to an automatic expansion valve, and to provide a CO2 gas compressing system which enables reduction of price of a system device. SOLUTION: The system device comprises a refrigerant circulation circuit B that CO2 gas as a refrigerant successively circulates through a compressor 1, a gas cooler 2, expansion means 3a and 3, and an evaporator 4, the expansion means 3a and 3 consisting of a capillary tube 3a as a fixed restriction means, whose channel opening is fixed and the automatic expansion valve 3 as a variable restriction means whose channel opening is variable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二酸化炭素ガス圧
縮システムに関し、特に、自動膨張弁にかかる圧力を低
減することにより、精度の高い制御を行うことができる
ようにするとともに、システム機器の価格を低廉にでき
るようにした二酸化炭素ガス圧縮システムに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon dioxide gas compression system, and more particularly, to a system for controlling a high-precision valve by reducing the pressure applied to an automatic expansion valve, and at the same time, reducing the price of system equipment. The present invention relates to a carbon dioxide gas compression system which can be manufactured at a low cost.

【0002】[0002]

【従来の技術】従来、二酸化炭素ガス(CO2)を冷媒
としたガス圧縮システムとして、図2に示すように、冷
媒としての二酸化炭素ガスが、圧縮機1、ガスクーラー
2、自動膨張弁3及び蒸発器4間を順次循環する冷媒循
環回路を備えたものが実用化されている。
2. Description of the Related Art Conventionally, as a gas compression system using carbon dioxide gas (CO 2 ) as a refrigerant, a carbon dioxide gas as a refrigerant is supplied to a compressor 1, a gas cooler 2, an automatic expansion valve 3 as shown in FIG. And a refrigerant circulation circuit that sequentially circulates between the evaporators 4 has been put to practical use.

【0003】この場合において、自動膨張弁3には、圧
縮機1によって圧縮された冷媒としての二酸化炭素ガス
の10MPa程度の高い圧力が、自動膨張弁3に直接か
かるようになっていた。
In this case, a high pressure of about 10 MPa of carbon dioxide gas as a refrigerant compressed by the compressor 1 is directly applied to the automatic expansion valve 3.

【0004】[0004]

【発明が解決しようとする課題】このように、従来の二
酸化炭素ガスを冷媒とした二酸化炭素ガス圧縮システム
においては、圧縮機1によって圧縮された冷媒としての
二酸化炭素ガスの10MPa程度の高い圧力が、自動膨
張弁3に直接かかるため、自動膨張弁3には、容量の大
きな、高い圧力に十分耐え得る仕様のものが必要とな
り、価格的に高価になるという問題があった。また、容
量の大きな自動膨張弁は、価格的に高価となるだけでな
く、精度の高い制御を行いにくいという問題があった。
As described above, in the conventional carbon dioxide gas compression system using carbon dioxide gas as a refrigerant, the pressure of the carbon dioxide gas as a refrigerant compressed by the compressor 1 is as high as about 10 MPa. Since the pressure is directly applied to the automatic expansion valve 3, the automatic expansion valve 3 needs to have a large capacity and a specification capable of sufficiently withstanding a high pressure, resulting in a problem that the price is expensive. Further, an automatic expansion valve having a large capacity has a problem that it is not only expensive in price but also difficult to perform highly accurate control.

【0005】ところで、従来の二酸化炭素ガスを冷媒と
した二酸化炭素ガス圧縮システムにおいては、外気温度
によって給湯温度等が影響を受けるようになっていた。
すなわち、外気温度が高い場合には、吐出温度は、図3
の(ハ)に示すように、高い温度を維持することができ
るが、外気温度が低い場合には、図3の(ロ)に示すよ
うに、冷媒の温度が低下するため、冬期等においては高
温給湯が行いにくいという問題があった。
[0005] In a conventional carbon dioxide gas compression system using carbon dioxide gas as a refrigerant, the temperature of hot water and the like are affected by the outside air temperature.
That is, when the outside air temperature is high, the discharge temperature is as shown in FIG.
(C), a high temperature can be maintained, but when the outside air temperature is low, the temperature of the refrigerant decreases as shown in (b) of FIG. There was a problem that high-temperature hot water supply was difficult.

【0006】本発明は、上記従来の二酸化炭素ガス圧縮
システムの有する問題点に鑑み、自動膨張弁にかかる圧
力を低減することにより、精度の高い制御を行うことが
できるようにするとともに、システム機器の価格を低廉
にできるようにした二酸化炭素ガス圧縮システムを提供
することを第1の目的とする。
The present invention has been made in consideration of the above-described problems of the conventional carbon dioxide gas compression system, and has been made capable of performing high-precision control by reducing the pressure applied to an automatic expansion valve, and at the same time, system equipment. It is a first object of the present invention to provide a carbon dioxide gas compression system capable of reducing the price of a carbon dioxide gas.

【0007】また、本発明は、外気温度が低い冬期等に
おいても、冷媒の温度を高温に保って、高温給湯を行う
ことができるようにした二酸化炭素ガス圧縮システムを
提供することを第2の目的とする。
Another object of the present invention is to provide a carbon dioxide gas compression system capable of supplying a high-temperature hot water while maintaining the temperature of the refrigerant at a high temperature even in winter or the like when the outside air temperature is low. Aim.

【0008】[0008]

【課題を解決するための手段】上記第1の目的を達成す
るため、本第1発明の二酸化炭素ガス圧縮システムは、
冷媒としての二酸化炭素ガス圧縮システム二酸化炭素ガ
スが、圧縮機、ガスクーラー、膨張手段及び蒸発器間を
順次循環する冷媒循環回路を備えた二酸化炭素ガス圧縮
システムにおいて、前記膨張手段を、流路の開度が一定
の固定絞り手段と、流路の開度が可変の可変絞り手段と
で構成したことを特徴とする。
Means for Solving the Problems In order to achieve the first object, a carbon dioxide gas compression system of the first invention is provided.
Carbon dioxide gas compression system as a refrigerant Carbon dioxide gas, a compressor, a gas cooler, expansion means and a carbon dioxide gas compression system comprising a refrigerant circulation circuit that sequentially circulates between the evaporator, the expansion means, the flow path It is characterized by comprising fixed throttle means having a constant opening degree and variable throttle means having a variable opening degree of the flow path.

【0009】この場合において、前記膨張手段の固定絞
り手段にキャピラリーチューブを、可変絞り手段に温度
式膨張弁又は電子制御式膨張弁等の自動膨張弁を用いる
ことができる。
In this case, a capillary tube can be used as the fixed throttle means of the expansion means, and an automatic expansion valve such as a thermal expansion valve or an electronic control expansion valve can be used as the variable throttle means.

【0010】この二酸化炭素ガス圧縮システムは、膨張
手段を、流路の開度が一定の固定絞り手段と、流路の開
度が可変の可変絞り手段とで構成するようにしているの
で、流路の開度が可変の可変絞り手段、具体的には、自
動膨張弁にかかる圧力を低減することができ、精度の高
い制御を行うことができる。また、可変絞り手段に必要
とされる耐圧が低くなるとともに、容量も小さいもので
よいため、システム機器の価格を低廉にできる。
In this carbon dioxide gas compression system, the expansion means is constituted by fixed throttle means having a fixed flow path opening degree and variable throttle means having a variable flow path opening degree. It is possible to reduce the pressure applied to the variable throttle means having a variable opening degree of the path, specifically, the pressure applied to the automatic expansion valve, and it is possible to perform highly accurate control. Further, the pressure resistance required for the variable aperture means is reduced and the capacity may be small, so that the price of the system equipment can be reduced.

【0011】また、上記第2の目的を達成するため、本
第2発明の二酸化炭素ガス圧縮システムは、上記本第1
発明の二酸化炭素ガス圧縮システムにおいて、冷媒循環
回路の蒸発器と圧縮機の間に、制御弁を介して、前記固
定絞り手段との間で熱交換を行う熱交換器を配設した加
熱補助回路を形成したことを特徴とする。
Further, in order to achieve the second object, the carbon dioxide gas compression system according to the second aspect of the present invention comprises:
In the carbon dioxide gas compression system of the present invention, a heating auxiliary circuit in which a heat exchanger for performing heat exchange with the fixed throttle means via a control valve is disposed between an evaporator and a compressor in a refrigerant circuit. Is formed.

【0012】この二酸化炭素ガス圧縮システムは、外気
温度が低い冬期等には、冷媒循環回路の蒸発器と圧縮機
の間に配設した制御弁を介して、固定絞り手段との間で
熱交換を行う熱交換器を配設した加熱補助回路に冷媒を
循環させることにより、冷媒の温度を高温に保つことが
でき、これにより、高温給湯を行うことができる。
In the carbon dioxide gas compression system, for example, in winter, when the outside air temperature is low, heat exchange between the fixed throttle means via a control valve disposed between the evaporator and the compressor in the refrigerant circuit. The temperature of the refrigerant can be kept high by circulating the refrigerant in the auxiliary heating circuit provided with the heat exchanger for performing the above-mentioned process, whereby high-temperature hot water can be supplied.

【0013】[0013]

【発明の実施の形態】以下、本発明の二酸化炭素ガス圧
縮システムの実施の形態を図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a carbon dioxide gas compression system according to the present invention will be described below with reference to the drawings.

【0014】図1に、本発明の二酸化炭素ガス圧縮シス
テムの一実施例を示す。この二酸化炭素ガス圧縮システ
ムは、冷媒としての二酸化炭素ガスが、圧縮機1、ガス
クーラー2、膨張手段3a,3及び蒸発器4間を順次循
環する冷媒循環回路Bを備えたものにおいて、膨張手段
3a,3を、流路の開度が一定の固定絞り手段としての
キャピラリーチューブ3aと、流路の開度が可変の可変
絞り手段としての温度式膨張弁又は電子制御式膨張弁等
の自動膨張弁3とで構成するようにしている。
FIG. 1 shows an embodiment of a carbon dioxide gas compression system according to the present invention. This carbon dioxide gas compression system includes a refrigerant circulation circuit B in which carbon dioxide gas as a refrigerant circulates sequentially between a compressor 1, a gas cooler 2, expansion means 3a, 3 and an evaporator 4. 3a and 3 are automatically expanded such as a capillary tube 3a as a fixed throttle means having a fixed opening degree of a flow path and a temperature-type expansion valve or an electronically controlled expansion valve as a variable throttle means having a variable opening degree of a flow path. The valve 3 is constituted.

【0015】さらに、この二酸化炭素ガス圧縮システム
においては、冷媒循環回路Bの蒸発器4と圧縮機1の間
に、制御弁5を介して、固定絞り手段としてのキャピラ
リーチューブ3aとの間で熱交換を行う熱交換器6を配
設した加熱補助回路Aを形成するようにしている。
Further, in this carbon dioxide gas compression system, heat is transferred between the evaporator 4 of the refrigerant circuit B and the compressor 1 via the control valve 5 and the capillary tube 3a as a fixed throttle means. A heating auxiliary circuit A in which a heat exchanger 6 for replacement is provided is formed.

【0016】また、ガスクーラー2には、冷媒循環回路
Bとの間で熱交換を行う水aを流通させる水流通回路C
を配設するようにする。
The gas cooler 2 has a water circulation circuit C through which water a for performing heat exchange with the refrigerant circulation circuit B flows.
To be installed.

【0017】ところで、この二酸化炭素ガス圧縮システ
ムにおいては、上記のように、膨張手段3a,3を、流
路の開度が一定の固定絞り手段としてのキャピラリーチ
ューブ3aと、流路の開度が可変の可変絞り手段として
の温度式膨張弁又は電子制御式膨張弁等の自動膨張弁3
との二段階で構成しているため、温度式膨張弁又は電子
制御式膨張弁等の自動膨張弁3にかかる圧力を、キャピ
ラリーチューブ3aによって、10MPaに近い高圧か
ら、それより低い圧力、特に限定されるものではない
が、例えば、4〜5MPa程度まで低減することがで
き、自動膨張弁3によって、目標となる圧力まで、精度
の高い制御を行うことができるものとなる。
In this carbon dioxide gas compression system, as described above, the expansion means 3a and 3 are connected to the capillary tube 3a as a fixed throttle means having a fixed opening degree of the flow path, and the opening degree of the flow path is fixed. Automatic expansion valve 3 such as a temperature-type expansion valve or an electronically-controlled expansion valve as a variable variable throttle means.
The pressure applied to the automatic expansion valve 3 such as a thermal expansion valve or an electronically controlled expansion valve is controlled by the capillary tube 3a from a high pressure close to 10 MPa to a lower pressure, particularly limited. However, the pressure can be reduced to, for example, about 4 to 5 MPa, and the automatic expansion valve 3 can perform highly accurate control up to a target pressure.

【0018】また、これにより、温度式膨張弁又は電子
制御式膨張弁等の自動膨張弁3に必要とされる耐圧が低
くなるとともに、自動膨張弁3自体の容量も小さいもの
でよいため、自動膨張弁3に、10MPaの高圧に耐え
られる、容量の大きなものを使用する場合と比較して、
システム機器の価格を低廉にできるものとなる。
In addition, the pressure resistance required for the automatic expansion valve 3 such as a thermal expansion valve or an electronically controlled expansion valve can be reduced, and the capacity of the automatic expansion valve 3 itself can be small. As compared with the case where a large capacity valve capable of withstanding a high pressure of 10 MPa is used for the expansion valve 3,
The price of system equipment can be reduced.

【0019】また、加熱補助回路Aを形成することによ
り、冷媒循環回路Bに配設した制御弁5を制御すること
により、冷媒循環回路Bを循環する冷媒の一部又は全部
を、蒸発器4を出た後、加熱補助回路A側へ迂回させ、
加熱補助回路Aの熱交換器6において固定絞り手段とし
てのキャピラリーチューブ3aとの間で熱交換を行わせ
ることにより、図3の(ロ)から図3の(イ)に示すよ
うに、冷媒の過熱度を大きく取るようにした後、冷媒循
環回路Bに戻し、圧縮機1へ供給するようにする。
Further, by forming the heating auxiliary circuit A and controlling the control valve 5 disposed in the refrigerant circuit B, a part or all of the refrigerant circulating in the refrigerant circuit B is supplied to the evaporator 4. After exiting, detour to the heating auxiliary circuit A side,
By causing the heat exchanger 6 of the heating auxiliary circuit A to perform heat exchange with the capillary tube 3a as the fixed throttle means, as shown in FIG. 3 (b) to FIG. After the superheat degree is increased, the refrigerant is returned to the refrigerant circuit B and supplied to the compressor 1.

【0020】これにより、外気温度が低い冬期等におい
ても、加熱補助回路Aに冷媒を循環させることにより、
冷媒の温度を高温に保つことができ、これにより、ガス
クーラー2において、圧縮機1によって高温、高圧にな
った冷媒循環回路Bを流れる冷媒と、水流通回路Cを流
れる水aとで熱交換を行い、高温給湯を行うことができ
るものとなる。
By circulating the refrigerant through the auxiliary heating circuit A even in winter when the outside air temperature is low,
The temperature of the refrigerant can be maintained at a high temperature, so that in the gas cooler 2, heat exchange between the refrigerant flowing through the refrigerant circulation circuit B, which has been heated and increased in pressure by the compressor 1, and the water a flowing through the water circulation circuit C. And hot water supply can be performed.

【0021】なお、制御弁5の切替制御は、外気温度を
検知して行う方法など様々な方式を採用することができ
るが、本実施例の場合は、圧縮機1の吐出ガスの過熱度
を検知する方式を用いており、これにより、併せて、圧
縮機1の過剰過熱の防止を図ることができるようにして
いる。
The switching control of the control valve 5 can employ various methods such as a method of detecting the outside air temperature. In the case of the present embodiment, the degree of superheat of the gas discharged from the compressor 1 is determined. A detection method is used, so that the compressor 1 can be prevented from being overheated.

【0022】以上、本発明の二酸化炭素ガス圧縮システ
ムについて、その実施例に基づいて説明したが、本発明
は上記実施例に記載した構成に限定されるものではな
く、その趣旨を逸脱しない範囲において適宜その構成を
変更することができるものである。
As described above, the carbon dioxide gas compression system of the present invention has been described based on the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and is not departed from the gist of the present invention. The configuration can be appropriately changed.

【0023】[0023]

【発明の効果】本第1発明の二酸化炭素ガス圧縮システ
ムによれば、膨張手段を、流路の開度が一定の固定絞り
手段と、流路の開度が可変の可変絞り手段とで構成する
ようにしているので、流路の開度が可変の可変絞り手
段、具体的には、自動膨張弁にかかる圧力を低減するこ
とができ、精度の高い制御を行うことができ、二酸化炭
素ガス圧縮システムを円滑に稼働することができる。ま
た、可変絞り手段に必要とされる耐圧が低くなるととも
に、容量も小さいものでよいため、システム機器の価格
を低廉にでき、実用性の高い二酸化炭素ガス圧縮システ
ムを提供することができる。
According to the carbon dioxide gas compression system of the first aspect of the present invention, the expansion means is composed of fixed throttle means having a constant flow path opening and variable throttle means having a variable flow path opening. Therefore, it is possible to reduce the pressure applied to the variable expansion means having a variable opening degree of the flow path, specifically, the pressure applied to the automatic expansion valve, to perform highly accurate control, The compression system can operate smoothly. In addition, since the pressure resistance required for the variable throttle means is reduced and the capacity may be small, the price of system equipment can be reduced and a highly practical carbon dioxide gas compression system can be provided.

【0024】また、第2発明の二酸化炭素ガス圧縮シス
テムによれば、冷媒循環回路の蒸発器と圧縮機の間に配
設した制御弁を介して、固定絞り手段との間で熱交換を
行う熱交換器を配設した加熱補助回路に冷媒を循環させ
ることにより、冷媒の温度を高温に保つことができ、こ
れにより、外気温度が低い冬期等においても、高温給湯
を行うことができる。
Further, according to the carbon dioxide gas compression system of the second invention, heat is exchanged with the fixed throttle means via the control valve disposed between the evaporator and the compressor in the refrigerant circuit. By circulating the refrigerant through the auxiliary heating circuit in which the heat exchanger is provided, the temperature of the refrigerant can be maintained at a high temperature, so that high-temperature hot water can be supplied even in winter when the outside air temperature is low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の二酸化炭素ガス圧縮システムの一実施
例を示す説明図である。
FIG. 1 is an explanatory view showing one embodiment of a carbon dioxide gas compression system of the present invention.

【図2】従来の二酸化炭素ガス圧縮システムを示す説明
図である。
FIG. 2 is an explanatory diagram showing a conventional carbon dioxide gas compression system.

【図3】二酸化炭素ガス圧縮システムにおいて、本発明
と従来との比較を示した運転サイクル図で、(イ)は本
発明による冬期の運転サイクル図、(ロ)は従来の冬期
の運転サイクル図、(ハ)は本発明及び従来の冬期以外
の運転サイクル図である。
FIG. 3 is an operation cycle diagram showing a comparison between the present invention and a conventional one in a carbon dioxide gas compression system, wherein (a) is a winter operation cycle diagram according to the present invention, and (b) is a conventional winter operation cycle diagram. (C) is an operation cycle diagram of the present invention and the conventional operation other than the winter season.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 ガスクーラー 3a キャピラリーチューブ(固定絞り手段) 3 自動膨張弁(可変絞り手段) 4 蒸発器 5 制御弁 6 熱交換器 a 冷却水 A 加熱補助回路 B 冷媒循環回路 C 水流通回路 DESCRIPTION OF SYMBOLS 1 Compressor 2 Gas cooler 3a Capillary tube (fixed restricting means) 3 Automatic expansion valve (variable restricting means) 4 Evaporator 5 Control valve 6 Heat exchanger a Cooling water A Heating auxiliary circuit B Refrigerant circulation circuit C Water circulation circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 蔵本 新治 大阪府茨木市東太田4−5−11 株式会社 日立空調システム茨木工場内 (72)発明者 島崎 幸治 大阪府茨木市東太田4−5−11 株式会社 日立空調システム茨木工場内 (72)発明者 東條 健司 大阪府茨木市東太田4−5−11 株式会社 日立空調システム茨木工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinji Kuramoto 4-5-11 Higashiota, Ibaraki City, Osaka Prefecture Inside Hitachi Air Conditioning Systems Ibaraki Plant (72) Inventor Koji Shimazaki 4-5-11 Higashiota, Ibaraki City, Osaka Prefecture Shares (72) Inventor Kenji Tojo 4-5-11 Higashiota, Ibaraki City, Osaka Prefecture Hitachi Air Conditioning System Ibaraki Plant

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷媒としての二酸化炭素ガスが、圧縮
機、ガスクーラー、膨張手段及び蒸発器間を順次循環す
る冷媒循環回路を備えた二酸化炭素ガス圧縮システムに
おいて、前記膨張手段を、流路の開度が一定の固定絞り
手段と、流路の開度が可変の可変絞り手段とで構成した
ことを特徴とする二酸化炭素ガス圧縮システム。
In a carbon dioxide gas compression system comprising a refrigerant circulation circuit in which carbon dioxide gas as a refrigerant sequentially circulates between a compressor, a gas cooler, expansion means, and an evaporator, the expansion means includes A carbon dioxide gas compression system comprising fixed throttle means having a fixed opening and variable throttle means having a variable opening of a flow path.
【請求項2】 前記膨張手段の固定絞り手段にキャピラ
リーチューブを、可変絞り手段に温度式膨張弁又は電子
制御式膨張弁等の自動膨張弁を用いたことを特徴とする
請求項1記載の二酸化炭素ガス圧縮システム。
2. The dioxide according to claim 1, wherein a capillary tube is used as a fixed throttle means of said expansion means, and an automatic expansion valve such as a thermal expansion valve or an electronically controlled expansion valve is used as a variable throttle means. Carbon gas compression system.
【請求項3】 前記冷媒循環回路の蒸発器と圧縮機の間
に、制御弁を介して、前記固定絞り手段との間で熱交換
を行う熱交換器を配設した加熱補助回路を形成したこと
を特徴とする請求項1又は2記載の二酸化炭素ガス圧縮
システム。
3. A heating auxiliary circuit is provided between the evaporator and the compressor of the refrigerant circuit, and a heat exchanger for performing heat exchange with the fixed throttle means via a control valve. The carbon dioxide gas compression system according to claim 1 or 2, wherein:
JP2001163706A 2001-05-31 2001-05-31 Co2 gas compressing system Pending JP2002349979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001163706A JP2002349979A (en) 2001-05-31 2001-05-31 Co2 gas compressing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001163706A JP2002349979A (en) 2001-05-31 2001-05-31 Co2 gas compressing system

Publications (1)

Publication Number Publication Date
JP2002349979A true JP2002349979A (en) 2002-12-04

Family

ID=19006619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001163706A Pending JP2002349979A (en) 2001-05-31 2001-05-31 Co2 gas compressing system

Country Status (1)

Country Link
JP (1) JP2002349979A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057095A1 (en) * 2003-11-20 2005-06-23 Modine Manufacturing Company Co2 cooling system
WO2005057096A1 (en) * 2003-11-20 2005-06-23 Modine Manufacturing Company Suction line heat exchanger for co2 cooling system
EP1555493A2 (en) * 2004-01-13 2005-07-20 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube
EP1669686A2 (en) * 2004-12-10 2006-06-14 LG Electronics, Inc. Air conditioner
EP1628088A3 (en) * 2004-08-12 2006-08-30 Sanyo Electric Co., Ltd. Refrigerant cycle apparatus
US7320228B2 (en) 2004-08-12 2008-01-22 Sanyo Electric Co., Ltd. Refrigerant cycle apparatus
JP2009008282A (en) * 2007-06-26 2009-01-15 Daikin Ind Ltd Heat exchanging system
CN107388614A (en) * 2017-09-15 2017-11-24 广东纽恩泰新能源科技发展有限公司 A kind of carbon dioxide heat-pump circulation loop
CN109883104A (en) * 2018-12-27 2019-06-14 青岛海尔特种制冷电器有限公司 Refrigerator and its control method
EP3680565A4 (en) * 2017-09-07 2020-09-30 Mitsubishi Electric Corporation Air conditioning device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7261151B2 (en) 2003-11-20 2007-08-28 Modine Manufacturing Company Suction line heat exchanger for CO2 cooling system
WO2005057096A1 (en) * 2003-11-20 2005-06-23 Modine Manufacturing Company Suction line heat exchanger for co2 cooling system
KR101054784B1 (en) * 2003-11-20 2011-08-05 모다인 매뉴팩츄어링 컴파니 Carbon dioxide cooling system
WO2005057095A1 (en) * 2003-11-20 2005-06-23 Modine Manufacturing Company Co2 cooling system
GB2420612A (en) * 2003-11-20 2006-05-31 Modine Mfg Co Suction line heat exchanger for co2 cooling system
GB2420612B (en) * 2003-11-20 2008-10-01 Modine Mfg Co Suction line heat exchanger for co2 cooling system
GB2421563A (en) * 2003-11-20 2006-06-28 Modine Mfg Co Co2 cooling system
US7721569B2 (en) 2004-01-13 2010-05-25 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube
US7131294B2 (en) 2004-01-13 2006-11-07 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube
EP1555493A3 (en) * 2004-01-13 2006-05-17 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube
EP1555493A2 (en) * 2004-01-13 2005-07-20 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube
EP1628088A3 (en) * 2004-08-12 2006-08-30 Sanyo Electric Co., Ltd. Refrigerant cycle apparatus
US7320228B2 (en) 2004-08-12 2008-01-22 Sanyo Electric Co., Ltd. Refrigerant cycle apparatus
EP1669686A3 (en) * 2004-12-10 2007-04-04 LG Electronics, Inc. Air conditioner
EP1669686A2 (en) * 2004-12-10 2006-06-14 LG Electronics, Inc. Air conditioner
US7555915B2 (en) 2004-12-10 2009-07-07 Lg Electronics Inc. Air conditioner
JP2009008282A (en) * 2007-06-26 2009-01-15 Daikin Ind Ltd Heat exchanging system
EP3680565A4 (en) * 2017-09-07 2020-09-30 Mitsubishi Electric Corporation Air conditioning device
CN107388614A (en) * 2017-09-15 2017-11-24 广东纽恩泰新能源科技发展有限公司 A kind of carbon dioxide heat-pump circulation loop
CN109883104A (en) * 2018-12-27 2019-06-14 青岛海尔特种制冷电器有限公司 Refrigerator and its control method

Similar Documents

Publication Publication Date Title
US7805961B2 (en) Supercooling apparatus of simultaneous cooling and heating type multiple air conditioner
JP2005003322A (en) Refrigeration unit
JP2002349979A (en) Co2 gas compressing system
US20050132731A1 (en) Air conditioning system, vehicular air conditioning system and control method of vehicular air conditioning system
JP2007303806A (en) Refrigerating cycle device and its operation method
JP2003148820A (en) Refrigerant circuit
KR20220085243A (en) A cooling system for vehicle
CN107906811A (en) The anti-refrigeration control method of heat pump unit
WO2017163687A1 (en) Air conditioning device for vehicle, and air conditioning control method
JP4252184B2 (en) Refrigerant flow control device for air conditioner
US7073344B2 (en) Electrically controlled defrost and expansion valve apparatus
JP2880424B2 (en) Mirror circuit temperature controller for cooler for laser beam machine
JPH07190572A (en) Defrosting mechanism for heat pump type air conditioner
JP2527446B2 (en) Heat pump
EP0893663B1 (en) A method for controlling the defrosting cycles in a heat-pump system
JP2004205116A (en) Cold/hot water generator and its control method
JP3546102B2 (en) Engine driven air conditioner
KR200405714Y1 (en) Heat-pump type heating apparatus
JPH0618122A (en) Hot water feeding, cooling and heating system
KR100448542B1 (en) Cooling and heating system
JP2002372326A (en) Heat pump type hot water spply device
JP2001116392A (en) Air conditioner
KR100313550B1 (en) Preheating device using vehicle's refrigerant
JPH0634220A (en) Air conditioning system
JPH0431505Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119