JP2530094B2 - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JP2530094B2
JP2530094B2 JP5076413A JP7641393A JP2530094B2 JP 2530094 B2 JP2530094 B2 JP 2530094B2 JP 5076413 A JP5076413 A JP 5076413A JP 7641393 A JP7641393 A JP 7641393A JP 2530094 B2 JP2530094 B2 JP 2530094B2
Authority
JP
Japan
Prior art keywords
heat
compressor
storage tank
heat storage
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5076413A
Other languages
Japanese (ja)
Other versions
JPH0642842A (en
Inventor
正一 吉田
敏明 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5076413A priority Critical patent/JP2530094B2/en
Publication of JPH0642842A publication Critical patent/JPH0642842A/en
Application granted granted Critical
Publication of JP2530094B2 publication Critical patent/JP2530094B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は室内を冷暖房する冷凍サ
イクルに係り、特に蓄熱槽を備えたヒートポンプ式冷凍
サイクルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating cycle for cooling and heating a room, and more particularly to a heat pump type refrigerating cycle having a heat storage tank.

【0002】[0002]

【従来の技術】従来、この種のヒートポンプ式冷凍サイ
クルは、図4に示すように、コンプレッサ30、四方弁
31、室外熱交換器32、膨脹弁33、室内熱交換器3
4を順次接続して構成され、四方弁31を切換操作する
ことにより室内を冷暖房するようになっている。
2. Description of the Related Art Conventionally, a heat pump type refrigeration cycle of this type has a compressor 30, a four-way valve 31, an outdoor heat exchanger 32, an expansion valve 33, an indoor heat exchanger 3 as shown in FIG.
4 are sequentially connected, and the interior of the room is cooled and heated by switching the four-way valve 31.

【0003】そして、この冷凍サイクルの途中には蓄熱
剤を充填した蓄熱槽35が備えられており、この蓄熱槽
35内には放熱(蓄熱)用熱交換コイル36及び吸熱用
熱交換コイル37が収納されている。この放熱用熱交換
コイル36が接続された放熱用配管38はコンプレッサ
30の吐出側高圧配管39に並設され、弁40を閉じる
ことにより吐出冷媒を放熱用熱交換コイル36に案内
し、吐出冷媒からの放熱により蓄熱が行われる。また、
吸熱用熱交換コイル37が接続された吸熱用配管41は
コンプレッサ30の吸込側低圧配管42に接続され、弁
43を閉じることにより戻り冷媒を吸熱用熱交換コイル
37に案内することで、戻り冷媒が加熱される。
A heat storage tank 35 filled with a heat storage agent is provided in the middle of this refrigeration cycle, and a heat exchange coil 36 for heat dissipation (heat storage) and a heat exchange coil 37 for heat absorption are provided in the heat storage tank 35. It is stored. The heat radiating pipe 38 to which the heat radiating heat exchange coil 36 is connected is arranged in parallel with the discharge side high pressure pipe 39 of the compressor 30, and the discharge refrigerant is guided to the heat radiating heat exchange coil 36 by closing the valve 40. Heat is stored by radiating heat from. Also,
The heat absorption pipe 41 to which the heat absorption heat exchange coil 37 is connected is connected to the suction side low pressure pipe 42 of the compressor 30, and the return refrigerant is guided to the heat absorption heat exchange coil 37 by closing the valve 43. Is heated.

【0004】そして、このようなヒートポンプ式冷凍サ
イクルにおける除霜運転は、四方弁31を切換え、コン
プレッサ30の吐出冷媒を室外熱交換器32に直接導
く、いわゆる反転除霜によって行われる。そして、この
反転除霜運転時には戻り冷媒を蓄熱槽35内に案内し、
冷媒を加熱・蒸発させてコンプレッサ30への液バック
等を防止するようにしている。
The defrosting operation in such a heat pump type refrigeration cycle is performed by so-called reverse defrosting, in which the four-way valve 31 is switched and the refrigerant discharged from the compressor 30 is directly introduced to the outdoor heat exchanger 32. Then, during the reverse defrosting operation, the return refrigerant is guided into the heat storage tank 35,
The refrigerant is heated and evaporated to prevent liquid backing to the compressor 30.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
ヒートポンプ式冷凍サイクルでは、蓄熱槽35が独立し
て設置されており、蓄熱はコンプレッサ30からの高温
吐出冷媒を弁操作により放熱用熱交換コイル36に案内
することによって行われている。このため、冷凍サイク
ル内に種々の弁類が配置され、配管が複雑になり、蓄熱
槽35での蓄熱や冷媒加熱のための放熱の弁類の切換操
作が複雑になると共に、コスト高の要因となった。
However, in the conventional heat pump type refrigeration cycle, the heat storage tank 35 is installed independently, and the heat storage coil 35 for heat radiation is operated by valve operation of the high temperature discharged refrigerant from the compressor 30. It is done by guiding to. For this reason, various valves are arranged in the refrigeration cycle, the piping becomes complicated, the switching operation of the heat radiation valves for heat storage in the heat storage tank 35 and the refrigerant heating becomes complicated, and the cost increases. Became.

【0006】また、蓄熱槽35が独立して設置されてい
るため、その設置スペースも大きくなり、小型化を図る
ことが困難であった。しかも、冷凍サイクル中で最も温
度の高いコンプレッサケースの熱はそのまま外部へ放熱
されており、この熱を有効に利用することができなかっ
た。
Further, since the heat storage tank 35 is independently installed, its installation space becomes large and it is difficult to reduce the size. Moreover, the heat of the compressor case, which has the highest temperature in the refrigeration cycle, is radiated to the outside as it is, and this heat cannot be effectively used.

【0007】本発明は上記のような問題点を考慮し、コ
ンプレッサからの放熱を有効かつ積極的に利用して、効
率的に除霜を行うと共に、コンプレッサに還流される冷
媒の加熱を容易に可能とし、かつ大きな設置スペースを
必要とせず、小型で簡単な構造の冷凍サイクルを提供す
ることを目的とする。
In consideration of the above problems, the present invention effectively and positively utilizes the heat radiation from the compressor to efficiently defrost and facilitate the heating of the refrigerant returned to the compressor. It is an object of the present invention to provide a refrigeration cycle that is small and has a simple structure, which is possible and does not require a large installation space.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明はコンプレッサ、四方弁、室外熱交換器、膨
脹機構及び室内熱交換器を接続して構成され、上記四方
弁を切換えることによって冷暖房運転が可能な冷凍サイ
クルにおいて、吸熱用熱交換コイルを収容した蓄熱槽を
上記コンプレッサケースを覆うように一体あるいは一体
的に設けてコンプレッサケ−スと直接的に熱交換可能に
配設すると共に、暖房運転時における除霜に上記吸熱用
熱交換コイルへ冷媒を流通させるバイパス路を備えたこ
とを特徴とする冷凍サイクル。
In order to achieve the above object, the present invention is configured by connecting a compressor, a four-way valve, an outdoor heat exchanger, an expansion mechanism and an indoor heat exchanger, and switching the four-way valve. In a refrigeration cycle capable of cooling and heating operation by means of a heat storage tank containing a heat exchange coil for absorbing heat , the heat storage tank is integrally or integrally provided so as to cover the compressor case, and heat can be directly exchanged with the compressor case.
In addition to being installed, it also absorbs the heat for defrosting during heating operation.
Be sure to provide a bypass for circulating the refrigerant to the heat exchange coil.
A refrigeration cycle characterized by and .

【0009】[0009]

【作用】このような構成によれば、コンプレッサケース
からの放熱を積極的に利用して蓄熱させることができる
ので、蓄熱槽内に放熱用熱交換コイルを設ける必要がな
くなる。また、蓄熱槽がコンプレッサと熱交換可能に配
設されているので、その分だけ近接した配置構造が可能
となり、設置スペースの有効利用を図ることができる。
According to this structure, the heat radiated from the compressor case can be positively used to store heat, so that it is not necessary to provide a heat radiating heat exchange coil in the heat storage tank. Further, since the heat storage tank is arranged so as to be capable of exchanging heat with the compressor, it is possible to dispose the heat storage tank closer to the heat storage tank and to effectively use the installation space.

【0010】[0010]

【実施例】以下、本発明の一実施例を図1〜図3を参照
して説明する。図1は、本発明に係るヒートポンプ式冷
凍サイクルを示し、この冷凍サイクルは冷暖房用空気調
和機に適用され、コンプレッサ1、四方弁2、室外熱交
換器3、膨脹機構としての膨脹弁(キャピラリーチュー
ブでも良い)4、室内熱交換器5を順次接続して構成さ
れており、閉じた冷媒循環回路6を構成している。一
方、コンプレッサ1の吐出側からホットガスバイパス配
管7が分岐されており、このバイパス配管7は途中に設
けられたバイパス弁8を介して室外熱交換器3と膨脹弁
4との間の冷媒配管6aに接続され、ホットガスバイパ
ス回路を構成している。また、四方弁2からコンプレッ
サ1の吸込側に至る低圧冷媒配管6bに蓄熱用配管9が
並列に接続される。蓄熱用配管9は途中に吸熱用熱交換
コイル10を備え、この熱交換コイル10は蓄熱剤が充
填された蓄熱槽11内に収容される。蓄熱槽11は、図
2に示すようにコンプレッサ1を外側から覆い、そのコ
ンプレッサケース1aに一体あるいは一体的に設けられ
る。蓄熱槽11内に収容される吸熱用熱交換コイル10
は周方向に延び、その他端側は蓄熱槽30から出てコン
プレッサ1の吸込側であるサクションカップ12に接続
される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a heat pump refrigeration cycle according to the present invention, which is applied to an air conditioner for cooling and heating, and includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, and an expansion valve (capillary tube) as an expansion mechanism. 4) and the indoor heat exchanger 5 are sequentially connected to form a closed refrigerant circulation circuit 6. On the other hand, a hot gas bypass pipe 7 is branched from the discharge side of the compressor 1, and the bypass pipe 7 is a refrigerant pipe between the outdoor heat exchanger 3 and the expansion valve 4 via a bypass valve 8 provided midway. 6a and constitutes a hot gas bypass circuit. Further, the heat storage pipe 9 is connected in parallel to the low pressure refrigerant pipe 6b extending from the four-way valve 2 to the suction side of the compressor 1. The heat storage pipe 9 is provided with an endothermic heat exchange coil 10 on the way, and the heat exchange coil 10 is housed in a heat storage tank 11 filled with a heat storage agent. As shown in FIG. 2, the heat storage tank 11 covers the compressor 1 from the outside and is integrally or integrally provided in the compressor case 1a. Endothermic heat exchange coil 10 housed in heat storage tank 11
Extends in the circumferential direction, and the other end side is discharged from the heat storage tank 30 and connected to the suction cup 12 which is the suction side of the compressor 1.

【0011】ところで、低圧側冷媒配管6bと蓄熱用配
管9との分岐部には切換用三方弁13が設けられる。こ
の三方弁13は図3に示すように構成され、弁ケーシン
グ14に1つの流入ポート15と2つの流出ポート16
a、16bが形成される。両流出ポート161a、6b
は弁体17により選択的に開口される。弁体17は弁棒
18を介してプランジャ19に一体的に連結され、プラ
ンジャ19はスプリング20によりばね付勢され、弁体
17を一方の弁シート21側に押圧される。また、上記
プランジャ19は電磁コイル22への通電により、スプ
リング20のばね力に抗して移動され、弁体17を他方
の弁シート23側に押し付ける。しかして、切換用三方
弁13は電磁コイル22への通電により、弁体17は流
出ポート16aを閉塞し、流入ポート15は一方の流出
ポート16bに連通され、通電を解除することにより他
方の流出ポート16aに連通される。この三方弁13の
各流出入ポート15、16a、16bに作用する冷媒圧
力は低圧で、流出入ポートの圧力差はほとんどないた
め、三方弁13が大口径のものであっても、弁の切換操
作は小さな切換力でスムーズに行うことができる。この
ため、三方弁13は簡単かつ単純構造の直動弁でよく、
しかも電磁コイル20も小さなもので足りる。また、三
方弁13は切換部からの冷媒漏れが少々生じても不都合
がないので、低コストで製造できる。
A switching three-way valve 13 is provided at a branch portion between the low pressure side refrigerant pipe 6b and the heat storage pipe 9. This three-way valve 13 is configured as shown in FIG. 3, and has one inflow port 15 and two outflow ports 16 in the valve casing 14.
a and 16b are formed. Both outflow ports 161a, 6b
Is selectively opened by the valve body 17. The valve body 17 is integrally connected to a plunger 19 via a valve rod 18, and the plunger 19 is spring-biased by a spring 20 to press the valve body 17 toward one valve seat 21 side. Further, the plunger 19 is moved against the spring force of the spring 20 by energizing the electromagnetic coil 22, and presses the valve body 17 toward the other valve seat 23 side. When the switching three-way valve 13 energizes the electromagnetic coil 22, the valve body 17 closes the outflow port 16a, the inflow port 15 communicates with one outflow port 16b, and the deenergization of the other outflow port 16a. It communicates with the port 16a. Even if the three-way valve 13 has a large diameter, the valve switching is performed because the refrigerant pressure acting on each of the inflow / outflow ports 15, 16a, 16b of the three-way valve 13 is low and there is almost no pressure difference between the inflow / outflow ports. The operation can be performed smoothly with a small switching force. Therefore, the three-way valve 13 may be a direct-acting valve having a simple and simple structure,
Moreover, the electromagnetic coil 20 may be small. The three-way valve 13 can be manufactured at low cost because there is no inconvenience even if a small amount of refrigerant leaks from the switching portion.

【0012】次に、この発明の冷凍サイクルの作用につ
いて説明する。冷房運転時には、四方弁2、三方弁13
は図1に示す状態でセットされる。しかして、コンプレ
ッサ1から吐出された冷媒は四方弁2を経て室外熱交換
器3に送られ、ここで周囲に放熱して凝縮される。この
凝縮された冷媒は膨脹弁4を通って膨脹作用を受けた
後、室内熱交換器5に案内され、ここで吸熱し、周囲の
空気を冷却する。冷却された空気は冷却風となって室内
に吹出され、室内を冷房する。
Next, the operation of the refrigeration cycle of the present invention will be described. Four-way valve 2 and three-way valve 13 during cooling operation
Are set in the state shown in FIG. Then, the refrigerant discharged from the compressor 1 is sent to the outdoor heat exchanger 3 via the four-way valve 2 and is radiated to the surroundings where it is condensed. The condensed refrigerant is expanded through the expansion valve 4 and then guided to the indoor heat exchanger 5 where it absorbs heat and cools the surrounding air. The cooled air becomes cooling air and is blown out into the room to cool the room.

【0013】一方、暖房運転時には、四方弁2を暖房運
転側に切換える。この切換えにより、コンプレッサ1か
ら吐出される高温高圧冷媒は四方弁2を経て室内熱交換
器3に送られ、ここで放熱して周囲の空気を暖める。暖
められた空気は温風となって室内に吹出され、室内を暖
房している。室内を暖房することにより、凝縮された冷
媒は、膨脹弁4を経て室外熱交換器5に送られ、ここで
周囲から熱を奪って蒸発され、蒸発したガス冷媒は四方
弁2から三方弁13、低圧側冷媒配管6b及びサクショ
ンカップ12を経てコンプレッサ1内に還流される。
On the other hand, during the heating operation, the four-way valve 2 is switched to the heating operation side. By this switching, the high-temperature and high-pressure refrigerant discharged from the compressor 1 is sent to the indoor heat exchanger 3 via the four-way valve 2, where it radiates heat and warms the surrounding air. The warmed air becomes warm air and is blown into the room to heat the room. By heating the room, the condensed refrigerant is sent to the outdoor heat exchanger 5 through the expansion valve 4, where heat is taken from the surroundings to be evaporated, and the evaporated gas refrigerant is discharged from the four-way valve 2 to the three-way valve 13. , And is returned to the compressor 1 through the low pressure side refrigerant pipe 6b and the suction cup 12.

【0014】ところで、コンプレッサ1の運転時、コン
プレッサケース1aから放熱される熱は、熱伝導により
蓄熱槽11内に伝達され、蓄熱槽11内に時間をかけて
蓄熱される。蓄熱槽11内の蓄熱は三方弁13が蓄熱用
配管9側に切換えられない限り、低温低圧の冷媒が蓄熱
槽11内に流入しないので放熱されない。
By the way, when the compressor 1 is in operation, the heat radiated from the compressor case 1a is transferred to the heat storage tank 11 by heat conduction and is stored in the heat storage tank 11 over time. The heat stored in the heat storage tank 11 is not radiated because the low-temperature low-pressure refrigerant does not flow into the heat storage tank 11 unless the three-way valve 13 is switched to the heat storage pipe 9 side.

【0015】次に除霜運転を行う場合には、四方弁2を
暖房運転側にセットしたままで、三方弁13を蓄熱用配
管9を選択するように切換え、バイパス弁8を開く。こ
れにより、コンプレッサ1からの高温高圧冷媒はホット
ガスバイパス回路7を経て室外熱交換器3に直接案内さ
れ、ここで放熱し、室外熱交換器3のフィンに付着した
霜を取り除く。室外熱交換器3を除霜することにより、
凝縮された低温低圧の冷媒は室外熱交換器3を出て、三
方弁13を経て蓄熱槽11内に案内され、吸熱用熱交換
コイル10を通る間に吸熱作用を受けて蒸発し、ガス冷
媒となり、このガス冷媒がサクションカップ12を経て
コンプレッサ1に還流される。従って、室外熱交換器3
に付着した霜を急速に除霜することができる。その際、
バイパス弁8の弁開度を調節することにより、ホットガ
スバイパス回路7を流れる冷媒流量を調節することがで
き、コンプレッサ1からの高温高圧吐出冷媒の一部をホ
ットガスバイパス回路7に流し、残りを四方弁2を介し
て室内熱交換器5に案内することにより、暖房運転を継
続させながら、除霜運転を行うことができ、暖房運転を
連続的に行うことができる。
Next, when the defrosting operation is performed, the three-way valve 13 is switched to select the heat storage pipe 9 while the four-way valve 2 is set to the heating operation side, and the bypass valve 8 is opened. As a result, the high-temperature high-pressure refrigerant from the compressor 1 is directly guided to the outdoor heat exchanger 3 via the hot gas bypass circuit 7, where it radiates heat and removes frost attached to the fins of the outdoor heat exchanger 3. By defrosting the outdoor heat exchanger 3,
The condensed low-temperature low-pressure refrigerant exits the outdoor heat exchanger 3, is guided into the heat storage tank 11 via the three-way valve 13, and is vaporized by being endothermic while passing through the heat-absorption heat exchange coil 10. This gas refrigerant is returned to the compressor 1 through the suction cup 12. Therefore, the outdoor heat exchanger 3
The frost adhering to can be defrosted rapidly. that time,
By adjusting the valve opening degree of the bypass valve 8, the flow rate of the refrigerant flowing through the hot gas bypass circuit 7 can be adjusted, and a part of the high-temperature high-pressure discharge refrigerant from the compressor 1 is caused to flow into the hot gas bypass circuit 7 and the remaining Is guided to the indoor heat exchanger 5 via the four-way valve 2, the defrosting operation can be performed while the heating operation is continued, and the heating operation can be continuously performed.

【0016】このようにこの発明の実施例によれば、吸
熱用熱交換コイルを収容した蓄熱槽を上記コンプレッサ
のケースを覆うように一体あるいは一体的に設けてコン
プレッサと熱交換可能に配設し、暖房運転における除霜
に上記吸熱用熱交換コイルを用いたことにより、コンプ
レッサケースからの放熱を積極的に利用して除霜用の熱
源として蓄熱させることができるので、蓄熱槽内に放熱
用熱交換コイルを設ける必要がなく、その分だけ蓄熱槽
を簡素化することができる。また、蓄熱槽は、コンプレ
ッサと熱交換可能に配設されているので、その分だけ近
接した配置構造が可能となり、設置スペースの有効利用
を図ることができ、大きなスペースを必要とせず、小型
化を図ることができる。さらに、蓄熱槽でコンプレッサ
ケースを覆い、両者を一体化したので、スペースを有効
利用することに加えてコンプレッサからの騒音を蓄熱槽
で吸収することができ、コンプレッサの防音効果を向上
させることができる。
As described above, according to the embodiment of the present invention, the heat storage tank accommodating the heat exchange coil for heat absorption is integrally or integrally provided so as to cover the case of the compressor, and is arranged to be capable of exchanging heat with the compressor. By using the heat-absorption heat exchange coil for defrosting during heating operation, heat radiation from the compressor case can be positively used to store heat as a heat source for defrosting. It is not necessary to provide a heat exchange coil, and the heat storage tank can be simplified accordingly. Also, since the heat storage tank is arranged so that it can exchange heat with the compressor, it is possible to place it closer to the heat storage tank, which makes it possible to effectively use the installation space, does not require a large space, and is compact. Can be achieved. Further, since the compressor case is covered with the heat storage tank and both are integrated, the noise from the compressor can be absorbed by the heat storage tank in addition to the effective use of space, and the soundproof effect of the compressor can be improved. .

【0017】なお、この発明の実施例の説明において
は、低圧冷媒配管と蓄熱用配管との分岐部に三方弁を備
えた例について説明したが、各配管に通常の開閉弁を備
えるようにしても良い。また、除霜運転はホットガスバ
イパス回路7を利用した例について説明したが、この代
りに四方弁を切換えることによる反転除霜の場合にも、
同様にして適用することができる。
In the description of the embodiments of the present invention, the example in which the three-way valve is provided at the branch portion of the low pressure refrigerant pipe and the heat storage pipe has been described, but each pipe is provided with a normal on-off valve. Is also good. Moreover, although the defrosting operation explained the example using the hot gas bypass circuit 7, in the case of reverse defrosting by switching a four-way valve instead,
The same can be applied.

【0018】[0018]

【発明の効果】以上のように、本発明によれば、以下の
ような効果を奏する。 (1)吸熱用熱交換コイルを収容した蓄熱槽を上記コン
プレッサのケースを覆うように一体あるいは一体的に設
けてコンプレッサケ−スと直接的に熱交換可能に配設
し、暖房運転時における除霜に上記吸熱用熱交換コイル
を用いたことにより、コンプレッサケースからの放熱を
積極的に利用して除霜用の熱源として蓄熱させることが
できるので、蓄熱槽内に放熱用熱交換コイルを設ける必
要がなく、その分だけ蓄熱槽を簡素化することができ
る。 (2)蓄熱槽は、コンプレッサと熱交換可能に配設され
ているので、その分だけ近接した配置構造が可能とな
り、設置スペースの有効利用を図ることができ、大きな
スペースを必要とせず、小型化を図ることができる。 (3)蓄熱槽でコンプレッサケースを覆い、両者を一体
化したので、コンプレッサからの騒音を蓄熱槽で吸収す
ることができ、コンプレッサの防音効果を向上させるこ
とができる。
As described above, the present invention has the following effects. (1) A heat storage tank accommodating a heat exchange coil for heat absorption is integrally or integrally provided so as to cover the case of the compressor and is arranged so as to be capable of directly exchanging heat with the compressor case. By using the heat-absorption heat exchange coil for frost, heat radiation from the compressor case can be positively used to store heat as a heat source for defrosting, so a heat-radiation heat exchange coil is provided in the heat storage tank. There is no need, and the heat storage tank can be simplified accordingly. (2) Since the heat storage tank is arranged so that heat can be exchanged with the compressor, it is possible to arrange the heat storage tank closer to the heat storage tank, which makes it possible to effectively use the installation space, does not require a large space, and is compact. Can be realized. (3) Since the compressor case is covered with the heat storage tank and both are integrated, noise from the compressor can be absorbed by the heat storage tank, and the soundproof effect of the compressor can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る冷凍サイクルの一実施例を示す図
である。
FIG. 1 is a diagram showing an embodiment of a refrigeration cycle according to the present invention.

【図2】本発明に係る冷凍サイクルに組込まれるコンプ
レッサと蓄熱槽との配置関係を示す簡略図である。
FIG. 2 is a simplified diagram showing a positional relationship between a compressor incorporated in a refrigeration cycle according to the present invention and a heat storage tank.

【図3】本発明に係る冷凍サイクルに組込まれる切換用
三方弁の弁構造を示す断面図である。
FIG. 3 is a sectional view showing a valve structure of a switching three-way valve incorporated in a refrigeration cycle according to the present invention.

【図4】従来のヒートポンプ式冷凍サイクルを示す図で
ある。
FIG. 4 is a diagram showing a conventional heat pump type refrigeration cycle.

【符号の説明】[Explanation of symbols]

1…コンプレッサ、2…四方弁、3…室外熱交換器、4
…膨脹機構、5…室内熱交換器、6b…低圧側冷媒配
管、9…蓄熱用配管、10…吸熱用熱交換コイル、11
…蓄熱槽
1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4
... Expansion mechanism, 5 ... Indoor heat exchanger, 6b ... Low-pressure side refrigerant pipe, 9 ... Heat storage pipe, 10 ... Endothermic heat exchange coil, 11
… Heat storage tank

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 コンプレッサ、四方弁、室外熱交換
器、膨脹機構及び室内熱交換器を接続して構成され、上
記四方弁を切換えることによって冷暖房運転が可能な冷
凍サイクルにおいて、吸熱用熱交換コイルを収容した蓄
熱槽を上記コンプレッサケースを覆うように一体あるい
は一体的に設けてコンプレッサケ−スと直接的に熱交換
可能に配設すると共に、暖房運転時における除霜に上記
吸熱用熱交換コイルへ冷媒を流通させるバイパス路を備
えたことを特徴とする冷凍サイクル。
1. A heat exchange coil for absorbing heat in a refrigeration cycle that is configured by connecting a compressor, a four-way valve, an outdoor heat exchanger, an expansion mechanism and an indoor heat exchanger, and is capable of cooling and heating operation by switching the four-way valve. A heat storage tank accommodating the above is integrally or integrally provided so as to cover the compressor case and is arranged so that heat can be directly exchanged with the compressor case.
Equipped with a bypass for circulating the refrigerant to the heat exchange coil for heat absorption
The refrigerating cycle characterized by
JP5076413A 1993-03-11 1993-03-11 Refrigeration cycle Expired - Lifetime JP2530094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5076413A JP2530094B2 (en) 1993-03-11 1993-03-11 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5076413A JP2530094B2 (en) 1993-03-11 1993-03-11 Refrigeration cycle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22403683A Division JPS60117062A (en) 1983-11-30 1983-11-30 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JPH0642842A JPH0642842A (en) 1994-02-18
JP2530094B2 true JP2530094B2 (en) 1996-09-04

Family

ID=13604543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5076413A Expired - Lifetime JP2530094B2 (en) 1993-03-11 1993-03-11 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JP2530094B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100560561B1 (en) * 2004-09-17 2006-03-14 주식회사 헬쯔테크 Continuously operating type showcase
JPWO2013065233A1 (en) * 2011-11-04 2015-04-02 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus and air conditioner equipped with the same
JP2013104586A (en) * 2011-11-11 2013-05-30 Panasonic Corp Refrigerating cycle device and air conditioner with the same
JP2013104623A (en) * 2011-11-15 2013-05-30 Panasonic Corp Refrigeration cycle device and air conditioner with the same
JP6031673B2 (en) * 2012-06-19 2016-11-24 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus and air conditioner equipped with the same
JP5948606B2 (en) * 2012-07-12 2016-07-06 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
JP5927500B2 (en) * 2012-10-02 2016-06-01 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus and air conditioner equipped with the same
JP5927502B2 (en) * 2012-10-10 2016-06-01 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus and air conditioner equipped with the same
JP7442047B2 (en) * 2020-09-30 2024-03-04 パナソニックIpマネジメント株式会社 refrigerator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160567A (en) * 1980-05-10 1981-12-10 Tokyo Gas Co Ltd Engine driven air conditioning hot water feeder
JPS58224036A (en) * 1982-06-22 1983-12-26 Aikoo:Kk Injection nozzle sleeve of diesel engine and its manufacture

Also Published As

Publication number Publication date
JPH0642842A (en) 1994-02-18

Similar Documents

Publication Publication Date Title
JP4201011B2 (en) Heat storage device
KR0153546B1 (en) Heat storage type airconditioner and defrosting method
JP2020172178A (en) On-vehicle temperature controller
JPH0481101B2 (en)
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
KR200390333Y1 (en) Heat pump type air conditioning and heating system
JP2530094B2 (en) Refrigeration cycle
US6050102A (en) Heat pump type air conditioning apparatus
KR100921211B1 (en) Compressor with vapor injection system
JP2005214558A (en) Heating/cooling system
JPH116665A (en) Heat-storing-type air-conditioner
EP0849544B1 (en) Heat transfer apparatus
KR100389267B1 (en) Air conditioner
JP3063348B2 (en) Indirect refrigerant air conditioner, detachable heat exchanger for indirect refrigerant air conditioner, and indirect refrigerant air conditioning method
JPH0626724A (en) Refrigeration cycle
JPH0428983B2 (en)
JP3809875B2 (en) Air conditioner
JP2003072362A (en) Adsorption type refrigerator
JP2000240980A (en) Refrigerator/air conditioner
JPH0354384Y2 (en)
JP2002061897A (en) Heat storage type air conditioner
JPH05187735A (en) Heat pump
JP4265034B2 (en) Refrigeration apparatus, control method therefor, and air conditioner
JPH04244562A (en) Air conditioner
JPS6252227B2 (en)