JPS6115978B2 - - Google Patents

Info

Publication number
JPS6115978B2
JPS6115978B2 JP18654480A JP18654480A JPS6115978B2 JP S6115978 B2 JPS6115978 B2 JP S6115978B2 JP 18654480 A JP18654480 A JP 18654480A JP 18654480 A JP18654480 A JP 18654480A JP S6115978 B2 JPS6115978 B2 JP S6115978B2
Authority
JP
Japan
Prior art keywords
solenoid valve
cooler
condenser
refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18654480A
Other languages
Japanese (ja)
Other versions
JPS57112660A (en
Inventor
Ichiro Kawashima
Akinori Igarashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seisakusho KK
Original Assignee
Toyo Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seisakusho KK filed Critical Toyo Seisakusho KK
Priority to JP18654480A priority Critical patent/JPS57112660A/en
Publication of JPS57112660A publication Critical patent/JPS57112660A/en
Publication of JPS6115978B2 publication Critical patent/JPS6115978B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)

Description

【発明の詳細な説明】 本発明は、除霜運転の終期における冷却器内の
温度、圧力の過度の上昇防止と中間冷却器への冷
媒補充が充分に行われるようにした冷凍装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration system that prevents an excessive rise in temperature and pressure within a cooler and sufficiently replenishes refrigerant to an intercooler at the end of a defrosting operation.

従来のホツトガスデフロスト式冷凍装置は、除
霜運転時に、圧縮機から吐出されるホツトガスを
冷却器の冷却コイルに直接供給するために、圧縮
機から凝縮器に至る配管と冷却器の冷却コイルと
を接続する電磁弁を有するバイパス配管が設けら
れている。
Conventional hot gas defrost refrigeration equipment uses piping from the compressor to the condenser and the cooling coil of the cooler to directly supply the hot gas discharged from the compressor to the cooling coil of the cooler during defrosting operation. A bypass pipe is provided with a solenoid valve connecting the.

しかしこの従来構成によると、特に寒冷期のよ
うに凝縮器に供給される冷却水温度が低い時に除
霜運転を行う場合、圧縮機の吐出ガスの一部が凝
縮器の方にも流れて凝縮液化するため、冷却器へ
のホツトガス量が減少し、かつ吐出ガスの圧力が
低下する関係上、吐出ガス温度が低くなり、冷却
器の加熱不足を起こして除霜が不完全になる。こ
れを防止するため、従来、除霜運転時には凝縮器
への冷却水の供給を止めるか、もしくは冷却水温
度があまり低くならないように冷却水温度の調整
を行つていることが多い。
However, according to this conventional configuration, when defrosting operation is performed when the temperature of the cooling water supplied to the condenser is low, such as during a cold season, a portion of the gas discharged from the compressor also flows to the condenser and is condensed. Since the hot gas is liquefied, the amount of hot gas to the cooler decreases, and the pressure of the discharged gas decreases, which lowers the temperature of the discharged gas, causing insufficient heating of the cooler and incomplete defrosting. To prevent this, conventionally, during defrosting operation, the supply of cooling water to the condenser is often stopped, or the cooling water temperature is often adjusted so that the cooling water temperature does not become too low.

しかし、省エネルギーの観点からは、冷凍運転
時には吐出ガスの圧力はできるだけ低く、即ち冷
却水温度はできるだけ低く運転すべきである。ま
た、冷却水温度を調整しながら除霜運転を行う場
合には、その調整用制水弁の故障および価格アツ
プ等の問題がある。
However, from the viewpoint of energy saving, during refrigeration operation, the pressure of the discharged gas should be as low as possible, that is, the cooling water temperature should be kept as low as possible. Further, when defrosting operation is performed while adjusting the cooling water temperature, there are problems such as failure of the water control valve for adjusting the water control valve and increase in price.

このような観点からすれば、除霜運転時には圧
縮機と凝縮器との冷媒流路の連絡を断ち、圧縮機
の吐出ガスが凝縮器内に入らないようにすること
が考えられる。しかしこのような構成とすれば、
除霜運転終期における冷却器内冷媒の圧力、温度
が過度に上昇し、また、二段圧縮冷凍機において
は、中間冷却器内の冷媒量が減少し、デフロスト
終期に中間冷却器に冷媒を補充する必要が生じ
る。
From this point of view, it is conceivable to disconnect the refrigerant flow path between the compressor and the condenser during defrosting operation to prevent discharge gas from the compressor from entering the condenser. However, with this configuration,
The pressure and temperature of the refrigerant in the cooler increase excessively at the end of defrosting operation, and in two-stage compression refrigerators, the amount of refrigerant in the intercooler decreases, making it necessary to replenish the intercooler with refrigerant at the end of defrosting. The need arises.

本発明の目的は、上記の事情から、ホツトガス
デフロスト式の冷凍装置において、冷却器の除霜
が有効かつ確実に行われ、省エネルギー化に寄与
しうるとともに、除霜運転終期の冷却器内圧力、
温度が過度に上昇するのを抑制され、さらに中間
冷却器を有する二段圧縮冷凍機においては、除霜
運転終期に中間冷却器への冷媒供給が不要になる
構成の冷凍装置を提供することにある。
In view of the above circumstances, an object of the present invention is to effectively and reliably defrost the cooler in a hot gas defrost type refrigeration system, contribute to energy saving, and reduce the pressure inside the cooler at the end of defrosting operation. ,
To provide a refrigeration system in which an excessive rise in temperature is suppressed, and in a two-stage compression refrigerator having an intercooler, there is no need to supply refrigerant to the intercooler at the end of defrosting operation. be.

以下本発明の詳細を図面に示す実施例により説
明する。第1図は単段圧縮式の冷凍機に本発明を
適用した実施例を示しており、1は圧縮機、2は
冷却水3により圧縮機1の吐出ガスを凝縮させる
凝縮器、4は冷却器、5は冷風循環用フアン、6
は除霜運転時に冷却器4から流出する冷媒液を気
化させる熱交換器である。
The details of the present invention will be explained below with reference to embodiments shown in the drawings. Figure 1 shows an embodiment in which the present invention is applied to a single-stage compression type refrigerator, where 1 is a compressor, 2 is a condenser that condenses the gas discharged from the compressor 1 using cooling water 3, and 4 is a cooling device. 5 is a fan for circulating cold air, 6
is a heat exchanger that vaporizes the refrigerant liquid flowing out from the cooler 4 during defrosting operation.

7は圧縮機1の吐出ガス冷媒系統に設けられた
切換電磁弁装置としての三方電磁弁であり、圧縮
機1からの配管8、逆止弁9を介する吐出ガス
を、冷凍運転時には配管10を通して凝縮器2に
流し、除霜運転時にはバイパス配管11を通して
冷却器4の冷却コイル12へと流すように切換え
られるものである。この三方電磁弁7の代りに、
例えば2つの二方電磁弁等を切換電磁弁装置とし
て用いることができる。
7 is a three-way solenoid valve as a switching solenoid valve device installed in the discharge gas refrigerant system of the compressor 1, and the discharge gas from the compressor 1 is passed through a pipe 8 and a check valve 9, and is passed through a pipe 10 during refrigeration operation. It is switched to flow into the condenser 2, and to flow into the cooling coil 12 of the cooler 4 through the bypass piping 11 during defrosting operation. Instead of this three-way solenoid valve 7,
For example, two two-way solenoid valves or the like can be used as the switching solenoid valve device.

13は電磁弁14を有するブリード管であり、
該ブリード管13は三方電磁弁7の入口側と凝縮
器2間に(図示例では配管10と接続して)設け
られる。15は冷却器4の出口側の圧力または温
度が設定値以上となつた場合に作動して前記電磁
弁14を開くセンサである。
13 is a bleed pipe having a solenoid valve 14;
The bleed pipe 13 is provided between the inlet side of the three-way solenoid valve 7 and the condenser 2 (in the illustrated example, connected to the pipe 10). Reference numeral 15 denotes a sensor that operates to open the electromagnetic valve 14 when the pressure or temperature on the outlet side of the cooler 4 exceeds a set value.

16は凝縮器2と冷却コイル12とを接続する
冷媒液配管17に設けられた送液電磁弁、18は
膨張弁、19は圧縮機1の吸入圧調整弁、20は
吸入ガス電磁弁、21はドレンパンである。
16 is a liquid sending solenoid valve provided in the refrigerant liquid pipe 17 connecting the condenser 2 and the cooling coil 12; 18 is an expansion valve; 19 is a suction pressure regulating valve for the compressor 1; 20 is a suction gas solenoid valve; is a drain pan.

この冷凍装置において、冷凍運転時には、三方
電磁弁7は配管8と配管10とを連通させる切換
位置にあり、送液電磁弁16および吸入ガス電磁
弁20は開とされる。従つて、冷凍運転時には冷
媒の流れは実線矢印で示すようになり、圧縮機1
からの吐出ガスは配管8、逆止弁9、三方電磁弁
7、配管10を通して凝縮器2に導かれる。
In this refrigeration system, during refrigeration operation, the three-way solenoid valve 7 is in a switching position that communicates the pipe 8 and the pipe 10, and the liquid feeding solenoid valve 16 and the intake gas solenoid valve 20 are opened. Therefore, during refrigeration operation, the refrigerant flow is as shown by the solid arrow, and the flow of the refrigerant is as shown by the solid line arrow.
The gas discharged from the condenser 2 is led to the condenser 2 through a pipe 8, a check valve 9, a three-way solenoid valve 7, and a pipe 10.

一方、除霜運転時には、三方電磁弁7は切換え
られ、かつ送液電磁弁16と吸入ガス電磁弁20
は閉、とされるので、冷媒の流れは点線矢印で示
すようになる。即ち、圧縮機1からの吐出ガスは
一方電磁弁7からバイパス配管11を通して冷却
器4の冷却コイル12へと流れる。冷却コイル1
2を出た冷媒は吸入圧調整弁19を通して熱交換
器6に導入され、熱交換器内に蓄えられた水との
熱交換により気化された圧縮機1に戻る。
On the other hand, during defrosting operation, the three-way solenoid valve 7 is switched, and the liquid feeding solenoid valve 16 and the suction gas solenoid valve 20 are switched.
is closed, so the flow of refrigerant is as shown by the dotted arrow. That is, the discharge gas from the compressor 1 flows from the solenoid valve 7 to the cooling coil 12 of the cooler 4 through the bypass pipe 11. cooling coil 1
The refrigerant exiting the refrigerant 2 is introduced into the heat exchanger 6 through the suction pressure regulating valve 19, and returns to the compressor 1 where it is vaporized by heat exchange with water stored in the heat exchanger.

除霜運転の少なくとも前期においては、冷却コ
イル12から流出する冷媒圧力、温度は低いた
め、センサ15は作動せず、従つて電磁弁14は
閉のままであるから、凝縮器2には吐出ガスは導
入されず、凝縮器2に冷却水3を供給したままで
あつても、吐出ガスの温度、圧力の低下と招くこ
とがなく、除霜が有効かつ確実に行われる。
At least in the first half of the defrosting operation, the pressure and temperature of the refrigerant flowing out from the cooling coil 12 are low, so the sensor 15 does not operate and the solenoid valve 14 remains closed, so the condenser 2 receives discharged gas. is not introduced, and even if the cooling water 3 continues to be supplied to the condenser 2, the temperature and pressure of the discharged gas will not drop, and defrosting will be performed effectively and reliably.

除霜運転終期において、冷却コイル12から流
出する冷媒圧力、温度が上昇し、センサ15の設
定値を超えると、電磁弁14が開き、圧縮機1の
吐出ガスの一部がブリード管13を通して凝縮器
2内に導入され、圧力、温度の上昇が緩和され
る。
At the end of the defrosting operation, when the pressure and temperature of the refrigerant flowing out from the cooling coil 12 rise and exceed the set value of the sensor 15, the solenoid valve 14 opens and a part of the gas discharged from the compressor 1 is condensed through the bleed pipe 13. It is introduced into the vessel 2, and the rise in pressure and temperature is alleviated.

第2図は本発明の他の実施例であり、本実施例
は、中間冷却器22を有する二段圧縮冷凍機に本
発明を適用したものである。該中間冷却器22
は、除霜運転時には、凝縮器2から流出した冷媒
液の一部を電磁弁23を通して膨張弁24に導
き、ここで気化させて冷却器4に導入される冷媒
を冷却し、中間冷却器22から流出した冷媒ガス
は、配管25を通して圧縮機1の高段側圧縮部に
導入するものである。
FIG. 2 shows another embodiment of the present invention, in which the present invention is applied to a two-stage compression refrigerator having an intercooler 22. The intercooler 22
During defrosting operation, a part of the refrigerant liquid flowing out from the condenser 2 is guided through the electromagnetic valve 23 to the expansion valve 24, where it is vaporized to cool the refrigerant introduced into the cooler 4, and the refrigerant is introduced into the intercooler 22. The refrigerant gas flowing out is introduced into the high-stage compression section of the compressor 1 through the pipe 25.

本実施例においても前記と同様の効果をあげる
ことができる。さらに、ブリード管13を設ける
ことにより、除霜運転終期に吐出ガスの一部が凝
縮器2へと流入して凝縮する為、中間冷却器22
へ流れる冷媒の補充が可能となり、圧縮機1への
配管25を通しての高段吸入ガス温度の上昇を防
止できる。
In this embodiment as well, effects similar to those described above can be achieved. Furthermore, by providing the bleed pipe 13, a part of the discharged gas flows into the condenser 2 and is condensed at the end of the defrosting operation.
This makes it possible to replenish the refrigerant flowing to the compressor 1, and prevent the temperature of the high-stage suction gas from increasing through the pipe 25 to the compressor 1.

以上述べたように、本発明の冷凍装置は、圧縮
機吐出ガス冷媒系統中に、吐出ガスが冷媒運転時
には凝縮器に流れ、除霜運転時には冷却器側に流
れるように切換電磁弁装置を設けるとともに、除
霜運転終期における冷却器圧力、温度上昇時に吐
出ガスの一部を凝縮器に導く電磁弁を有するブリ
ード管を設けたので寒冷期のように冷却水温度が
低い場合であつても除霜を有効かつ確実に行うこ
とが可能である。
As described above, the refrigeration system of the present invention includes a switching solenoid valve device in the compressor discharge gas refrigerant system so that the discharge gas flows to the condenser during refrigerant operation and flows to the cooler side during defrosting operation. In addition, a bleed pipe with a solenoid valve that guides a portion of the discharged gas to the condenser when the cooler pressure and temperature rise at the end of defrosting operation is installed, so even when the cooling water temperature is low, such as during the cold season, the bleed pipe can be removed. It is possible to perform frosting effectively and reliably.

また、寒冷期に除霜運転を行う場合に、冷却水
温度を高く調整する必要がなく、低温の冷却水を
凝縮器に通水したままで除霜を行うことが可能で
ある以上、冷凍運転時に低い温度の冷却水を凝縮
器に通水しうるために凝縮温度が低くなり、冷凍
装置が高い運転効率で運転され、省エネルギーが
達成される。また高価な制水弁が不要であり、そ
の故障の問題を生じることもない。また、除霜運
転終期における冷却器内温度、圧力の過度の上昇
が防止され、構成機器の安全性を損うこともな
く、さらに中間冷却器を備えた二段圧縮冷凍機に
おいても、中間冷却器への冷媒補充が行われ、高
段吸入ガス温度過昇の問題も解決される。なお本
発明は、空冷凝縮式冷凍装置にも応用できる。
In addition, when performing defrosting operation during the cold season, there is no need to adjust the cooling water temperature to a high temperature and defrosting can be performed while low-temperature cooling water is flowing through the condenser. Since cooling water at a low temperature can sometimes be passed through the condenser, the condensation temperature is lowered, the refrigeration system is operated at high operating efficiency, and energy savings are achieved. Further, an expensive water control valve is not required, and problems with its failure do not occur. In addition, excessive rise in temperature and pressure inside the cooler at the end of defrosting operation is prevented, and the safety of component equipment is not compromised. The refrigerant is refilled into the reactor, and the problem of excessive temperature rise in the high-stage intake gas is also resolved. Note that the present invention can also be applied to an air-cooled condensing type refrigeration system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す冷凍サイクル
図、第2図は本発明の他の実施例を示す冷凍サイ
クル図である。 図中、1……圧縮機、2……凝縮器、4……冷
却器、6……熱交換器、7……三方電磁弁、13
……ブリード管、14……電磁弁、15……セン
サ。
FIG. 1 is a refrigeration cycle diagram showing one embodiment of the invention, and FIG. 2 is a refrigeration cycle diagram showing another embodiment of the invention. In the figure, 1... Compressor, 2... Condenser, 4... Cooler, 6... Heat exchanger, 7... Three-way solenoid valve, 13
... Bleed pipe, 14 ... Solenoid valve, 15 ... Sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 単段圧縮冷凍機又は凝縮器と冷却器との間に
中間冷却器が介在する二段圧縮冷凍機における各
圧縮機の吐出ガス冷媒系統に、該吐出ガスを冷凍
運転時には凝縮器に流し、除霜運転時には冷却器
に流すように切換えられる切換電磁弁装置を除霜
時用のバイパス配管に設けるとともに、該切換電
磁弁装置の入口側と凝縮器との間に、冷却器の出
口側に設けたセンサからの冷却器内の圧力または
温度が設定値を超えたときの信号によつて開成さ
れる電磁弁を有し、しかも前記切換電磁弁を跨ぐ
ブリード管を設けたことを特徴とする冷凍装置。
1. In a single-stage compression refrigerator or a two-stage compression refrigerator in which an intercooler is interposed between the condenser and the cooler, the discharge gas is passed through the refrigerant system of each compressor to the condenser during refrigeration operation, A switching solenoid valve device that switches the flow to the cooler during defrosting operation is installed in the bypass piping for defrosting, and a switching solenoid valve device is installed on the outlet side of the cooler between the inlet side of the switching solenoid valve device and the condenser. It is characterized by having a solenoid valve that is opened by a signal from a sensor provided when the pressure or temperature inside the cooler exceeds a set value, and further comprising a bleed pipe that straddles the switching solenoid valve. Refrigeration equipment.
JP18654480A 1980-12-29 1980-12-29 Refrigerating plant Granted JPS57112660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18654480A JPS57112660A (en) 1980-12-29 1980-12-29 Refrigerating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18654480A JPS57112660A (en) 1980-12-29 1980-12-29 Refrigerating plant

Publications (2)

Publication Number Publication Date
JPS57112660A JPS57112660A (en) 1982-07-13
JPS6115978B2 true JPS6115978B2 (en) 1986-04-26

Family

ID=16190354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18654480A Granted JPS57112660A (en) 1980-12-29 1980-12-29 Refrigerating plant

Country Status (1)

Country Link
JP (1) JPS57112660A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202327A (en) * 1987-02-19 1988-08-22 レインボ−薬品株式会社 Raising apparatus utilizing magnetism for horticultural plant
JPS6456679U (en) * 1987-10-03 1989-04-10

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2515255Y2 (en) * 1991-10-31 1996-10-30 株式会社西務良 tray

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202327A (en) * 1987-02-19 1988-08-22 レインボ−薬品株式会社 Raising apparatus utilizing magnetism for horticultural plant
JPS6456679U (en) * 1987-10-03 1989-04-10

Also Published As

Publication number Publication date
JPS57112660A (en) 1982-07-13

Similar Documents

Publication Publication Date Title
KR890000347B1 (en) Refrigeration system
US5628200A (en) Heat pump system with selective space cooling
CA2140192C (en) Combined oil return and compressor discharge temperature limitation regarding flooded economizer heat exchanger
US4932221A (en) Air-cooled cooling apparatus
KR900001896B1 (en) Heat pump with capillary tube-type expansion device
US4791790A (en) Air-cooled absorption-type water cooling and heating apparatus
US4516408A (en) Refrigeration system for refrigerant heating type air conditioning apparatus
CN208332736U (en) A kind of direct condensation by contact refrigeration system with hot gas defrosting
US5799497A (en) Refrigerating apparatus
JPH0330795B2 (en)
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
JPS6115978B2 (en)
JP2004020070A5 (en)
JP4610688B2 (en) Air-conditioning and hot-water supply system and control method thereof
CN112460823B (en) Frequency converter thermal management system of air conditioner and air conditioner
KR100943972B1 (en) Environmental adaptive heat pump system for cooling and heating capable of protecting compressor from overload
JPH0651756U (en) Cooling system
JPS6152904B2 (en)
JPH05264108A (en) Refrigeration device
JPH07151413A (en) Separate type air conditioner
JPS6317969Y2 (en)
CN211552130U (en) Energy-saving reation kettle and refrigeration heating temperature control system for test equipment
JPH0611204A (en) Heat pump type air conditioner
CN211011723U (en) Air conditioner and cold liquid integrated system
CN110726196B (en) Cold liquid integrated system of air conditioner