JP4265034B2 - Refrigeration apparatus, control method therefor, and air conditioner - Google Patents

Refrigeration apparatus, control method therefor, and air conditioner Download PDF

Info

Publication number
JP4265034B2
JP4265034B2 JP19705699A JP19705699A JP4265034B2 JP 4265034 B2 JP4265034 B2 JP 4265034B2 JP 19705699 A JP19705699 A JP 19705699A JP 19705699 A JP19705699 A JP 19705699A JP 4265034 B2 JP4265034 B2 JP 4265034B2
Authority
JP
Japan
Prior art keywords
way valve
compressor
space
control means
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19705699A
Other languages
Japanese (ja)
Other versions
JP2001021231A (en
Inventor
章 藤高
正廣 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP19705699A priority Critical patent/JP4265034B2/en
Publication of JP2001021231A publication Critical patent/JP2001021231A/en
Application granted granted Critical
Publication of JP4265034B2 publication Critical patent/JP4265034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍庫、冷蔵庫、冷暖房装置、その他機器等に使用する冷凍装置およびその制御方法とそれを使用した空気調和装置に関するものである。
【0002】
【従来の技術】
従来の冷凍装置は図17に示すように圧縮機101、凝縮器102、絞り装置103、蒸発器104を、環状に配管して冷凍サイクルを構成している。
【0003】
以上のように構成された冷凍装置について、以下その動作について説明する。圧縮機101で圧縮された高温高圧の冷媒蒸気は、凝縮器102で放熱し、凝縮液化する。その後、絞り装置103で減圧膨張されて低温低圧の冷媒となり蒸発器104で吸熱して蒸発、気化した後、低温低圧の冷媒蒸気となり、再び圧縮機101で圧縮され冷凍サイクルを繰り返す。
【0004】
【発明が解決しようとする課題】
しかしながら、上記のような構成では以下のような課題があった。すなわち、冷凍負荷が高い場合、圧縮機101の吐出圧力や吐出温度が上昇する。この状態ではエネルギー効率が低下するだけでなく、長時間運転すると圧縮機101のモータの焼き付き等で、冷凍機の信頼性を低下させることがある。
【0005】
また、冷凍負荷が低い場合、圧縮機101の吐出温度が上がらず、圧縮機内で冷媒が凝縮し冷凍機油に冷媒が溶け込んで油の粘度が低下するため、冷凍機の信頼性を低下させることがある。
【0006】
本発明は上記従来例の課題を解決するもので、圧縮機からの放熱促進および放熱の抑制を制御し、冷凍装置およびこれを使用した空気調和装置のエネルギーの効率と信頼性の向上を図ることを目的としたものである。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明の第1の技術的手段は、環状に配管して冷凍サイクルを構成し、かつ外周に空間を形成した圧縮機、凝縮器、絞り装置、蒸発器と、空調負荷の状態を検出する運転状態検出手段と、この運転状態検出手段からの出力信号に応じ、前記空間に冷媒を溜め圧縮機の放熱促進および圧縮機の放熱を抑制するように制御する制御手段を備えた冷凍装置である。
【0008】
また、本発明の第2の技術的手段は、環状に配管して冷凍サイクルを構成し、かつ外周に冷媒溜めの空間を形成した圧縮機、凝縮器、絞り装置、蒸発器と、運転状態検出手段と、前記圧縮機の空間を前記圧縮機の吐出配管に接続する第1の2方弁と、前記圧縮機の空間を前記圧縮機の吸入配管に接続する第2の2方弁と、前記運転状態検出手段の出力信号に応じ、前記第1の2方弁の開閉を制御する第1の2方弁制御手段および前記第2の2方弁の開閉を制御する第2の2方弁制御手段を備えた冷凍装置である。
【0009】
また本発明の第3の技術的手段は、圧縮機からの放熱を促進する場合は前記圧縮機の空間に液冷媒が溜まるように制御し、前記圧縮機からの放熱を抑制する場合は前記圧縮機の空間にガス冷媒が溜まるように制御する冷凍装置の制御方法である。
【0010】
これらの技術的手段によれば、負荷の状態に応じて圧縮機の放熱促進および放熱抑制を行いエネルギー効率と装置の信頼性の向上を図ることができる。
【0011】
また本発明の第4の技術的手段は、環状に配管して冷凍サイクルを構成し、かつ外周に冷媒溜めの空間を形成した圧縮機、4方弁、室外熱交換器、絞り装置、室内熱交換器と、前記圧縮機の空間を前記4方弁と前記室外熱交換器の間の配管に接続する第1の2方弁と、運転状態検出手段と、この運転状態検出手段の出力信号に応じ、前記第1の2方弁の開閉を制御する第1の2方弁制御手段を備えた空気調和装置である。
【0012】
この技術的手段によれば、装置のエネルギー効率と装置の信頼性の向上を図ることができる。
【0013】
【発明の実施の形態】
本発明の第1実施形態における冷凍装置は、環状に配管して冷凍サイクルを構成し、かつ外周に空間を形成した圧縮機、凝縮器、絞り装置、蒸発器と、空調負荷の状態を検出する運転状態検出手段と、この運転状態検出手段からの出力信号に応じ、前記空間に冷媒を溜め圧縮機の放熱促進および圧縮機の放熱を抑制するように制御する制御手段を備えたものである。
【0014】
上記第1実施形態において、制御手段は運転状態検出手段からの出力信号に応じ、圧縮機の放熱促進が行えるように、そして圧縮機の放熱を抑制するようにそれぞれ圧縮機の空間に冷媒を溜める制御を行う。
【0015】
本発明の第2実施形態における冷凍装置は、環状に配管して冷凍サイクルを構成し、かつ外周に冷媒溜めの空間を形成した圧縮機、凝縮器、絞り装置、蒸発器と、運転状態検出手段と、前記圧縮機の空間を前記圧縮機の吐出配管に接続する第1の2方弁と、前記圧縮機の空間を前記圧縮機の吸入配管に接続する第2の2方弁と、前記運転状態検出手段の出力信号に応じ、前記第1の2方弁の開閉を制御する第1の2方弁制御手段および前記第2の2方弁の開閉を制御する第2の2方弁制御手段を備えたものである。
【0016】
上記第2実施形態において、圧縮機からの放熱を促進する場合、第1の2方弁制御手段は第1の2方弁の開閉を制御して圧縮機の空間を圧縮機の吐出配管に第1の2方弁を介して接続し、圧縮機の空間に液冷媒が溜まるように制御する。また圧縮機からの放熱を抑制する場合、第2の2方弁制御手段は第2の2方弁の開閉を制御して圧縮機の空間を圧縮機の吸入配管に第2の2方弁を介して接続し、圧縮機の空間にガス冷媒が溜まるように制御する。一般に液冷媒の熱伝導率はガス冷媒の熱伝導率に比べ8倍以上も高く、空気の熱伝導率と比べても、4倍も高い。従って、圧縮機の空間に液冷媒が溜まると、圧縮機からより放熱しやすくなる。
【0017】
また、ガス冷媒の熱伝導率は、空気の熱伝導率と比べても約1/2である。従って、圧縮機の空間にガス冷媒が溜まると、圧縮機から放熱しにくくなる。
【0018】
本発明の第3実施形態は、環状に配管して冷凍サイクルを構成し、かつ外周に冷媒溜めの空間を形成した圧縮機、凝縮器、絞り装置、蒸発器と、運転状態検出手段と、前記圧縮機の空間を前記凝縮器と前記絞り装置の間の配管に接続する第1の2方弁と、前記圧縮機の空間を前記圧縮機の吸入配管に接続する第2の2方弁と、前記運転状態検出手段の出力信号に応じ、前記第1の2方弁の開閉を制御する第1の2方弁制御手段および前記第2の2方弁の開閉を制御する第2の2方弁制御手段を備えたものである。
【0019】
上記第3実施形態において、圧縮機からの放熱を促進する場合、第1の2方弁制御手段は第1の2方弁の開閉を制御して圧縮機の空間を前記圧縮機の吸入配管に第1の2方弁を介して接続し、圧縮機の空間に液冷媒が溜まるように制御する
。また圧縮機からの放熱を抑制する場合、第2の2方弁制御手段は第2の2方弁の開閉を制御して圧縮機の空間を前記圧縮機の吸入配管に第2の2方弁を介して接続し、圧縮機の空間にガス冷媒が溜まるように制御する。
【0020】
本発明の第4実施形態は、第1実施形態〜第3実施形態のいずれかの実施形態において
、絞り装置をキャピラリ−チュ−ブで形成し、このキャピラリ−チュ−ブに第3の2方弁を直列に接続するとともに、前記第3の2方弁の開閉を制御する第3の2方弁制御手段を設けたものである。
【0021】
上記第4実施形態において、圧縮機からの放熱を抑制する場合、第3の2方弁制御手段は第3の2方弁の開閉を制御して閉じるので、ガス冷媒の溜まっている圧縮機の空間を大気圧以下になるように制御することになり、ガス冷媒の熱伝導率は更に低下することになる。
【0022】
本発明の第5実施形態は、第1実施形態〜第3実施形態のいずれかの実施形態において、絞り装置を全閉可能な膨張弁で形成するとともに、前記膨張弁の開度を制御する膨張弁開度制御手段を設けたものである。
【0023】
上記第5実施形態おいて、圧縮機からの放熱を抑制する場合、膨張弁開度制御手段は膨張弁を全閉してガス冷媒の溜まっている圧縮機の空間を大気圧以下になるように制御するとともに、冷凍負荷に応じた絞りを設定できる。
【0024】
本発明の第6実施形態は、第1実施形態〜第5実施形態のいずれかの実施形態において、圧縮機の空間を形成する外郭を凝縮器の非加熱媒体の流路に面するようにしたものである。
【0025】
上記第6実施形態において、圧縮機からの放熱を促進する場合、圧縮機の外郭が凝縮器の流路を流れる非加熱媒体に接するので、放熱を更に促進することが可能になる。
【0026】
本発明の第7実施形態は、環状に配管して冷凍サイクルを構成し、かつ外周に冷媒溜めの空間を形成した圧縮機、4方弁、室外熱交換器、絞り装置、室内熱交換器と、前記圧縮機の空間を前記4方弁と前記室外熱交換器の間の配管に接続する第1の2方弁と、運転状態検出手段と、この運転状態検出手段の出力信号に応じ、前記第1の2方弁の開閉を制御する第1の2方弁制御手段を備えた空気調和装置である。
【0027】
上記第7実施形態において、冷房運転等で圧縮機からの放熱を促進する場合、第1の2方弁制御手段は第1の2方弁の開閉を制御して圧縮機の空間を4方弁と室外熱交換器の間の配管に第1の2方弁を介して接続し、圧縮機の空間に液冷媒が溜まるように制御する。また、暖房運転等で圧縮機からの放熱を抑制する場合、圧縮機の空間にガス冷媒が溜まるように制御するものである。また、ガス冷媒が圧縮機の空間に溜まると、圧縮機から放熱しにくくなる。更に、暖房時に圧縮機からの放熱を抑制するため、暖房能力を増加させる。
【0028】
本発明の第8実施形態は、環状に配管して冷凍サイクルを構成し、かつ外周に冷媒溜めの空間を形成した圧縮機、4方弁、室外熱交換器、絞り装置、室内熱交換器と、前記圧縮機の空間を前記室外熱交換器と前記絞り装置の間の配管に接続する第1の2方弁と、運転状態検出手段と、この運転状態検出手段の出力信号に応じ、前記第1の2方弁の開閉を制御する第1の2方弁制御手段を備えたものである。
【0029】
上記第8実施形態において、冷房運転等で圧縮機からの放熱を促進する場合、第1の2方弁制御手段は第1の2方弁の開閉を制御して圧縮機の空間を室外熱交換器と絞り装置の間の配管に第1の2方弁を介して接続し、圧縮機の空間に液冷媒が溜まるように制御するものである。
【0030】
本発明の第9実施形態は、環状に配管して冷凍サイクルを構成し、かつ外周に冷媒溜め
の空間を形成した圧縮機、4方弁、室外熱交換器、絞り装置、室内熱交換器と、前記圧縮機の空間を前記4方弁と前記室外熱交換器の間の配管に接続する第1の2方弁と、前記圧縮機の空間を前記4方弁と前記室内熱交換器の間の配管に接続する第2の2方弁と、運転状態検出手段と、前記運転状態検出手段の出力信号に応じ、前記第1の2方弁の開閉を制御する第1の2方弁制御手段および第2の2方弁の開閉を制御する第2の2方弁制御手段を備えたものである。
【0031】
上記第9実施形態において、圧縮機からの放熱を促進する場合、第1の2方弁制御手段は第1の2方弁の開閉を制御して圧縮機の空間を4方弁と室内熱交換器の間の配管に第1の2方弁を介して接続し、圧縮機の空間に液冷媒を溜めることができる。また圧縮機からの放熱を抑制する場合、第2の2方弁制御手段は第2の2方弁の開閉を制御して圧縮機の空間を4方弁と室内熱交換器の間の配管に第2の2方弁を介して接続し、圧縮機の空間にガス冷媒を溜めることができる。
【0032】
本発明の第10実施形態は、環状に配管して冷凍サイクルを構成し、かつ外周に冷媒溜めの空間を形成した圧縮機、4方弁、室外熱交換器、絞り装置、室内熱交換器と、前記圧縮機の空間を前記室外熱交換器と前記絞り装置の間の配管に接続する第1の2方弁と、前記圧縮機の空間を前記室内熱交換器と前記4方弁の間の配管に接続する第2の2方弁と、運転状態検出手段と、前記運転状態検出手段の出力信号に応じ、前記第1の2方弁の開閉を制御する第1の2方弁制御手段および前記第2の2方弁の開閉を制御する第2の2方弁制御手段を備えた空気調和装置である。
【0033】
上記第10実施形態において、圧縮機からの放熱を促進する場合、第1の2方弁制御手段は第1の2方弁の開閉を制御して圧縮機の空間を室外熱交換器と絞り装置の間の配管に第1の2方弁を介して接続し、圧縮機の空間に液冷媒を溜めることができる。また圧縮機からの放熱を抑制する場合、第2の2方弁制御手段は第2の2方弁の開閉を制御して圧縮機の空間を室内熱交換器と4方弁の間の配管に第2の2方弁を介して接続し、圧縮機の空間にガス冷媒を溜めることができる。
【0034】
本発明の第11実施形態は、環状に配管して冷凍サイクルを構成する、外周に冷媒溜めの空間を形成した圧縮機、4方弁、室外熱交換器、絞り装置、室内熱交換器と、前記圧縮機の空間を前記圧縮機の吐出配管に接続する第1の2方弁と、前記圧縮機の空間を前記圧縮機の吸入配管に接続する第2の2方弁と、運転状態検出手段と、前記運転状態検出手段の出力信号に応じ、前記第1の2方弁の開閉を制御する第1の2方弁制御手段および前記第2の2方弁の開閉を制御する第2の2方弁制御手段を備えた空気調和装置である。
【0035】
上記第11実施形態において、圧縮機からの放熱を促進する場合、第1の2方弁制御手段は第1の2方弁の開閉を制御して圧縮機の空間を圧縮機の吐出配管に第1の2方弁を介して接続し、圧縮機の空間に液冷媒を溜めることができる。また圧縮機からの放熱を抑制する場合、第2の2方弁制御手段は第2の2方弁の開閉を制御して圧縮機の空間を圧縮機の吸入配管に第2の2方弁を介して接続し、圧縮機の空間にガス冷媒を溜めることができる。
【0036】
本発明の第12実施形態は、第7実施形態〜第11実施形態のいずれかの実施形態において、絞り装置をキャピラリチューブで形成し、前記キャピラリチューブに第3の2方弁を直列に接続するとともに、前記第3の2方弁の開閉を制御する第3の2方弁制御手段を設けたものである。
【0037】
上記第12実施形態おいて、圧縮機からの放熱を抑制する場合、第3の2方弁制御手段は第3の2方弁の開閉を制御して閉じることにより、ガス冷媒の溜まっている圧縮機の空間を大気圧以下になるように制御するとともに、熱伝導率は更に低下し、圧縮機からの放熱をより抑制することができる。また、暖房時に圧縮機からの放熱を抑制するため、暖房能力を増加させる。
【0038】
本発明の第13実施形態は、第7実施形態〜第11実施形態のいずれかの実施形態において、絞り装置を全閉可能な膨張弁で形成するとともに、前記膨張弁の開度を制御する膨張弁開度制御手段を設けたものである。
【0039】
上記第13実施形態において、圧縮機からの放熱を抑制する場合、膨張弁開度制御手段は膨張弁を全閉してガス冷媒の溜まっている圧縮機の空間を大気圧以下になるように制御できるとともに、冷房負荷や暖房負荷に応じた絞りを設定できる。
【0040】
本発明の第14実施形態は、第7実施形態〜第13実施形態のいずれかの実施形態において、空間を形成する圧縮機の外郭を室外熱交換器の非加熱媒体の流路に面するようにしたものである。
【0041】
上記第14実施形態おいて、圧縮機の外郭が室外熱交換器の流路を流れる非加熱媒体に接するため、放熱を更に促進することが可能になる。
【0042】
本発明の第15実施形態は、第1実施形態〜第14実施形態のいずれかの実施形態において、空間を形成する圧縮機の外郭を室外熱交換器の非加熱媒体の流路に面するようにせしめ、かつ前記外郭に放熱用フィンを設けたものである。
【0043】
上記第15実施形態において、圧縮機の外郭に設けた放熱用フィンは室外熱交換器の流路を流れる非加熱媒体に接して放熱を更に促進することが可能になる。
【0044】
本発明の第16実施形態は、空調負荷の状態を検出する運転状態検出手段が検出した出力信号に応じ、圧縮機からの放熱を促進する場合は前記圧縮機の空間に液冷媒が溜まるように制御し、前記圧縮機からの放熱を抑制する場合は前記圧縮機の空間にガス冷媒が溜まるように制御する方法である。
【0045】
上記第16実施形態において、圧縮機の空間に液冷媒が溜まると、液冷媒はその熱伝導率により圧縮機の放熱を促進させる。従って、凝縮圧力を低下させる。また、圧縮機の空間にガス冷媒が溜まると、ガス冷媒は圧縮機からの放熱を抑制する。
【0046】
本発明の第17実施形態は、空調負荷の状態を検出する運転状態検出手段が検出した出力信号に応じ、圧縮機からの放熱を促進する場合は前記圧縮機の空間に液冷媒が溜まるように制御し、前記圧縮機からの放熱を抑制する場合は前記圧縮機の空間に大気圧以下のガス冷媒が溜まるように制御する方法である。
【0047】
上記第17実施形態において、圧縮機の空間に溜まったガス冷媒は大気圧以下の状況下であるため圧縮機外郭の熱伝導率は更に低下し、圧縮機からの放熱をより抑制する。
【0048】
【実施例】
以下、本発明の実施例について図面を参考に説明する。
【0049】
(実施例1)
図1は、本発明冷凍装置の実施例1における冷凍サイクル図で、図2は同冷凍装置の本体の要部切欠の斜視図である。1は外郭を2重構造にして外周に冷媒溜めの空間8を形成した圧縮機、2は凝縮器、3は第3の2方弁、4は絞り装置としてのキャピラリチューブ、5は蒸発器で、順次環状に配管接続して冷凍サイクルを構成する。そして、圧縮機1の空間8は外側外郭6と内側外郭7で形成され、圧縮機1の吐出配管9に第1の2方弁10を介して接続し、また、吸入配管11に第2の2方弁12を介し接続して冷凍サイクルを構成している。13は凝縮器2を非加熱媒体としての空気で冷却する凝縮器送風機で、点線で示す流路14に面して配置した圧縮機1を冷却する作用も有する。15は圧縮機1の外側外郭6に形成した放熱用フィンで、流路14に面している。16は運転状態検出手段で、冷凍負荷の状態を検出して、第1の2方弁制御手段17、第2の2方弁制御手段18および第3の2方弁制御手段19に信号を出力する。そして、第1の2方弁制御手段17、第2の2方弁制御手段18および第3の2方弁制御手段19は、運転状態検出手段16からの出力信号に応じて、第1の2方弁10、第2の2方弁12および第3の2方弁3の開閉を制御するものである。すなわち、運転状態検出手段16からの出力信号に応じ、前記空間8に冷媒を溜め圧縮機1の放熱促進および圧縮機1の放熱を抑制するように制御する制御手段としての第1の2方弁制御手段17、第2の2方弁制御手段18および第3の2方弁制御手段19である。つまり、冷凍負荷の大きい状態を検出した運転状態検出手段16は、圧縮機1の放熱促進をする信号を出力すると、第1の2方弁制御手段17は、前記信号に応じて第1の2方弁10を開き、一定時間後に閉じ、一方、前記信号を受けた第2の2方弁制御手段18は第2の2方弁12を閉じ、同じく第3の2方弁制御手段19は第3の2方弁3を閉じ、一定時間後に開くものである。また、冷凍負荷の小さい状態を検出した運転状態検出手段16は、圧縮機1の放熱を抑制する信号を出力すると、第1の2方弁制御手段17は、前記信号に応じて第1の2方弁10を閉じ、一方、前記信号を受けた第2の2方弁制御手段18は第2の2方弁12を開き一定時間後に閉じ、同じく第3の2方弁制御手段19は第3の2方弁3を閉じ、そして一定時間後に開くのである。30は運転状態検出手段16、第1の2方弁制御手段17、第2の2方弁制御手段18、第3の2方弁制御手段19を構成するワンチップのマイクロコンピュ−タである。
【0050】
上記実施例1において、冷凍装置が運転開始した時、凝縮器2周囲の温度が低い場合や、冷凍負荷が小さい場合、これを検出した運転状態検出手段16により圧縮機1からの放熱を抑制する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17は第1の2方弁10を閉じ、第2の2方弁制御手段18は第2の2方弁12を開くものである。その結果、圧縮機1の空間8は圧縮機1の吸入配管11と連通するため、前記配管内と同低圧となって圧縮機1の空間8には低圧のガス冷媒が溜まる。その結果、前記ガス冷媒の作用で圧縮機1の表面から放熱しにくくなり、圧縮機1の吐出温度が早く上昇し、圧縮機1内での冷媒の凝縮が防止され、冷凍装置の信頼性を向上させることができる。
【0051】
更に、第3の2方弁制御手段19はキャピラリチューブ4と直列に接続された第3の2方弁3を閉じるので、圧縮機1は第3の2方弁3から下流側の冷媒を吸入するため、上記低圧はどんどん低下し大気圧以下になり、圧縮機1の空間8は圧縮機1の吸入配管11と連通しているため、圧縮機1の空間8の圧力は大気圧以下となる。その後、第2の2方弁制御手段18は第2の2方弁12を閉じ、第3の2方弁制御手段19は第3の2方弁3を開成する。従って、圧縮機1の空間8の圧力は大気圧以下の状態に保たれ、冷凍装置は通常の運転に戻る。そして、空間8内のガス冷媒の熱伝導率は更に低下し、圧縮機1表面からの放熱をより抑制することができ、冷凍装置の信頼性を、更に向上させることができる。
【0052】
また、凝縮器2周囲の温度が高い場合や、冷凍負荷が大きい場合、これを検出した運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17は第1の2方弁10を開き、第2の2方弁制御手段18は第2の2方弁12を閉じ、第3の2方弁制御手段19は第3の2方弁3を閉じる。その結果、圧縮機1の空間8は圧縮機1の吐出配管9に連通するため高圧となり、第3の2方弁3は閉じられるため、圧縮機1の空間8には高圧の冷媒が流れ込む。そして、圧縮機1の外側外郭6は凝縮器送風機13から送られる空気の流路14に面し、かつ放熱用フィン15を設けているため冷却され、圧縮機1の空間8の高圧冷媒は凝縮し液冷媒が溜まる。そして、一定時間後に第1の2方弁制御手段17は第1の2方弁10を閉じ、第3の2方弁制御手段19は第3の2方弁3を開成すると、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、冷凍装置は通常の運転に戻る。その結果、空間8の液冷媒を介して圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。更に、冷凍負荷が高い場合でも圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、冷凍装置の信頼性を向上させることができる。
【0053】
また冷凍運転中において、運転サーモスタットがオフしても、第1の2方弁10、第2の2方弁12、第3の2方弁3の開閉状態はそのまま保たれ、圧縮機1の空間8内の冷媒状態もそのままの状態に保たれる。
【0054】
なお、上記実施例1では凝縮器2の非加熱流体を空気としているが、非加熱流体を水などの液体とし、流体と圧縮機1の外郭を接するように構成し熱交換させるようにしても、同様な効果を奏する。また、運転状態検出手段16は、凝縮器2周囲の温度を検出して冷凍負荷の状態を判断しているが、これに限定されるものではなく、同じ目的、作用効果が得られるのであれば他の構成でもよい。
【0055】
(実施例2)
図3は本発明の実施例2における冷凍装置の冷凍サイクル図である。この実施例2の発明は、圧縮機の空間を凝縮器とキャピラリチューブの間の配管に第1の2方弁を介して接続した点以外は実施例1の発明と同じなので、同一構成、作用効果を奏する部分には図1と同一符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0056】
図3において図1の実施例1と異なるのは、圧縮機1の空間8を、凝縮器2とキャピラリチューブ4の間の配管20に第1の2方弁10を介して接続したものである。
【0057】
上記実施例2において、冷凍装置の動作、作用効果も図1の実施例1と同じである。そして、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17は第1の2方弁10を開き、圧縮機1の空間8は凝縮器2とキャピラリチューブ4の間の配管20に連通し、第3の2方弁3は第3の2方弁制御手段19により閉じられるため、圧縮機1の空間8には凝縮器2で液化された高圧の液冷媒が流れ込み、容易に液冷媒が溜まる。そして、一定時間後に第1の2方弁制御手段17は第1の2方弁10を閉じ、第3の2方弁制御手段19は第3の2方弁3を開成すると、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、冷凍装置は通常の運転に戻る。その結果、空間8の液冷媒を介して圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。更に、冷凍負荷が高い場合でも圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、冷凍装置の信頼性を向上させることができる。
【0058】
また冷凍運転中において、運転サーモスタットがオフしても、第1の2方弁10、第2の2方弁12、第3の2方弁3の開閉状態はそのまま保たれ、圧縮機1の空間8内の冷媒状態もそのままの状態に保たれる。
【0059】
なお、上記実施例2では凝縮器2の非加熱流体を空気としているが、非加熱流体を水などの液体とし、流体と圧縮機1の外郭を接するように構成し熱交換させるようにしても、同様な効果を奏する。また、運転状態検出手段16は、凝縮器2周囲の温度を検出して冷凍負荷の状態を判断しているが、これに限定されるものではなく、同じ目的、作用効果が得られるのであれば他の構成でもよい。
【0060】
(実施例3)
図4は本発明の実施例3における冷凍装置の冷凍サイクル図である。この実施例3の発明は、絞り装置に全閉可能な膨張弁を用い、この膨張弁の開度を制御する膨張弁開度制御手段を設け、第3の2方弁と第3の2方弁制御手段を除いた点以外は実施例1の発明と同じなので、同一構成、作用効果を奏する部分には図1と同一符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0061】
図4において図1の実施例1と異なるのは、絞り装置に全閉可能な膨張弁21を用い、更に膨張弁21の開度を制御する膨張弁開度制御手段22を設けたものである。図1の第3の2方弁3と第3の2方弁制御手段19は除いてある。そして、冷凍負荷の大きい状態を検出した運転状態検出手段16は、圧縮機1の放熱
促進をする信号を出力すると、第1の2方弁制御手段17は、前記信号に応じて第1の2方弁10を開き、一定時間後に閉じ、一方、前記信号を受けた第2の2方弁制御手段18は第2の2方弁12を閉じ、同じく膨張弁開度制御手段22は膨張弁21を閉じ、一定時間後に開くものである。また、冷凍負荷の小さい状態を検出した運転状態検出手段16は、圧縮機1の放熱を抑制する信号を出力すると、第1の2方弁制御手段17は前記信号に応じて第1の2方弁10を閉じ、一方、前記信号を受けた第2の2方弁制御手段18は第2の2方弁12を開き一定時間後に閉じ、同じく膨張弁開度制御手段22は膨張弁21を閉じ、そして一定時間後に開くのである。30は運転状態検出手段16、第1の2方弁制御手段17、第2の2方弁制御手段18、膨張弁開度制御手段22を構成するワンチップのマイクロコンピュ−タである。
【0062】
上記実施例3において、冷凍装置の動作、作用効果も図1の実施例1と同じである。そして、冷凍装置が運転開始した時、凝縮器2周囲の温度が低い場合や、冷凍負荷が小さい場合、運転状態検出手段16により圧縮機1からの放熱を抑制する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17は第1の2方弁10を閉じ、第2の2方弁制御手段18は第2の2方弁12を開成する。その結果、圧縮機1の空間8は圧縮機1の吸入配管11に連通するため、前記配管と同低圧となり、圧縮機1の空間8には低圧のガス冷媒が溜まる。従って、空間8のガス冷媒の作用により、圧縮機1の表面から放熱しにくくなり、圧縮機1の吐出温度が早く上昇し、圧縮機1内での冷媒の凝縮を防ぎ、冷凍装置の信頼性を向上させることができる。
【0063】
更に、膨張弁開度制御手段22は膨張弁21を全閉すると、圧縮機1は膨張弁21から下流側の冷媒を吸入するため、低圧はどんどん低下し大気圧以下になり、圧縮機1の空間8は圧縮機1の吸入配管11と連通しているため、圧縮機1の空間8の圧力は大気圧以下になる。その後、第2の2方弁制御手段18により第2の2方弁12は閉じられ、そして、膨張弁開度制御手段22により膨張弁21は適度に開かれると、圧縮機1の空間8の圧力は大気圧以下の状態に保たれ、冷凍装置は通常の運転に戻る。その結果、空間8のガス冷媒の熱伝導率は更に低下し、圧縮機1表面からの放熱をより抑制することができ、より簡単な構成で冷凍装置の信頼性を、更に向上させることができる。
【0064】
また、凝縮器2周囲の温度が高い場合や、冷凍負荷が大きい場合、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17は第1の2方弁10を開き、第2の2方弁制御手段18は第2の2方弁12を閉じ、膨張弁開度制御手段22は膨張弁21を閉じる。その結果、圧縮機1の空間8は圧縮機1の吐出配管9に連通するため高圧となり、膨張弁21は閉じられているため、圧縮機1の空間8には高圧の冷媒が流れ込む。そして、圧縮機1の外側外郭6は凝縮器送風機13から送られる空気の流路14に面しており、また放熱用フィン15を設けているため、圧縮機1の空間8の高圧冷媒は凝縮し液冷媒が溜まる。続いて、一定時間後に第1の2方弁制御手段17は第1の2方弁10を閉じ、膨張弁開度制御手段22は膨張弁21を適度に開成すると、圧縮機1の空間8には液冷媒が貯まった状態に保たれ、冷凍装置は通常の運転に戻る。従って、より簡単な構成で、液冷媒の作用により圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。更に、冷凍負荷が高い場合でも圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、また、膨張弁22により、冷凍負荷に応じた絞りを設定できるため、冷凍装置の信頼性を更に向上させることができる。
【0065】
また冷凍運転中において、運転サーモスタットがオフしても、第1の2方弁10、第2の2方弁12、膨張弁21の開閉状態はそのまま保たれ、圧縮機1の空間8内の冷媒状態もそのままの状態に保たれる。
【0066】
なお、上記実施例3では凝縮器2の非加熱流体を空気としているが、非加熱流体を水などの液体とし、流体と圧縮機1の外郭を接するように構成し熱交換させるようにしても、同様な効果を奏する。また、運転状態検出手段16は、凝縮器2周囲の温度を検出して冷凍負荷の状態を判断しているが、これに限定されるものではなく、同じ目的、作用効果が得られるのであれば他の構成でもよい。
【0067】
(実施例4)
図5は本発明の実施例4における冷凍装置の冷凍サイクル図である。この実施例4の発明は、圧縮機の空間を、凝縮器と膨張弁の間の配管に第1の2方弁を介して接続した点以外は図4の実施例3の発明と同じなので、同一構成、作用効果を奏する部分には図4と同一符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0068】
図5において図4の実施例3と異なるのは圧縮機1の空間8を、凝縮器2と膨張弁21の間の配管20に第1の2方弁10を介して接続したものである。
【0069】
上記実施例4において、動作および作用効果は図4の実施例3と同じである。そして、冷凍装置が運転を開始し、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17は第1の2方弁10を開き、圧縮機1の空間8を凝縮器2と膨張弁21の間の配管20に連通し、膨張弁開度制御手段22は膨張弁21を全閉するため、圧縮機1の空間8には凝縮器2で液化された高圧の液冷媒が流れ込み、容易に液冷媒が溜まる。そして、第1の2方弁制御手段17により一定時間後に第1の2方弁10が閉じられ、膨張弁開度制御手段22により膨張弁21は適度に開かれ、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、冷凍装置は通常の運転に戻る。従って、液冷媒の作用により圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。更に、冷凍負荷が高い場合でも圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、また、膨張弁21は冷凍負荷に応じた絞りを設定できるため、冷凍装置の信頼性を更に向上させることができる。
【0070】
また冷凍運転中において、運転サーモスタットがオフしても、第1の2方弁10、第2の2方弁12、膨張弁21の開閉状態はそのまま保たれ、圧縮機1の空間8内の冷媒状態もそのままの状態に保たれる。
【0071】
なお、上記実施例4では凝縮器2の非加熱流体を空気としているが、非加熱流体を水などの液体とし、流体と圧縮機1の外郭を接するように構成し熱交換させるようにしても、同様な効果を奏する。また、運転状態検出手段16は、凝縮器2周囲の温度を検出して冷凍負荷の状態を判断しているが、これに限定されるものではなく、同じ目的、作用効果が得られるのであれば他の構成でもよい。
【0072】
(実施例5)
図6は本発明の実施例5における空気調和装置の冷凍サイクル図で、図7は同装置の本体の要部切欠の斜視図である。この実施例5の発明は、本発明の冷凍装置を採用した空気調和装置に関するもので、実施例1の発明と同一構成、作用効果を奏する部分には図1と同一符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0073】
同図において、1は外郭を2重構造にして外周に冷媒溜めの空間8を形成した圧縮機、23は冷凍サイクルにおける冷房と暖房の切り替えを行う4方弁、24は室外熱交換器、3は第3の2方弁、4は絞り装置としてキャピラリチューブ、25は室内熱交換器で、順次環状に配管接続して冷凍サイクルを構成する。そして、圧縮機1の空間8は、4方弁23と室外熱交換器24との間の配管26に第1の2方弁10を介して接続して冷凍サイクルを構成している。27は室外熱交換器24を非加熱媒体としての空気で冷却する室外熱交換器送風機で、点線で示す流路14に面して配置した圧縮機1を冷却する作用も有する。そして、圧縮機1
の外側外郭6に形成した放熱用フィン15は流路14に面している。運転状態検出手段16は、空調負荷の状態を検出して、第1の2方弁制御手段17および第3の2方弁制御手段19に信号を出力する。そして、第1の2方弁制御手段17および第3の2方弁制御手段19は、運転状態検出手段16からの出力信号に応じて、第1の2方弁10および第3の2方弁3の開閉を制御するものである。すなわち、運転状態検出手段16からの出力信号に応じ、前記空間8に冷媒を溜め圧縮機1の放熱促進および圧縮機1の放熱を抑制するように制御する制御手段としての第1の2方弁制御手段17および第3の2方弁制御手段19である。すなわち、空調負荷の状態に応じて運転状態検出手段16は、圧縮機1の放熱促進をす
る信号を出力すると、第1の2方弁制御手段17は、前記信号に応じて圧縮機1の吐出側に通じるように第1の2方弁10を開き、一定時間後に閉じ、一方、前記信号を受けた第3の2方弁制御手段19は第3の2方弁3を閉じ、一定時間後に開くものである。また、冷凍負荷の状態に応じて運転状態検出手段16は、圧縮機1の放熱を抑制する信号を出力すると、4方弁23は室外熱交換器24が蒸発器となるように冷凍サイクルを切り替え、また前記信号を受けた第1の2方弁制御手段17は、前記信号に応じて圧縮機1の吸入側に通じるように第1の2方弁10を開き一定時間後に閉じ、一方、前記信号を受けた第3の2方弁制御手段19は第3の2方弁3を閉じ、そして一定時間後に開くのである。30は運転状態検出手段16、第1の2方弁制御手段17、第3の2方弁制御手段19を構成するワンチップのマイクロコンピュ−タである。
【0074】
上記実施例5において、空気調和装置が運転開始した時、室外熱交換器24周囲の温度が低い場合や、冷房負荷が小さい場合、運転状態検出手段16により圧縮機1からの放熱を抑制する運転モードが選択されると、4方弁23は室外熱交換器24が蒸発器となるように切り替えられ、選択信号を受けた第1の2方弁制御手段17は第1の2方弁10を開成する。その結果、圧縮機1の空間8は圧縮機1の吸入配管11に連通して配管と同低圧となり、低圧のガス冷媒が溜まる。その後、第1の2方弁制御手段17により第1の2方弁10は閉じられ、4方弁23は室外熱交換器24が凝縮器となるように冷凍サイクルを切り替える。従って、圧縮機1の空間8は低圧のガス冷媒が溜まった状態で冷房運転され、空間8のガス冷媒の作用により圧縮機1の表面から放熱しにくくなり、圧縮機1の吐出温度が早く上昇し、圧縮機1内での冷媒の凝縮を防ぎ、空気調和装置の信頼性を向上させることができる。
【0075】
そして、上記した冷房運転の開始時に運転状態検出手段16から上記信号を受けた第3の2方弁制御手段19は第3の2方弁3を閉成するので、圧縮機1は第3の2方弁3から下流側の冷媒を吸入するため、低圧はどんどん低下し大気圧以下になり、圧縮機1の空間8の圧力も大気圧以下となる。その後、上記したように第1の2方弁制御手段17により第1の2方弁10は閉じられ、4方弁23は室外熱交換器24が凝縮器となるように切り替えられ、第3の2方弁制御手段19により第3の2方弁3は開成して、圧縮機1の空間8の圧力は大気圧以下の状態に保たれ、空気調和装置は通常の冷房運転に戻る。従って、空間8のガス冷媒の熱伝導率は更に低下し、圧縮機1の表面からの放熱をより抑制することができ、空気調和装置の信頼性を更に向上させることができる。
【0076】
また、室外熱交換器24周囲の温度が高い場合や、冷房負荷が大きい場合、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17は第1の2方弁10を開き、第3の2方弁制御手段19は第3の2方弁3を閉じる。その結果、圧縮機1の空間8は圧縮機1の吐出側の配管26と連通するため高圧となり、第3の2方弁3は閉じられるため、圧縮機1の空間8には高圧の冷媒が流れ込む。そして、圧縮機1の外側外郭6は室外熱交換器送風機27から送られる空気などの非加熱媒体の流路14に面し、かつ放熱用フィン15を設けているため冷却され、圧縮機1の空間8の高圧冷媒は凝縮し液冷媒が溜まる。そして、一定時間後に第1の2方弁制御手段17により第1の2方弁10は閉じられ、第3の2方弁制御手段19により第3の2方弁3は開かれ、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の運転に戻る。従って、空間8の液冷媒の作用により圧縮機1の表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。さらに、冷房負荷が高い場合でも圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0077】
また運転中において、運転サーモスタットがオフしても、第1の2方弁10、第3の2方弁3の開閉状態はそのまま保たれ、圧縮機1の空間8内の冷媒状態もそのままの状態に保たれる。
【0078】
次に暖房運転では、4方弁23は室外熱交換器24が蒸発器となるように切り替えられ、運転状態検出手段16により圧縮機1からの放熱を抑制する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17は第1の2方弁10を開成する。その結果、圧縮機1の空間8は吸入配管11と同低圧となり、低圧のガス冷媒が溜まる。その後、第1の2方弁制御手段17により第1の2方弁10は閉じられ、通常の暖房運転を行う。従って、圧縮機1の空間8は低圧のガス冷媒が溜まった状態で暖房運転され、圧縮機1の表面から放熱しにくくなり、圧縮機1の吐出温度が早く上昇し、暖房能力を増加させエネルギー効率を向上させることができる。また、圧縮機1内での冷媒の凝縮を防ぎ、空気調和装置の信頼性を向上させることができる。
【0079】
また、上記した暖房運転時に第3の2方弁制御手段19によりキャピラリチューブ4と直列に接続された第3の2方弁3は閉められるので、圧縮機1は第3の2方弁3から下流側の冷媒を吸入するため、配管内の低圧はどんどん低下し大気圧以下になり、圧縮機1の空間8の圧力も大気圧以下となる。その後、第1の2方弁制御手段17により第1の2方弁10は閉じられ、第3の2方弁制御手段19により第3の2方弁3は開かれ、圧縮機1の空間8の圧力は大気圧以下の状態に保たれ、空気調和装置は通常の暖房運転を行う。従って、空間8のガス冷媒の熱伝導率は更に低下し、圧縮機1の表面からの放熱をより抑制することができ、暖房能力をより増加させエネルギー効率を向上させることができ、空気調和装置の信頼性も、更に向上させることができる。
【0080】
また、室外熱交換器24周囲の温度が高い場合など過負荷状態で高圧や吐出温度が上昇する場合、運転状態検出手段16により圧縮機1から放熱を促進する運転モードが選択されると、4方弁23は室外熱交換器24が凝縮器となるように冷凍サイクルを切り替え、前記選択信号を受けた第1の2方弁制御手段17により第1の2方弁10は開かれ、第3の2方弁制御手段19により第3の2方弁3は閉じられる。そして、圧縮機1の空間8は圧縮機1の吐出側の配管26と連通するため高圧となり、第3の2方弁3は閉じられるため、圧縮機1の空間8には高圧の冷媒が流れ込む。また圧縮機1の外側外郭6は室外熱交換器送風機27から送られる空気などの非加熱媒体の流路14に面し、かつ放熱用フィン15を設けているため冷却され、圧縮機1の空間8の高圧冷媒は凝縮し液冷媒が溜まる。そして、一定時間後、第1の2方弁制御手段17により第1の2方弁10は閉じ、第3の2方弁制御手段19により第3の2方弁3は開かれ、4方弁23は室外熱交換器24が蒸発器となるように冷凍サイクルを切り替え、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の暖房運転に戻る。従って、空間8の液冷媒の作用により圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるため、圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0081】
なお、上記実施例1では凝縮器2の非加熱流体を空気としているが、非加熱流体を水などの液体とし、流体と圧縮機1の外郭を接するように構成し熱交換させるようにしても、同様な効果を奏する。また、運転状態検出手段16は、凝縮器2周囲の温度を検出して冷凍負荷の状態を判断しているが、これに限定されるものではなく、同じ目的、作用効果が得られるのであれば他の構成でもよい。
【0082】
(実施例6)
図8は本発明の実施例6における空気調和装置の冷凍サイクル図である。この発明は、圧縮機の空間を室外熱交換器と第3の2方弁の間の配管に第1の2方弁を介して接続した点以外は実施例5の発明と同じなので、同一構成、作用効果を奏する部分には図6と同一符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0083】
図8において図6の実施例5と異なるのは、圧縮機1の空間8を、室外熱交換器24と第3の2方弁3の間の配管28に第1の2方弁10を介して接続したものである。
【0084】
上記実施例6において、空気調和装置の動作、作用効果も図6に示す実施例5と同じである。そして、冷房運転時、室外熱交換器24周囲の温度が高い場合や、冷房負荷が大きい場合、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17により第1の2方弁10は開かれ、第3の2方弁制御手段19により第3の2方弁3は閉じられる。その結果、圧縮機1の空間8は室外熱交換器24と第3の2方弁3の間の配管28に連通し、第3の2方弁3は閉じられているため、圧縮機1の空間8には凝縮器2で液化された高圧の液冷媒が流れ込み、容易に液冷媒が溜まる。そして、その後に第1の2方弁制御手段17により第1の2方弁10は閉じられ、第3の2方弁制御手段19により第3の2方弁3は開かれると、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の冷房運転に戻る。従って、空間8の液冷媒の作用により圧縮機1の表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。更に、冷房負荷が高い場合でも圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0085】
また、室外熱交換器24周囲の温度が高い場合など過負荷状態で高圧や吐出温度が上昇するような暖房運転時に運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、4方弁23は室外熱交換器24が凝縮器となるように冷凍サイクルを切り替え、前記運転状態検出手段16の信号を受けた第1の2方弁制御手段17により第1の2方弁10は開かれ、第3の2方弁制御手段19により第3の2方弁3は閉じられる。その結果、圧縮機1の空間8は室外熱交換器24と第3の2方弁3の間の配管28と連通し、第3の2方弁3は閉じられているため、圧縮機1の空間8には凝縮器2で液化された高圧の液冷媒が流れ込み、容易に液冷媒が溜まる。そして、その後に第1の2方弁制御手段17は第1の2方弁10を閉じ、第3の2方弁制御手段19は第3の2方弁3を開成し、4方弁23は室外熱交換器24が蒸発器となるように冷凍サイクルを切り替え、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の暖房運転に戻る。従って、空間8の液冷媒の作用により圧縮機1の表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。更に、圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0086】
(実施例7)
図9は本発明の実施例7における空気調和装置の冷凍サイクル図である。この発明は、圧縮機の空間を室内熱交換器と4方弁の間の配管に第2の2方弁を介して接続した点以外は図6の実施例5の発明と同じなので、同一構成、作用効果を奏する部分には図6と同一符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0087】
図9において図6の実施例5と異なるのは、室外熱交換器24と4方弁23の間の配管26に第1の2方弁10を介して接続した圧縮機1の空間8を、更に室内熱交換器25と4方弁23の間の配管29に第2の2方弁12を介して接続したものである。そして、第1の2方弁制御手段17、第2の2方弁制御手段18および第3の2方弁制御手段19は、運転状態検出手段16からの出力信号に応じて、第1の2方弁10、第2の2方弁12および第3の2方弁3の開閉を制御するものである。すなわち、空調負荷の状態に応じて運転状態検出手段16は、冷房運転で、かつ圧縮機1の放熱促進をする信号を出力する、または暖房運転で、かつ圧縮機1の放熱を抑制する信号を出力すると、前記信号に応じて第1の2方弁制御手段17は第1の2方弁10を開き、一定時間後に閉じ、一方、前記信号を受けた第2の2方弁制御手段18は第2の2方弁12を閉じ、同じく第3の2方弁制御手段19は第3の2方弁3を閉じ、一定時間後に開くものである。また、空調負荷の状態に応じて運転状態検出手段16は、冷房運転で、かつ圧縮機1の放熱を抑制する信号を出力する、または暖房運転で、かつ圧縮機1の放熱を促進する信号を出力すると、前記信号に応じて第1の2方弁制御手段17は第1の2方弁10を閉じ、一方、前記信号を受けた第2の2方弁制御手段18は第2の2方弁12を開き一定時間後に閉じ、同じく第3の2方弁制御手段19は第3の2方弁3を閉じ、そして一定時間後に開くのである。30は運転状態検出手段16、第1の2方弁制御手段17、第2の2方弁制御手段18、第3の2方弁制御手段19を構成するワンチップのマイクロコンピュ−タである。
【0088】
上記実施例7において、空気調和装置が冷房運転開始した時、室外熱交換器24周囲の温度が低い場合や、冷房負荷が小さい場合、運転状態検出手段16により圧縮機1からの放熱を抑制する運転モードが選択されると、この選択信号を受けた第2の2方弁制御手段18は第2の2方弁12を開成し、第1の2方弁制御手段17により第1の2方弁10を閉成する。その結果、圧縮機1の空間8は配管29と同低圧となり、低圧のガス冷媒が溜まる。その後、第2の2方弁制御手段18により第2の2方弁12は閉じられる。その結果、圧縮機1の空間8は低圧のガス冷媒が溜まった状態で冷房運転され、前記ガス冷媒の作用により圧縮機1の表面から放熱しにくくなり、圧縮機1の吐出温度が早く上昇し、圧縮機1内での冷媒の凝縮を防ぎ、空気調和装置の信頼性を向上させることができる。
【0089】
また、上記した冷房運転の開始時に第3の2方弁制御手段19により第3の2方弁3が閉められると、圧縮機1は第3の2方弁3から下流側の冷媒を吸入するため、上記した低圧はどんどん低下し大気圧以下になり、圧縮機1の空間8の圧力も大気圧以下となる。その後、上記したように第2の2方弁制御手段18により第2の2方弁12が閉じられ、第3の2方弁制御手段19により第3の2方弁3が開かれると、圧縮機1の空間8の圧力は大気圧以下の状態に保たれ、空気調和装置は通常の冷房運転に戻る。従って、ガス冷媒の熱伝導率は大気圧以下のために更に低下し、圧縮機表面からの放熱をより抑制することができ、空気調和装置の信頼性を、更に向上させることができる。
【0090】
また、室外熱交換器24周囲の温度が高い場合や、冷房負荷が大きい場合、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17により第1の2方弁10は開かれ、第3の2方弁制御手段19により第3の2方弁3は閉じられ、そして第2の2方弁制御手段18により第2の2方弁12も閉じられる。その結果、圧縮機1の空間8は圧縮機1の吐出側の配管26と連通するため高圧となり、しかも第3の2方弁3は閉じられるため、圧縮機1の空間8には高圧の冷媒が流れ込む。そして、圧縮機1の外側外郭6は室外熱交換器送風機27から送られる空気などの流路14に面しており、また放熱用フィン15を設けているため、圧縮機1の空間8の高圧冷媒は凝縮し液冷媒が溜まる。そして、第1の2方弁制御手段17により第1の2方弁10は閉じられ、第3の2方弁制御手段19により第3の2方弁3は開かれると、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の運転に戻る。従って、液冷媒の作用により圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。更に、冷房負荷が高い場合でも圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0091】
また運転中において、運転サーモスタットがオフしても、第1の2方弁10、第2の2方弁12、第3の2方弁3の開閉状態はそのまま保たれ、圧縮機1の空間8内の冷媒状態もそのままの状態に保たれる。
【0092】
次に暖房運転では、4方弁23は室外熱交換器24が蒸発器となるように冷凍サイクルが切り替えられ、運転状態検出手段16により圧縮機1からの放熱を抑制する運転モードが選択されると、この信号を受けた第1の2方弁制御手段17により第1の2方弁10は開かれる。その結果、圧縮機1の空間8は配管26と同低圧となり、低圧のガス冷媒が溜まる。その後、第1の2方弁制御手段17により第1の2方弁10は閉じられ、通常の暖房運転を行う。その結果、圧縮機1の空間8は低圧のガス冷媒が溜まった状態で暖房運転され、圧縮機1の表面から放熱しにくくなり、圧縮機1の吐出温度が早く上昇し、暖房能力を増加させエネルギー効率を向上させることができる。また、圧縮機1内での冷媒の凝縮を防ぎ、空気調和装置の信頼性を向上させることができる。
【0093】
また、上記した暖房運転時に第3の2方弁制御手段19によりキャピラリチューブ4と直列に接続された第3の2方弁3が閉められ、第1の2方弁制御手段17により第1の2方弁10が開かれると、圧縮機1は第3の2方弁3から下流側の冷媒を吸入するため、上記した低圧はどんどん低下し大気圧以下になり、圧縮機1の空間8の圧力も大気圧以下となる。その後、上記したように第1の2方弁制御手段17により第1の2方弁10が閉じられ、第3の2方弁制御手段19により第3の2方弁3が開かれると、圧縮機1の空間8の圧力は大気圧以下の状態に保たれ、空気調和装置は通常の暖房運転を行う。従って、ガス冷媒の熱伝導率は更に低下し、圧縮機表面からの放熱をより抑制することができ、暖房能力をより増加させエネルギー効率を向上させることができ、空気調和装置の信頼性も、更に向上させることができる。
【0094】
また、室外熱交換器24周囲の温度が高い場合など過負荷状態で高圧や吐出温度が上昇する場合、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第2の2方弁制御手段18により第2の2方弁12は開かれ、第3の2方弁制御手段19により第3の2方弁3は閉じられる。圧縮機1の空間8は圧縮機1の吐出側の配管29と連通するため高圧となり、第3の2方弁3は閉じられるため、圧縮機1の空間8には高圧の冷媒が流れ込む。そして、圧縮機1の外側の外郭6は室外熱交換器送風機27から送られる空気などの流路14に面し、かつ放熱用フィン15を設けているため冷却され、圧縮機1の空間8の高圧冷媒は凝縮し液冷媒が溜まる。そして、第2の2方弁制御手段18は第2の2方弁12を閉じ、第3の2方弁制御手段19は第3の2方弁3を開成すると、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の暖房運転に戻る。従って、圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるため、圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0095】
なお、上記実施例7では室外熱交換器24の非加熱流体を空気としているが、非加熱流体を水などの液体とし、流体と圧縮機1の外郭を接するように構成し熱交換させるようにしても、同様な効果を奏する。また、運転状態検出手段16は、室外熱交換器24周囲の温度を検出して冷凍負荷の状態を判断しているが、これに限定されるものではなく、同じ目的、作用効果が得られるのであれば他の構成でもよい。
【0096】
(実施例8)
図10は、本発明の実施例8における空気調和装置の冷凍サイクル図である。この発明は、室外熱交換器と第3の2方弁の間の配管に第1の2方弁を介して接続した圧縮機の空間を、更に室内熱交換器と4方弁の間の配管29に第2の2方弁
を介して接続した点以外は図8の実施例6の発明と同じなので、同一構成、作用効果を奏する部分には図8と同一符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0097】
同図において、図8の実施例と異なるのは、圧縮機1の空間8を室内熱交換器25と4方弁23の間の配管29に第2の2方弁12を介して接続したものである。そして、第1の2方弁制御手段17、第2の2方弁制御手段18、第3の2方弁制御手段19は運転状態検出手段16からの信号を受けて、第1の2方弁10、第2の2方弁12、第3の2方弁3の開閉を制御するものである。
【0098】
上記実施例8において、空気調和装置の動作も図8に示す実施例6と同じであるが、冷房運転時、室外熱交換器24周囲の温度が高い場合や、冷房負荷が大きい場合、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17により第1の2方弁10は開かれ、第3の2方弁制御手段19により第3の2方弁3は閉じられ、そして第2の2方弁制御手段18により第2の2方弁12も閉じられる。その結果、圧縮機1の空間8は室外熱交換器24と第3の2方弁3の間の配管28と連通し、第3の2方弁3は閉じられるため、圧縮機1の空間8には室外熱交換器24で液化された高圧の液冷媒が流れ込み、容易に液冷媒が溜まる。その後、第1の2方弁制御手段17により第1の2方弁10は閉じられ、第3の2方弁制御手段19により第3の2方弁3は開かれると、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の冷房運転に戻る。従って、液冷媒の作用により圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。更に、冷房負荷が高い場合でも圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0099】
また、室外熱交換器24周囲の温度が高い場合など過負荷状態で高圧や吐出温度が上昇するような暖房運転時に運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、4方弁23は室外熱交換器24が凝縮器になるように冷凍サイクルが切り替えられ、前記選択の信号を受けた第1の2方弁制御手段17により第1の2方弁10は開かれ、第3の2方弁制御手段19により第3の2方弁3は閉じられ、そして第2の2方弁制御手段18により第2の2方弁12も閉じられる。その結果、圧縮機1の空間8は室外熱交換器24と第3の2方弁3の間の配管28と連通し、第3の2方弁3は閉じられるため、圧縮機1の空間8には室外熱交換器24で液化された高圧の液冷媒が流れ込み、容易に液冷媒が溜まる。そして、第1の2方弁制御手段17により第1の2方弁10は閉じられ、第3の2方弁制御手段19により第3の2方弁3は開かれ、4方弁23は室外熱交換器24が蒸発器になるように冷凍サイクルが切り替えられると、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の暖房運転に戻る。従って、液冷媒の作用により圧縮機1の表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。さらに、圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0100】
なお、上記実施例8では室外熱交換器24の非加熱流体を空気としているが、非加熱流体を水などの液体とし、流体と圧縮機1の外郭を接するように構成し熱交換させるようにしても、同様な効果を奏する。また、運転状態検出手段16は、室外熱交換器24周囲の温度を検出して冷凍負荷の状態を判断しているが、これに限定されるものではなく、同じ目的、作用効果が得られるのであれば他の構成でもよい。
【0101】
(実施例9)
図11は、本発明の一実施例による空気調和装置の冷凍サイクル図である。この発明は、圧縮機の空間を、圧縮機の吐出配管に第1の2方弁を介して接続し、かつ圧縮機の吸入配管に第2の2方弁を介して接続した点以外は図9の実施例7の発明と同じなので、同一構成、作用効果を奏する部分には図9と同一符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0102】
同図において、図9の実施例7と異なるのは、圧縮機1の空間8を、圧縮機1の吐出配管9に第1の2方弁10を介して接続し、かつ圧縮機1の空間8を圧縮機1の吸入配管11に第2の2方弁12を介して接続し冷凍サイクルを構成していることである。そして、第1の2方弁制御手段17、第2の2方弁制御手段18、第3の2方弁制御手段19は運転状態検出手段16からの信号を受けて、第1の2方弁10、第2の2方弁12、第3の2方弁3の開閉を制御するものである。すなわち、空調負荷の状態に応じて運転状態検出手段16は、圧縮機1の放熱促進をする信号を出力すると、第1の2方弁制御手段17は、前記信号に応じて第1の2方弁10を開き、一定時間後に閉じ、一方、前記信号を受けた第2の2方弁制御手段18は第2の2方弁12を閉じ、同じく第3の2方弁制御手段19は第3の2方弁3を閉じ、一定時間後に開くものである。また、空調負荷の状態に応じて運転状態検出手段16は、圧縮機1の放熱を抑制する信号を出力すると、第1の2方弁制御手段17は、前記信号に応じて第1の2方弁10を閉じ、一方、前記信号を受けた第2の2方弁制御手段18は第2の2方弁12を開き一定時間後に閉じ、同じく第3の2方弁制御手段19は第3の2方弁3を閉じ、そして一定時間後に開くのである。
【0103】
上記実施例9において、空気調和装置が冷房運転を開始した時、室外熱交換器24周囲の温度が低い場合や、冷房負荷が小さい場合、運転状態検出手段16により圧縮機1からの放熱を抑制する運転モードが選択されると、この選択信号を受けた第2の2方弁制御手段18により第2の2方弁12は開かれ、第1の2方弁制御手段17により第1の2方弁10は閉じられる。その結果、圧縮機1の空間8は吸入配管11と同低圧となり、低圧のガス冷媒が溜まる。その後、第2の2方弁制御手段18により第2の2方弁12は閉じられる。従って、ガス冷媒の作用により圧縮機1の空間8は低圧のガス冷媒が溜まった状態で冷房運転され、圧縮機1の表面から放熱しにくくなり、圧縮機1の吐出温度が早く上昇し、圧縮機1内での冷媒の凝縮を防ぎ、空気調和装置の信頼性を向上させることができる。
【0104】
また、上記した冷房運転時に第3の2方弁制御手段19によりキャピラリチューブ4と直列に接続された第3の2方弁3は閉められ、第2の2方弁制御手段18により第2の2方弁12は開成すると、圧縮機1は第3の2方弁3から下流側の冷媒を吸入するため、低圧はどんどん低下し大気圧以下になり、圧縮機1の空間8の圧力も大気圧以下となる。その後、上記したように第2の2方弁制御手段18により第2の2方弁12は閉じられ、第3の2方弁制御手段19により第3の2方弁3は開かれると、圧縮機1の空間8の圧力は大気圧以下の状態に保たれ、空気調和装置は通常の冷房運転に戻る。従って、ガス冷媒の熱伝導率は更に低下し、圧縮機表面からの放熱をより抑制することができ、空気調和装置の信頼性を更に向上させることができる。
【0105】
また、室外熱交換器24周囲の温度が高い場合や、冷房負荷が大きい場合、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17により第1の2方弁10は開かれ、第3の2方弁制御手段19により第3の2方弁3は閉じられ、第2の2方弁制御手段18により第2の2方弁12は閉じられる。その結果、圧縮機1の空間8は圧縮機1の吐出側と連通するため高圧となり、第3の2方弁3は閉じられるため、圧縮機1の空間8には高圧の冷媒が流れ込む。圧縮機1の外側外郭6は室外熱交換器送風機27から送られる空気などの流路14に面しており、また放熱用フィン15を設けているため、圧縮機1の空間8の高圧冷媒は凝縮し液冷媒が溜まる。そして、第1の2方弁制御手段17により第1の2方弁10は閉じられ、第3の2方弁制御手段19により第3の2方弁3は開かれると、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の冷房運転に戻る。従って、液冷媒の作用により圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。更に、冷房負荷が高い場合でも圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0106】
また運転中において、運転サーモスタットがオフしても、第1の2方弁10、第2の2方弁12、第3の2方弁3の開閉状態はそのまま保たれ、圧縮機1の空間8内の冷媒状態もそのままの状態に保たれる。
【0107】
次に暖房運転では、4方弁23は室外熱交換器24が蒸発器になるように冷凍サイクルが切り替えられ、運転状態検出手段16により圧縮機1からの放熱を抑制する運転モードが選択されると、この選択信号を受けた第2の2方弁制御手段18により第2の2方弁12は開かれ、第1の2方弁制御手段17により第1の2方弁10は閉じられる。その結果、圧縮機1の空間8は吸入配管11と同低圧となり、低圧のガス冷媒が溜まる。その後、第2の2方弁制御手段18により第2の2方弁12が閉じられ、通常の暖房運転を行う。従って、圧縮機1の空間8は低圧のガス冷媒が溜まった状態で暖房運転され、ガス冷媒の作用により圧縮機1の表面から放熱しにくくなり、圧縮機1の吐出温度が早く上昇し、暖房能力を増加させエネルギー効率を向上させることができる。また、圧縮機1内での冷媒の凝縮を防ぎ、空気調和装置の信頼性を向上させることができる。
【0108】
また、上記した暖房運転時に第3の2方弁制御手段19により第3の2方弁3が閉じられ、第2の2方弁制御手段18により第2の2方弁12が開かれると、圧縮機1は第3の2方弁3から下流側の冷媒を吸入するため、吸入配管11の低圧はどんどん低下し大気圧以下になり、圧縮機1の空間8の圧力も大気圧以下となる。その後、第2の2方弁制御手段18により第2の2方弁12は閉じられ、第3の2方弁制御手段19により第3の2方弁3は開かれると、圧縮機1の空間8の圧力は大気圧以下の状態に保たれ、空気調和装置は通常の暖房運転を行う。従って、ガス冷媒の熱伝導率は更に低下し、圧縮機表面からの放熱をより抑制することができ、暖房能力をより増加させエネルギー効率を向上させることができ、空気調和装置の信頼性も更に向上させることができる。
【0109】
また、室外熱交換器24周囲の温度が高い場合など過負荷状態で高圧や吐出温度が上昇する場合、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17により第1の2方弁10は開かれ、第3の2方弁制御手段19により第3の2方弁3は閉じられ、第2の2方弁制御手段18により第2の2方弁12は閉じられる。その結果、圧縮機1の空間8は圧縮機1の吐出配管9と連通するため高圧となり、そして第3の2方弁3は閉じられるため、圧縮機1の空間8には高圧の冷媒が流れ込む。そして、圧縮機1の外側外郭6は室外熱交換器送風機27から送られる空気などの流路14に面しており、また放熱用フィン15を設けているため、圧縮機1の空間8の高圧冷媒は凝縮し液冷媒が溜まる。そして、第1の2方弁制御手段17により第1の2方弁10は閉じ、第3の2方弁制御手段19により第3の2方弁3は開かれると、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の暖房運転に戻る。従って、液冷媒の作用により圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるため、圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0110】
なお、上記実施例9では室外熱交換器24の非加熱流体を空気としているが、非加熱流体を水などの液体とし、流体と圧縮機1の外郭を接するように構成し熱交換させるようにしても、同様な効果を奏する。また、運転状態検出手段16は、室外熱交換器24周囲の温度を検出して空調負荷の状態を判断しているが、これに限定されるものではなく、同じ目的、作用効果が得られるのであれば他の構成でもよい。
【0111】
(実施例10)
図12は、本発明の一実施例における空気調和装置の冷凍サイクル図である。この発明は、絞り装置に全閉可能な膨張弁を用い、この膨張弁の開度を制御する膨張弁開度制御手段を設け、第3の2方弁と第3の2方弁制御手段を除いた点以外は図6の実施例5の発明と同じなので、同一構成、作用効果を奏する部分には図6と同一符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0112】
同図において、図6の実施例5と異なるのは、絞り装置に全閉可能な膨張弁21を用い、膨張弁21の開度を制御する膨張弁開度制御手段22を設け、そして図6の第3の2方弁3と第3の2方弁制御手段19を除いたものである。
【0113】
上記実施例10において、空気調和装置が冷房運転を開始した時、室外熱交換器24周囲の温度が低い場合や、冷房負荷が小さい場合、運転状態検出手段16により圧縮機1からの放熱を抑制する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17により第1の2方弁10は開かれ、圧縮機1の空間8は吐出側の配管26に連通されて高圧の冷媒が流入し、膨張弁開度制御手段22により膨張弁21が絞られ、冷媒流量を低下させる。その結果、圧縮機1の吐出温度は高温となり、圧縮機1の空間8の冷媒は加熱されガス化し高圧のガス冷媒が溜まる。その後、第1の2方弁制御手段17により第1の2方弁10は閉じられ、膨張弁開度制御手段22により膨張弁21は適度に開かれ通常の冷房運転に戻る。従って、圧縮機1の空間8は高圧のガス冷媒が溜まった状態で冷房運転され、圧縮機1の表面から放熱しにくくなり、圧縮機1の吐出温度が早く上昇し、圧縮機1内での冷媒の凝縮を防ぎ、空気調和装置の信頼性を向上させることができる。
【0114】
また、室外熱交換器24周囲の温度が高い場合や、冷房負荷が大きい場合、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17により第1の2方弁10は開かれ、膨張弁開度制御手段22により膨張弁21が全閉される。その結果、圧縮機1の空間8は圧縮機1の吐出側である配管26と連通するため高圧となり、膨張弁開度制御手段22により膨張弁21は閉じられるため、圧縮機1の空間8には高圧の冷媒が流れ込む。圧縮機1の外側外郭6は室外熱交換器送風機27から送られる空気などの流路14に面し、かつ放熱用フィン15を設けているため冷却され、圧縮機1の空間8の高圧冷媒は凝縮し液冷媒が溜まる。そして、第1の2方弁制御手段17により第1の2方弁10が閉じられ、膨張弁開度制御手段22により膨張弁21が適度に開かれると、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の運転に戻る。従って、液冷媒の作用により圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。更に、冷房負荷が高い場合でも圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0115】
また運転中において、運転サーモスタットがオフしても、第1の2方弁10、膨張弁21の開閉状態はそのまま保たれ、圧縮機1の空間8内の冷媒状態もそのままの状態に保たれる。
【0116】
次に暖房運転では、4方弁23は室外熱交換器24が蒸発器となるように冷凍サイクルが切り替えられ、運転状態検出手段16により圧縮機1からの放熱を抑制する運転モードが選択されると、この信号を受けた第1の2方弁制御手段17により第1の2方弁10が開かれる。その結果、圧縮機1の空間8は低圧の配管26と同低圧となり、低圧のガス冷媒が溜まる。その後、第1の2方弁制御手段17により第1の2方弁10は閉じられ、通常の暖房運転を行う。その結果、圧縮機1の空間8は低圧のガス冷媒が溜まった状態で暖房運転され、ガス冷媒の作用で圧縮機1の表面から放熱しにくくなり、圧縮機1の吐出温度が早く上昇し、暖房能力を増加させエネルギー効率を向上させることができる。また、圧縮機1内での冷媒の凝縮を防ぎ、空気調和装置の信頼性を向上させることができる。
【0117】
また、上記した暖房運転時に膨張弁開度制御手段22により膨張弁21が全閉されると、圧縮機1は膨張弁21から下流側の冷媒を吸入するため、配管26側の低圧はどんどん低下し大気圧以下になり、圧縮機1の空間8の圧力も大気圧以下となる。その後、上記したように第1の2方弁制御手段17により第1の2方弁10は閉じられ、膨張弁開度制御手段22により膨張弁21は適度に開かれると、圧縮機1の空間8の圧力は大気圧以下の状態に保たれ、空気調和装置は通常の暖房運転を行う。従って、ガス冷媒の熱伝導率は更に低下し、圧縮機表面からの放熱をより抑制することができ、暖房能力をより増加させエネルギー効率を向上させることができ、空気調和装置の信頼性も更に向上させることができる。
【0118】
また、室外熱交換器24周囲の温度が高い場合など過負荷状態で高圧や吐出温度が上昇する場合、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、4方弁23は室外熱交換器24が凝縮器となるように冷凍サイクルが切り替えられ、第1の2方弁制御手段17により第1の2方弁10は開かれ、膨張弁開度制御手段22により膨張弁21が全閉される。その結果、圧縮機1の空間8は圧縮機1の吐出側と配管26を介して連通するため高圧となり、膨張弁21が全閉されるため、圧縮機1の空間8には高圧の冷媒が流れ込む。圧縮機1の外側外郭6は室外熱交換器送風機27から送られる空気などの流路14に面し、かつ放熱用フィン15を設けているため冷却され、圧縮機1の空間8の高圧冷媒は凝縮し液冷媒が溜まる。そして、第1の2方弁制御手段17により第1の2方弁10は閉じ、膨張弁開度制御手段22により膨張弁21は適度に開かれ、4方弁23は室外熱交換器24が蒸発器となるように冷凍サイクルが切り替えられ、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の暖房運転に戻る。従って、液冷媒により圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるため、圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0119】
なお、上記実施例10では室外熱交換器24の非加熱流体を空気としているが、非加熱流体を水などの液体とし、流体と圧縮機1の外郭を接するように構成し熱交換させるようにしても、同様な効果を奏する。また、運転状態検出手段16は、室外熱交換器24周囲の温度を検出して空調負荷の状態を判断しているが、これに限定されるものではなく、同じ目的、作用効果が得られるのであれば他の構成でもよい。
【0120】
(実施例11)
図13は、本発明の実施例11における空気調和装置の冷凍サイクル図である。この発明は、圧縮機の空間を、室外熱交換器と膨張弁の間の配管に第1の2方弁を介して接続した点以外は図12の実施例10の発明と同じなので、同一構成、作用効果を奏する部分には図12と同一符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0121】
同図において、図12の実施例10と異なるのは、圧縮機1の空間8を、室外熱交換器24と膨張弁21の間の配管28に第1の2方弁10を介して接続したことである。
【0122】
上記実施例11において、空気調和装置の動作も図12に示す実施例10と同じである。そして、冷房運転時、室外熱交換器24周囲の温度が高い場合や、冷房負荷が大きい場合、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17により第1の2方弁10は開かれ、膨張弁開度制御手段22により膨張弁21は閉じられる。その結果、圧縮機1の空間8は室外熱交換器24と膨張弁21の間の配管28に連通し、そして膨張弁21は閉じられるため、圧縮機1の空間8には凝縮器2で液化された高圧の液冷媒が流れ込み、容易に液冷媒が溜まる。その後、第1の2方弁制御手段17により第1の2方弁10は閉じられ、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の冷房運転に戻る。従って、液冷媒の作用により圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。さらに、冷房負荷が高い場合でも圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0123】
また、室外熱交換器24周囲の温度が高い場合など過負荷状態で高圧や吐出温度が上昇するような暖房運転時に運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、4方弁23は室外熱交換器24が凝縮器になるように冷凍サイクルが切り替えられ、第1の2方弁制御手段17により第1の2方弁10が開かれ、膨張弁開度制御手段22により膨張弁21は閉じられる。その結果、圧縮機1の空間8は室外熱交換器24と膨張弁21の間の配管28に連通し、そして膨張弁21は閉じられるため、圧縮機1の空間8には室外熱交換器24で液化された高圧の液冷媒が流れ込み、容易に液冷媒が溜まる。その後、第1の2方弁制御手段17により第1の2方弁10は閉じられ、膨張弁開度制御手段22により膨張弁21は適度に開かれ、4方弁23は室外熱交換器24が蒸発器になるように冷凍サイクルが切り替えられ、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の暖房運転に戻る。従って、液冷媒の作用により圧縮機1の表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。更に、圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0124】
(実施例12)
図14は、本発明の実施例12における空気調和装置の冷凍サイクル図である。この発明は、圧縮機の空間を、室内熱交換器と4方弁の間の配管に第2の2方弁を介して接続した点以外は図12の実施例10の発明と同じなので、同一構成、作用効果を奏する部分には図12と同一符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0125】
同図において、図12の実施例10と異なるのは、圧縮機1の空間8を、室内熱交換器25と4方弁23の間の配管29に第2の2方弁12を介して接続したことである。そして、第1の2方弁制御手段17、第2の2方弁制御手段18、膨張弁開度制御手段22は運転状態検出手段16からの信号を受けて、第1の2方弁10、第2の2方弁12、膨張弁21の開閉を制御するものである。すなわち、空調負荷の状態に応じて運転状態検出手段16は、冷房運転で、かつ圧縮機1の放熱を促進する信号を出力する、または暖房運転で、かつ圧縮機1の放熱を抑制する信号を出力すると、前記信号に応じて第1の2方弁制御手段17は第1の2方弁10を開き、一定時間後に閉じ、一方、前記信号を受けた第2の2方弁制御手段18は第2の2方弁12を閉じ、同じく膨張弁開度制御手段22は膨張弁21を閉じ、一定時間後に開くものである。また、空調負荷の状態に応じて運転状態検出手段16は、冷房運転で、かつ圧縮機1の放熱を抑制する信号を出力する、または暖房運転で、かつ圧縮機1の放熱を促進する信号を出力すると、前記信号に応じて第1の2方弁制御手段17は第1の2方弁10を閉じ、一方、前記信号を受けた第2の2方弁制御手段18は第2の2方弁12を開き一定時間後に閉じ、同じく膨張弁開度制御手段22は膨張弁21を閉じ、そして一定時間後に開くのである。
【0126】
上記実施例12において、空気調和装置が冷房運転を開始した時、室外熱交換器24周囲の温度が低い場合や、冷房負荷が小さい場合、運転状態検出手段16により圧縮機1からの放熱を抑制する運転モードが選択されると、この選択信号を受けた第2の2方弁制御手段18により第2の2方弁12は開かれ、第1の2方弁制御手段17により第1の2方弁10は閉じられる。その結果、圧縮機1の空間8は第2の2方弁12を介して配管29と同低圧となり、低圧のガス冷媒が溜まる。その後、第2の2方弁制御手段18により第2の2方弁12は閉じられる。従って、圧縮機1の空間8は低圧のガス冷媒が溜まった状態で冷房運転され、ガス冷媒の作用により圧縮機1の表面から放熱しにくくなり、圧縮機1の吐出温度が早く上昇し、圧縮機1内での冷媒の凝縮を防ぎ、空気調和装置の信頼性を向上させることができる。
【0127】
また、上記した冷房運転の開始時に膨張弁開度制御手段22により膨張弁21は閉じられ、圧縮機1は膨張弁21から下流側の冷媒を吸入するため、低圧はどんどん低下し大気圧以下になり、圧縮機1の空間8の圧力も大気圧以下となる。その後、第2の2方弁制御手段18により第2の2方弁12が閉じられ、膨張弁開度制御手段22により膨張弁21は適度に開かれると、圧縮機1の空間8の圧力は大気圧以下の状態に保たれ、空気調和装置は通常の冷房運転に戻る。その結果、ガス冷媒の熱伝導率は更に低下し、圧縮機表面からの放熱をより抑制することができ、空気調和装置の信頼性を更に向上させることができる。
【0128】
また、室外熱交換器24周囲の温度が高い場合や、冷房負荷が大きい場合、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17により第1の2方弁10は開かれ、膨張弁開度制御手段22により膨張弁21は閉じられ、第2の2方弁制御手段18により第2の2方弁12は閉じられる。その結果、圧縮機1の空間8は第1の2方弁10を介して圧縮機1の吐出側の配管26と連通するため高圧となり、そして膨張弁21は閉じられているため、圧縮機1の空間8には高圧の冷媒が流れ込む。そして、圧縮機1の外側外郭6は室外熱交換器送風機27から送られる空気などの流路14に面し、かつ放熱用フィン15を設けているため冷却され、圧縮機1の空間8の高圧冷媒は凝縮し液冷媒が溜まる。その後、第1の2方弁制御手段17により第1の2方弁10は閉じられ、膨張弁開度制御手段22により膨張弁21は適度に開かれるため、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の運転に戻る。従って、液冷媒の作用により圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。更に、冷房負荷が高い場合でも圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。また運転中において、運転サーモスタットがオフしても、第1の2方弁10、第2の2方弁12、膨張弁21の開閉状態はそのまま保たれ、圧縮機1の空間8内の冷媒状態もそのままの状態に保たれる。
【0129】
次に暖房運転では、4方弁23は室外熱交換器24が蒸発器となるように冷凍サイクルが切り替えられ、運転状態検出手段16により圧縮機1からの放熱を抑制する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17により第1の2方弁10は開かれる。その結果、圧縮機1の空間8は第1の2方弁10を介して配管26と同低圧となり、低圧のガス冷媒が溜まる。その後、第1の2方弁制御手段17により第1の2方弁10は閉じられ、通常の暖房運転を行う。その結果、圧縮機1の空間8は低圧のガス冷媒が溜まった状態で暖房運転され、ガス冷媒の作用により圧縮機1の表面から放熱しにくくなり、圧縮機1の吐出温度が早く上昇し、暖房能力を増加させエネルギー効率を向上させることができる。また、圧縮機1内での冷媒の凝縮を防ぎ、空気調和装置の信頼性を向上させることができる。
【0130】
また、上記した暖房運転時に膨張弁開度制御手段22により膨張弁21は閉じられ、第1の2方弁制御手段17により第1の2方弁10は開かれているので、圧縮機1は膨張弁21から下流側の冷媒を吸入するため、低圧はどんどん低下し大気圧以下になり、圧縮機1の空間8の圧力も大気圧以下となる。その後、第1の2方弁制御手段17により第1の2方弁10が閉じられ、膨張弁開度制御手段22により膨張弁21が適度に開かれると、圧縮機1の空間8の圧力は大気圧以下の状態に保たれ、空気調和装置は通常の暖房運転を行う。従って、ガス冷媒の熱伝導率は更に低下し、圧縮機表面からの放熱をより抑制することができ、暖房能力をより増加させエネルギー効率を向上させることができ、空気調和装置の信頼性も更に向上させることができる。
【0131】
また、室外熱交換器24周囲の温度が高い場合など過負荷状態で高圧や吐出温度が上昇する場合、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第2の2方弁制御手段18により第2の2方弁12は開かれ、膨張弁開度制御手段22により膨張弁21は閉じられる。その結果、圧縮機1の空間8は第2の2方弁12を介して圧縮機1の吐出側の配管29と連通するため高圧となり、そして膨張弁21は閉じられるため、圧縮機1の空間8には高圧の冷媒が流れ込む。そして、圧縮機1の外側外郭6は室外熱交換器送風機27から送られる空気などの流路14に面し、かつ放熱用フィン15を設けているため冷却され、圧縮機1の空間8の高圧冷媒は凝縮し液冷媒が溜まる。そして、第2の2方弁制御手段18により第2の2方弁12は閉じられ、膨張弁開度制御手段22により膨張弁21は適度に開かれると、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の暖房運転に戻る。従って、液冷媒の作用により圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるため、圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0132】
なお、上記実施例12では室外熱交換器24の非加熱流体を空気としているが、非加熱流体を水などの液体とし、流体と圧縮機1の外郭を接するように構成し熱交換させるようにしても、同様な効果を奏する。また、運転状態検出手段16は、室外熱交換器24周囲の温度を検出して空調負荷の状態を判断しているが、これに限定されるものではなく、同じ目的、作用効果が得られるのであれば他の構成でもよい。
【0133】
(実施例13)
図15は、本発明の実施例13における空気調和装置の冷凍サイクル図である。この発明は、圧縮機の空間を、室内熱交換器と4方弁の間の配管に第2の2方弁を介して接続した点以外は図13の実施例11の発明と同じなので、同一構成、作用効果を奏する部分には図13と同一符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0134】
同図において、図13の実施例11と異なるのは、圧縮機1の空間8を、室内熱交換器25と4方弁23の間の配管29に第2の2方弁12を介して接続したことである。そして、第1の2方弁制御手段17、第2の2方弁制御手段18、膨張弁開度制御手段22は運転状態検出手段16からの信号を受けて、第1の2方弁10、第2の2方弁12、膨張弁21の開閉を制御するものである。すなわち、空調負荷の状態に応じて運転状態検出手段16は、圧縮機1の放熱促進をす
る信号を出力すると、第1の2方弁制御手段17は、前記信号に応じて第1の2方弁10を開き、一定時間後に閉じ、一方、前記信号を受けた第2の2方弁制御手段18は第2の2方弁12を閉じ、同じく膨張弁開度制御手段22は膨張弁21を閉じ(暖房時には全開する)、一定時間後に開くものである。また、空調負荷の状態に応じて運転状態検出手段16は、圧縮機1の放熱を抑制する信号を出
力すると、第1の2方弁制御手段17は、前記信号に応じて第1の2方弁10を閉じ、一方、前記信号を受けた第2の2方弁制御手段18は第2の2方弁12を開き一定時間後に閉じ、同じく膨張弁開度制御手段22は膨張弁21を閉じ、そして一定時間後に開くのである。
【0135】
上記実施例13において、空気調和装置の動作も図13に示す実施例11と同じである。そして、冷房運転時に室外熱交換器24周囲の温度が高い場合や、冷房負荷が大きい場合、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17により第1の2方弁10は開かれ、膨張弁開度制御手段22により膨張弁21は閉じられる。その結果、圧縮機1の空間8は第1の2方弁10を介して室外熱交換器24と膨張弁21の間の配管28に連通し、そして膨張弁21は閉じられるため、圧縮機1の空間8には室外熱交換器24で液化された高圧の液冷媒が流れ込み、容易に液冷媒が溜まる。その後、第1の2方弁制御手段17により第1の2方弁10は閉じられ、膨張弁開度制御手段22により膨張弁21は適度に開かれ、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の冷房運転に戻る。従って、液冷媒の作用により圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。さらに、冷房負荷が高い場合でも圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0136】
また、室外熱交換器24周囲の温度が高い場合など過負荷状態で高圧や吐出温度が上昇するような暖房運転時に運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17により第1の2方弁10が開かれ、膨張弁開度制御手段22により膨張弁21は全開まで開かれる。その結果、圧縮機1の空間8は第1の2方弁10を介して室外熱交換器24と膨張弁21の間の配管28に連通し、室内熱交換器25で凝縮した液冷媒は、膨張弁21で減圧されず、圧縮機1の空間8には高圧の液冷媒が流れ込み、容易に液冷媒が溜まる。そして、第1の2方弁制御手段17により第1の2方弁10は閉じられ、膨張弁開度制御手段22により膨張弁21は適度に絞られ、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の暖房運転に戻る。従って、液冷媒の作用により圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。更に、圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0137】
なお、上記実施例13では室外熱交換器24の非加熱流体を空気としているが、非加熱流体を水などの液体とし、流体と圧縮機1の外郭を接するように構成し熱交換させるようにしても、同様な効果を奏する。また、運転状態検出手段16は、室外熱交換器24周囲の温度を検出して空調負荷の状態を判断しているが、これに限定されるものではなく、同じ目的、作用効果が得られるのであれば他の構成でもよい。
【0138】
(実施例14)
図16は、本発明の実施例14における空気調和装置の冷凍サイクル図である。この発明は、圧縮機の空間を、圧縮機の吐出配管に第1の2方弁を介して接続し、かつ圧縮機の吸入配管に第2の2方弁を介して接続した点以外は図14の実施例13の発明と同じなので、同一構成、作用効果を奏する部分には図14と同一符号を付して詳細な説明を省略し、異なる部分を中心に説明する。
【0139】
同図において、図14の実施例13と異なるのは、圧縮機1の空間8を、圧縮機1の吐出配管9に第1の2方弁10を介して接続し、かつ圧縮機1の吸入配管11に第2の2方弁12を介して接続し冷凍サイクルを構成していることである。
【0140】
そして、第1の2方弁制御手段17、第2の2方弁制御手段18、膨張弁開度制御手段22は運転状態検出手段16からの信号を受けて、第1の2方弁10、第2の2方弁12、膨張弁21の開閉を制御するものである。すなわち、空調負荷の状態に応じて運転状態検出手段16は、圧縮機1の放熱促進をする信号を出力すると、第1の2方弁制御手段17は、前記信号に応じて第1の2方弁10を開き、一定時間後に閉じ、一方、前記信号を受けた第2の2方弁制御手段18は第2の2方弁12を閉じ、同じく膨張弁開度制御手段22は膨張弁21を閉じ、一定時間後に開くものである。また、空調負荷の状態に応じて運転状態検出手段16は、圧縮機1の放熱を抑制する信号を出力すると、第1の2方弁制御手段17は、前記信号に応じて第1の2方弁10を閉じ、一方、前記信号を受けた第2の2方弁制御手段18は第2の2方弁12を開き一定時間後に閉じ、同じく膨張弁開度制御手段22は膨張弁21を閉じ、そして一定時間後に開くのである。上記実施例14において、空気調和装置が冷房運転を開始した時、室外熱交換器24周囲の温度が低い場合や、冷房負荷が小さい場合、運転状態検出手段16により圧縮機1からの放熱を抑制する運転モードが選択されると、この選択信号を受けた第2の2方弁制御手段18により第2の2方弁12は開かれ、第1の2方弁制御手段17により第1の2方弁10は閉じられる。その結果、圧縮機1の空間8は第2の2方弁12を介して吸入配管11と同低圧となり、低圧のガス冷媒が溜まる。その後、第2の2方弁制御手段18により第2の2方弁12は閉じられる。その結果、圧縮機1の空間8は低圧のガス冷媒が溜まった状態で冷房運転され、圧縮機1の表面から放熱しにくくなり、圧縮機1の吐出温度が早く上昇し、圧縮機1内での冷媒の凝縮を防ぎ、空気調和装置の信頼性を向上させることができる。
【0141】
また、上記した冷房運転時に膨張弁開度制御手段22により膨張弁21は閉じられ、第2の2方弁制御手段18により第2の2方弁12は開かれているので、圧縮機1は膨張弁21から下流側の冷媒を吸入するため、低圧はどんどん低下し大気圧以下になり、圧縮機1の空間8の圧力も大気圧以下となる。その後、第2の2方弁制御手段18により第2の2方弁12が閉じられ、膨張弁開度制御手段22により膨張弁21が適度に開かれると、圧縮機1の空間8の圧力は大気圧以下の状態に保たれ、空気調和装置は通常の冷房運転に戻る。その結果、ガス冷媒の熱伝導率は更に低下し、圧縮機表面からの放熱をより抑制することができ、空気調和装置の信頼性を更に向上させることができる。
【0142】
また、室外熱交換器24周囲の温度が高い場合や、冷房負荷が大きい場合、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、第1の2方弁制御手段17により第1の2方弁10は開かれ、膨張弁開度制御手段22により膨張弁21は閉じられ、第2の2方弁制御手段18により第2の2方弁12は閉じられる。その結果、圧縮機1の空間8は第1の2方弁10を介して圧縮機1の吐出配管9に連通するため高圧となり、そして膨張弁21は閉じられるため、圧縮機1の空間8には高圧の冷媒が流れ込む。圧縮機1の外側外郭6は室外熱交換器送風機27から送られる空気などの流路14に面し、かつ放熱用フィン15を設けているため冷却され、圧縮機1の空間8の高圧冷媒は凝縮し液冷媒が溜まる。その後、第1の2方弁制御手段17により第1の2方弁10は閉じられ、膨張弁開度制御手段22により膨張弁21は適度に開かれるため、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の運転に戻る。従って、液冷媒の作用により圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるためエネルギー効率が高くなる。更に、冷房負荷が高い場合でも圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0143】
また運転中において、運転サーモスタットがオフしても、第1の2方弁10、第2の2方弁12、膨張弁21の開閉状態はそのまま保たれ、圧縮機1の空間8内の冷媒状態もそのままの状態に保たれる。
【0144】
次に暖房運転では、4方弁23は室外熱交換器24が蒸発器となるように冷凍サイクルが切り替えられ、運転状態検出手段16により圧縮機1からの放熱を抑制する運転モードが選択されると、この選択信号を受けた第2の2方弁制御手段18により第2の2方弁12が開かれ、第1の2方弁制御手段17により第1の2方弁10は閉じられる。その結果、圧縮機1の空間8は第2の2方弁12を介して吸入配管11と同低圧となり、低圧のガス冷媒が溜まる。その後、第2の2方弁制御手段18により第2の2方弁12は閉じられ、通常の暖房運転を行う。その結果、圧縮機1の空間8は低圧のガス冷媒が溜まった状態で暖房運転され、圧縮機1の表面から放熱しにくくなり、圧縮機1の吐出温度が早く上昇し、暖房能力を増加させエネルギー効率を向上させることができる。また、圧縮機1内での冷媒の凝縮を防ぎ、空気調和装置の信頼性を向上させることができる。
【0145】
また、上記した暖房運転時に膨張弁開度制御手段22により膨張弁21は閉じられ、第2の2方弁制御手段18により第2の2方弁12は開かれているので、圧縮機1は膨張弁21から下流側の冷媒を吸入するため、上記低圧はどんどん低下し大気圧以下になり、圧縮機1の空間8の圧力も大気圧以下となる。その後、第2の2方弁制御手段18により第2の2方弁12は閉じられ、膨張弁開度制御手段22により膨張弁21が適度に開かれると、圧縮機1の空間8の圧力は大気圧以下の状態に保たれ、空気調和装置は通常の暖房運転を行う。その結果、熱伝導率は更に低下し、圧縮機表面からの放熱をより抑制することができ、暖房能力をより増加させエネルギー効率を向上させることができ、空気調和装置の信頼性も、さらに向上させることができる。
【0146】
また、室外熱交換器24周囲の温度が高い場合など過負荷状態で高圧や吐出温度が上昇する場合、運転状態検出手段16により圧縮機1からの放熱を促進する運転モードが選択されると、この選択信号を受けた第1の2方弁制御手段17により第1の2方弁10は開かれ、膨張弁開度制御手段22により膨張弁21は閉じられ、第2の2方弁制御手段18により第2の2方弁12も閉じられる。その結果、圧縮機1の空間8は第1の2方弁10を介して圧縮機1の吐出配管9に連通するため高圧となり、そして膨張弁21は閉じられるため、圧縮機1の空間8には高圧の冷媒が流れ込む。そして、圧縮機1の外側外郭6は室外熱交換器送風機27から送られる空気などの流路14に面し、かつ放熱用フィン15を設けているため冷却され、圧縮機1の空間8の高圧冷媒は凝縮し液冷媒が溜まる。そして、第1の2方弁制御手段17により第1の2方弁10は閉じられ、膨張弁開度制御手段22により膨張弁21は適度に開かれ、圧縮機1の空間8には液冷媒が溜まった状態に保たれ、空気調和装置は通常の暖房運転に戻る。従って、液冷媒の作用により圧縮機1表面から放熱しやすくなり、凝縮圧力を低下させることができるため、圧縮機1の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。
【0147】
なお、上記実施例14では室外熱交換器24の非加熱流体を空気としているが、非加熱流体を水などの液体とし、流体と圧縮機1の外郭を接するように構成し熱交換させるようにしても、同様な効果を奏する。また、運転状態検出手段16は、室外熱交換器24周囲の温度を検出して空調負荷の状態を判断しているが、これに限定されるものではなく、同じ目的、作用効果が得られるのであれば他の構成でもよい。
【0148】
【発明の効果】
本発明の請求項1に記載の発明の冷凍装置によれば、負荷の状態に応じて圧縮機の放熱促進および放熱抑制を行いエネルギー効率と装置の信頼性の向上を図ることができる。
【0149】
また、請求項2に記載の発明の冷凍装置によれば、圧縮機からの放熱促進を高め凝縮圧力を低下させることができるため、エネルギー効率を高くできるとともに、冷凍負荷が高い場合でも圧縮機の吐出圧力や吐出温度の上昇を防ぎ、冷凍装置の信頼性を向上させることができる。また、圧縮機からの放熱を抑制し、起動時や冷凍負荷が低い場合でも、圧縮機吐出温度を早く上昇せしめ、圧縮機内での冷媒の凝縮を防ぎ、冷凍装置の信頼性を向上させることができる。
【0150】
また、請求項3に記載の発明の冷凍装置によれば、圧縮機の空間に液冷媒を確実に溜めることができるとともに、圧縮機の放熱促進を高め凝縮圧力を低下させエネルギ−効率を高めることができ、更には冷凍負荷の高い場合でも圧縮機の吐出圧力や吐出温度の上昇を防止して装置の信頼性を向上できる。
【0151】
また、請求項4に記載の発明の冷凍装置によれば、圧縮機の空間にガス冷媒を、より簡単な構成で容易に溜めることができ、かつ大気圧以下に制御できて圧縮機の放熱を更に抑制できるとともに、冷凍負荷に応じた絞りも設定でき、装置の信頼性を更に向上できる。
【0152】
また、請求項5に記載の発明の冷凍装置によれば、圧縮機からの放熱促進を高め凝縮圧力を低下させることができるため、エネルギー効率を高くできるとともに、冷凍負荷が高い場合でも圧縮機の吐出圧力や吐出温度の上昇を防ぎ、冷凍装置の信頼性を向上させることができる。また、冷凍負荷に応じた絞りを設定できるため、冷凍装置の信頼性を更に向上させることができる。
【0153】
また、請求項6、請求項14または請求項15に記載の各発明の冷凍装置によれば、圧縮機からの放熱を更に促進することが可能になり、エネルギー効率の向上と冷凍装置の信頼性を向上させることができる。
【0154】
また、請求項7に記載の発明の空気調和装置によれば、圧縮機からの放熱を促進させて冷房運転時のエネルギー効率を高めることができるとともに、冷房負荷が高い場合でも圧縮機の吐出圧力や吐出温度の上昇を防ぎ、空気調和装置の信頼性を向上させることができる。また、圧縮機の放熱を抑制させて装置の信頼性を向上させることができるとともに、暖房運転時、暖房能力を増加させてエネルギー効率を向上させることができる。
【0155】
また、請求項8に記載の発明の空気調和装置によれば、圧縮機の空間に液冷媒を、より確実に溜めることができるとともに、圧縮機からの放熱促進を高め凝縮圧力を低下させてエネルギー効率を高くでき、かつ空調負荷が高い場合でも圧縮機の吐出圧力や吐出温度の上昇を防ぎ、装置の信頼性を向上させることができる。
【0156】
また、請求項9に記載の発明の空気調和装置によれば、圧縮機の空間にガス冷媒を、より確実に溜めることができるとともに、圧縮機の放熱を抑制させて装置の信頼性を向上させ、かつ暖房運転時、暖房能力を増加させてエネルギー効率を向上させることができる。
【0157】
また、請求項10に記載の発明の空気調和装置によれば、圧縮機の空間に液冷媒を、より確実に溜めることができるとともに、圧縮機からの放熱促進を高め凝縮圧力を低下させてエネルギー効率を高くでき、かつ空調負荷が高い場合でも圧縮機の吐出圧力や吐出温度の上昇を防ぎ、装置の信頼性を向上させることができる。また、圧縮機の空間にガス冷媒を、より確実に溜めることができるとともに、圧縮機の放熱を抑制させて装置の信頼性を向上させ、かつ暖房運転時、暖房能力を増加させてエネルギー効率を向上させることができる。
【0158】
また、請求項11に記載の発明の空気調和装置によれば、圧縮機の空間に液冷媒を、より簡単な制御で、より確実に溜めることができるとともに、圧縮機からの放熱促進を高め凝縮圧力を低下させてエネルギー効率を高くでき、かつ空調負荷が高い場合でも圧縮機の吐出圧力や吐出温度の上昇を防ぎ、装置の信頼性を向上させることができる。また、圧縮機の空間にガス冷媒を、より簡単な制御で、より確実に溜めることができるとともに、圧縮機の放熱を抑制させて装置の信頼性を向上させ、かつ暖房運転時、暖房能力を増加させてエネルギー効率を向上させることができる。
【0159】
また、請求項12に記載の発明の空気調和装置によれば、圧縮機からの放熱をより抑制することができるとともに、空気調和装置の信頼性を更に向上させることができる。また、暖房時、暖房能力を増加させ、エネルギー効率も更に向上させることができる。
【0160】
また、請求項13に記載の発明の空気調和装置によれば、より簡単な構成で圧縮機からの放熱を抑制できるとともに、冷房負荷や暖房負荷に応じた絞りを設定できるため、装置の信頼性を更に向上させることができる。
【0161】
また、請求項16に記載の発明の制御方法によれば、圧縮機からの放熱促進を更に高めて凝縮圧力を低下させ、エネルギー効率を高くできるとともに、冷凍負荷が高い場合でも圧縮機の吐出圧力や吐出温度の上昇を防ぎ、装置の信頼性を向上させることができる。また、圧縮機からの放熱を抑制し起動時や冷凍負荷が低い場合でも圧縮機内での冷媒の凝縮を防止して装置の信頼性を向上させることができるとともに、暖房運転時に暖房能力を増加させてエネルギー効率を向上させることができる。
【0162】
また、請求項17に記載の発明の制御方法によれば、圧縮機からの放熱抑制を更に高め、装置の信頼性を更に向上させることができる。
【図面の簡単な説明】
【図1】 本発明の実施例1における冷凍装置を示す冷凍サイクル図
【図2】 同実施例1における冷凍装置の本体を示す要部を切欠した斜視図
【図3】 同他の実施例2における冷凍装置を示す冷凍サイクル図
【図4】 同他の実施例3における冷凍装置を示す冷凍サイクル図
【図5】 同他の実施例4における冷凍装置を示す冷凍サイクル図
【図6】 本発明の実施例5における空気調和装置を示す冷凍サイクル図
【図7】 同実施例5における空気調和装置の本体を示す要部を切欠した斜視図
【図8】 同他の実施例6における空気調和装置を示す冷凍サイクル図
【図9】 同他の実施例7における空気調和装置を示す冷凍サイクル図
【図10】 同他の実施例8における空気調和装置を示す冷凍サイクル図
【図11】 同他の実施例9における空気調和装置を示す冷凍サイクル図
【図12】 同他の実施例10における空気調和装置を示す冷凍サイクル図
【図13】 同他の実施例11における空気調和装置を示す冷凍サイクル図
【図14】 同他の実施例12における空気調和装置を示す冷凍サイクル図
【図15】 同他の実施例13における空気調和装置を示す冷凍サイクル図
【図16】 同他の実施例14における空気調和装置を示す冷凍サイクル図
【図17】 従来の冷凍装置を示す冷凍サイクル図
【符号の説明】
1 圧縮機
2 凝縮器
3 第3の2方弁
5 蒸発器
8 空間
9 吐出配管
10 第1の2方弁
11 吸入配管
12 第2の2方弁
14 流路
15 放熱用フィン
16 運転状態検出手段
17 第1の2方弁制御手段
18 第2の2方弁制御手段
19 第3の2方弁制御手段
21 膨張弁
20,26,28,29 配管
22 膨張弁開度制御手段
23 4方弁
24 室外熱交換器
25 室内熱交換器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration apparatus used for a freezer, a refrigerator, an air conditioner, other equipment, a control method thereof, and an air conditioner using the same.
[0002]
[Prior art]
As shown in FIG. 17, the conventional refrigeration apparatus comprises a compressor 101, a condenser 102, a throttling device 103, and an evaporator 104 that are annularly piped to constitute a refrigeration cycle.
[0003]
The operation of the refrigeration apparatus configured as described above will be described below. The high-temperature and high-pressure refrigerant vapor compressed by the compressor 101 dissipates heat in the condenser 102 and is condensed and liquefied. Thereafter, the refrigerant is expanded under reduced pressure by the expansion device 103 to become a low-temperature and low-pressure refrigerant, and is absorbed and evaporated by the evaporator 104. Then, the refrigerant becomes low-temperature and low-pressure refrigerant vapor, and is compressed again by the compressor 101, and the refrigeration cycle is repeated.
[0004]
[Problems to be solved by the invention]
However, the above configuration has the following problems. That is, when the refrigeration load is high, the discharge pressure and discharge temperature of the compressor 101 increase. In this state, not only the energy efficiency is lowered, but also the reliability of the refrigerator may be lowered due to the seizure of the motor of the compressor 101 when operated for a long time.
[0005]
In addition, when the refrigeration load is low, the discharge temperature of the compressor 101 does not rise, the refrigerant condenses in the compressor and the refrigerant melts into the refrigeration oil, and the viscosity of the oil decreases, so that the reliability of the refrigeration machine may be reduced. is there.
[0006]
The present invention solves the above-described problems of the conventional example, and controls the promotion of heat release from the compressor and the suppression of heat release to improve the energy efficiency and reliability of the refrigeration apparatus and the air conditioner using the same. It is aimed at.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the first technical means of the present invention comprises a compressor, a condenser, a throttling device, an evaporator, and a refrigeration cycle configured by annular piping and a space formed on the outer periphery. Detects air conditioning load status A refrigerating apparatus comprising an operating state detecting means and a control means for controlling the storage of the refrigerant in the space so as to promote the heat dissipation of the compressor and suppress the heat dissipation of the compressor in accordance with an output signal from the operating state detecting means. .
[0008]
The second technical means of the present invention includes a compressor, a condenser, a throttling device, an evaporator, and an operating state detection, which are formed in an annular pipe to form a refrigeration cycle and a refrigerant reservoir space is formed on the outer periphery. Means, a first two-way valve connecting the compressor space to the compressor discharge piping, a second two-way valve connecting the compressor space to the compressor suction piping, The first two-way valve control means for controlling the opening and closing of the first two-way valve and the second two-way valve control for controlling the opening and closing of the second two-way valve according to the output signal of the operating state detection means It is the freezing apparatus provided with the means.
[0009]
Further, the third technical means of the present invention controls the liquid refrigerant to accumulate in the compressor space when promoting heat dissipation from the compressor, and controls the compression when suppressing heat dissipation from the compressor. This is a control method for a refrigeration apparatus that controls the gas refrigerant to accumulate in the space of the machine.
[0010]
According to these technical means, it is possible to improve the energy efficiency and the reliability of the apparatus by promoting and suppressing the heat dissipation of the compressor according to the state of the load.
[0011]
The fourth technical means of the present invention is a compressor, a four-way valve, an outdoor heat exchanger, a throttling device, an indoor heat, in which a refrigeration cycle is formed by piping in an annular shape and a refrigerant reservoir space is formed on the outer periphery. An exchanger, a first two-way valve that connects the space of the compressor to a pipe between the four-way valve and the outdoor heat exchanger, an operation state detection unit, and an output signal of the operation state detection unit Accordingly, the air conditioner is provided with first two-way valve control means for controlling opening and closing of the first two-way valve.
[0012]
According to this technical means, the energy efficiency of the apparatus and the reliability of the apparatus can be improved.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The refrigeration apparatus in the first embodiment of the present invention comprises a compressor, a condenser, a throttling device, an evaporator, which form a refrigeration cycle by piping in an annular shape and has a space on the outer periphery, Detects air conditioning load status In accordance with an output signal from the operation state detection means, there is provided an operation state detection means and a control means for controlling the refrigerant to accumulate in the space so as to promote the heat dissipation of the compressor and suppress the heat dissipation of the compressor.
[0014]
In the first embodiment, the control means stores the refrigerant in the space of the compressor so that the heat release of the compressor can be promoted and the heat release of the compressor is suppressed according to the output signal from the operation state detecting means. Take control.
[0015]
A refrigeration apparatus according to a second embodiment of the present invention includes a compressor, a condenser, a throttling device, an evaporator, and an operating state detection unit, which are formed in a ring shape to form a refrigeration cycle and a refrigerant reservoir space is formed on the outer periphery. A first two-way valve that connects the compressor space to a discharge pipe of the compressor, a second two-way valve that connects the compressor space to a suction pipe of the compressor, and the operation First two-way valve control means for controlling opening and closing of the first two-way valve and second two-way valve control means for controlling opening and closing of the second two-way valve according to an output signal of the state detection means It is equipped with.
[0016]
In the second embodiment, when the heat radiation from the compressor is promoted, the first two-way valve control means controls the opening and closing of the first two-way valve so that the compressor space is connected to the discharge pipe of the compressor. 1 is connected via a two-way valve, and control is performed so that liquid refrigerant accumulates in the space of the compressor. When suppressing heat radiation from the compressor, the second two-way valve control means controls the opening and closing of the second two-way valve so that the compressor space is connected to the suction pipe of the compressor. And the gas refrigerant is controlled to accumulate in the compressor space. In general, the thermal conductivity of liquid refrigerant is 8 times or more higher than that of gas refrigerant, and 4 times higher than that of air. Therefore, when liquid refrigerant accumulates in the compressor space, it becomes easier to radiate heat from the compressor.
[0017]
Further, the thermal conductivity of the gas refrigerant is about ½ compared to the thermal conductivity of air. Therefore, if gas refrigerant accumulates in the space of the compressor, it is difficult to radiate heat from the compressor.
[0018]
A third embodiment of the present invention comprises a compressor, a condenser, a throttling device, an evaporator, an operating state detection means, and an operating state detecting means that form a refrigeration cycle by piping in an annular shape and form a refrigerant reservoir space on the outer periphery. A first two-way valve that connects a compressor space to a pipe between the condenser and the throttling device; a second two-way valve that connects the compressor space to a suction pipe of the compressor; The first two-way valve control means for controlling the opening and closing of the first two-way valve and the second two-way valve for controlling the opening and closing of the second two-way valve according to the output signal of the operating state detection means Control means are provided.
[0019]
In the third embodiment, when radiating heat from the compressor is promoted, the first two-way valve control means controls the opening and closing of the first two-way valve so that the space of the compressor is connected to the suction pipe of the compressor. Connected via the first two-way valve and controlled so that liquid refrigerant accumulates in the compressor space
. When suppressing heat radiation from the compressor, the second two-way valve control means controls the opening and closing of the second two-way valve so that the compressor space is connected to the suction pipe of the compressor. To control the gas refrigerant to accumulate in the compressor space.
[0020]
The fourth embodiment of the present invention is the same as any one of the first to third embodiments.
A throttling device is formed by a capillary tube, a third two-way valve is connected in series to the capillary tube, and the third two-way valve controls the opening and closing of the third two-way valve. A valve control means is provided.
[0021]
In the fourth embodiment, when suppressing heat radiation from the compressor, the third two-way valve control means controls and closes the opening and closing of the third two-way valve. The space is controlled to be equal to or lower than the atmospheric pressure, and the thermal conductivity of the gas refrigerant is further reduced.
[0022]
According to a fifth embodiment of the present invention, in any of the first to third embodiments, the expansion device is formed by an expansion valve that can be fully closed, and the opening degree of the expansion valve is controlled. A valve opening control means is provided.
[0023]
In the fifth embodiment, when suppressing heat dissipation from the compressor, the expansion valve opening degree control means fully closes the expansion valve so that the space of the compressor in which the gas refrigerant is accumulated is below atmospheric pressure. In addition to controlling, it is possible to set an aperture according to the refrigeration load.
[0024]
In the sixth embodiment of the present invention, in any of the first to fifth embodiments, the outer shell forming the compressor space faces the flow path of the non-heating medium of the condenser. Is.
[0025]
In the said 6th Embodiment, when radiating heat from a compressor is accelerated | stimulated, since the outer shell of a compressor contacts the non-heating medium which flows through the flow path of a condenser, it becomes possible to further accelerate radiating.
[0026]
The seventh embodiment of the present invention includes a compressor, a four-way valve, an outdoor heat exchanger, a throttling device, an indoor heat exchanger, and a refrigeration cycle formed by piping in an annular shape and a space for storing a refrigerant on the outer periphery. The first two-way valve connecting the compressor space to the pipe between the four-way valve and the outdoor heat exchanger, the operating state detecting means, and the output signal of the operating state detecting means, It is an air conditioner provided with the 1st 2 way valve control means which controls opening and closing of the 1st 2 way valve.
[0027]
In the seventh embodiment, when heat radiation from the compressor is promoted by cooling operation or the like, the first two-way valve control means controls the opening and closing of the first two-way valve so that the space of the compressor is four-way valve. It connects to the piping between an outdoor heat exchanger via a 1st two-way valve, and it controls so that a liquid refrigerant accumulates in the space of a compressor. Moreover, when suppressing heat radiation from the compressor during heating operation or the like, control is performed so that gas refrigerant is accumulated in the space of the compressor. Further, when the gas refrigerant is accumulated in the space of the compressor, it is difficult to release heat from the compressor. Furthermore, heating capacity is increased in order to suppress heat dissipation from the compressor during heating.
[0028]
The eighth embodiment of the present invention includes a compressor, a four-way valve, an outdoor heat exchanger, a throttling device, an indoor heat exchanger, and an annular pipe that constitutes a refrigeration cycle and forms a refrigerant reservoir space on the outer periphery. The first two-way valve that connects the space of the compressor to the pipe between the outdoor heat exchanger and the expansion device, the operation state detection means, and the output signal of the operation state detection means, the first The first two-way valve control means for controlling the opening and closing of the one two-way valve is provided.
[0029]
In the eighth embodiment, when heat radiation from the compressor is promoted by cooling operation or the like, the first two-way valve control means controls the opening and closing of the first two-way valve to exchange the heat of the compressor with the outdoor heat. It connects to the piping between a compressor and a throttle device via a 1st two-way valve, and it controls so that liquid refrigerant accumulates in the space of a compressor.
[0030]
In the ninth embodiment of the present invention, a refrigeration cycle is configured by annular piping, and a refrigerant reservoir is provided on the outer periphery.
A compressor, a four-way valve, an outdoor heat exchanger, a throttling device, an indoor heat exchanger, and a pipe connecting the compressor space to a pipe between the four-way valve and the outdoor heat exchanger. 1 two-way valve, a second two-way valve connecting the compressor space to a pipe between the four-way valve and the indoor heat exchanger, an operation state detection unit, and an operation state detection unit According to an output signal, the first two-way valve control means for controlling the opening and closing of the first two-way valve and the second two-way valve control means for controlling the opening and closing of the second two-way valve are provided. is there.
[0031]
In the ninth embodiment, when radiating heat from the compressor is promoted, the first two-way valve control means controls the opening and closing of the first two-way valve so that the compressor space is exchanged with the four-way valve for indoor heat. It is connected to the piping between the units via the first two-way valve, and the liquid refrigerant can be stored in the space of the compressor. When suppressing heat dissipation from the compressor, the second two-way valve control means controls the opening and closing of the second two-way valve so that the compressor space is connected to the pipe between the four-way valve and the indoor heat exchanger. A gas refrigerant can be stored in the space of the compressor by connecting via the second two-way valve.
[0032]
A tenth embodiment of the present invention comprises a compressor, a four-way valve, an outdoor heat exchanger, a throttling device, an indoor heat exchanger, in which a refrigeration cycle is formed by piping in an annular shape and a space for storing a refrigerant is formed on the outer periphery. A first two-way valve that connects the compressor space to a pipe between the outdoor heat exchanger and the expansion device; and a compressor space between the indoor heat exchanger and the four-way valve. A second two-way valve connected to the pipe, an operation state detection unit, a first two-way valve control unit that controls opening and closing of the first two-way valve in accordance with an output signal of the operation state detection unit; The air conditioner includes a second two-way valve control unit that controls opening and closing of the second two-way valve.
[0033]
In the tenth embodiment, when radiating heat from the compressor is promoted, the first two-way valve control means controls the opening and closing of the first two-way valve to reduce the space of the compressor to the outdoor heat exchanger and the expansion device. It can connect to the piping between these via a 1st two-way valve, and can store a liquid refrigerant in the space of a compressor. When suppressing heat dissipation from the compressor, the second two-way valve control means controls the opening and closing of the second two-way valve so that the compressor space is connected to the pipe between the indoor heat exchanger and the four-way valve. A gas refrigerant can be stored in the space of the compressor by connecting via the second two-way valve.
[0034]
An eleventh embodiment of the present invention comprises a compressor, a four-way valve, an outdoor heat exchanger, a throttling device, an indoor heat exchanger, in which a refrigeration cycle is formed by piping in an annular shape, and a refrigerant reservoir space is formed on the outer periphery. A first two-way valve for connecting the space of the compressor to a discharge pipe of the compressor; a second two-way valve for connecting the space of the compressor to a suction pipe of the compressor; And a first two-way valve control means for controlling opening and closing of the first two-way valve and a second two for controlling opening and closing of the second two-way valve in accordance with an output signal of the operating state detection means It is an air conditioning apparatus provided with a way valve control means.
[0035]
In the eleventh embodiment, when radiating heat from the compressor is promoted, the first two-way valve control means controls the opening and closing of the first two-way valve so that the compressor space is connected to the discharge pipe of the compressor. 1 is connected through a two-way valve, and liquid refrigerant can be stored in the space of the compressor. When suppressing heat radiation from the compressor, the second two-way valve control means controls the opening and closing of the second two-way valve so that the compressor space is connected to the suction pipe of the compressor. And the gas refrigerant can be stored in the space of the compressor.
[0036]
In a twelfth embodiment of the present invention, in any one of the seventh to eleventh embodiments, the throttle device is formed by a capillary tube, and a third two-way valve is connected in series to the capillary tube. In addition, third two-way valve control means for controlling the opening and closing of the third two-way valve is provided.
[0037]
In the twelfth embodiment, when the heat radiation from the compressor is suppressed, the third two-way valve control means controls the opening and closing of the third two-way valve so as to close the compressed gas refrigerant. While controlling the space of the machine to be equal to or lower than the atmospheric pressure, the thermal conductivity is further lowered, and the heat radiation from the compressor can be further suppressed. Moreover, in order to suppress heat radiation from the compressor during heating, the heating capacity is increased.
[0038]
The thirteenth embodiment of the present invention is the expansion according to any one of the seventh to eleventh embodiments, wherein the expansion device is formed by an expansion valve that can be fully closed and the opening degree of the expansion valve is controlled. A valve opening control means is provided.
[0039]
In the thirteenth embodiment, when suppressing heat dissipation from the compressor, the expansion valve opening degree control means controls the expansion valve to be fully closed so that the space of the compressor in which the gas refrigerant is accumulated is below atmospheric pressure. In addition, it is possible to set an aperture according to the cooling load or the heating load.
[0040]
In the fourteenth embodiment of the present invention, in any one of the seventh to thirteenth embodiments, the outer shell of the compressor forming the space faces the flow path of the non-heating medium of the outdoor heat exchanger. It is a thing.
[0041]
In the 14th embodiment, since the outer shell of the compressor is in contact with the non-heating medium flowing through the flow path of the outdoor heat exchanger, it is possible to further promote heat dissipation.
[0042]
In the fifteenth embodiment of the present invention, in any one of the first to fourteenth embodiments, the outer shell of the compressor forming the space faces the flow path of the non-heating medium of the outdoor heat exchanger. In this case, heat sink fins are provided on the outer shell.
[0043]
In the fifteenth embodiment, the heat dissipating fins provided on the outer shell of the compressor can come into contact with the non-heating medium flowing in the flow path of the outdoor heat exchanger to further promote heat dissipation.
[0044]
The sixteenth embodiment of the present invention According to the output signal detected by the operating state detection means for detecting the state of the air conditioning load, When heat dissipation from the compressor is promoted, control is performed so that liquid refrigerant accumulates in the space of the compressor, and when heat dissipation from the compressor is suppressed, control is performed so that gas refrigerant accumulates in the space of the compressor. Is the method.
[0045]
In the sixteenth embodiment, when liquid refrigerant accumulates in the compressor space, the liquid refrigerant promotes heat dissipation of the compressor due to its thermal conductivity. Therefore, the condensation pressure is reduced. Further, when the gas refrigerant accumulates in the compressor space, the gas refrigerant suppresses heat radiation from the compressor.
[0046]
The seventeenth embodiment of the present invention According to the output signal detected by the operating state detection means for detecting the state of the air conditioning load, When promoting heat dissipation from the compressor, control is performed so that liquid refrigerant is accumulated in the space of the compressor, and when suppressing heat dissipation from the compressor, gas refrigerant below atmospheric pressure is accumulated in the space of the compressor. It is a method to control.
[0047]
In the seventeenth embodiment, since the gas refrigerant accumulated in the space of the compressor is under the atmospheric pressure, the thermal conductivity of the outer shell of the compressor is further reduced, and the heat radiation from the compressor is further suppressed.
[0048]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0049]
Example 1
FIG. 1 is a refrigeration cycle diagram in Embodiment 1 of the refrigeration apparatus of the present invention, and FIG. 2 is a perspective view of a main part cutout of a main body of the refrigeration apparatus. 1 is a compressor having a double outer structure and a refrigerant reservoir space 8 formed on the outer periphery, 2 is a condenser, 3 is a third two-way valve, 4 is a capillary tube as a throttle device, and 5 is an evaporator. The refrigeration cycle is configured by sequentially connecting the pipes in an annular shape. A space 8 of the compressor 1 is formed by an outer shell 6 and an inner shell 7 and is connected to a discharge pipe 9 of the compressor 1 via a first two-way valve 10 and is connected to a suction pipe 11 with a second pipe. A refrigeration cycle is configured by connecting via a two-way valve 12. Reference numeral 13 denotes a condenser blower that cools the condenser 2 with air as a non-heating medium, and also has an action of cooling the compressor 1 disposed facing the flow path 14 indicated by a dotted line. A heat radiating fin 15 is formed on the outer shell 6 of the compressor 1 and faces the flow path 14. Reference numeral 16 denotes an operating state detection unit that detects the state of the refrigeration load and outputs a signal to the first two-way valve control unit 17, the second two-way valve control unit 18, and the third two-way valve control unit 19. To do. Then, the first two-way valve control means 17, the second two-way valve control means 18 and the third two-way valve control means 19 are arranged in accordance with the output signal from the operation state detection means 16 in accordance with the first 2 The opening / closing of the one-way valve 10, the second two-way valve 12, and the third two-way valve 3 is controlled. That is, in accordance with an output signal from the operating state detection means 16, a first two-way valve as a control means for controlling the refrigerant 8 to accumulate in the space 8 to control the heat release of the compressor 1 and suppress the heat release of the compressor 1. Control means 17, second two-way valve control means 18, and third two-way valve control means 19. That is, when the operation state detection means 16 that has detected a large state of the refrigeration load outputs a signal that promotes heat dissipation of the compressor 1, the first two-way valve control means 17 causes the first 2 The two-way valve control means 18 that receives the signal closes the second two-way valve 12, and the third two-way valve control means 19 receives the signal. 3 closes the two-way valve 3 and opens it after a certain time. Further, when the operation state detection means 16 that has detected a state where the refrigeration load is small outputs a signal that suppresses heat dissipation of the compressor 1, the first two-way valve control means 17 performs the first 2 operation according to the signal. On the other hand, the second two-way valve control means 18 that receives the signal closes the second valve 10 and opens the second two-way valve 12 and closes it after a predetermined time. Similarly, the third two-way valve control means 19 The two-way valve 3 is closed and opened after a certain time. Reference numeral 30 denotes a one-chip microcomputer constituting the operating state detection means 16, the first two-way valve control means 17, the second two-way valve control means 18, and the third two-way valve control means 19.
[0050]
In the first embodiment, when the operation of the refrigeration apparatus is started, if the temperature around the condenser 2 is low or the refrigeration load is small, the operating state detection means 16 that detects this suppresses heat radiation from the compressor 1. When the operation mode is selected, the first two-way valve control means 17 that has received this selection signal closes the first two-way valve 10, and the second two-way valve control means 18 receives the second two-way valve. 12 is opened. As a result, since the space 8 of the compressor 1 communicates with the suction pipe 11 of the compressor 1, the low pressure gas refrigerant is accumulated in the space 8 of the compressor 1 with the same low pressure as that in the pipe. As a result, it is difficult for the gas refrigerant to radiate heat from the surface of the compressor 1, the discharge temperature of the compressor 1 rises quickly, the refrigerant is prevented from condensing in the compressor 1, and the reliability of the refrigeration apparatus is improved. Can be improved.
[0051]
Further, since the third two-way valve control means 19 closes the third two-way valve 3 connected in series with the capillary tube 4, the compressor 1 sucks downstream refrigerant from the third two-way valve 3. Therefore, the low pressure is steadily lowered and becomes the atmospheric pressure or lower, and the space 8 of the compressor 1 communicates with the suction pipe 11 of the compressor 1, so that the pressure of the space 8 of the compressor 1 becomes the atmospheric pressure or lower. . Thereafter, the second two-way valve control means 18 closes the second two-way valve 12 and the third two-way valve control means 19 opens the third two-way valve 3. Accordingly, the pressure in the space 8 of the compressor 1 is maintained at a state below atmospheric pressure, and the refrigeration apparatus returns to normal operation. And the thermal conductivity of the gas refrigerant in the space 8 is further lowered, heat dissipation from the surface of the compressor 1 can be further suppressed, and the reliability of the refrigeration apparatus can be further improved.
[0052]
Further, when the temperature around the condenser 2 is high or the refrigeration load is large, when the operation mode for promoting heat radiation from the compressor 1 is selected by the operation state detection means 16 that detects this, the selection signal is The received first two-way valve control means 17 opens the first two-way valve 10, the second two-way valve control means 18 closes the second two-way valve 12, and the third two-way valve control means. 19 closes the third two-way valve 3. As a result, the space 8 of the compressor 1 communicates with the discharge pipe 9 of the compressor 1 and becomes high pressure, and the third two-way valve 3 is closed, so that high-pressure refrigerant flows into the space 8 of the compressor 1. The outer shell 6 of the compressor 1 is cooled because it faces the flow path 14 of the air sent from the condenser blower 13 and is provided with the heat radiation fins 15, and the high-pressure refrigerant in the space 8 of the compressor 1 is condensed. Liquid refrigerant accumulates. Then, after a certain time, the first two-way valve control means 17 closes the first two-way valve 10 and the third two-way valve control means 19 opens the third two-way valve 3. The liquid refrigerant is kept in the space 8 and the refrigeration apparatus returns to normal operation. As a result, it becomes easy to radiate heat from the surface of the compressor 1 through the liquid refrigerant in the space 8, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, even when the refrigeration load is high, an increase in the discharge pressure and discharge temperature of the compressor 1 can be prevented, and the reliability of the refrigeration apparatus can be improved.
[0053]
Further, during the refrigeration operation, even if the operation thermostat is turned off, the first two-way valve 10, the second two-way valve 12, and the third two-way valve 3 are maintained in the open / closed state, and the space of the compressor 1 is maintained. The refrigerant state in 8 is also maintained as it is.
[0054]
In the first embodiment, the non-heated fluid of the condenser 2 is air. However, the non-heated fluid may be a liquid such as water, and the fluid and the outer shell of the compressor 1 may be in contact with each other for heat exchange. Have the same effect. In addition, the operating state detection means 16 detects the temperature around the condenser 2 to determine the state of the refrigeration load, but is not limited to this, as long as the same purpose and effect can be obtained. Other configurations may be used.
[0055]
(Example 2)
FIG. 3 is a refrigeration cycle diagram of the refrigeration apparatus in Embodiment 2 of the present invention. The invention of the second embodiment is the same as the first embodiment except that the compressor space is connected to the pipe between the condenser and the capillary tube via the first two-way valve. The parts having the effects are denoted by the same reference numerals as those in FIG. 1 and detailed description thereof will be omitted, and different parts will be mainly described.
[0056]
3 differs from the first embodiment of FIG. 1 in that the space 8 of the compressor 1 is connected to a pipe 20 between the condenser 2 and the capillary tube 4 via a first two-way valve 10. .
[0057]
In the second embodiment, the operation and effect of the refrigeration apparatus are the same as those in the first embodiment shown in FIG. When the operation mode for promoting heat radiation from the compressor 1 is selected by the operation state detection means 16, the first two-way valve control means 17 that receives this selection signal opens the first two-way valve 10. The space 8 of the compressor 1 communicates with the pipe 20 between the condenser 2 and the capillary tube 4, and the third two-way valve 3 is closed by the third two-way valve control means 19. The high-pressure liquid refrigerant liquefied by the condenser 2 flows into the space 8 and easily accumulates the liquid refrigerant. Then, after a certain time, the first two-way valve control means 17 closes the first two-way valve 10 and the third two-way valve control means 19 opens the third two-way valve 3. The liquid refrigerant is kept in the space 8 and the refrigeration apparatus returns to normal operation. As a result, it becomes easy to radiate heat from the surface of the compressor 1 through the liquid refrigerant in the space 8, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, even when the refrigeration load is high, an increase in the discharge pressure and discharge temperature of the compressor 1 can be prevented, and the reliability of the refrigeration apparatus can be improved.
[0058]
Further, during the refrigeration operation, even if the operation thermostat is turned off, the first two-way valve 10, the second two-way valve 12, and the third two-way valve 3 are maintained in the open / closed state, and the space of the compressor 1 is maintained. The refrigerant state in 8 is also maintained as it is.
[0059]
In the second embodiment, the non-heating fluid of the condenser 2 is air. However, the non-heating fluid may be a liquid such as water, and the fluid and the outer shell of the compressor 1 may be in contact with each other to exchange heat. Have the same effect. In addition, the operating state detection means 16 detects the temperature around the condenser 2 to determine the state of the refrigeration load, but is not limited to this, as long as the same purpose and effect can be obtained. Other configurations may be used.
[0060]
(Example 3)
FIG. 4 is a refrigeration cycle diagram of the refrigeration apparatus in Embodiment 3 of the present invention. The third embodiment of the present invention uses an expansion valve that can be fully closed as a throttle device, and includes an expansion valve opening degree control means for controlling the opening degree of the expansion valve, and a third two-way valve and a third two-way valve. Since the invention is the same as that of the first embodiment except that the valve control means is omitted, the same reference numerals as those in FIG. To do.
[0061]
4 differs from the first embodiment of FIG. 1 in that an expansion valve 21 that can be fully closed is used in the expansion device, and further, an expansion valve opening degree control means 22 that controls the opening degree of the expansion valve 21 is provided. . The third two-way valve 3 and the third two-way valve control means 19 in FIG. 1 are omitted. Then, the operation state detection means 16 that detects a state where the refrigeration load is large is the heat dissipation of the compressor 1.
When a signal for promoting is output, the first two-way valve control means 17 opens the first two-way valve 10 in response to the signal and closes it after a predetermined time, while receiving the second 2 The direction valve control means 18 closes the second two-way valve 12, and the expansion valve opening degree control means 22 closes the expansion valve 21 and opens it after a certain time. In addition, when the operation state detection means 16 that detects a state where the refrigeration load is small outputs a signal that suppresses heat dissipation of the compressor 1, the first two-way valve control means 17 performs the first two-way operation according to the signal. Upon receipt of the signal, the second two-way valve control means 18 opens the second two-way valve 12 and closes it after a predetermined time. Similarly, the expansion valve opening degree control means 22 closes the expansion valve 21. And it opens after a certain time. Reference numeral 30 denotes a one-chip microcomputer constituting the operation state detection means 16, the first two-way valve control means 17, the second two-way valve control means 18, and the expansion valve opening degree control means 22.
[0062]
In the third embodiment, the operation and effects of the refrigeration apparatus are the same as those in the first embodiment shown in FIG. And when the operation | movement mode which suppresses the thermal radiation from the compressor 1 is selected by the operation state detection means 16, when the temperature around the condenser 2 is low when the operation of the refrigeration apparatus is started or when the refrigeration load is small, Upon receiving this selection signal, the first two-way valve control means 17 closes the first two-way valve 10, and the second two-way valve control means 18 opens the second two-way valve 12. As a result, since the space 8 of the compressor 1 communicates with the suction pipe 11 of the compressor 1, the pressure is the same as that of the pipe, and a low-pressure gas refrigerant accumulates in the space 8 of the compressor 1. Therefore, the action of the gas refrigerant in the space 8 makes it difficult to dissipate heat from the surface of the compressor 1, the discharge temperature of the compressor 1 rises quickly, prevents the refrigerant from condensing in the compressor 1, and the reliability of the refrigeration apparatus Can be improved.
[0063]
Further, when the expansion valve opening degree control means 22 fully closes the expansion valve 21, the compressor 1 sucks the refrigerant on the downstream side from the expansion valve 21, so that the low pressure gradually decreases to below the atmospheric pressure. Since the space 8 communicates with the suction pipe 11 of the compressor 1, the pressure of the space 8 of the compressor 1 becomes atmospheric pressure or less. After that, when the second two-way valve 12 is closed by the second two-way valve control means 18 and the expansion valve 21 is appropriately opened by the expansion valve opening degree control means 22, the space 8 of the compressor 1 is opened. The pressure is kept below atmospheric pressure and the refrigeration system returns to normal operation. As a result, the thermal conductivity of the gas refrigerant in the space 8 is further reduced, heat dissipation from the surface of the compressor 1 can be further suppressed, and the reliability of the refrigeration apparatus can be further improved with a simpler configuration. .
[0064]
Further, when the temperature around the condenser 2 is high or the refrigeration load is large, when the operation mode for promoting heat radiation from the compressor 1 is selected by the operation state detection means 16, the first signal that receives this selection signal is received. The two-way valve control means 17 opens the first two-way valve 10, the second two-way valve control means 18 closes the second two-way valve 12, and the expansion valve opening degree control means 22 opens the expansion valve 21. close. As a result, the space 8 of the compressor 1 communicates with the discharge pipe 9 of the compressor 1 and becomes high pressure, and the expansion valve 21 is closed, so that high-pressure refrigerant flows into the space 8 of the compressor 1. Since the outer shell 6 of the compressor 1 faces the flow path 14 of the air sent from the condenser blower 13 and the fins 15 for heat radiation are provided, the high-pressure refrigerant in the space 8 of the compressor 1 is condensed. Liquid refrigerant accumulates. Subsequently, after a predetermined time, the first two-way valve control means 17 closes the first two-way valve 10, and the expansion valve opening degree control means 22 opens the expansion valve 21 to an appropriate degree in the space 8 of the compressor 1. The liquid refrigerant is kept in a stored state, and the refrigeration apparatus returns to normal operation. Accordingly, with a simpler structure, heat is easily radiated from the surface of the compressor 1 by the action of the liquid refrigerant, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, even when the refrigeration load is high, the discharge pressure and discharge temperature of the compressor 1 can be prevented from increasing, and the throttle according to the refrigeration load can be set by the expansion valve 22, thereby further improving the reliability of the refrigeration apparatus. Can do.
[0065]
Further, during the refrigeration operation, even if the operation thermostat is turned off, the first two-way valve 10, the second two-way valve 12, and the expansion valve 21 are kept open and closed, and the refrigerant in the space 8 of the compressor 1 is maintained. The state is also kept as it is.
[0066]
In the third embodiment, the non-heating fluid of the condenser 2 is air. However, the non-heating fluid may be a liquid such as water, and the fluid and the outer shell of the compressor 1 may be in contact with each other to exchange heat. Have the same effect. In addition, the operating state detection means 16 detects the temperature around the condenser 2 to determine the state of the refrigeration load, but is not limited to this, as long as the same purpose and effect can be obtained. Other configurations may be used.
[0067]
(Example 4)
FIG. 5 is a refrigeration cycle diagram of the refrigeration apparatus in Embodiment 4 of the present invention. The invention of Example 4 is the same as that of Example 3 of FIG. 4 except that the compressor space is connected to the pipe between the condenser and the expansion valve via the first two-way valve. Parts having the same configuration and operational effects are denoted by the same reference numerals as those in FIG. 4, detailed description thereof is omitted, and different parts will be mainly described.
[0068]
5 is different from the third embodiment in FIG. 4 in that the space 8 of the compressor 1 is connected to the pipe 20 between the condenser 2 and the expansion valve 21 via the first two-way valve 10.
[0069]
In the said Example 4, an operation | movement and an effect are the same as Example 3 of FIG. Then, when the refrigeration apparatus starts operation and the operation state detection means 16 selects an operation mode that promotes heat dissipation from the compressor 1, the first two-way valve control means 17 that receives this selection signal receives the selection signal. 1, the two-way valve 10 is opened, the space 8 of the compressor 1 is communicated with the pipe 20 between the condenser 2 and the expansion valve 21, and the expansion valve opening degree control means 22 fully closes the expansion valve 21. The high-pressure liquid refrigerant liquefied by the condenser 2 flows into the space 8 of the machine 1 and easily accumulates the liquid refrigerant. Then, the first two-way valve control means 17 closes the first two-way valve 10 after a certain time, the expansion valve opening degree control means 22 opens the expansion valve 21 appropriately, and enters the space 8 of the compressor 1. Is maintained in a state where liquid refrigerant is accumulated, and the refrigeration apparatus returns to normal operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 due to the action of the liquid refrigerant, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, even when the refrigeration load is high, the discharge pressure and discharge temperature of the compressor 1 are prevented from increasing, and the expansion valve 21 can set a throttle according to the refrigeration load, so that the reliability of the refrigeration apparatus can be further improved. it can.
[0070]
Further, during the refrigeration operation, even if the operation thermostat is turned off, the first two-way valve 10, the second two-way valve 12, and the expansion valve 21 are kept open and closed, and the refrigerant in the space 8 of the compressor 1 is maintained. The state is also kept as it is.
[0071]
In the fourth embodiment, the non-heating fluid of the condenser 2 is air. However, the non-heating fluid may be a liquid such as water, and the fluid and the outer shell of the compressor 1 may be in contact with each other to exchange heat. Have the same effect. In addition, the operating state detection means 16 detects the temperature around the condenser 2 to determine the state of the refrigeration load, but is not limited to this, as long as the same purpose and effect can be obtained. Other configurations may be used.
[0072]
(Example 5)
6 is a refrigeration cycle diagram of an air-conditioning apparatus according to Embodiment 5 of the present invention, and FIG. 7 is a perspective view of a main part cutout of a main body of the apparatus. The fifth embodiment of the present invention relates to an air conditioner that employs the refrigeration apparatus of the present invention. The same configuration and operational effects as those of the first embodiment are designated by the same reference numerals as in FIG. The description will be omitted, and different parts will be mainly described.
[0073]
In the figure, 1 is a compressor having a double outer shell and a refrigerant reservoir space 8 formed on the outer periphery, 23 is a four-way valve for switching between cooling and heating in the refrigeration cycle, 24 is an outdoor heat exchanger, 3 Is a third two-way valve, 4 is a capillary tube as a throttling device, and 25 is an indoor heat exchanger, which are connected in an annular manner to form a refrigeration cycle. The space 8 of the compressor 1 is connected to a pipe 26 between the four-way valve 23 and the outdoor heat exchanger 24 via the first two-way valve 10 to constitute a refrigeration cycle. Reference numeral 27 denotes an outdoor heat exchanger blower that cools the outdoor heat exchanger 24 with air as a non-heating medium, and also has an action of cooling the compressor 1 disposed facing the flow path 14 indicated by a dotted line. And compressor 1
The heat dissipating fin 15 formed on the outer outer shell 6 faces the flow path 14. The operation state detection unit 16 detects the state of the air conditioning load and outputs a signal to the first two-way valve control unit 17 and the third two-way valve control unit 19. Then, the first two-way valve control means 17 and the third two-way valve control means 19 correspond to the output signal from the operating state detection means 16 and the first two-way valve 10 and the third two-way valve. 3 is controlled. That is, in accordance with an output signal from the operating state detection means 16, a first two-way valve as a control means for controlling the refrigerant 8 to accumulate in the space 8 to control the heat release of the compressor 1 and suppress the heat release of the compressor 1. Control means 17 and third two-way valve control means 19. That is, the operation state detection means 16 promotes heat dissipation of the compressor 1 according to the state of the air conditioning load.
The first two-way valve control means 17 opens the first two-way valve 10 so as to communicate with the discharge side of the compressor 1 according to the signal, and closes it after a predetermined time. Upon receiving the signal, the third two-way valve control means 19 closes the third two-way valve 3 and opens it after a predetermined time. Further, when the operation state detection means 16 outputs a signal for suppressing the heat radiation of the compressor 1 according to the state of the refrigeration load, the four-way valve 23 switches the refrigeration cycle so that the outdoor heat exchanger 24 becomes an evaporator. In response to the signal, the first two-way valve control means 17 opens the first two-way valve 10 so as to communicate with the suction side of the compressor 1 in accordance with the signal, and closes it after a predetermined time. Upon receiving the signal, the third two-way valve control means 19 closes the third two-way valve 3 and opens it after a certain time. Reference numeral 30 denotes a one-chip microcomputer constituting the operating state detecting means 16, the first two-way valve control means 17, and the third two-way valve control means 19.
[0074]
In the fifth embodiment, when the operation of the air conditioner starts, when the temperature around the outdoor heat exchanger 24 is low or when the cooling load is small, the operation is suppressed by the operating state detection means 16 to suppress the heat radiation from the compressor 1. When the mode is selected, the four-way valve 23 is switched so that the outdoor heat exchanger 24 becomes an evaporator, and the first two-way valve control means 17 that has received the selection signal turns the first two-way valve 10 on. Establish. As a result, the space 8 of the compressor 1 communicates with the suction pipe 11 of the compressor 1 and has the same low pressure as the pipe, and low-pressure gas refrigerant accumulates. Thereafter, the first two-way valve control means 17 closes the first two-way valve 10 and the four-way valve 23 switches the refrigeration cycle so that the outdoor heat exchanger 24 becomes a condenser. Accordingly, the space 8 of the compressor 1 is cooled in a state where low-pressure gas refrigerant is accumulated, and it is difficult for heat to be dissipated from the surface of the compressor 1 due to the action of the gas refrigerant in the space 8, and the discharge temperature of the compressor 1 rises quickly. And the condensation of the refrigerant | coolant in the compressor 1 can be prevented, and the reliability of an air conditioning apparatus can be improved.
[0075]
The third two-way valve control means 19 that receives the signal from the operation state detection means 16 at the start of the cooling operation closes the third two-way valve 3, so that the compressor 1 Since the refrigerant on the downstream side is sucked from the two-way valve 3, the low pressure is steadily reduced to be equal to or lower than the atmospheric pressure, and the pressure in the space 8 of the compressor 1 is also equal to or lower than the atmospheric pressure. Thereafter, as described above, the first two-way valve 10 is closed by the first two-way valve control means 17, and the four-way valve 23 is switched so that the outdoor heat exchanger 24 becomes a condenser. The second two-way valve 3 is opened by the two-way valve control means 19 so that the pressure in the space 8 of the compressor 1 is maintained at the atmospheric pressure or lower, and the air conditioner returns to the normal cooling operation. Therefore, the thermal conductivity of the gas refrigerant in the space 8 is further reduced, heat dissipation from the surface of the compressor 1 can be further suppressed, and the reliability of the air conditioner can be further improved.
[0076]
In addition, when the temperature around the outdoor heat exchanger 24 is high or when the cooling load is large, the operation state detection unit 16 receives the selection signal when the operation mode for promoting the heat radiation from the compressor 1 is selected. The first two-way valve control means 17 opens the first two-way valve 10, and the third two-way valve control means 19 closes the third two-way valve 3. As a result, the space 8 of the compressor 1 is in a high pressure because it communicates with the discharge-side pipe 26 of the compressor 1, and the third two-way valve 3 is closed, so that a high-pressure refrigerant is in the space 8 of the compressor 1. Flows in. The outer shell 6 of the compressor 1 is cooled because it faces the flow path 14 of a non-heating medium such as air sent from the outdoor heat exchanger blower 27 and is provided with the heat radiation fins 15. The high-pressure refrigerant in the space 8 condenses and accumulates liquid refrigerant. After a predetermined time, the first two-way valve 10 is closed by the first two-way valve control means 17, the third two-way valve 3 is opened by the third two-way valve control means 19, and the compressor 1 The liquid refrigerant is kept in the space 8 and the air conditioner returns to normal operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 by the action of the liquid refrigerant in the space 8, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, even when the cooling load is high, an increase in the discharge pressure and discharge temperature of the compressor 1 can be prevented, and the reliability of the air conditioner can be improved.
[0077]
Further, during operation, even if the operation thermostat is turned off, the first two-way valve 10 and the third two-way valve 3 are kept open and closed, and the refrigerant state in the space 8 of the compressor 1 is also kept as it is. To be kept.
[0078]
Next, in the heating operation, the four-way valve 23 is switched so that the outdoor heat exchanger 24 becomes an evaporator, and when the operation mode for suppressing the heat radiation from the compressor 1 is selected by the operation state detection means 16, Upon receiving the selection signal, the first two-way valve control means 17 opens the first two-way valve 10. As a result, the space 8 of the compressor 1 has the same low pressure as the suction pipe 11, and low-pressure gas refrigerant accumulates. Thereafter, the first two-way valve 10 is closed by the first two-way valve control means 17, and a normal heating operation is performed. Accordingly, the space 8 of the compressor 1 is heated in a state where low-pressure gas refrigerant is accumulated, it is difficult for heat to be radiated from the surface of the compressor 1, the discharge temperature of the compressor 1 rises quickly, and the heating capacity is increased to increase the energy. Efficiency can be improved. Moreover, condensation of the refrigerant | coolant in the compressor 1 can be prevented, and the reliability of an air conditioning apparatus can be improved.
[0079]
In addition, since the third two-way valve 3 connected in series with the capillary tube 4 is closed by the third two-way valve control means 19 during the heating operation described above, the compressor 1 is connected to the third two-way valve 3. Since the refrigerant on the downstream side is sucked, the low pressure in the pipe gradually decreases and becomes the atmospheric pressure or lower, and the pressure in the space 8 of the compressor 1 also becomes the atmospheric pressure or lower. Thereafter, the first two-way valve control means 17 closes the first two-way valve 10, the third two-way valve control means 19 opens the third two-way valve 3, and the space 8 of the compressor 1 is opened. Is maintained at a pressure below atmospheric pressure, and the air conditioner performs normal heating operation. Therefore, the thermal conductivity of the gas refrigerant in the space 8 is further reduced, the heat radiation from the surface of the compressor 1 can be further suppressed, the heating capacity can be further increased, and the energy efficiency can be improved. The reliability can be further improved.
[0080]
Further, when the high pressure or the discharge temperature rises in an overload state such as when the temperature around the outdoor heat exchanger 24 is high, when the operation mode for promoting heat radiation from the compressor 1 is selected by the operation state detection means 16, 4 The direction valve 23 switches the refrigeration cycle so that the outdoor heat exchanger 24 becomes a condenser, and the first two-way valve 10 is opened by the first two-way valve control means 17 that receives the selection signal, and the third valve The second two-way valve control means 19 closes the third two-way valve 3. Since the space 8 of the compressor 1 communicates with the discharge-side pipe 26 of the compressor 1 and becomes high pressure, and the third two-way valve 3 is closed, high-pressure refrigerant flows into the space 8 of the compressor 1. . Further, the outer shell 6 of the compressor 1 faces the flow path 14 of a non-heating medium such as air sent from the outdoor heat exchanger blower 27 and is provided with heat radiation fins 15 so that it is cooled and the space of the compressor 1 is cooled. The high-pressure refrigerant 8 is condensed and the liquid refrigerant is accumulated. After a certain time, the first two-way valve 10 is closed by the first two-way valve control means 17, the third two-way valve 3 is opened by the third two-way valve control means 19, and the four-way valve 23, the refrigeration cycle is switched so that the outdoor heat exchanger 24 becomes an evaporator, the liquid refrigerant is kept in the space 8 of the compressor 1, and the air conditioner returns to the normal heating operation. Therefore, it is easy to radiate heat from the surface of the compressor 1 due to the action of the liquid refrigerant in the space 8, and the condensation pressure can be lowered. Therefore, the discharge pressure and discharge temperature of the compressor 1 are prevented from increasing, and the reliability of the air conditioner Can be improved.
[0081]
In the first embodiment, the non-heated fluid of the condenser 2 is air. However, the non-heated fluid may be a liquid such as water, and the fluid and the outer shell of the compressor 1 may be in contact with each other for heat exchange. Have the same effect. In addition, the operating state detection means 16 detects the temperature around the condenser 2 to determine the state of the refrigeration load, but is not limited to this, as long as the same purpose and effect can be obtained. Other configurations may be used.
[0082]
(Example 6)
FIG. 8 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 6 of the present invention. This invention is the same as the invention of Example 5 except that the compressor space is connected to the pipe between the outdoor heat exchanger and the third two-way valve via the first two-way valve. The parts having the operational effects are denoted by the same reference numerals as those in FIG. 6, and detailed description thereof is omitted, and different parts will be mainly described.
[0083]
8 differs from the fifth embodiment of FIG. 6 in that the space 8 of the compressor 1 is connected to the pipe 28 between the outdoor heat exchanger 24 and the third two-way valve 3 via the first two-way valve 10. Connected.
[0084]
In the said Example 6, the operation | movement of an air conditioning apparatus and an effect are also the same as Example 5 shown in FIG. In the cooling operation, when the temperature around the outdoor heat exchanger 24 is high or the cooling load is large, the operation state detection unit 16 selects the operation mode that promotes heat radiation from the compressor 1. In response to the signal, the first two-way valve 10 is opened by the first two-way valve control means 17, and the third two-way valve 3 is closed by the third two-way valve control means 19. As a result, the space 8 of the compressor 1 communicates with the pipe 28 between the outdoor heat exchanger 24 and the third two-way valve 3, and the third two-way valve 3 is closed. The high-pressure liquid refrigerant liquefied by the condenser 2 flows into the space 8 and easily accumulates the liquid refrigerant. After that, when the first two-way valve 10 is closed by the first two-way valve control means 17 and the third two-way valve 3 is opened by the third two-way valve control means 19, the compressor 1 The liquid refrigerant is kept in the space 8 and the air conditioner returns to the normal cooling operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 by the action of the liquid refrigerant in the space 8, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, even when the cooling load is high, an increase in the discharge pressure and discharge temperature of the compressor 1 can be prevented, and the reliability of the air conditioner can be improved.
[0085]
In addition, an operation mode for promoting heat radiation from the compressor 1 is selected by the operation state detection means 16 during heating operation in which the high pressure or discharge temperature rises in an overload state such as when the temperature around the outdoor heat exchanger 24 is high. Then, the four-way valve 23 switches the refrigeration cycle so that the outdoor heat exchanger 24 becomes a condenser, and the first two-way valve control means 17 that receives the signal from the operating state detection means 16 receives the first 2 The three way valve 10 is opened and the third two way valve 3 is closed by the third two way valve control means 19. As a result, the space 8 of the compressor 1 communicates with the pipe 28 between the outdoor heat exchanger 24 and the third two-way valve 3, and the third two-way valve 3 is closed. The high-pressure liquid refrigerant liquefied by the condenser 2 flows into the space 8 and easily accumulates the liquid refrigerant. After that, the first two-way valve control means 17 closes the first two-way valve 10, the third two-way valve control means 19 opens the third two-way valve 3, and the four-way valve 23 The refrigeration cycle is switched so that the outdoor heat exchanger 24 becomes an evaporator, the liquid refrigerant is kept in the space 8 of the compressor 1, and the air conditioner returns to the normal heating operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 by the action of the liquid refrigerant in the space 8, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, the discharge pressure and discharge temperature of the compressor 1 can be prevented from increasing, and the reliability of the air conditioner can be improved.
[0086]
(Example 7)
FIG. 9 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 7 of the present invention. This invention is the same as the invention of Embodiment 5 in FIG. 6 except that the compressor space is connected to the pipe between the indoor heat exchanger and the four-way valve via the second two-way valve. The parts having the operational effects are denoted by the same reference numerals as those in FIG. 6, and detailed description thereof is omitted, and different parts will be mainly described.
[0087]
9 differs from the fifth embodiment of FIG. 6 in that the space 8 of the compressor 1 connected to the pipe 26 between the outdoor heat exchanger 24 and the four-way valve 23 via the first two-way valve 10 is Further, it is connected to a pipe 29 between the indoor heat exchanger 25 and the four-way valve 23 via the second two-way valve 12. Then, the first two-way valve control means 17, the second two-way valve control means 18 and the third two-way valve control means 19 are arranged in accordance with the output signal from the operation state detection means 16 in accordance with the first 2 The opening / closing of the one-way valve 10, the second two-way valve 12, and the third two-way valve 3 is controlled. That is, according to the state of the air conditioning load, the operation state detecting means 16 outputs a signal for promoting the heat dissipation of the compressor 1 in the cooling operation or the signal for suppressing the heat dissipation of the compressor 1 in the heating operation. When output, the first two-way valve control means 17 opens the first two-way valve 10 according to the signal and closes it after a predetermined time, while the second two-way valve control means 18 that receives the signal Similarly, the second two-way valve 12 is closed, and the third two-way valve control means 19 closes the third two-way valve 3 and opens it after a predetermined time. Further, the operation state detection means 16 outputs a signal for suppressing the heat release of the compressor 1 in the cooling operation or the signal for promoting the heat release of the compressor 1 in the heating operation according to the state of the air conditioning load. When output, the first two-way valve control means 17 closes the first two-way valve 10 in response to the signal, while the second two-way valve control means 18 receiving the signal sends the second two-way valve The valve 12 is opened and closed after a certain time. Similarly, the third two-way valve control means 19 closes the third two-way valve 3 and opens after a certain time. Reference numeral 30 denotes a one-chip microcomputer constituting the operating state detection means 16, the first two-way valve control means 17, the second two-way valve control means 18, and the third two-way valve control means 19.
[0088]
In the seventh embodiment, when the air conditioner starts the cooling operation, when the temperature around the outdoor heat exchanger 24 is low or the cooling load is small, the operation state detection unit 16 suppresses heat radiation from the compressor 1. When the operation mode is selected, the second two-way valve control means 18 that has received this selection signal opens the second two-way valve 12, and the first two-way valve control means 17 causes the first two-way valve control means 17 to open. The valve 10 is closed. As a result, the space 8 of the compressor 1 has the same low pressure as the pipe 29, and low-pressure gas refrigerant accumulates. Thereafter, the second two-way valve control means 18 closes the second two-way valve 12. As a result, the space 8 of the compressor 1 is cooled in a state where low-pressure gas refrigerant is accumulated, and it is difficult for heat to be dissipated from the surface of the compressor 1 due to the action of the gas refrigerant, and the discharge temperature of the compressor 1 rises quickly. The condensation of the refrigerant in the compressor 1 can be prevented, and the reliability of the air conditioner can be improved.
[0089]
Further, when the third two-way valve 3 is closed by the third two-way valve control means 19 at the start of the cooling operation described above, the compressor 1 sucks downstream refrigerant from the third two-way valve 3. For this reason, the above-described low pressure gradually decreases to below atmospheric pressure, and the pressure in the space 8 of the compressor 1 also becomes below atmospheric pressure. Thereafter, as described above, when the second two-way valve 12 is closed by the second two-way valve control means 18 and the third two-way valve 3 is opened by the third two-way valve control means 19, the compression is performed. The pressure in the space 8 of the machine 1 is maintained at a pressure lower than the atmospheric pressure, and the air conditioner returns to the normal cooling operation. Therefore, the thermal conductivity of the gas refrigerant is further reduced because it is below atmospheric pressure, heat dissipation from the compressor surface can be further suppressed, and the reliability of the air conditioner can be further improved.
[0090]
In addition, when the temperature around the outdoor heat exchanger 24 is high or when the cooling load is large, the operation state detection unit 16 receives the selection signal when the operation mode for promoting the heat radiation from the compressor 1 is selected. The first two-way valve control means 17 opens the first two-way valve 10, the third two-way valve control means 19 closes the third two-way valve 3, and the second two-way valve control By means 18, the second two-way valve 12 is also closed. As a result, the space 8 of the compressor 1 is in a high pressure because it communicates with the discharge-side pipe 26 of the compressor 1, and the third two-way valve 3 is closed. Flows in. The outer shell 6 of the compressor 1 faces the flow path 14 of air or the like sent from the outdoor heat exchanger blower 27, and is provided with a heat radiation fin 15, so that the high pressure in the space 8 of the compressor 1 is provided. The refrigerant condenses and accumulates liquid refrigerant. When the first two-way valve 10 is closed by the first two-way valve control means 17 and the third two-way valve 3 is opened by the third two-way valve control means 19, the space of the compressor 1 is opened. In 8, the liquid refrigerant is kept in the accumulated state, and the air conditioner returns to normal operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 due to the action of the liquid refrigerant, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, even when the cooling load is high, an increase in the discharge pressure and discharge temperature of the compressor 1 can be prevented, and the reliability of the air conditioner can be improved.
[0091]
During operation, even if the operation thermostat is turned off, the first two-way valve 10, the second two-way valve 12, and the third two-way valve 3 are kept open and closed, and the space 8 of the compressor 1 is maintained. The refrigerant state inside is also kept as it is.
[0092]
Next, in the heating operation, the refrigeration cycle of the four-way valve 23 is switched so that the outdoor heat exchanger 24 becomes an evaporator, and an operation mode for suppressing heat radiation from the compressor 1 is selected by the operation state detection means 16. Upon receiving this signal, the first two-way valve control means 17 opens the first two-way valve 10. As a result, the space 8 of the compressor 1 has the same low pressure as the pipe 26, and low-pressure gas refrigerant accumulates. Thereafter, the first two-way valve 10 is closed by the first two-way valve control means 17, and a normal heating operation is performed. As a result, the space 8 of the compressor 1 is heated in a state where low-pressure gas refrigerant is accumulated, it is difficult to dissipate heat from the surface of the compressor 1, the discharge temperature of the compressor 1 rises quickly, and the heating capacity is increased. Energy efficiency can be improved. Moreover, condensation of the refrigerant | coolant in the compressor 1 can be prevented, and the reliability of an air conditioning apparatus can be improved.
[0093]
In addition, the third two-way valve control means 19 closes the third two-way valve 3 connected in series with the capillary tube 4 during the heating operation described above, and the first two-way valve control means 17 closes the first two-way valve control means 17. When the two-way valve 10 is opened, the compressor 1 sucks the downstream refrigerant from the third two-way valve 3, so that the above-mentioned low pressure gradually decreases to below atmospheric pressure, The pressure is also below atmospheric pressure. Thereafter, as described above, when the first two-way valve 10 is closed by the first two-way valve control means 17 and the third two-way valve 3 is opened by the third two-way valve control means 19, the compression is performed. The pressure in the space 8 of the machine 1 is maintained at a pressure equal to or lower than the atmospheric pressure, and the air conditioner performs a normal heating operation. Therefore, the thermal conductivity of the gas refrigerant is further reduced, the heat radiation from the compressor surface can be further suppressed, the heating capacity can be further increased and the energy efficiency can be improved, and the reliability of the air conditioner is also improved. Further improvement can be achieved.
[0094]
Further, when the high pressure or discharge temperature rises in an overload condition such as when the temperature around the outdoor heat exchanger 24 is high, when the operation mode for promoting heat radiation from the compressor 1 is selected by the operation state detection means 16, In response to the selection signal, the second two-way valve control means 18 opens the second two-way valve 12, and the third two-way valve control means 19 closes the third two-way valve 3. Since the space 8 of the compressor 1 communicates with the discharge-side pipe 29 of the compressor 1 and becomes high pressure, and the third two-way valve 3 is closed, high-pressure refrigerant flows into the space 8 of the compressor 1. The outer shell 6 on the outside of the compressor 1 faces the flow path 14 such as air sent from the outdoor heat exchanger blower 27 and is cooled because the heat dissipating fins 15 are provided. The high-pressure refrigerant condenses and accumulates liquid refrigerant. Then, the second two-way valve control means 18 closes the second two-way valve 12, and the third two-way valve control means 19 opens the third two-way valve 3, and then enters the space 8 of the compressor 1. Is kept in a state where the liquid refrigerant is accumulated, and the air conditioner returns to the normal heating operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 and the condensation pressure can be reduced, so that the discharge pressure and discharge temperature of the compressor 1 can be prevented from increasing and the reliability of the air conditioner can be improved.
[0095]
In the seventh embodiment, the non-heated fluid of the outdoor heat exchanger 24 is air. However, the non-heated fluid is a liquid such as water, and the fluid and the outer shell of the compressor 1 are in contact with each other to exchange heat. However, the same effect is obtained. Moreover, although the operation state detection means 16 detects the temperature around the outdoor heat exchanger 24 to determine the state of the refrigeration load, the operation state detection means 16 is not limited to this, and can obtain the same purpose and effect. Other configurations may be used if necessary.
[0096]
(Example 8)
FIG. 10 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 8 of the present invention. The present invention provides a compressor space connected to a pipe between the outdoor heat exchanger and the third two-way valve via the first two-way valve, and a pipe between the indoor heat exchanger and the four-way valve. 29 second 2 way valve
8 is the same as the invention of Embodiment 6 in FIG. 8, and therefore, parts having the same configuration and effect are given the same reference numerals as those in FIG. Explained.
[0097]
8 is different from the embodiment of FIG. 8 in that the space 8 of the compressor 1 is connected to a pipe 29 between the indoor heat exchanger 25 and the four-way valve 23 via the second two-way valve 12. It is. The first two-way valve control means 17, the second two-way valve control means 18, and the third two-way valve control means 19 receive a signal from the operating state detection means 16 and receive the first two-way valve control means 16. 10, the opening and closing of the second two-way valve 12 and the third two-way valve 3 are controlled.
[0098]
In the eighth embodiment, the operation of the air conditioner is the same as that of the sixth embodiment shown in FIG. 8, but during cooling operation, when the temperature around the outdoor heat exchanger 24 is high, or when the cooling load is large, the operation state When the operation mode for promoting the heat radiation from the compressor 1 is selected by the detecting means 16, the first two-way valve 10 is opened by the first two-way valve control means 17 that receives this selection signal, and the third The third two-way valve 3 is closed by the two-way valve control means 19, and the second two-way valve 12 is also closed by the second two-way valve control means 18. As a result, the space 8 of the compressor 1 communicates with the pipe 28 between the outdoor heat exchanger 24 and the third two-way valve 3, and the third two-way valve 3 is closed, so that the space 8 of the compressor 1 is closed. The high-pressure liquid refrigerant liquefied by the outdoor heat exchanger 24 flows into the liquid refrigerant, and the liquid refrigerant easily accumulates. Thereafter, when the first two-way valve 10 is closed by the first two-way valve control means 17 and the third two-way valve 3 is opened by the third two-way valve control means 19, the space of the compressor 1 is opened. The liquid refrigerant is kept in the state 8 and the air conditioner returns to the normal cooling operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 due to the action of the liquid refrigerant, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, even when the cooling load is high, an increase in the discharge pressure and discharge temperature of the compressor 1 can be prevented, and the reliability of the air conditioner can be improved.
[0099]
In addition, an operation mode for promoting heat radiation from the compressor 1 is selected by the operation state detection means 16 during heating operation in which the high pressure or discharge temperature rises in an overload state such as when the temperature around the outdoor heat exchanger 24 is high. Then, the refrigeration cycle of the four-way valve 23 is switched so that the outdoor heat exchanger 24 becomes a condenser, and the first two-way valve 10 is received by the first two-way valve control means 17 that receives the selection signal. Is opened, the third two-way valve control means 19 closes the third two-way valve 3, and the second two-way valve control means 18 closes the second two-way valve 12. As a result, the space 8 of the compressor 1 communicates with the pipe 28 between the outdoor heat exchanger 24 and the third two-way valve 3, and the third two-way valve 3 is closed, so that the space 8 of the compressor 1 is closed. The high-pressure liquid refrigerant liquefied by the outdoor heat exchanger 24 flows into the liquid refrigerant, and the liquid refrigerant easily accumulates. Then, the first two-way valve control means 17 closes the first two-way valve 10, the third two-way valve control means 19 opens the third two-way valve 3, and the four-way valve 23 is outdoor. When the refrigeration cycle is switched so that the heat exchanger 24 becomes an evaporator, the liquid refrigerant is kept in the space 8 of the compressor 1, and the air conditioner returns to the normal heating operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 due to the action of the liquid refrigerant, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, the discharge pressure and discharge temperature of the compressor 1 can be prevented from increasing, and the reliability of the air conditioner can be improved.
[0100]
In the eighth embodiment, the non-heated fluid of the outdoor heat exchanger 24 is air. However, the non-heated fluid is a liquid such as water, and the fluid and the outer shell of the compressor 1 are in contact with each other to exchange heat. However, the same effect is obtained. Moreover, although the operation state detection means 16 detects the temperature around the outdoor heat exchanger 24 to determine the state of the refrigeration load, the operation state detection means 16 is not limited to this, and can obtain the same purpose and effect. Other configurations may be used if necessary.
[0101]
Example 9
FIG. 11 is a refrigeration cycle diagram of an air conditioner according to an embodiment of the present invention. In the present invention, the compressor space is connected to the discharge pipe of the compressor via a first two-way valve and connected to the suction pipe of the compressor via a second two-way valve. Since this embodiment is the same as the ninth embodiment of the present invention, the same reference numerals as those in FIG.
[0102]
9 is different from the seventh embodiment of FIG. 9 in that the space 8 of the compressor 1 is connected to the discharge pipe 9 of the compressor 1 via the first two-way valve 10 and the space of the compressor 1 is different. 8 is connected to the suction pipe 11 of the compressor 1 via the second two-way valve 12 to constitute a refrigeration cycle. The first two-way valve control means 17, the second two-way valve control means 18, and the third two-way valve control means 19 receive a signal from the operating state detection means 16 and receive the first two-way valve control means 16. 10, the opening and closing of the second two-way valve 12 and the third two-way valve 3 are controlled. That is, when the operation state detection unit 16 outputs a signal for promoting heat dissipation of the compressor 1 according to the state of the air conditioning load, the first two-way valve control unit 17 performs the first two-way operation according to the signal. The valve 10 is opened and closed after a predetermined time, while the second two-way valve control means 18 that has received the signal closes the second two-way valve 12, and the third two-way valve control means 19 is the third one. The two-way valve 3 is closed and opened after a certain time. Further, when the operation state detection unit 16 outputs a signal for suppressing the heat radiation of the compressor 1 according to the state of the air conditioning load, the first two-way valve control unit 17 performs the first two-way operation according to the signal. Upon receipt of the signal, the second two-way valve control means 18 opens the second two-way valve 12 and closes it after a predetermined time. Similarly, the third two-way valve control means 19 The two-way valve 3 is closed and opened after a certain time.
[0103]
In the ninth embodiment, when the air conditioner starts the cooling operation, when the temperature around the outdoor heat exchanger 24 is low or the cooling load is small, the operation state detection means 16 suppresses heat radiation from the compressor 1. When the operation mode to be performed is selected, the second two-way valve control means 18 that has received this selection signal opens the second two-way valve 12, and the first two-way valve control means 17 opens the first 2 The direction valve 10 is closed. As a result, the space 8 of the compressor 1 has the same low pressure as the suction pipe 11, and low-pressure gas refrigerant accumulates. Thereafter, the second two-way valve 12 is closed by the second two-way valve control means 18. Therefore, the space 8 of the compressor 1 is cooled by the action of the gas refrigerant, and the low-pressure gas refrigerant is accumulated, so that it is difficult to dissipate heat from the surface of the compressor 1, the discharge temperature of the compressor 1 rises quickly, and the compression It is possible to prevent the refrigerant from condensing in the machine 1 and improve the reliability of the air conditioner.
[0104]
The third two-way valve 3 connected in series with the capillary tube 4 is closed by the third two-way valve control means 19 during the cooling operation, and the second two-way valve control means 18 closes the second two-way valve control means 18. When the two-way valve 12 is opened, the compressor 1 sucks downstream refrigerant from the third two-way valve 3, so that the low pressure gradually decreases to below atmospheric pressure, and the pressure in the space 8 of the compressor 1 also increases. Below atmospheric pressure. Thereafter, as described above, when the second two-way valve 12 is closed by the second two-way valve control means 18 and the third two-way valve 3 is opened by the third two-way valve control means 19, the compression is performed. The pressure in the space 8 of the machine 1 is maintained at a pressure lower than the atmospheric pressure, and the air conditioner returns to the normal cooling operation. Therefore, the thermal conductivity of the gas refrigerant is further reduced, heat dissipation from the compressor surface can be further suppressed, and the reliability of the air conditioner can be further improved.
[0105]
In addition, when the temperature around the outdoor heat exchanger 24 is high or when the cooling load is large, the operation state detection unit 16 receives the selection signal when the operation mode for promoting the heat radiation from the compressor 1 is selected. The first two-way valve control means 17 opens the first two-way valve 10, the third two-way valve control means 19 closes the third two-way valve 3, and the second two-way valve control means The second two-way valve 12 is closed by 18. As a result, the space 8 of the compressor 1 communicates with the discharge side of the compressor 1 and becomes high pressure, and the third two-way valve 3 is closed, so that high-pressure refrigerant flows into the space 8 of the compressor 1. The outer shell 6 of the compressor 1 faces the flow path 14 such as air sent from the outdoor heat exchanger blower 27, and is provided with heat radiation fins 15, so that the high-pressure refrigerant in the space 8 of the compressor 1 is Condensates and liquid refrigerant accumulates. When the first two-way valve 10 is closed by the first two-way valve control means 17 and the third two-way valve 3 is opened by the third two-way valve control means 19, the space of the compressor 1 is opened. The liquid refrigerant is kept in the state 8 and the air conditioner returns to the normal cooling operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 due to the action of the liquid refrigerant, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, even when the cooling load is high, an increase in the discharge pressure and discharge temperature of the compressor 1 can be prevented, and the reliability of the air conditioner can be improved.
[0106]
During operation, even if the operation thermostat is turned off, the first two-way valve 10, the second two-way valve 12, and the third two-way valve 3 are kept open and closed, and the space 8 of the compressor 1 is maintained. The refrigerant state inside is also kept as it is.
[0107]
Next, in the heating operation, the refrigeration cycle of the four-way valve 23 is switched so that the outdoor heat exchanger 24 becomes an evaporator, and an operation mode for suppressing heat radiation from the compressor 1 is selected by the operation state detection means 16. In response to this selection signal, the second two-way valve control means 18 opens the second two-way valve 12 and the first two-way valve control means 17 closes the first two-way valve 10. As a result, the space 8 of the compressor 1 has the same low pressure as the suction pipe 11, and low-pressure gas refrigerant accumulates. Thereafter, the second two-way valve 12 is closed by the second two-way valve control means 18, and normal heating operation is performed. Accordingly, the space 8 of the compressor 1 is heated in a state where low-pressure gas refrigerant is accumulated, and it is difficult for the gas refrigerant to radiate heat from the surface of the compressor 1 due to the action of the gas refrigerant. Increase capacity and improve energy efficiency. Moreover, condensation of the refrigerant | coolant in the compressor 1 can be prevented, and the reliability of an air conditioning apparatus can be improved.
[0108]
Further, when the third two-way valve 3 is closed by the third two-way valve control means 19 and the second two-way valve 12 is opened by the second two-way valve control means 18 during the heating operation described above, Since the compressor 1 sucks the refrigerant on the downstream side from the third two-way valve 3, the low pressure of the suction pipe 11 gradually decreases to below atmospheric pressure, and the pressure in the space 8 of the compressor 1 also becomes below atmospheric pressure. . Thereafter, when the second two-way valve 12 is closed by the second two-way valve control means 18 and the third two-way valve 3 is opened by the third two-way valve control means 19, the space of the compressor 1 is opened. The pressure of 8 is maintained in a state below atmospheric pressure, and the air conditioner performs normal heating operation. Therefore, the thermal conductivity of the gas refrigerant is further reduced, the heat radiation from the compressor surface can be further suppressed, the heating capacity can be further increased and the energy efficiency can be improved, and the reliability of the air conditioner is further improved. Can be improved.
[0109]
Further, when the high pressure or discharge temperature rises in an overload condition such as when the temperature around the outdoor heat exchanger 24 is high, when the operation mode for promoting heat radiation from the compressor 1 is selected by the operation state detection means 16, In response to the selection signal, the first two-way valve control means 17 opens the first two-way valve 10, the third two-way valve control means 19 closes the third two-way valve 3, and the second The second two-way valve 12 is closed by the two-way valve control means 18. As a result, the space 8 of the compressor 1 becomes high pressure because it communicates with the discharge pipe 9 of the compressor 1, and the third two-way valve 3 is closed, so that high-pressure refrigerant flows into the space 8 of the compressor 1. . The outer shell 6 of the compressor 1 faces the flow path 14 of air or the like sent from the outdoor heat exchanger blower 27, and is provided with a heat radiation fin 15, so that the high pressure in the space 8 of the compressor 1 is provided. The refrigerant condenses and accumulates liquid refrigerant. When the first two-way valve 10 is closed by the first two-way valve control means 17 and the third two-way valve 3 is opened by the third two-way valve control means 19, the space 8 of the compressor 1 is opened. In this state, the liquid refrigerant is kept in the accumulated state, and the air conditioner returns to the normal heating operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 due to the action of the liquid refrigerant, and the condensation pressure can be lowered, so that the discharge pressure and discharge temperature of the compressor 1 are prevented from increasing and the reliability of the air conditioner is improved. be able to.
[0110]
In the ninth embodiment, the non-heating fluid of the outdoor heat exchanger 24 is air. However, the non-heating fluid is a liquid such as water, and the fluid and the outer shell of the compressor 1 are in contact with each other so as to exchange heat. However, the same effect is obtained. In addition, the operating state detection means 16 detects the temperature around the outdoor heat exchanger 24 to determine the state of the air conditioning load, but is not limited to this, and can obtain the same purpose and effect. Other configurations may be used if necessary.
[0111]
(Example 10)
FIG. 12 is a refrigeration cycle diagram of the air-conditioning apparatus according to one embodiment of the present invention. The present invention uses an expansion valve that can be fully closed as a throttling device, and includes an expansion valve opening degree control means for controlling the opening degree of the expansion valve, and the third two-way valve and the third two-way valve control means are provided. 6 is the same as that of the fifth embodiment of the invention shown in FIG. 6, and therefore, the same reference numerals as those in FIG. .
[0112]
6 is different from the fifth embodiment of FIG. 6 in that an expansion valve 21 that can be fully closed is used in the expansion device, an expansion valve opening control means 22 that controls the opening of the expansion valve 21 is provided, and FIG. The third two-way valve 3 and the third two-way valve control means 19 are excluded.
[0113]
In the tenth embodiment, when the air conditioner starts the cooling operation, when the temperature around the outdoor heat exchanger 24 is low or the cooling load is small, the operation state detection means 16 suppresses heat radiation from the compressor 1. When the operation mode to be selected is selected, the first two-way valve 10 is opened by the first two-way valve control means 17 that has received this selection signal, and the space 8 of the compressor 1 communicates with the discharge-side pipe 26. Then, high-pressure refrigerant flows in, and the expansion valve 21 is throttled by the expansion valve opening degree control means 22 to reduce the refrigerant flow rate. As a result, the discharge temperature of the compressor 1 becomes high, and the refrigerant in the space 8 of the compressor 1 is heated and gasified to accumulate high-pressure gas refrigerant. Thereafter, the first two-way valve control means 17 closes the first two-way valve 10, and the expansion valve opening degree control means 22 opens the expansion valve 21 appropriately to return to the normal cooling operation. Therefore, the space 8 of the compressor 1 is cooled in a state where high-pressure gas refrigerant is accumulated, and it becomes difficult to dissipate heat from the surface of the compressor 1, the discharge temperature of the compressor 1 rises quickly, and the compressor 1 The condensation of the refrigerant can be prevented, and the reliability of the air conditioner can be improved.
[0114]
In addition, when the temperature around the outdoor heat exchanger 24 is high or when the cooling load is large, the operation state detection unit 16 receives the selection signal when the operation mode for promoting the heat radiation from the compressor 1 is selected. The first two-way valve control means 17 opens the first two-way valve 10, and the expansion valve opening degree control means 22 fully closes the expansion valve 21. As a result, the space 8 of the compressor 1 communicates with the piping 26 on the discharge side of the compressor 1 and becomes high pressure, and the expansion valve 21 is closed by the expansion valve opening degree control means 22. Is filled with high-pressure refrigerant. The outer shell 6 of the compressor 1 faces the flow path 14 such as air sent from the outdoor heat exchanger blower 27 and is cooled because the heat dissipating fins 15 are provided. The high-pressure refrigerant in the space 8 of the compressor 1 is cooled. Condensates and liquid refrigerant accumulates. When the first two-way valve 10 is closed by the first two-way valve control means 17 and the expansion valve 21 is appropriately opened by the expansion valve opening degree control means 22, the liquid 8 is placed in the space 8 of the compressor 1. The refrigerant is kept in the accumulated state, and the air conditioner returns to normal operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 due to the action of the liquid refrigerant, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, even when the cooling load is high, an increase in the discharge pressure and discharge temperature of the compressor 1 can be prevented, and the reliability of the air conditioner can be improved.
[0115]
During operation, even if the operation thermostat is turned off, the open / close state of the first two-way valve 10 and the expansion valve 21 is maintained as it is, and the refrigerant state in the space 8 of the compressor 1 is also maintained as it is. .
[0116]
Next, in the heating operation, the refrigeration cycle of the four-way valve 23 is switched so that the outdoor heat exchanger 24 becomes an evaporator, and an operation mode for suppressing heat radiation from the compressor 1 is selected by the operation state detection means 16. Upon receipt of this signal, the first two-way valve control means 17 opens the first two-way valve 10. As a result, the space 8 of the compressor 1 has the same low pressure as the low-pressure pipe 26, and low-pressure gas refrigerant accumulates. Thereafter, the first two-way valve 10 is closed by the first two-way valve control means 17, and a normal heating operation is performed. As a result, the space 8 of the compressor 1 is heated and operated with a low-pressure gas refrigerant accumulated, and it is difficult for the gas refrigerant to radiate heat from the surface of the compressor 1, and the discharge temperature of the compressor 1 rises quickly, Heating capacity can be increased and energy efficiency can be improved. Moreover, condensation of the refrigerant | coolant in the compressor 1 can be prevented, and the reliability of an air conditioning apparatus can be improved.
[0117]
In addition, when the expansion valve 21 is fully closed by the expansion valve opening degree control means 22 during the heating operation described above, the compressor 1 sucks the refrigerant on the downstream side from the expansion valve 21, so that the low pressure on the pipe 26 side decreases further. The pressure in the space 8 of the compressor 1 is also below atmospheric pressure. Thereafter, as described above, when the first two-way valve 10 is closed by the first two-way valve control means 17 and the expansion valve 21 is appropriately opened by the expansion valve opening degree control means 22, the space of the compressor 1 is reached. The pressure of 8 is maintained in a state below atmospheric pressure, and the air conditioner performs normal heating operation. Therefore, the thermal conductivity of the gas refrigerant is further reduced, the heat radiation from the compressor surface can be further suppressed, the heating capacity can be further increased and the energy efficiency can be improved, and the reliability of the air conditioner is further improved. Can be improved.
[0118]
Further, when the high pressure or discharge temperature rises in an overload condition such as when the temperature around the outdoor heat exchanger 24 is high, when the operation mode for promoting heat radiation from the compressor 1 is selected by the operation state detection means 16, The refrigeration cycle of the four-way valve 23 is switched so that the outdoor heat exchanger 24 becomes a condenser, the first two-way valve 10 is opened by the first two-way valve control means 17, and the expansion valve opening degree control means. The expansion valve 21 is fully closed by 22. As a result, the space 8 of the compressor 1 communicates with the discharge side of the compressor 1 via the pipe 26, so that the pressure becomes high and the expansion valve 21 is fully closed. Flows in. The outer shell 6 of the compressor 1 faces the flow path 14 such as air sent from the outdoor heat exchanger blower 27 and is cooled because the heat dissipating fins 15 are provided. The high-pressure refrigerant in the space 8 of the compressor 1 is cooled. Condensates and liquid refrigerant accumulates. The first two-way valve control means 17 closes the first two-way valve 10, the expansion valve opening degree control means 22 opens the expansion valve 21 appropriately, and the four-way valve 23 is connected to the outdoor heat exchanger 24. The refrigeration cycle is switched to become an evaporator, the liquid refrigerant is kept in the space 8 of the compressor 1, and the air conditioner returns to the normal heating operation. Therefore, since it becomes easy to radiate heat from the surface of the compressor 1 by the liquid refrigerant and the condensation pressure can be reduced, an increase in the discharge pressure and discharge temperature of the compressor 1 can be prevented and the reliability of the air conditioner can be improved. it can.
[0119]
In the tenth embodiment, the non-heating fluid of the outdoor heat exchanger 24 is air, but the non-heating fluid is a liquid such as water, and the fluid and the outer shell of the compressor 1 are in contact with each other to exchange heat. However, the same effect is obtained. In addition, the operating state detection means 16 detects the temperature around the outdoor heat exchanger 24 to determine the state of the air conditioning load, but is not limited to this, and can obtain the same purpose and effect. Other configurations may be used if necessary.
[0120]
(Example 11)
FIG. 13 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 11 of the present invention. This invention is the same as the invention of Example 10 in FIG. 12 except that the compressor space is connected to the pipe between the outdoor heat exchanger and the expansion valve via the first two-way valve. The parts having the operational effects are denoted by the same reference numerals as those in FIG. 12, and detailed description thereof will be omitted, and different parts will be mainly described.
[0121]
In FIG. 12, the difference from the embodiment 10 of FIG. 12 is that the space 8 of the compressor 1 is connected to the pipe 28 between the outdoor heat exchanger 24 and the expansion valve 21 via the first two-way valve 10. That is.
[0122]
In the said Example 11, the operation | movement of an air conditioning apparatus is also the same as Example 10 shown in FIG. In the cooling operation, when the temperature around the outdoor heat exchanger 24 is high or the cooling load is large, the operation state detection unit 16 selects the operation mode that promotes heat radiation from the compressor 1. Upon receiving the signal, the first two-way valve control means 17 opens the first two-way valve 10, and the expansion valve opening degree control means 22 closes the expansion valve 21. As a result, the space 8 of the compressor 1 communicates with the pipe 28 between the outdoor heat exchanger 24 and the expansion valve 21, and the expansion valve 21 is closed, so that the space 8 of the compressor 1 is liquefied by the condenser 2. The high-pressure liquid refrigerant thus flowed in easily accumulates the liquid refrigerant. Thereafter, the first two-way valve control means 17 closes the first two-way valve 10, the liquid refrigerant is kept in the space 8 of the compressor 1, and the air conditioner operates in a normal cooling operation. Return. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 due to the action of the liquid refrigerant, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, even when the cooling load is high, an increase in the discharge pressure and discharge temperature of the compressor 1 can be prevented, and the reliability of the air conditioner can be improved.
[0123]
In addition, an operation mode for promoting heat radiation from the compressor 1 is selected by the operation state detection means 16 during heating operation in which the high pressure or discharge temperature rises in an overload state such as when the temperature around the outdoor heat exchanger 24 is high. Then, the refrigeration cycle of the four-way valve 23 is switched so that the outdoor heat exchanger 24 becomes a condenser, the first two-way valve 10 is opened by the first two-way valve control means 17, and the expansion valve is opened. The expansion valve 21 is closed by the degree control means 22. As a result, the space 8 of the compressor 1 communicates with the pipe 28 between the outdoor heat exchanger 24 and the expansion valve 21, and the expansion valve 21 is closed, so that the outdoor heat exchanger 24 is disposed in the space 8 of the compressor 1. The high-pressure liquid refrigerant liquefied in the flow flows in and easily accumulates the liquid refrigerant. Thereafter, the first two-way valve control means 17 closes the first two-way valve 10, the expansion valve opening degree control means 22 opens the expansion valve 21 appropriately, and the four-way valve 23 opens the outdoor heat exchanger 24. The refrigeration cycle is switched so that becomes an evaporator, the liquid refrigerant is kept in the space 8 of the compressor 1, and the air conditioner returns to the normal heating operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 due to the action of the liquid refrigerant, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, the discharge pressure and discharge temperature of the compressor 1 can be prevented from increasing, and the reliability of the air conditioner can be improved.
[0124]
Example 12
FIG. 14 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 12 of the present invention. This invention is the same as the invention of Example 10 in FIG. 12 except that the compressor space is connected to the pipe between the indoor heat exchanger and the four-way valve via the second two-way valve. The parts having the configuration and the operational effects are denoted by the same reference numerals as those in FIG. 12, and detailed description thereof is omitted, and different parts are mainly described.
[0125]
In FIG. 12, the difference from the tenth embodiment of FIG. 12 is that the space 8 of the compressor 1 is connected to the pipe 29 between the indoor heat exchanger 25 and the four-way valve 23 via the second two-way valve 12. It is that. The first two-way valve control means 17, the second two-way valve control means 18, and the expansion valve opening degree control means 22 receive the signal from the operating state detection means 16, and receive the first two-way valve 10, The opening and closing of the second two-way valve 12 and the expansion valve 21 is controlled. That is, the operation state detection means 16 outputs a signal for promoting the heat dissipation of the compressor 1 in the cooling operation or the signal for suppressing the heat dissipation of the compressor 1 in the heating operation according to the state of the air conditioning load. When output, the first two-way valve control means 17 opens the first two-way valve 10 according to the signal and closes it after a predetermined time, while the second two-way valve control means 18 that receives the signal The second two-way valve 12 is closed, and similarly, the expansion valve opening degree control means 22 closes the expansion valve 21 and opens it after a certain time. Further, the operation state detection means 16 outputs a signal for suppressing the heat release of the compressor 1 in the cooling operation or the signal for promoting the heat release of the compressor 1 in the heating operation according to the state of the air conditioning load. When output, the first two-way valve control means 17 closes the first two-way valve 10 in response to the signal, while the second two-way valve control means 18 receiving the signal sends the second two-way valve The valve 12 is opened and closed after a certain time. Similarly, the expansion valve opening degree control means 22 closes the expansion valve 21 and opens after a certain time.
[0126]
In Example 12, when the air conditioner starts the cooling operation, when the temperature around the outdoor heat exchanger 24 is low or the cooling load is small, the operation state detection means 16 suppresses heat radiation from the compressor 1. When the operation mode to be performed is selected, the second two-way valve control means 18 that has received this selection signal opens the second two-way valve 12, and the first two-way valve control means 17 opens the first 2 The direction valve 10 is closed. As a result, the space 8 of the compressor 1 has the same low pressure as the pipe 29 via the second two-way valve 12, and the low-pressure gas refrigerant accumulates. Thereafter, the second two-way valve control means 18 closes the second two-way valve 12. Therefore, the space 8 of the compressor 1 is air-cooled with low-pressure gas refrigerant accumulated, and it is difficult for heat to be radiated from the surface of the compressor 1 due to the action of the gas refrigerant, and the discharge temperature of the compressor 1 rises quickly, and compression is performed. It is possible to prevent the refrigerant from condensing in the machine 1 and improve the reliability of the air conditioner.
[0127]
Further, at the start of the above cooling operation, the expansion valve 21 is closed by the expansion valve opening degree control means 22, and the compressor 1 sucks the refrigerant on the downstream side from the expansion valve 21, so that the low pressure gradually decreases to below atmospheric pressure. Thus, the pressure in the space 8 of the compressor 1 is also equal to or lower than the atmospheric pressure. Thereafter, when the second two-way valve 12 is closed by the second two-way valve control means 18 and the expansion valve 21 is appropriately opened by the expansion valve opening degree control means 22, the pressure in the space 8 of the compressor 1 is increased. The air conditioner is returned to the normal cooling operation while being kept at a pressure below atmospheric pressure. As a result, the thermal conductivity of the gas refrigerant is further reduced, heat dissipation from the compressor surface can be further suppressed, and the reliability of the air conditioner can be further improved.
[0128]
In addition, when the temperature around the outdoor heat exchanger 24 is high or when the cooling load is large, the operation state detection unit 16 receives the selection signal when the operation mode for promoting the heat radiation from the compressor 1 is selected. The first two-way valve control means 17 opens the first two-way valve 10, the expansion valve opening degree control means 22 closes the expansion valve 21, and the second two-way valve control means 18 sets the second 2 The direction valve 12 is closed. As a result, the space 8 of the compressor 1 is connected to the discharge-side pipe 26 of the compressor 1 via the first two-way valve 10 so that the pressure is high, and the expansion valve 21 is closed. High pressure refrigerant flows into the space 8. The outer shell 6 of the compressor 1 faces the flow path 14 such as air sent from the outdoor heat exchanger blower 27 and is cooled because the heat dissipating fins 15 are provided. The refrigerant condenses and accumulates liquid refrigerant. Thereafter, the first two-way valve control means 17 closes the first two-way valve 10 and the expansion valve opening degree control means 22 opens the expansion valve 21 appropriately. The refrigerant is kept in the accumulated state, and the air conditioner returns to normal operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 due to the action of the liquid refrigerant, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, even when the cooling load is high, an increase in the discharge pressure and discharge temperature of the compressor 1 can be prevented, and the reliability of the air conditioner can be improved. Further, during operation, even if the operation thermostat is turned off, the first two-way valve 10, the second two-way valve 12, and the expansion valve 21 are kept open and closed, and the refrigerant state in the space 8 of the compressor 1 is maintained. Is kept as it is.
[0129]
Next, in the heating operation, the refrigeration cycle of the four-way valve 23 is switched so that the outdoor heat exchanger 24 becomes an evaporator, and an operation mode for suppressing heat radiation from the compressor 1 is selected by the operation state detection means 16. Then, the first two-way valve 10 is opened by the first two-way valve control means 17 receiving this selection signal. As a result, the space 8 of the compressor 1 has the same low pressure as the pipe 26 via the first two-way valve 10, and low-pressure gas refrigerant accumulates. Thereafter, the first two-way valve 10 is closed by the first two-way valve control means 17, and a normal heating operation is performed. As a result, the space 8 of the compressor 1 is heated in a state where low-pressure gas refrigerant is accumulated, and it is difficult for the gas refrigerant to radiate heat from the surface of the compressor 1 due to the action of the gas refrigerant, and the discharge temperature of the compressor 1 rises quickly, Heating capacity can be increased and energy efficiency can be improved. Moreover, condensation of the refrigerant | coolant in the compressor 1 can be prevented, and the reliability of an air conditioning apparatus can be improved.
[0130]
Further, during the heating operation described above, the expansion valve 21 is closed by the expansion valve opening degree control means 22, and the first two-way valve 10 is opened by the first two-way valve control means 17, so that the compressor 1 Since the refrigerant on the downstream side is sucked from the expansion valve 21, the low pressure is steadily decreased to be equal to or lower than the atmospheric pressure, and the pressure in the space 8 of the compressor 1 is also equal to or lower than the atmospheric pressure. Thereafter, when the first two-way valve 10 is closed by the first two-way valve control means 17 and the expansion valve 21 is appropriately opened by the expansion valve opening degree control means 22, the pressure in the space 8 of the compressor 1 is increased. The air conditioner is kept in a state below atmospheric pressure and performs normal heating operation. Therefore, the thermal conductivity of the gas refrigerant is further reduced, the heat radiation from the compressor surface can be further suppressed, the heating capacity can be further increased and the energy efficiency can be improved, and the reliability of the air conditioner is further improved. Can be improved.
[0131]
Further, when the high pressure or discharge temperature rises in an overload condition such as when the temperature around the outdoor heat exchanger 24 is high, when the operation mode for promoting heat radiation from the compressor 1 is selected by the operation state detection means 16, In response to the selection signal, the second two-way valve control means 18 opens the second two-way valve 12, and the expansion valve opening degree control means 22 closes the expansion valve 21. As a result, the space 8 of the compressor 1 becomes high pressure because it communicates with the discharge-side piping 29 of the compressor 1 via the second two-way valve 12, and the expansion valve 21 is closed, so that the space of the compressor 1 is closed. A high-pressure refrigerant flows into 8. The outer shell 6 of the compressor 1 faces the flow path 14 such as air sent from the outdoor heat exchanger blower 27 and is cooled because the heat dissipating fins 15 are provided. The refrigerant condenses and accumulates liquid refrigerant. When the second two-way valve 12 is closed by the second two-way valve control means 18 and the expansion valve 21 is appropriately opened by the expansion valve opening degree control means 22, the liquid 8 is placed in the space 8 of the compressor 1. The refrigerant is kept in the accumulated state, and the air conditioner returns to the normal heating operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 due to the action of the liquid refrigerant, and the condensation pressure can be lowered, so that the discharge pressure and discharge temperature of the compressor 1 are prevented from increasing and the reliability of the air conditioner is improved. be able to.
[0132]
In Embodiment 12, the non-heated fluid of the outdoor heat exchanger 24 is air, but the non-heated fluid is a liquid such as water, and the fluid and the outer shell of the compressor 1 are in contact with each other so that heat is exchanged. However, the same effect is obtained. In addition, the operating state detection means 16 detects the temperature around the outdoor heat exchanger 24 to determine the state of the air conditioning load, but is not limited to this, and can obtain the same purpose and effect. Other configurations may be used if necessary.
[0133]
(Example 13)
FIG. 15 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 13 of the present invention. This invention is the same as the invention of Example 11 in FIG. 13 except that the compressor space is connected to the pipe between the indoor heat exchanger and the four-way valve via the second two-way valve. The parts having the configuration and the operational effects are denoted by the same reference numerals as those in FIG. 13 and the detailed description thereof is omitted, and different parts are mainly described.
[0134]
In FIG. 13, the difference from Example 11 in FIG. 13 is that the space 8 of the compressor 1 is connected to the pipe 29 between the indoor heat exchanger 25 and the four-way valve 23 via the second two-way valve 12. It is that. The first two-way valve control means 17, the second two-way valve control means 18, and the expansion valve opening degree control means 22 receive the signal from the operating state detection means 16, and receive the first two-way valve 10, The opening and closing of the second two-way valve 12 and the expansion valve 21 is controlled. That is, the operation state detection means 16 promotes heat dissipation of the compressor 1 according to the state of the air conditioning load.
In response to the signal, the first two-way valve control means 17 opens the first two-way valve 10 according to the signal and closes it after a predetermined time, while receiving the signal, the second two-way valve 10 The control means 18 closes the second two-way valve 12, and the expansion valve opening degree control means 22 also closes the expansion valve 21 (fully opened during heating), and opens after a certain time. Further, the operation state detection means 16 outputs a signal for suppressing the heat radiation of the compressor 1 according to the state of the air conditioning load.
When the force is applied, the first two-way valve control means 17 closes the first two-way valve 10 in response to the signal, while the second two-way valve control means 18 that receives the signal receives the second 2 The direction valve 12 is opened and closed after a certain time, and similarly, the expansion valve opening degree control means 22 closes the expansion valve 21 and opens after a certain time.
[0135]
In the said Example 13, the operation | movement of an air conditioning apparatus is also the same as Example 11 shown in FIG. When the temperature around the outdoor heat exchanger 24 is high during the cooling operation, or when the cooling load is large, the operation signal detecting unit 16 selects the operation mode for promoting the heat radiation from the compressor 1. The first two-way valve control means 17 receives the first two-way valve 10 and the expansion valve opening degree control means 22 closes the expansion valve 21. As a result, the space 8 of the compressor 1 communicates with the pipe 28 between the outdoor heat exchanger 24 and the expansion valve 21 via the first two-way valve 10, and the expansion valve 21 is closed. The high-pressure liquid refrigerant liquefied by the outdoor heat exchanger 24 flows into the space 8, and the liquid refrigerant easily accumulates. Thereafter, the first two-way valve control means 17 closes the first two-way valve 10, the expansion valve opening degree control means 22 opens the expansion valve 21 appropriately, and a liquid refrigerant is placed in the space 8 of the compressor 1. The air conditioner returns to the normal cooling operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 due to the action of the liquid refrigerant, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, even when the cooling load is high, an increase in the discharge pressure and discharge temperature of the compressor 1 can be prevented, and the reliability of the air conditioner can be improved.
[0136]
In addition, an operation mode for promoting heat radiation from the compressor 1 is selected by the operation state detection means 16 during heating operation in which the high pressure or discharge temperature rises in an overload state such as when the temperature around the outdoor heat exchanger 24 is high. Then, the first two-way valve control means 17 that has received this selection signal opens the first two-way valve 10, and the expansion valve opening degree control means 22 opens the expansion valve 21 until it is fully opened. As a result, the space 8 of the compressor 1 communicates with the pipe 28 between the outdoor heat exchanger 24 and the expansion valve 21 via the first two-way valve 10, and the liquid refrigerant condensed in the indoor heat exchanger 25 is The pressure is not reduced by the expansion valve 21, and the high-pressure liquid refrigerant flows into the space 8 of the compressor 1, and the liquid refrigerant easily accumulates. The first two-way valve control means 17 closes the first two-way valve 10, the expansion valve opening degree control means 22 appropriately throttles the liquid refrigerant in the space 8 of the compressor 1. The air conditioner returns to the normal heating operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 due to the action of the liquid refrigerant, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, the discharge pressure and discharge temperature of the compressor 1 can be prevented from increasing, and the reliability of the air conditioner can be improved.
[0137]
In Example 13, the non-heated fluid of the outdoor heat exchanger 24 is air. However, the non-heated fluid is a liquid such as water, and the fluid and the outer shell of the compressor 1 are in contact with each other so as to exchange heat. However, the same effect is obtained. In addition, the operating state detection means 16 detects the temperature around the outdoor heat exchanger 24 to determine the state of the air conditioning load, but is not limited to this, and can obtain the same purpose and effect. Other configurations may be used if necessary.
[0138]
(Example 14)
FIG. 16 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 14 of the present invention. In the present invention, the compressor space is connected to the discharge pipe of the compressor via a first two-way valve and connected to the suction pipe of the compressor via a second two-way valve. Since the present invention is the same as that of the fourteenth embodiment, the same reference numerals as those in FIG.
[0139]
In FIG. 14, the difference from the thirteenth embodiment of FIG. 14 is that the space 8 of the compressor 1 is connected to the discharge pipe 9 of the compressor 1 via the first two-way valve 10 and the suction of the compressor 1 is performed. It is connected to the pipe 11 via the second two-way valve 12 to constitute a refrigeration cycle.
[0140]
The first two-way valve control means 17, the second two-way valve control means 18, and the expansion valve opening degree control means 22 receive the signal from the operating state detection means 16, and receive the first two-way valve 10, The opening and closing of the second two-way valve 12 and the expansion valve 21 is controlled. That is, when the operation state detection unit 16 outputs a signal for promoting heat dissipation of the compressor 1 according to the state of the air conditioning load, the first two-way valve control unit 17 performs the first two-way operation according to the signal. The valve 10 is opened and closed after a predetermined time. On the other hand, the second two-way valve control means 18 that receives the signal closes the second two-way valve 12, and the expansion valve opening degree control means 22 similarly opens the expansion valve 21. It closes and opens after a certain time. Further, when the operation state detection unit 16 outputs a signal for suppressing the heat radiation of the compressor 1 according to the state of the air conditioning load, the first two-way valve control unit 17 performs the first two-way operation according to the signal. Upon receipt of the signal, the second two-way valve control means 18 opens the second two-way valve 12 and closes it after a predetermined time. Similarly, the expansion valve opening degree control means 22 closes the expansion valve 21. And it opens after a certain time. In Example 14, when the air conditioner starts the cooling operation, when the temperature around the outdoor heat exchanger 24 is low or the cooling load is small, the operation state detection means 16 suppresses heat radiation from the compressor 1. When the operation mode to be performed is selected, the second two-way valve control means 18 that has received this selection signal opens the second two-way valve 12, and the first two-way valve control means 17 opens the first 2 The direction valve 10 is closed. As a result, the space 8 of the compressor 1 has the same low pressure as that of the suction pipe 11 via the second two-way valve 12, and low-pressure gas refrigerant accumulates. Thereafter, the second two-way valve control means 18 closes the second two-way valve 12. As a result, the space 8 of the compressor 1 is cooled in a state where low-pressure gas refrigerant is accumulated, and it becomes difficult to dissipate heat from the surface of the compressor 1, and the discharge temperature of the compressor 1 rises quickly. It is possible to prevent condensation of the refrigerant and improve the reliability of the air conditioner.
[0141]
Further, since the expansion valve 21 is closed by the expansion valve opening degree control means 22 and the second two-way valve 12 is opened by the second two-way valve control means 18 during the cooling operation described above, the compressor 1 Since the refrigerant on the downstream side is sucked from the expansion valve 21, the low pressure is steadily decreased to be equal to or lower than the atmospheric pressure, and the pressure in the space 8 of the compressor 1 is also equal to or lower than the atmospheric pressure. Thereafter, when the second two-way valve 12 is closed by the second two-way valve control means 18 and the expansion valve 21 is appropriately opened by the expansion valve opening degree control means 22, the pressure in the space 8 of the compressor 1 is increased. The air conditioner is returned to the normal cooling operation while being kept at a pressure below atmospheric pressure. As a result, the thermal conductivity of the gas refrigerant is further reduced, heat dissipation from the compressor surface can be further suppressed, and the reliability of the air conditioner can be further improved.
[0142]
In addition, when the temperature around the outdoor heat exchanger 24 is high or the cooling load is large, the first two-way valve is selected when the operation mode for promoting heat radiation from the compressor 1 is selected by the operation state detection means 16. The first two-way valve 10 is opened by the control means 17, the expansion valve 21 is closed by the expansion valve opening degree control means 22, and the second two-way valve 12 is closed by the second two-way valve control means 18. . As a result, the space 8 of the compressor 1 becomes high pressure because it communicates with the discharge pipe 9 of the compressor 1 via the first two-way valve 10, and the expansion valve 21 is closed, so that the space 8 of the compressor 1 is closed. Is filled with high-pressure refrigerant. The outer shell 6 of the compressor 1 faces the flow path 14 such as air sent from the outdoor heat exchanger blower 27 and is cooled because the heat dissipating fins 15 are provided. The high-pressure refrigerant in the space 8 of the compressor 1 is cooled. Condensates and liquid refrigerant accumulates. Thereafter, the first two-way valve control means 17 closes the first two-way valve 10 and the expansion valve opening degree control means 22 opens the expansion valve 21 appropriately. The refrigerant is kept in the accumulated state, and the air conditioner returns to normal operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 due to the action of the liquid refrigerant, and the condensation pressure can be reduced, so that energy efficiency is increased. Furthermore, even when the cooling load is high, an increase in the discharge pressure and discharge temperature of the compressor 1 can be prevented, and the reliability of the air conditioner can be improved.
[0143]
Further, during operation, even if the operation thermostat is turned off, the first two-way valve 10, the second two-way valve 12, and the expansion valve 21 are kept open and closed, and the refrigerant state in the space 8 of the compressor 1 is maintained. Is kept as it is.
[0144]
Next, in the heating operation, the refrigeration cycle of the four-way valve 23 is switched so that the outdoor heat exchanger 24 becomes an evaporator, and an operation mode for suppressing heat radiation from the compressor 1 is selected by the operation state detection means 16. In response to this selection signal, the second two-way valve control means 18 opens the second two-way valve 12 and the first two-way valve control means 17 closes the first two-way valve 10. As a result, the space 8 of the compressor 1 has the same low pressure as that of the suction pipe 11 via the second two-way valve 12, and low-pressure gas refrigerant accumulates. Thereafter, the second two-way valve 12 is closed by the second two-way valve control means 18, and a normal heating operation is performed. As a result, the space 8 of the compressor 1 is heated in a state where low-pressure gas refrigerant is accumulated, it is difficult to dissipate heat from the surface of the compressor 1, the discharge temperature of the compressor 1 rises quickly, and the heating capacity is increased. Energy efficiency can be improved. Moreover, condensation of the refrigerant | coolant in the compressor 1 can be prevented, and the reliability of an air conditioning apparatus can be improved.
[0145]
Further, during the heating operation described above, the expansion valve 21 is closed by the expansion valve opening degree control means 22, and the second two-way valve 12 is opened by the second two-way valve control means 18, so that the compressor 1 Since the refrigerant on the downstream side is sucked from the expansion valve 21, the low pressure is steadily reduced to be equal to or lower than atmospheric pressure, and the pressure in the space 8 of the compressor 1 is also reduced to lower than atmospheric pressure. Thereafter, when the second two-way valve 12 is closed by the second two-way valve control means 18 and the expansion valve 21 is appropriately opened by the expansion valve opening degree control means 22, the pressure in the space 8 of the compressor 1 is increased. The air conditioner is kept in a state below atmospheric pressure and performs normal heating operation. As a result, the thermal conductivity is further reduced, heat dissipation from the compressor surface can be further suppressed, heating capacity can be further increased and energy efficiency can be improved, and the reliability of the air conditioner is further improved. Can be made.
[0146]
Further, when the high pressure or discharge temperature rises in an overload condition such as when the temperature around the outdoor heat exchanger 24 is high, when the operation mode for promoting heat radiation from the compressor 1 is selected by the operation state detection means 16, In response to the selection signal, the first two-way valve control means 17 opens the first two-way valve 10, the expansion valve opening degree control means 22 closes the expansion valve 21, and the second two-way valve control means. 18 also closes the second two-way valve 12. As a result, the space 8 of the compressor 1 becomes high pressure because it communicates with the discharge pipe 9 of the compressor 1 via the first two-way valve 10, and the expansion valve 21 is closed, so that the space 8 of the compressor 1 is closed. Is filled with high-pressure refrigerant. The outer shell 6 of the compressor 1 faces the flow path 14 such as air sent from the outdoor heat exchanger blower 27 and is cooled because the heat dissipating fins 15 are provided. The refrigerant condenses and accumulates liquid refrigerant. The first two-way valve control means 17 closes the first two-way valve 10, the expansion valve opening degree control means 22 opens the expansion valve 21 appropriately, and a liquid refrigerant is placed in the space 8 of the compressor 1. The air conditioner returns to the normal heating operation. Therefore, it becomes easy to radiate heat from the surface of the compressor 1 due to the action of the liquid refrigerant, and the condensation pressure can be lowered, so that the discharge pressure and discharge temperature of the compressor 1 are prevented from increasing and the reliability of the air conditioner is improved. be able to.
[0147]
In the fourteenth embodiment, the non-heated fluid of the outdoor heat exchanger 24 is air, but the non-heated fluid is a liquid such as water, and the fluid and the outer shell of the compressor 1 are in contact with each other for heat exchange. However, the same effect is obtained. In addition, the operating state detection means 16 detects the temperature around the outdoor heat exchanger 24 to determine the state of the air conditioning load, but is not limited to this, and can obtain the same purpose and effect. Other configurations may be used if necessary.
[0148]
【The invention's effect】
According to the refrigeration apparatus of the first aspect of the present invention, it is possible to improve the energy efficiency and the reliability of the apparatus by promoting the heat dissipation and suppressing the heat dissipation of the compressor according to the state of the load.
[0149]
Further, according to the refrigeration apparatus of the second aspect of the present invention, since it is possible to increase the promotion of heat release from the compressor and reduce the condensation pressure, the energy efficiency can be increased and the compressor can be operated even when the refrigeration load is high. An increase in discharge pressure and discharge temperature can be prevented, and the reliability of the refrigeration apparatus can be improved. In addition, it suppresses heat dissipation from the compressor, and even when starting up or when the refrigeration load is low, the compressor discharge temperature can be raised quickly, refrigerant condensation in the compressor can be prevented, and the reliability of the refrigeration system can be improved. it can.
[0150]
In addition, according to the refrigeration apparatus of the invention described in claim 3, liquid refrigerant can be reliably stored in the space of the compressor, and the heat dissipation promotion of the compressor is enhanced, the condensation pressure is lowered, and the energy efficiency is enhanced. Furthermore, even when the refrigeration load is high, the discharge pressure and discharge temperature of the compressor can be prevented from increasing, and the reliability of the apparatus can be improved.
[0151]
Further, according to the refrigeration apparatus of the invention described in claim 4, the gas refrigerant can be easily stored in the space of the compressor with a simpler configuration, and can be controlled to be equal to or lower than the atmospheric pressure, thereby radiating heat from the compressor. In addition to being able to suppress, it is possible to set a diaphragm according to the refrigeration load, and further improve the reliability of the apparatus.
[0152]
Further, according to the refrigeration apparatus of the fifth aspect of the present invention, since the heat radiation acceleration from the compressor can be enhanced and the condensation pressure can be reduced, the energy efficiency can be increased and the compressor can be operated even when the refrigeration load is high. An increase in discharge pressure and discharge temperature can be prevented, and the reliability of the refrigeration apparatus can be improved. Moreover, since the aperture according to the refrigeration load can be set, the reliability of the refrigeration apparatus can be further improved.
[0153]
Moreover, according to the refrigeration apparatus of each invention of Claim 6, Claim 14, or Claim 15, it becomes possible to further promote the heat radiation from a compressor, and it improves energy efficiency and the reliability of a refrigeration apparatus. Can be improved.
[0154]
Further, according to the air conditioner of the invention described in claim 7, it is possible to enhance the energy efficiency during the cooling operation by promoting the heat radiation from the compressor, and the discharge pressure of the compressor even when the cooling load is high. And the discharge temperature can be prevented from increasing, and the reliability of the air conditioner can be improved. Further, the heat radiation of the compressor can be suppressed to improve the reliability of the apparatus, and the heating efficiency can be increased during the heating operation to improve the energy efficiency.
[0155]
According to the air conditioner of the invention described in claim 8, liquid refrigerant can be more reliably stored in the space of the compressor, and the heat radiation from the compressor is promoted and the condensation pressure is reduced to reduce the energy. Even when the efficiency is high and the air conditioning load is high, the discharge pressure and discharge temperature of the compressor can be prevented from increasing, and the reliability of the apparatus can be improved.
[0156]
Further, according to the air conditioner of the invention described in claim 9, the gas refrigerant can be more reliably stored in the space of the compressor, and the reliability of the apparatus is improved by suppressing the heat radiation of the compressor. And at the time of heating operation, heating efficiency can be increased and energy efficiency can be improved.
[0157]
According to the air conditioner of the invention described in claim 10, the liquid refrigerant can be more reliably stored in the space of the compressor, and the heat radiation from the compressor is promoted and the condensation pressure is lowered to reduce the energy. Even when the efficiency is high and the air conditioning load is high, the discharge pressure and discharge temperature of the compressor can be prevented from increasing, and the reliability of the apparatus can be improved. In addition, the gas refrigerant can be stored more reliably in the compressor space, and the heat dissipation of the compressor is suppressed to improve the reliability of the device, and during heating operation, the heating capacity is increased to increase the energy efficiency. Can be improved.
[0158]
According to the air conditioner of the invention described in claim 11, liquid refrigerant can be more reliably stored in the space of the compressor by simpler control, and the heat dissipation from the compressor is enhanced and condensed. The pressure can be reduced to increase energy efficiency, and even when the air conditioning load is high, the discharge pressure and discharge temperature of the compressor can be prevented from increasing and the reliability of the apparatus can be improved. In addition, the gas refrigerant can be more reliably stored in the compressor space with simpler control, and the heat radiation of the compressor is suppressed to improve the reliability of the device. It can be increased to improve energy efficiency.
[0159]
In addition, according to the air conditioner of the invention described in claim 12, the heat radiation from the compressor can be further suppressed, and the reliability of the air conditioner can be further improved. Further, during heating, the heating capacity can be increased and the energy efficiency can be further improved.
[0160]
Further, according to the air conditioner of the invention described in claim 13, since it is possible to suppress heat radiation from the compressor with a simpler configuration and to set a throttle according to the cooling load or the heating load, the reliability of the device Can be further improved.
[0161]
Further, according to the control method of the invention described in claim 16, it is possible to further enhance the heat radiation promotion from the compressor to lower the condensation pressure, increase the energy efficiency, and discharge the compressor even when the refrigeration load is high. And the discharge temperature can be prevented from increasing, and the reliability of the apparatus can be improved. In addition, the heat radiation from the compressor is suppressed, and the refrigerant can be prevented from condensing in the compressor even when starting up or when the refrigeration load is low, improving the reliability of the device and increasing the heating capacity during heating operation. Energy efficiency can be improved.
[0162]
In addition, according to the control method of the invention described in claim 17, it is possible to further suppress the heat dissipation from the compressor and further improve the reliability of the apparatus.
[Brief description of the drawings]
FIG. 1 is a refrigeration cycle diagram showing a refrigeration apparatus in Embodiment 1 of the present invention.
FIG. 2 is a perspective view in which a main part showing the main body of the refrigeration apparatus in the first embodiment is cut away.
FIG. 3 is a refrigeration cycle diagram showing a refrigeration apparatus according to another embodiment 2 of the present invention.
FIG. 4 is a refrigeration cycle diagram showing a refrigeration apparatus according to another embodiment 3 of the present invention.
FIG. 5 is a refrigeration cycle diagram showing a refrigeration apparatus in another embodiment 4 of the present invention.
FIG. 6 is a refrigeration cycle diagram showing an air-conditioning apparatus according to Embodiment 5 of the present invention.
7 is a perspective view in which a main part showing the main body of the air-conditioning apparatus in Example 5 is cut away. FIG.
FIG. 8 is a refrigeration cycle diagram showing an air conditioner according to another embodiment 6.
FIG. 9 is a refrigeration cycle diagram showing an air conditioner according to another embodiment 7.
FIG. 10 is a refrigeration cycle diagram showing an air conditioner according to another embodiment 8.
FIG. 11 is a refrigeration cycle diagram showing an air conditioner according to another embodiment 9;
FIG. 12 is a refrigeration cycle diagram showing an air conditioner according to another embodiment 10 of the present invention.
FIG. 13 is a refrigeration cycle diagram showing an air conditioner according to another embodiment 11;
FIG. 14 is a refrigeration cycle diagram showing an air conditioner according to another twelfth embodiment of the present invention.
FIG. 15 is a refrigeration cycle diagram showing an air conditioner according to another embodiment 13;
FIG. 16 is a refrigeration cycle diagram showing an air conditioner according to another embodiment 14;
FIG. 17 is a refrigeration cycle diagram showing a conventional refrigeration apparatus.
[Explanation of symbols]
1 Compressor
2 Condenser
3 Third 2-way valve
5 Evaporator
8 space
9 Discharge piping
10 First two-way valve
11 Suction piping
12 Second 2-way valve
14 Channel
15 Heat dissipation fin
16 Operating state detection means
17 First two-way valve control means
18 Second two-way valve control means
19 Third two-way valve control means
21 Expansion valve
20, 26, 28, 29 Piping
22 Expansion valve opening control means
23 4-way valve
24 outdoor heat exchanger
25 Indoor heat exchanger

Claims (17)

環状に配管して冷凍サイクルを構成し、かつ外周に空間を形成した圧縮機、凝縮器、絞り装置、蒸発器と、空調負荷の状態を検出する運転状態検出手段と、この運転状態検出手段が検出した出力信号に応じ、前記空間に冷媒を溜め圧縮機の放熱促進および圧縮機の放熱を抑制するように制御する制御手段を備えた冷凍装置。A compressor, a condenser, a throttle device, an evaporator having a refrigeration cycle with an annular pipe and a space formed on the outer periphery, an operating state detecting means for detecting the state of the air conditioning load, and this operating state detecting means A refrigeration apparatus comprising control means for controlling to store refrigerant in the space and to promote heat dissipation of the compressor and suppress heat dissipation of the compressor according to the detected output signal. 環状に配管して冷凍サイクルを構成し、かつ外周に冷媒溜めの空間を形成した圧縮機、凝縮器、絞り装置、蒸発器と、運転状態検出手段と、前記圧縮機の空間を前記圧縮機の吐出配管に接続する第1の2方弁と、前記圧縮機の空間を前記圧縮機の吸入配管に接続する第2の2方弁と、前記運転状態検出手段の出力信号に応じ、前記第1の2方弁の開閉を制御する第1の2方弁制御手段および前記第2の2方弁の開閉を制御する第2の2方弁制御手段を備えた冷凍装置。  A compressor, a condenser, a throttle device, an evaporator, an operating state detection means, an operating state detection means, and a compressor space in which an annular piping forms a refrigeration cycle and a refrigerant storage space is formed on the outer periphery of the compressor. The first two-way valve connected to the discharge pipe, the second two-way valve connecting the space of the compressor to the suction pipe of the compressor, and the output signal of the operating state detecting means, the first A refrigeration apparatus comprising first two-way valve control means for controlling opening and closing of the second two-way valve and second two-way valve control means for controlling opening and closing of the second two-way valve. 環状に配管して冷凍サイクルを構成し、かつ外周に冷媒溜めの空間を形成した圧縮機、凝縮器、絞り装置、蒸発器と、運転状態検出手段と、前記圧縮機の空間を前記凝縮器と前記絞り装置の間の配管に接続する第1の2方弁と、前記圧縮機の空間を前記圧縮機の吸入配管に接続する第2の2方弁と、前記運転状態検出手段の出力信号に応じ、前記第1の2方弁の開閉を制御する第1の2方弁制御手段および前記第2の2方弁の開閉を制御する第2の2方弁制御手段を備えた冷凍装置。  A compressor, a condenser, a throttle device, an evaporator, an operating state detection means, an operating state detection means, and a condenser that form a refrigeration cycle by piped in an annular shape and formed a refrigerant reservoir space on the outer periphery, and the condenser A first two-way valve connected to the pipe between the throttle devices, a second two-way valve connecting the compressor space to the suction pipe of the compressor, and an output signal of the operating state detection means Accordingly, a refrigeration apparatus comprising first two-way valve control means for controlling opening and closing of the first two-way valve and second two-way valve control means for controlling opening and closing of the second two-way valve. 絞り装置をキャピラリ−チュ−ブで形成し、このキャピラリ−チュ−ブに第3の2方弁を直列に接続するとともに、前記第3の2方弁の開閉を制御する第3の2方弁制御手段を設けた請求項1〜請求項3のいずれか一項に記載の冷凍装置。  A throttling device is formed by a capillary tube, a third two-way valve is connected in series to the capillary tube, and a third two-way valve for controlling the opening and closing of the third two-way valve The refrigeration apparatus according to any one of claims 1 to 3, further comprising a control unit. 絞り装置を全閉可能な膨張弁で形成するとともに、前記膨張弁の開度を制御する膨張弁開度制御手段を設けた請求項1〜請求項3のいずれか一項に記載の冷凍装置。  The refrigeration apparatus according to any one of claims 1 to 3, wherein the expansion device is formed of an expansion valve that can be fully closed, and an expansion valve opening degree control unit that controls an opening degree of the expansion valve is provided. 圧縮機の空間を形成する外郭を凝縮器の非加熱媒体の流路に面するようにした請求項1〜請求項5のいずれか一項に記載の冷凍装置。  The refrigerating apparatus according to any one of claims 1 to 5, wherein an outer shell forming a compressor space faces a flow path of a non-heating medium of the condenser. 環状に配管して冷凍サイクルを構成し、かつ外周に冷媒溜めの空間を形成した圧縮機、4方弁、室外熱交換器、絞り装置、室内熱交換器と、前記圧縮機の空間を前記4方弁と前記室外熱交換器の間の配管に接続する第1の2方弁と、運転状態検出手段と、この運転状態検出手段の出力信号に応じ、前記第1の2方弁の開閉を制御する第1の
2方弁制御手段を備えた空気調和装置。
A compressor in which a refrigeration cycle is configured by piping in an annular shape and a refrigerant reservoir space is formed on the outer periphery, a four-way valve, an outdoor heat exchanger, a throttling device, an indoor heat exchanger, and the compressor space A first two-way valve connected to a pipe between the one-way valve and the outdoor heat exchanger, an operation state detecting means, and opening and closing of the first two-way valve in accordance with an output signal of the operation state detecting means. An air conditioner comprising first two-way valve control means for controlling.
環状に配管して冷凍サイクルを構成し、かつ外周に冷媒溜めの空間を形成した圧縮機、4方弁、室外熱交換器、絞り装置、室内熱交換器と、前記圧縮機の空間を前記室外熱交換器と前記絞り装置の間の配管に接続する第1の2方弁と、運転状態検出手段と、この運転状態検出手段の出力信号に応じ、前記第1の2方弁の開閉を制御する第1の2方弁制御手段を備えた空気調和装置。  A compressor having a refrigeration cycle with an annular pipe and a refrigerant reservoir space formed on the outer periphery, a four-way valve, an outdoor heat exchanger, a throttling device, an indoor heat exchanger, and a space for the compressor. A first two-way valve connected to a pipe between the heat exchanger and the expansion device, an operation state detection means, and control of opening and closing of the first two-way valve according to an output signal of the operation state detection means An air conditioner comprising first two-way valve control means. 環状に配管して冷凍サイクルを構成し、かつ外周に冷媒溜めの空間を形成した圧縮機、4方弁、室外熱交換器、絞り装置、室内熱交換器と、前記圧縮機の空間を前記4方弁と前記室外熱交換器の間の配管に接続する第1の2方弁と、前記圧縮機の空間を前記4方弁と前記室内熱交換器の間の配管に接続する第2の2方弁と、運転状態検出手段と、前記運転状態検出手段の出力信号に応じ、前記第1の2方弁の開閉を制御する第1の2方弁制御手段および第2の2方弁の開閉を制御する第2の2方弁制御手段を備えた空気調和装置。  A compressor in which a refrigeration cycle is configured by piping in an annular shape and a refrigerant reservoir space is formed on the outer periphery, a four-way valve, an outdoor heat exchanger, a throttling device, an indoor heat exchanger, and the compressor space A first two-way valve connected to a pipe between the four-way valve and the outdoor heat exchanger; and a second two-way connecting the compressor space to a pipe between the four-way valve and the indoor heat exchanger. A first two-way valve control means for controlling the opening and closing of the first two-way valve and the opening and closing of the second two-way valve according to an output signal of the one-way valve, the operating state detecting means, and the operating state detecting means The air conditioning apparatus provided with the 2nd two-way valve control means which controls. 環状に配管して冷凍サイクルを構成し、かつ外周に冷媒溜めの空間を形成した圧縮機、4方弁、室外熱交換器、絞り装置、室内熱交換器と、前記圧縮機の空間を前記室外熱交換器と前記絞り装置の間の配管に接続する第1の2方弁と、前記圧縮機の空間を前記室内熱交換器と前記4方弁の間の配管に接続する第2の2方弁と、運転状態検出手段と、前記運転状態検出手段の出力信号に応じ、前記第1の2方弁の開閉を制御する第1の2方弁制御手段および前記第2の2方弁の開閉を制御する第2の2方弁制御手段を備えた空気調和装置。  A compressor having a refrigeration cycle with an annular pipe and a refrigerant reservoir space formed on the outer periphery, a four-way valve, an outdoor heat exchanger, a throttling device, an indoor heat exchanger, and a space for the compressor. A first two-way valve connected to a pipe between the heat exchanger and the expansion device, and a second two-way connecting the compressor space to a pipe between the indoor heat exchanger and the four-way valve A first two-way valve control means for controlling the opening and closing of the first two-way valve and the opening and closing of the second two-way valve according to an output signal of the valve, the operating state detecting means, and the operating state detecting means The air conditioning apparatus provided with the 2nd two-way valve control means which controls. 環状に配管して冷凍サイクルを構成する、外周に冷媒溜めの空間を形成した圧縮機、4方弁、室外熱交換器、絞り装置、室内熱交換器と、前記圧縮機の空間を前記圧縮機の吐出配管に接続する第1の2方弁と、前記圧縮機の空間を前記圧縮機の吸入配管に接続する第2の2方弁と、運転状態検出手段と、前記運転状態検出手段の出力信号に応じ、前記第1の2方弁の開閉を制御する第1の2方弁制御手段および前記第2の2方弁の開閉を制御する第2の2方弁制御手段を備えた空気調和装置。  A compressor that forms a refrigeration cycle by forming an annular pipe to form a refrigerant reservoir space on the outer periphery, a four-way valve, an outdoor heat exchanger, a throttling device, an indoor heat exchanger, and a space for the compressor. A first two-way valve connected to the discharge pipe, a second two-way valve connecting the compressor space to the suction pipe of the compressor, an operation state detection means, and an output of the operation state detection means Air conditioning provided with first two-way valve control means for controlling opening and closing of the first two-way valve and second two-way valve control means for controlling opening and closing of the second two-way valve according to a signal apparatus. 絞り装置をキャピラリチューブで形成し、前記キャピラリチューブに第3の2方弁を直列に接続するとともに、前記第3の2方弁の開閉を制御する第3の2方弁制御手段を設けた請求項7〜請求項11のいずれか一項に記載の空気調和装置。  A throttling device is formed by a capillary tube, a third two-way valve is connected in series to the capillary tube, and a third two-way valve control means for controlling opening and closing of the third two-way valve is provided. The air conditioning apparatus according to any one of claims 7 to 11. 絞り装置を全閉可能な膨張弁で形成するとともに、前記膨張弁の開度を制御する膨張弁開度制御手段を設けた請求項7〜請求項11のいずれか一項に記載の空気調和装置。  The air conditioner according to any one of claims 7 to 11, wherein the throttle device is formed of an expansion valve that can be fully closed, and an expansion valve opening degree control unit that controls an opening degree of the expansion valve is provided. . 空間を形成する圧縮機の外郭を室外熱交換器の非加熱媒体の流路に面するようにした請求項7〜請求項13のいずれか一項に記載の空気調和装置。  The air conditioner according to any one of claims 7 to 13, wherein the outer shell of the compressor forming the space faces the flow path of the non-heating medium of the outdoor heat exchanger. 空間を形成する圧縮機の外郭を室外熱交換器の非加熱媒体の流路に面するようにせしめ、かつ前記外郭に放熱用フィンを設けた請求項1〜請求項14のいずれか一項に記載の空気調和装置。  The outer shell of the compressor forming the space is made to face the flow path of the non-heating medium of the outdoor heat exchanger, and a heat radiating fin is provided in the outer shell. The air conditioning apparatus described. 空調負荷の状態を検出する運転状態検出手段が検出した出力信号に応じ、圧縮機からの放熱を促進する場合は前記圧縮機の空間に液冷媒が溜まるように制御し、前記圧縮機からの放熱を抑制する場合は前記圧縮機の空間にガス冷媒が溜まるように制御する冷凍装置の制御方法。 When heat dissipation from the compressor is promoted according to the output signal detected by the operating state detection means for detecting the state of the air conditioning load , control is performed so that liquid refrigerant accumulates in the space of the compressor, and heat dissipation from the compressor. The control method of the refrigerating apparatus which controls so that gas refrigerant may accumulate in the space of the said compressor, when suppressing. 空調負荷の状態を検出する運転状態検出手段が検出した出力信号に応じ、圧縮機からの放熱を促進する場合は前記圧縮機の空間に液冷媒が溜まるように制御し、前記圧縮機からの放熱を抑制する場合は前記圧縮機の空間に大気圧以下のガス冷媒が溜まるように制御する冷凍装置の制御方法。 When heat dissipation from the compressor is promoted according to the output signal detected by the operating state detection means for detecting the state of the air conditioning load , control is performed so that liquid refrigerant accumulates in the space of the compressor, and heat dissipation from the compressor. The control method of the refrigerating apparatus which controls so that the gas refrigerant below atmospheric pressure may accumulate in the space of the compressor when suppressing the above.
JP19705699A 1999-07-12 1999-07-12 Refrigeration apparatus, control method therefor, and air conditioner Expired - Fee Related JP4265034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19705699A JP4265034B2 (en) 1999-07-12 1999-07-12 Refrigeration apparatus, control method therefor, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19705699A JP4265034B2 (en) 1999-07-12 1999-07-12 Refrigeration apparatus, control method therefor, and air conditioner

Publications (2)

Publication Number Publication Date
JP2001021231A JP2001021231A (en) 2001-01-26
JP4265034B2 true JP4265034B2 (en) 2009-05-20

Family

ID=16367990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19705699A Expired - Fee Related JP4265034B2 (en) 1999-07-12 1999-07-12 Refrigeration apparatus, control method therefor, and air conditioner

Country Status (1)

Country Link
JP (1) JP4265034B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102013595B1 (en) * 2014-03-03 2019-08-23 한온시스템 주식회사 A Variable displacement swash plate type compressor and method for controlling thereof

Also Published As

Publication number Publication date
JP2001021231A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
JP2000346472A (en) Supercritical steam compression cycle
US8408022B2 (en) Hybrid cascade vapor compression refrigeration system
JP2006071268A (en) Refrigerating plant
US20210215414A1 (en) Vehicle Temperature Management System
CN100371662C (en) Refrigerator
JP3882056B2 (en) Refrigeration air conditioner
JP2007051841A (en) Refrigeration cycle device
JP5862460B2 (en) Air conditioner
CN113007831B (en) Three-pipe multi-online hot water system and control method thereof
KR100622604B1 (en) Gas engine heat pump with an enhanced accumulator
JP2007232265A (en) Refrigeration unit
JP6101926B2 (en) refrigerator
JP2016142417A (en) Air conditioner
JP5402176B2 (en) refrigerator
JP4265034B2 (en) Refrigeration apparatus, control method therefor, and air conditioner
JP2017161159A (en) Outdoor uni of air conditioner
JP3307803B2 (en) Cooling device
JP4513441B2 (en) Vending machine with cooling and heating system
JP2017161164A (en) Air-conditioning hot water supply system
JP4429960B2 (en) Vending machine with cooling and heating system
JP3836092B2 (en) Refrigeration equipment
KR102494567B1 (en) A refrigerator and a control method the same
CN215002008U (en) Air conditioning system and air conditioner
JP2007210376A (en) Vehicle air conditioner
JP5228661B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees