JP2012013349A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2012013349A
JP2012013349A JP2010151771A JP2010151771A JP2012013349A JP 2012013349 A JP2012013349 A JP 2012013349A JP 2010151771 A JP2010151771 A JP 2010151771A JP 2010151771 A JP2010151771 A JP 2010151771A JP 2012013349 A JP2012013349 A JP 2012013349A
Authority
JP
Japan
Prior art keywords
heat storage
compressor
temperature
refrigerant
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010151771A
Other languages
Japanese (ja)
Other versions
JP5659403B2 (en
Inventor
Akira Fujitaka
章 藤高
Yoshikazu Kawabe
義和 川邉
Kazuhiko Marumoto
一彦 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010151771A priority Critical patent/JP5659403B2/en
Publication of JP2012013349A publication Critical patent/JP2012013349A/en
Application granted granted Critical
Publication of JP5659403B2 publication Critical patent/JP5659403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To maintain the viscosity of lubricating oil by suppressing a coolant from being dissolved into the lubricating oil, preventing deterioration of the reliability of a compression mechanism, relating to a refrigerating cycle device which, as a working fluid, uses a single coolant composed of the coolant whose main component is hydrofluoroolefin containing a double bond between carbons, or a mixed coolant containing the coolant.SOLUTION: The refrigerating cycle device is composed of a compressor 3, an indoor heat exchanger 5, an expansion valve 6, and an outdoor heat exchanger 7 which are connected to one another through piping. The device includes a heat storage device including a heat storage material 17 which is arranged to enclose the compressor 3 for accumulating heat generated by the compressor 3, and a heat storage heat exchanger 16 which performs heat exchange between the coolant and the heat accumulated in the heat storage material 17.

Description

本発明は、圧縮機と室内熱交換器と膨張弁と室外熱交換器が互いに冷媒配管で接続された冷凍サイクル装置に関し、特に圧縮機の信頼性を向上させることができる冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus in which a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are connected to each other by refrigerant piping, and more particularly to a refrigeration cycle apparatus that can improve the reliability of the compressor.

従来、ヒートポンプ式冷凍サイクル装置に用いられている密閉型圧縮機では、密閉型圧縮機内に貯留する潤滑油を加熱するヒータを備えたものがある(例えば、特許文献1参照)。図5は、従来の密閉型圧縮機を示すものである。密閉容器内に潤滑油とガス冷媒とが共存し、外気温が低い状態などでは、潤滑油に多量の冷媒が溶け込み、潤滑油の粘度が低下する。そして、粘度が低下したままの状態で圧縮機31を運転すると、低粘度の潤滑油が圧縮機構などへ供給されることとなり、潤滑不良が生じて圧縮機31の損傷を招くという課題がある。この課題に対して、密閉型圧縮機31内に貯留する潤滑油をヒータ32で加熱し、潤滑油に溶け込んでいる冷媒量を削減することで潤滑油の粘度を回復させるという対策が提案されている。   Conventionally, some hermetic compressors used in heat pump refrigeration cycle apparatuses include a heater that heats lubricating oil stored in the hermetic compressor (see, for example, Patent Document 1). FIG. 5 shows a conventional hermetic compressor. When the lubricating oil and the gas refrigerant coexist in the sealed container and the outside air temperature is low, a large amount of the refrigerant dissolves in the lubricating oil, and the viscosity of the lubricating oil decreases. When the compressor 31 is operated in a state in which the viscosity is lowered, low-viscosity lubricating oil is supplied to the compression mechanism and the like, and there is a problem in that poor lubrication occurs and the compressor 31 is damaged. In response to this problem, a countermeasure is proposed in which the lubricating oil stored in the hermetic compressor 31 is heated by the heater 32 and the amount of refrigerant dissolved in the lubricating oil is reduced to restore the viscosity of the lubricating oil. Yes.

また、現在、冷凍サイクル装置などの冷媒には、ハイドロフルオロカーボン(HFC)冷媒、例えば、R−410A等が使用されている。しかしこのHFC系冷媒は、温暖化係数が非常に高く、温暖化防止のため、排出規制の対象となっている。そのため、温暖化係数の低いハイドロフルオロオレフィン(HFO)冷媒を冷凍サイクル装置の冷媒として用いることが検討されている。   Currently, hydrofluorocarbon (HFC) refrigerants such as R-410A are used for refrigerants such as refrigeration cycle apparatuses. However, this HFC refrigerant has a very high global warming potential and is subject to emission regulations to prevent global warming. Therefore, it has been studied to use a hydrofluoroolefin (HFO) refrigerant having a low global warming potential as the refrigerant of the refrigeration cycle apparatus.

特開平10−148405号公報JP-A-10-148405

しかしながら、塩素原子を含まず地球温暖化係数の低い炭素と炭素間に二重結合を有するハイドロフルオロオレフィン(HFO)冷媒、例えばHFO−1234yf等を作動流体として使用する場合、冷媒の密度は、従来の冷凍サイクル装置に使用されているハイドロフルオロカーボン(HFC)冷媒、例えばR−410A等より低下するため、従来の形状の圧縮機を使用すると、同じ能力を出すためには圧縮機のシリンダ容積を増加させる必要があり、圧縮機の容器は大きくなる。   However, when a hydrofluoroolefin (HFO) refrigerant that does not contain a chlorine atom and has a low global warming potential and a double bond between carbons, such as HFO-1234yf, is used as a working fluid, the density of the refrigerant is conventionally Because it is lower than the hydrofluorocarbon (HFC) refrigerant used in the refrigeration cycle equipment, such as R-410A, etc., using a conventional shaped compressor will increase the cylinder volume of the compressor to achieve the same capacity And the compressor container becomes larger.

その影響で、従来のようにヒータで加熱する構成では、潤滑油を均一に加熱することが難しくなり、該潤滑油の温度分布にムラが生じる可能性が生じる。その場合、高温となった部分において、HFO冷媒は炭素と炭素間に二重結合を有するため、R−410A等と比較して分解し易くなり、その結果、潤滑油や冷凍サイクルに使用されている樹脂やエラストマー等の材料劣化を生じるおそれがある。また、HFO冷媒はR−410A等に比べ、圧縮機内の潤滑油に冷媒が溶け込みやすいため、潤滑油の粘度が低下しやすい。これにより、粘度の低い潤滑油が供給されるおそれがあり、潤滑不良によって圧縮機の信頼性が低下してしまうという課題を有していた。   As a result, in the conventional configuration in which heating is performed with a heater, it becomes difficult to uniformly heat the lubricating oil, which may cause unevenness in the temperature distribution of the lubricating oil. In that case, since the HFO refrigerant has a double bond between carbon in the part where the temperature becomes high, it becomes easier to decompose than R-410A and the like, and as a result, it is used in lubricating oil and refrigeration cycle. There is a risk of material deterioration such as resin and elastomer. In addition, the HFO refrigerant is more likely to dissolve in the lubricating oil in the compressor than the R-410A or the like, so the viscosity of the lubricating oil is likely to decrease. Thereby, there exists a possibility that lubricating oil with low viscosity may be supplied, and had the subject that the reliability of a compressor fell by lubrication failure.

本発明は、前記従来の課題を解決するもので、作動流体に塩素原子を含まず地球温暖化係数の低い炭素と炭素間に二重結合を有するハイドロフルオロオレフィンを主体とした冷媒を使用する場合においても、信頼性を維持できる冷凍サイクル装置の提供を目的とする。   The present invention solves the above-mentioned conventional problem, and uses a refrigerant mainly containing hydrofluoroolefin having no chlorine atom in the working fluid and having a low global warming potential and a double bond between carbons. The purpose of the present invention is to provide a refrigeration cycle apparatus that can maintain reliability.

前記従来の課題を解決するために本発明は、作動流体は、炭素と炭素間に二重結合を有するハイドロフルオロオレフィンをベース成分とした冷媒からなる単一冷媒または冷媒を含む混合冷媒とし、圧縮機と、圧縮機と第1配管を介して接続された室内熱交換器と、室内熱交換器と第2配管を介して接続された膨張弁と、膨張弁と第3配管を介して接続された室外熱交換器とを備え、室外熱交換器は圧縮機に第4配管を介して接続された冷凍サイクル装置であって、圧縮機を囲むように配置され圧縮機で発生した熱を蓄積する蓄熱材と、蓄熱材に蓄積された熱と冷媒とで熱交換を行う蓄熱熱交換器とを有する蓄熱装置を備えたものである。   In order to solve the above-described conventional problems, the present invention provides a working fluid as a single refrigerant or a mixed refrigerant including a refrigerant composed of a refrigerant composed of carbon and a hydrofluoroolefin having a double bond between carbon as a base component. An indoor heat exchanger connected to the compressor via the first pipe, an expansion valve connected to the indoor heat exchanger via the second pipe, and an expansion valve connected to the third pipe. The outdoor heat exchanger is a refrigeration cycle apparatus connected to the compressor via a fourth pipe, and is arranged so as to surround the compressor and accumulates heat generated by the compressor. A heat storage device having a heat storage material and a heat storage heat exchanger that performs heat exchange between the heat stored in the heat storage material and the refrigerant is provided.

これにより、塩素原子を含まず地球温暖化係数の低い炭素と炭素間に二重結合を有するハイドロフルオロオレフィンを主体とした冷媒を使用する場合においても、圧縮機を囲むように配置された蓄熱材により、圧縮機で発生した熱を利用して、圧縮機停止時においても潤滑油の温度低下を防止し、潤滑油への冷媒の過度の溶け込みを抑制することができる。   As a result, the heat storage material arranged so as to surround the compressor even in the case of using a refrigerant mainly containing hydrofluoroolefin which does not contain chlorine atoms and has a low global warming potential and a double bond between carbons. Thus, by using the heat generated in the compressor, it is possible to prevent the temperature of the lubricating oil from decreasing even when the compressor is stopped, and to suppress excessive melting of the refrigerant into the lubricating oil.

本発明によれば、圧縮機運転開始時等の潤滑油の粘度低下に起因する潤滑不良を確実に防止し、地球環境にやさしく、圧縮機構の信頼性低下を防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, the poor lubrication resulting from the viscosity fall of lubricating oil at the time of a compressor driving | operation start etc. can be prevented reliably, it can be easy to a global environment, and the reliability fall of a compression mechanism can be prevented.

本発明の実施の形態に係る冷凍サイクル装置の構成を示す図The figure which shows the structure of the refrigerating-cycle apparatus which concerns on embodiment of this invention. 本発明の実施の形態の冷媒の圧力、潤滑油に対する冷媒溶解量および温度の関係を示す相関図FIG. 5 is a correlation diagram showing the relationship between the refrigerant pressure, the amount of refrigerant dissolved in lubricating oil, and the temperature according to the embodiment of the present invention. 本発明の実施の形態における潤滑油の温度、粘度、および冷媒溶解量の関係を示す相関図Correlation diagram showing the relationship between the temperature, viscosity, and amount of refrigerant dissolved in the lubricating oil in the embodiment of the present invention 本発明の実施の形態における2成分を混合した冷媒の混合比率による地球温暖化係数を示した特性図The characteristic view which showed the global warming coefficient by the mixing ratio of the refrigerant | coolant which mixed two components in embodiment of this invention 従来の圧縮機の構成を示す模式図Schematic diagram showing the configuration of a conventional compressor

本発明の第1の実施の形態による冷凍サイクル装置は、圧縮機と、圧縮機と第1配管を介して接続された室内熱交換器と、室内熱交換器と第2配管を介して接続された膨張弁と、膨張弁と第3配管を介して接続された室外熱交換器とを備え、室外熱交換器は圧縮機に第4配管を介して接続された冷凍サイクル装置であって、炭素と炭素間に二重結合を有するハイドロフルオロオレフィンを少なくとも含む冷媒を用い、圧縮機を囲むように配置され圧縮機で発生した熱を蓄積する蓄熱材と、蓄熱材に蓄積された熱と冷媒とで熱交換を行う蓄熱熱交換器とを有する蓄熱装置を備えることを特徴とする。   The refrigeration cycle apparatus according to the first embodiment of the present invention is connected to a compressor, an indoor heat exchanger connected to the compressor via a first pipe, an indoor heat exchanger and a second pipe. An expansion valve, and an outdoor heat exchanger connected to the expansion valve via a third pipe, the outdoor heat exchanger being a refrigeration cycle apparatus connected to the compressor via a fourth pipe, And a refrigerant containing at least a hydrofluoroolefin having a double bond between carbons, a heat storage material that is arranged to surround the compressor and accumulates heat generated by the compressor, and heat and refrigerant accumulated in the heat storage material, And a heat storage device having a heat storage heat exchanger for exchanging heat.

この構成により、冷媒の溶け込みを抑制することで圧縮機構の信頼性低下を防止することができる。   With this configuration, it is possible to prevent a reduction in the reliability of the compression mechanism by suppressing the penetration of the refrigerant.

本発明の第2の実施の形態は、第1の実施の形態による冷凍サイクル装置において、蓄熱装置の蓄熱材の温度を検出する温度検出手段を備え、蓄熱材の温度により、冷凍サイクル装置の運転を制御し、冷媒の溶け込みを抑制することで圧縮機構の信頼性低下を防止することができる。   According to a second embodiment of the present invention, in the refrigeration cycle apparatus according to the first embodiment, temperature detection means for detecting the temperature of the heat storage material of the heat storage device is provided, and the operation of the refrigeration cycle apparatus is performed according to the temperature of the heat storage material. It is possible to prevent a reduction in the reliability of the compression mechanism by controlling the refrigerant and suppressing the melting of the refrigerant.

本発明の第3の実施の形態は、第1から第2の実施の形態による冷凍サイクル装置において、冷凍サイクル装置の運転停止時に、温度検出手段により検出された蓄熱装置の蓄熱材の温度が設定値より低い場合、蓄熱材の温度が設定値より高くなるまで、圧縮機の運転を継続することにより、運転停止時に潤滑油へ冷媒の溶け込みを抑制することで圧縮機構の信頼性低下を防止することができる。   In the refrigeration cycle apparatus according to the first to second embodiments, the third embodiment of the present invention sets the temperature of the heat storage material of the heat storage apparatus detected by the temperature detection means when the operation of the refrigeration cycle apparatus is stopped. If the temperature is lower than the value, the compressor operation is continued until the temperature of the heat storage material becomes higher than the set value, thereby preventing the refrigerant from being dissolved in the lubricating oil when the operation is stopped, thereby preventing the reliability of the compression mechanism from being lowered. be able to.

本発明の第4の実施の形態は、第1から第2の実施の形態による冷凍サイクル装置において、室外温度を検出する室外温度検出手段とタイマーを備え、冷凍サイクル装置の運転停止時に、タイマーにより一定時間後に運転開始するように設定され、温度検出手段により検出された蓄熱装置の蓄熱材の温度が設定値より低い場合、室外温度検出手段により検出された室外温度と蓄熱材の温度とターマーにより設定された停止時間を用い、蓄熱材の温度の低下温度を算出し、運転開始時に蓄熱材の温度が第2の設定値以上となるように、蓄熱材の温度が第2の設定値に低下温度を加えた第3の設定値より高くなるまで、圧縮機の運転を継続することより、運転停止時に潤滑油へ冷媒の溶け込みを抑制することで圧縮機構の信頼性低下を防止することができる。   In the refrigeration cycle apparatus according to the first to second embodiments, the fourth embodiment of the present invention includes an outdoor temperature detection means for detecting the outdoor temperature and a timer. When the refrigeration cycle apparatus is stopped, the timer When the temperature of the heat storage material of the heat storage device detected by the temperature detection means is lower than the set value, the temperature is determined by the outdoor temperature detected by the outdoor temperature detection means, the temperature of the heat storage material, and the termer. Using the set stop time, calculate the temperature drop of the heat storage material, and the temperature of the heat storage material is lowered to the second set value so that the temperature of the heat storage material becomes equal to or higher than the second set value at the start of operation. By continuing the operation of the compressor until it becomes higher than the third set value including the temperature, it is possible to prevent the deterioration of the reliability of the compression mechanism by suppressing the melting of the refrigerant into the lubricating oil when the operation is stopped. Can.

本発明の第5の実施の形態は、第1から第4の実施の形態による冷凍サイクル装置において、圧縮機と第3配管とを第1電磁弁を介し接続する第5配管と、第2配管と蓄熱熱交換器とを第2電磁弁を介し接続する第6配管と、蓄熱熱交換器と第4配管とを接続し、蓄熱熱交換器からの冷媒を第4配管に導く第7配管とをさらに備え、蓄熱装置に蓄えられた熱を、運転停止時に潤滑油へ冷媒の溶け込みを抑制することに利用し、圧縮機構の信頼性低下を防止することができ、さらに、低外気温時の運転開始時や室外熱交換器への着霜を取る除霜運転時に利用することで、性能の向上を図ることができる。   According to a fifth embodiment of the present invention, in the refrigeration cycle apparatus according to the first to fourth embodiments, a fifth pipe and a second pipe for connecting the compressor and the third pipe via a first electromagnetic valve. A sixth pipe connecting the heat storage heat exchanger and the heat storage heat exchanger via the second solenoid valve, a seventh pipe connecting the heat storage heat exchanger and the fourth pipe, and leading the refrigerant from the heat storage heat exchanger to the fourth pipe; The heat stored in the heat storage device can be used to suppress the refrigerant from being melted into the lubricating oil when the operation is stopped, and the reliability of the compression mechanism can be prevented from being lowered. The performance can be improved by using it at the start of operation or defrosting operation for removing frost on the outdoor heat exchanger.

本発明の第6の実施の形態は、第1から第5の実施の形態による冷凍サイクル装置において、冷媒は、ハイドロフルオロオレフィンはテトラフルオロプロペンまたはトリフルオロプロペンを単一冷媒、またはそれらを主成分とし、地球温暖化係数が5以上、750以下となるように、望ましくは350以下、さらに望ましくは150以下となるようにそれぞれ2成分混合もしくは3成分混合した冷媒を用い、吐出温度を低く抑え、冷媒の分解を抑えることが可能となり、効果的に高信頼性で高効率な冷凍サイクル装置を提供できる。   According to a sixth embodiment of the present invention, in the refrigeration cycle apparatus according to the first to fifth embodiments, the refrigerant is hydrofluoroolefin, tetrafluoropropene or trifluoropropene is a single refrigerant, or a main component thereof. And using a refrigerant in which two or three components are mixed so that the global warming potential is 5 or more and 750 or less, preferably 350 or less, more preferably 150 or less, respectively, and the discharge temperature is kept low, It becomes possible to suppress decomposition of the refrigerant, and it is possible to effectively provide a highly reliable and highly efficient refrigeration cycle apparatus.

本発明の第7の実施の形態は、第1から第5の実施の形態による冷凍サイクル装置において、冷媒は、ハイドロフルオロオレフィンはテトラフルオロプロペンまたはトリフルオロプロペンをベース成分とし、ジフルオロメタンまたはペンタフルオロエタンまたはテトラフルオロエタンを、地球温暖化係数が5以上、750以下となるように、望ましくは350以下、さらに望ましくは150以下となるようにそれぞれ2成分混合もしくは3成分混合した冷媒を用い、吐出温度を低く抑え、冷媒の分解を抑えることが可能となり、効果的に高信頼性で高効率な冷凍サイクル装置を提供できる。   According to a seventh embodiment of the present invention, in the refrigeration cycle apparatus according to the first to fifth embodiments, the refrigerant is a hydrofluoroolefin having tetrafluoropropene or trifluoropropene as a base component, and difluoromethane or pentafluoro. Discharge using ethane or tetrafluoroethane, which is a mixture of two or three components so that the global warming potential is 5 or more and 750 or less, preferably 350 or less, and more preferably 150 or less. The temperature can be kept low and the decomposition of the refrigerant can be suppressed, and a highly reliable and highly efficient refrigeration cycle apparatus can be provided effectively.

本発明の第8の実施の形態は、第1から第7の実施の形態による冷凍サイクル装置において、圧縮機に用いる冷凍機油として、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコールまたはそのモノエーテルとポリビニルエーテルの共重合体、ポリオールエステル類、及びポリカーボネート類のいずれかの含酸素化合物を主成分とする合成油か、アルキルベンゼン類やαオレフィン類を主成分とする合成油を用い、圧縮機の潤滑性を高め、摺動部の温度を低く抑え、冷媒の分解を抑えることが可能となり、効果的に高信頼性で高効率な冷凍サイクル装置を提供できる。   In the refrigeration cycle apparatus according to the first to seventh embodiments, the eighth embodiment of the present invention uses polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycols as refrigeration oils used in compressors. Alternatively, synthetic oils mainly composed of oxygen-containing compounds of monoether and polyvinyl ether, polyol esters, and polycarbonates, or synthetic oils mainly composed of alkylbenzenes and α-olefins are used. In addition, the lubricity of the compressor can be improved, the temperature of the sliding portion can be kept low, the decomposition of the refrigerant can be suppressed, and a highly reliable and highly efficient refrigeration cycle apparatus can be provided effectively.

以下に、本発明の冷凍サイクル装置の一実施例について説明する。なお、この実施の形態によって本発明が限定されるものではない。   Below, one Example of the refrigerating-cycle apparatus of this invention is described. Note that the present invention is not limited to the embodiments.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1に係る冷凍サイクル装置の構成を示している。冷凍サイクル装置は、冷媒配管で互いに接続された室外機1と室内機2とで構成されている。
(Embodiment 1)
FIG. 1 shows the configuration of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. The refrigeration cycle apparatus includes an outdoor unit 1 and an indoor unit 2 that are connected to each other through a refrigerant pipe.

図1に示されるように、室外機1の内部には、圧縮機3と四方弁4と膨張弁6と室外熱交換器7とが設けられ、室内機2の内部には、室内熱交換器5が設けられ、これらは冷媒配管を介して互いに接続されることで冷凍サイクルを構成している。   As shown in FIG. 1, a compressor 3, a four-way valve 4, an expansion valve 6, and an outdoor heat exchanger 7 are provided inside the outdoor unit 1, and an indoor heat exchanger is provided inside the indoor unit 2. 5 are provided and are connected to each other through a refrigerant pipe to constitute a refrigeration cycle.

さらに詳述すると、圧縮機3と室内熱交換器5は、四方弁4が設けられた第1配管8を介して接続され、室内熱交換器5と膨張弁6は、第2配管9を介して接続されている。また、膨張弁6と室外熱交換器7は第3配管10を介して接続され、室外熱交換器7と圧縮機3は第4配管11を介して接続されている。   More specifically, the compressor 3 and the indoor heat exchanger 5 are connected via a first pipe 8 provided with a four-way valve 4, and the indoor heat exchanger 5 and the expansion valve 6 are connected via a second pipe 9. Connected. The expansion valve 6 and the outdoor heat exchanger 7 are connected via a third pipe 10, and the outdoor heat exchanger 7 and the compressor 3 are connected via a fourth pipe 11.

第4配管11の中間部には四方弁4が配置されており、圧縮機3の冷媒吸入側における第4配管11には、液相冷媒と気相冷媒を分離するためのアキュームレータ12が設けられている。   A four-way valve 4 is arranged in the middle part of the fourth pipe 11, and an accumulator 12 for separating the liquid phase refrigerant and the gas phase refrigerant is provided in the fourth pipe 11 on the refrigerant suction side of the compressor 3. ing.

また、圧縮機3と第3配管10は、第5配管13を介して接続されており、第5配管13には第1電磁弁14が設けられている。   The compressor 3 and the third pipe 10 are connected via a fifth pipe 13, and the first solenoid valve 14 is provided in the fifth pipe 13.

さらに、圧縮機3の周囲には蓄熱槽15が設けられ、蓄熱槽15の内部には、蓄熱熱交換器16が設けられるとともに、蓄熱熱交換器16と熱交換するための蓄熱材(例えば、エチレングリコール水溶液)17が充填されており、蓄熱槽15と蓄熱熱交換器16と蓄熱材17とで蓄熱装置を構成している。   Furthermore, a heat storage tank 15 is provided around the compressor 3, and a heat storage heat exchanger 16 is provided inside the heat storage tank 15, and a heat storage material for exchanging heat with the heat storage heat exchanger 16 (for example, An ethylene glycol aqueous solution) 17 is filled, and the heat storage tank 15, the heat storage heat exchanger 16, and the heat storage material 17 constitute a heat storage device.

また、第2配管9と蓄熱熱交換器16は第6配管18を介して接続され、蓄熱熱交換器16と第4配管11は第7配管19を介して接続されており、第6配管18には第2電磁弁20が設けられている。   The second pipe 9 and the heat storage heat exchanger 16 are connected via a sixth pipe 18, the heat storage heat exchanger 16 and the fourth pipe 11 are connected via a seventh pipe 19, and the sixth pipe 18. Is provided with a second electromagnetic valve 20.

室内機2の内部には、室内熱交換器5に加えて、送風ファン(図示せず)と上下羽根(図示せず)と左右羽根(図示せず)とが設けられており、室内熱交換器5は、送風ファンにより室内機2の内部に吸込まれた室内空気と、室内熱交換器5の内部を流れる冷媒との熱交換を行い、暖房時には熱交換により暖められた空気を室内に吹き出す一方、冷房時には熱交換により冷却された空気を室内に吹き出す。上下羽根は、室内機2から吹き出される空気の方向を必要に応じて上下に変更し、左右羽根は、室内機2から吹き出される空気の方向を必要に応じて左右に変更する。   In addition to the indoor heat exchanger 5, an air blower fan (not shown), upper and lower blades (not shown), and left and right blades (not shown) are provided inside the indoor unit 2, and indoor heat exchange is performed. The unit 5 exchanges heat between indoor air sucked into the interior of the indoor unit 2 by the blower fan and refrigerant flowing through the interior of the indoor heat exchanger 5, and blows out air warmed by heat exchange into the room during heating. On the other hand, air cooled by heat exchange is blown into the room during cooling. The upper and lower blades change the direction of air blown from the indoor unit 2 up and down as necessary, and the left and right blades change the direction of air blown from the indoor unit 2 to right and left as needed.

なお、圧縮機3、送風ファン、上下羽根、左右羽根、四方弁4、膨張弁6、第1電磁弁14、第2電磁弁20等は制御装置(図示せず、例えばマイコン)に電気的に接続され、制御装置により制御される。   The compressor 3, the blower fan, the upper and lower blades, the left and right blades, the four-way valve 4, the expansion valve 6, the first electromagnetic valve 14, the second electromagnetic valve 20 and the like are electrically connected to a control device (not shown, for example, a microcomputer). Connected and controlled by the controller.

また、蓄熱熱交換器16の近傍には、蓄熱材の温度を検出する温度検出手段としての蓄熱温度センサ21が設けられている。室外熱交換器7の近傍には、外気温度を検出する室外温度検出手段としての外気温センサ22が設けられている。   Further, in the vicinity of the heat storage heat exchanger 16, a heat storage temperature sensor 21 is provided as temperature detection means for detecting the temperature of the heat storage material. In the vicinity of the outdoor heat exchanger 7, an outside air temperature sensor 22 is provided as an outside temperature detecting means for detecting the outside air temperature.

さらに、制御装置には、運転停止した冷凍サイクル装置を一定時間後に運転開始するように設定するためのタイマー(図示せず)を備えている。   Furthermore, the control device includes a timer (not shown) for setting the refrigeration cycle apparatus that has been stopped to start operation after a certain time.

本実施例による冷暖房装置を構成する冷媒回路には、冷媒は、ハイドロフルオロオレフィンはテトラフルオロプロペン(HFO1234yfまたはHFO1234ze)またはトリフルオロプロペン(HFO1243zf)を、単一冷媒、またはそれらを主成分とし、ジフルオロメタン(HFC32)またはペンタフルオロエタン(HFC125)またはテトラフルオロエタン(HFC134a)を、地球温暖化係数が5以上、750以下となるように、望ましくは350以下、さらに望ましくは150以下となるようにそれぞれ2成分混合もしくは3成分混合したものである。   In the refrigerant circuit constituting the air conditioning apparatus according to the present embodiment, the refrigerant is hydrofluoroolefin, tetrafluoropropene (HFO1234yf or HFO1234ze) or trifluoropropene (HFO1243zf), a single refrigerant, or a main component thereof, and difluoro. Methane (HFC32) or pentafluoroethane (HFC125) or tetrafluoroethane (HFC134a) is used so that the global warming potential is 5 or more and 750 or less, preferably 350 or less, and more preferably 150 or less. Two-component mixed or three-component mixed.

また、圧縮機3に用いる冷凍機油は、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコールまたはそのモノエーテルとポリビニルエーテルの共重合体、ポリオールエステル類、及びポリカーボネート類のいずれかの含酸素化合物を主成分とする合成油か、アルキルベンゼン類やαオレフィン類を主成分とする合成油である。   The refrigerating machine oil used in the compressor 3 is any one of polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycols or their monoether and polyvinyl ether copolymers, polyol esters, and polycarbonates. It is a synthetic oil mainly composed of oxygen-containing compounds or a synthetic oil mainly composed of alkylbenzenes and α-olefins.

上記構成の本発明に係る冷凍サイクル装置において、各部品の相互の接続関係と機能を、暖房運転時を例にとり冷媒の流れとともに説明する。   In the refrigeration cycle apparatus according to the present invention having the above-described configuration, the mutual connection relationship and function of each component will be described together with the flow of the refrigerant in the heating operation as an example.

圧縮機3の吐出口から吐出された冷媒は、第1配管8を通って四方弁4から室内熱交換器5へと至る。室内熱交換器5で室内空気と熱交換して凝縮した冷媒は、室内熱交換器5を出て第2配管9を通り、膨張弁6に至る。膨張弁6で減圧した冷媒は、第3配管10を通って室外熱交換器7に至り、室外熱交換器7で室外空気と熱交換して蒸発した冷媒は、第4配管11と四方弁4とアキュームレータ12を通って圧縮機3の吸入口へと戻る。   The refrigerant discharged from the discharge port of the compressor 3 passes from the four-way valve 4 to the indoor heat exchanger 5 through the first pipe 8. The refrigerant condensed by exchanging heat with indoor air in the indoor heat exchanger 5 exits the indoor heat exchanger 5, passes through the second pipe 9, and reaches the expansion valve 6. The refrigerant depressurized by the expansion valve 6 reaches the outdoor heat exchanger 7 through the third pipe 10, and the refrigerant evaporated by exchanging heat with the outdoor air in the outdoor heat exchanger 7 is the fourth pipe 11 and the four-way valve 4. And return to the suction port of the compressor 3 through the accumulator 12.

また、第1配管8の圧縮機3吐出口と四方弁4の間から分岐した第5配管13は、第1電磁弁14を介して第3配管10の膨張弁6と室外熱交換器7の間に合流している。   The fifth pipe 13 branched from the compressor 3 discharge port of the first pipe 8 and the four-way valve 4 is connected to the expansion valve 6 of the third pipe 10 and the outdoor heat exchanger 7 via the first electromagnetic valve 14. I am joining in between.

さらに、内部に蓄熱材17と蓄熱熱交換器16を収納した蓄熱槽15は、圧縮機3に接して取り囲むように配置され、圧縮機3で発生した熱を蓄熱材17に蓄積し、第2配管9から分岐した第6配管18は、第2電磁弁20を経て蓄熱熱交換器16の入口へと至り、蓄熱熱交換器16の出口から出た第7配管19は、第4配管11における四方弁4とアキュームレータ12の間に合流する。   Furthermore, the heat storage tank 15 in which the heat storage material 17 and the heat storage heat exchanger 16 are housed is disposed so as to be in contact with and surround the compressor 3, and heat generated in the compressor 3 is accumulated in the heat storage material 17, and the second The sixth pipe 18 branched from the pipe 9 reaches the inlet of the heat storage heat exchanger 16 through the second electromagnetic valve 20, and the seventh pipe 19 that comes out from the outlet of the heat storage heat exchanger 16 is in the fourth pipe 11. It joins between the four-way valve 4 and the accumulator 12.

次に、通常暖房時の動作を説明する。   Next, the operation during normal heating will be described.

通常暖房運転時、第1電磁弁14と第2電磁弁20は閉制御されており、上述したように圧縮機3の吐出口から吐出された冷媒は、第1配管8を通って四方弁4から室内熱交換器5に至る。室内熱交換器5で室内空気と熱交換して凝縮した冷媒は、室内熱交換器5を出て、第2配管9を通り膨張弁6に至り、膨張弁6で減圧した冷媒は、第3配管10を通って室外熱交換器7に至る。室外熱交換器7で室外空気と熱交換して蒸発した冷媒は、第4配管11を通って四方弁4から圧縮機3の吸入口へと戻る。   During the normal heating operation, the first electromagnetic valve 14 and the second electromagnetic valve 20 are controlled to be closed, and the refrigerant discharged from the discharge port of the compressor 3 as described above passes through the first pipe 8 and the four-way valve 4. To the indoor heat exchanger 5. The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 5 exits the indoor heat exchanger 5, reaches the expansion valve 6 through the second pipe 9, and the refrigerant decompressed by the expansion valve 6 is the third refrigerant. It reaches the outdoor heat exchanger 7 through the pipe 10. The refrigerant evaporated by exchanging heat with outdoor air in the outdoor heat exchanger 7 returns from the four-way valve 4 to the suction port of the compressor 3 through the fourth pipe 11.

また、圧縮機3で発生した熱は、圧縮機3の外壁から蓄熱槽15の外壁を介して蓄熱槽15の内部に収容された蓄熱材17に蓄積される。   The heat generated in the compressor 3 is accumulated in the heat storage material 17 accommodated in the heat storage tank 15 from the outer wall of the compressor 3 through the outer wall of the heat storage tank 15.

次に、運転停止後の状態について説明する。   Next, the state after operation stop will be described.

図2は冷媒の圧力、潤滑油への冷媒溶解量および温度の関係を示す相関図である。また図3は潤滑油の温度、粘度、および冷媒溶解度の関係を示す相関図である。   FIG. 2 is a correlation diagram showing the relationship between the refrigerant pressure, the amount of refrigerant dissolved in the lubricating oil, and the temperature. FIG. 3 is a correlation diagram showing the relationship between the temperature, viscosity, and refrigerant solubility of the lubricating oil.

図2に示すように、潤滑油と冷媒の種類を特定した場合において、一定の圧力であれば、温度が低いほど潤滑油に対する冷媒の溶解量は増加する。また、図3に示すように、温度一定の条件で潤滑油への冷媒溶解量が大きいほど潤滑油の動粘度は低下する。   As shown in FIG. 2, when the types of the lubricating oil and the refrigerant are specified, if the pressure is constant, the amount of the refrigerant dissolved in the lubricating oil increases as the temperature decreases. Further, as shown in FIG. 3, the kinematic viscosity of the lubricating oil decreases as the amount of refrigerant dissolved in the lubricating oil increases under a constant temperature condition.

圧縮機3内には、潤滑油と冷媒とが共存し、圧縮機3が停止して潤滑油や冷媒の温度が低下して行くと、潤滑油に冷媒が溶け込み、潤滑油の粘度が低下するおそれがある。   In the compressor 3, the lubricating oil and the refrigerant coexist, and when the compressor 3 stops and the temperature of the lubricating oil and the refrigerant decreases, the refrigerant dissolves in the lubricating oil and the viscosity of the lubricating oil decreases. There is a fear.

しかし、本実施の形態では、圧縮機3が運転中、圧縮機3の周囲の蓄熱槽15内部の蓄熱材17に、圧縮機3で発生した熱が蓄積され、圧縮機3が停止し、圧縮機3の温度等が低下しても、蓄熱材17に蓄積された熱により、潤滑油は温度低下せず、潤滑油へ溶け込む冷媒量を減少させ、潤滑油の粘度低下を防止し、圧縮機3の信頼性低下を防止できる。   However, in the present embodiment, while the compressor 3 is in operation, the heat generated in the compressor 3 is accumulated in the heat storage material 17 inside the heat storage tank 15 around the compressor 3, and the compressor 3 is stopped and compressed. Even if the temperature or the like of the machine 3 decreases, the temperature of the lubricating oil does not decrease due to the heat accumulated in the heat storage material 17, the amount of refrigerant that dissolves in the lubricating oil is reduced, and the viscosity of the lubricating oil is prevented from decreasing. 3 can be prevented from lowering reliability.

さらに、運転停止時の動作について説明する。   Furthermore, the operation when the operation is stopped will be described.

本実施の形態では、冷凍サイクル装置の運転停止時に、蓄熱温度センサ21により検出された蓄熱装置の蓄熱材17の温度が設定値より低い場合、蓄熱材17の温度が設定値より高くなるまで、圧縮機3の運転を継続する。これによれば、外気温が低い場合でも、運転停止前に十分に蓄熱材17に蓄積された熱により、潤滑油は温度低下せず、潤滑油へ溶け込む冷媒量を減少させ、潤滑油の粘度低下を防止し、圧縮機3の信頼性低下を確実に防止できる。   In the present embodiment, when the temperature of the heat storage material 17 of the heat storage device detected by the heat storage temperature sensor 21 is lower than the set value when the operation of the refrigeration cycle apparatus is stopped, until the temperature of the heat storage material 17 becomes higher than the set value, The operation of the compressor 3 is continued. According to this, even when the outside air temperature is low, the temperature of the lubricating oil does not decrease due to the heat sufficiently accumulated in the heat storage material 17 before the operation is stopped, the amount of refrigerant dissolved in the lubricating oil is reduced, and the viscosity of the lubricating oil is reduced. It is possible to prevent the decrease and reliably prevent the reliability of the compressor 3 from decreasing.

また、冷凍サイクル装置の運転停止時に、タイマーにより冷凍サイクル装置が一定時間後に運転開始するように設定された場合には、次のような動作を行うことが望ましい。つまり、蓄熱温度センサ21により検出された蓄熱装置の蓄熱材17の温度が予め定められ制御装置のメモリなどに記憶された設定値より低い場合には、外気温センサ22により検出された室外温度と運転停止前の蓄熱材17の温度と、タイマーにより設定された冷凍サイクル装置の停止時間を用い、運転中の蓄熱材17の温度の低下温度を算出する。そして、運転再開時に、潤滑油へ溶け込む冷媒量を減少させ、潤滑油の粘度低下を防止するのに十分な蓄熱材17の温度である第2の設定値以上となるように、第2の設定値に算出した低下温度を加え、第3の設定値を算出する。そして、運転停止前に、第3の設定値より高くなるまで、圧縮機3の運転を継続する。これによれば、圧縮機3が停止し、圧縮機3の温度等が低下しても、蓄熱材17に蓄積された熱により、潤滑油は温度低下せず、潤滑油へ溶け込む冷媒量を減少させ、潤滑油の粘度低下を防止し、圧縮機3の信頼性低下を確実に防止できる。   Further, when the refrigeration cycle apparatus is set to start operation after a predetermined time by the timer when the operation of the refrigeration cycle apparatus is stopped, it is desirable to perform the following operation. That is, when the temperature of the heat storage material 17 of the heat storage device detected by the heat storage temperature sensor 21 is lower than a preset value stored in a memory or the like of the control device, the outdoor temperature detected by the outside air temperature sensor 22 Using the temperature of the heat storage material 17 before the operation stop and the stop time of the refrigeration cycle apparatus set by the timer, the temperature lowering temperature of the heat storage material 17 during the operation is calculated. Then, when the operation is resumed, the second setting is made so that the amount of refrigerant that dissolves in the lubricating oil is reduced and becomes equal to or higher than the second set value, which is the temperature of the heat storage material 17 sufficient to prevent the viscosity of the lubricating oil from decreasing. The calculated temperature drop is added to the value to calculate the third set value. Then, before the operation is stopped, the operation of the compressor 3 is continued until it becomes higher than the third set value. According to this, even if the compressor 3 is stopped and the temperature or the like of the compressor 3 is lowered, the temperature of the lubricating oil does not decrease due to the heat accumulated in the heat storage material 17, and the amount of refrigerant dissolved in the lubricating oil is reduced. Therefore, it is possible to prevent a decrease in the viscosity of the lubricating oil and reliably prevent a decrease in the reliability of the compressor 3.

本実施の形態によれば、塩素原子を含まず地球温暖化係数の低い炭素と炭素間に二重結合を有するハイドロフルオロオレフィンを主体とした冷媒を使用する場合においても、圧縮機を囲むように配置され蓄熱材により、圧縮機で発生した熱を利用して、圧縮機停止時においても潤滑油の温度低下を防止し、潤滑油への冷媒の過度の溶け込みを抑制することで、圧縮機運転開始時等の潤滑油の粘度低下に起因する潤滑不良を確実に防止し、地球環境にやさしく、圧縮機構の信頼性低下を防止することができる。   According to the present embodiment, even when using a refrigerant mainly containing hydrofluoroolefin that does not contain chlorine atoms and has a low global warming potential and a double bond between carbon, the compressor is surrounded. Compressor operation by using the heat storage material that is placed and using the heat generated in the compressor to prevent the temperature of the lubricant from dropping even when the compressor is stopped, and to suppress excessive melting of the refrigerant into the lubricant It is possible to reliably prevent poor lubrication due to a decrease in the viscosity of the lubricating oil at the start, to be friendly to the global environment, and to prevent a reduction in the reliability of the compression mechanism.

また、室外熱交換器7への着霜を取る除霜運転時には、第1電磁弁14、第2電磁弁20を開制御することにより、室外熱交換器7への除霜運転中にも、冷媒は蓄熱熱交換器16から吸熱することができるので、暖房運転を継続することができる。このため、圧縮機3の信頼性低下を防止することができるとともに、冷凍サイクル装置の性能の向上を図ることができる。   Further, during the defrosting operation for removing frost on the outdoor heat exchanger 7, by opening the first electromagnetic valve 14 and the second electromagnetic valve 20, during the defrosting operation to the outdoor heat exchanger 7, Since the refrigerant can absorb heat from the heat storage heat exchanger 16, the heating operation can be continued. For this reason, the reliability of the compressor 3 can be prevented from being lowered and the performance of the refrigeration cycle apparatus can be improved.

また、冷凍サイクル装置に封入される冷媒は、ハイドロフルオロオレフィンである、例えばテトラフルオロプロペン(HFO1234yfまたはHFO1234ze)を基本成分にジフルオロメタン(HFC32)とペンタフルオロエタン(HFC125)とのいずれか一方又は両方を、地球温暖化係数(GWP)が5以上で750以下、望ましくは5以上で350以下となるようにそれぞれ2成分混合もしくは3成分混合した冷媒であることが望ましい。または、ハイドロフルオロオレフィンの単一冷媒(GWP=4)であることが望ましい。   The refrigerant sealed in the refrigeration cycle apparatus is a hydrofluoroolefin, for example, tetrafluoropropene (HFO1234yf or HFO1234ze) as a basic component, and either or both of difluoromethane (HFC32) and pentafluoroethane (HFC125). Is preferably a refrigerant in which two components or three components are mixed such that the global warming potential (GWP) is 5 or more and 750 or less, preferably 5 or more and 350 or less. Or it is desirable that it is a single refrigerant (GWP = 4) of hydrofluoroolefin.

図4は、テトラフルオロプロペンとジフルオロメタン又はペンタフルオロエタンとの2成分を混合した冷媒の混合比率による地球温暖化係数を示した特性図である。具体的には図4に示すように、2成分混合の場合にはテトラフルオロプロペンとジフルオロメタンとを混合してGWP350以下とするためにはジフルオロメタンを51wt%以下、テトラフルオロプロペンとペンタフルオロエタンとを混合してGWP750以下とするためにはペンタフルオロエタンを21.3wt%以下、さらにGWP350以下とするためにはペンタフルオロエタンを9.9wt%以下と混合することになる。   FIG. 4 is a characteristic diagram showing a global warming potential according to a mixing ratio of a refrigerant in which two components of tetrafluoropropene and difluoromethane or pentafluoroethane are mixed. Specifically, as shown in FIG. 4, in the case of mixing two components, in order to mix tetrafluoropropene and difluoromethane to make GWP 350 or less, difluoromethane is 51 wt% or less, tetrafluoropropene and pentafluoroethane. In order to make GWP750 or less by mixing the above, pentafluoroethane is mixed with 21.3 wt% or less, and in order to make GWP350 or less, pentafluoroethane is mixed with 9.9 wt% or less.

また、冷媒をテトラフルオロプロペンの単一冷媒とした時にはGWP4となり極めて良好な値を示す。しかしながら、ハイドロフルオロカーボンと混合した冷媒に比べて比容積が大きいことなどから冷凍能力が低くなるため、より大きな冷却サイクル装置が必要になる。換言すれば、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンを基本成分とし、2重結合を有しないハイドロフルオロカーボンを混合した冷媒を用いれば、ハイドロフルオロオレフィンの単一冷媒と比較して冷凍能力などの所定の特性を改善して冷媒として使用しやすくすることができる。従って、封入する冷媒において、単一冷媒を含めてテトラフルオロプロペンの割合をどれほどにするかは、圧縮機を組み込む冷却サイクル装置等の目的や上述したGWPの制限などの条件に応じて適宜選択すればよい。   Also, when the refrigerant is a single refrigerant of tetrafluoropropene, it becomes GWP4 and shows a very good value. However, since the refrigerating capacity is reduced due to the large specific volume as compared with the refrigerant mixed with hydrofluorocarbon, a larger cooling cycle device is required. In other words, if a refrigerant in which a hydrofluoroolefin having a double bond between carbon and carbon is used as a basic component and a hydrofluorocarbon having no double bond is used, the refrigerant is refrigerated as compared with a single refrigerant of hydrofluoroolefin. It is possible to improve the predetermined characteristics such as capacity and make it easier to use as a refrigerant. Therefore, in the refrigerant to be sealed, the ratio of tetrafluoropropene including a single refrigerant is appropriately selected according to the purpose of the cooling cycle apparatus incorporating the compressor and the above-mentioned conditions such as the GWP restriction. That's fine.

これによって回収されない冷媒が大気に放出されても地球温暖化に対しその影響を極少に保つことができる。また前記比率で混合された混合冷媒は、非共沸混合冷媒にも関わらず温度差を小さくでき擬似共沸混合冷媒に挙動が近づくため、冷凍サイクル装置の冷却性能や冷却性能係数(COP)を改善することができる。   Even if the refrigerant | coolant which is not collect | recovered by this is discharge | released to air | atmosphere, the influence can be kept to the minimum with respect to global warming. In addition, the mixed refrigerant mixed at the above ratio can reduce the temperature difference in spite of the non-azeotropic mixed refrigerant and behaves like a pseudo azeotropic mixed refrigerant. Therefore, the cooling performance and the cooling performance coefficient (COP) of the refrigeration cycle apparatus are increased. Can be improved.

本発明に係る冷凍サイクル装置は、潤滑油へ溶け込む冷媒量を減少させ、潤滑油の粘度低下を防止し、圧縮機3の信頼性低下を確実に防止できるので、冷凍サイクルを用いる冷蔵庫、ヒートポンプ給湯器、ヒートポンプ式洗濯機等に有用である。   The refrigeration cycle apparatus according to the present invention can reduce the amount of refrigerant dissolved in the lubricating oil, prevent the viscosity of the lubricating oil from being lowered, and reliably prevent the reliability of the compressor 3 from being lowered. This is useful for a washing machine, a heat pump type washing machine and the like.

1 室外機
2 室内機
3 圧縮機
4 四方弁
5 室内熱交換器
6 膨張弁
7 室外熱交換器
8 第1配管
9 第2配管
10 第3配管
11 第4配管
12 アキュームレータ
13 第5配管
14 第1電磁弁
15 蓄熱槽
16 蓄熱熱交換器
17 蓄熱材
18 第6配管
19 第7配管
20 第2電磁弁
21 蓄熱温度センサ
22 外気温センサ
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Indoor unit 3 Compressor 4 Four-way valve 5 Indoor heat exchanger 6 Expansion valve 7 Outdoor heat exchanger 8 1st piping 9 2nd piping 10 3rd piping 11 4th piping 12 Accumulator 13 5th piping 14 1st Electromagnetic valve 15 Thermal storage tank 16 Thermal storage heat exchanger 17 Thermal storage material 18 Sixth piping 19 Seventh piping 20 Second electromagnetic valve 21 Thermal storage temperature sensor 22 Outside temperature sensor

Claims (8)

圧縮機と、該圧縮機と第1配管を介して接続された室内熱交換器と、前記室内熱交換器と第2配管を介して接続された膨張弁と、該膨張弁と第3配管を介して接続された室外熱交換器とを備え、該室外熱交換器は前記圧縮機に第4配管を介して接続された冷凍サイクル装置であって、炭素と炭素間に二重結合を有するハイドロフルオロオレフィンを少なくとも含む冷媒を用い、前記圧縮機を囲むように配置され前記圧縮機で発生した熱を蓄積する蓄熱材と、該蓄熱材に蓄積された熱と冷媒とで熱交換を行う蓄熱熱交換器とを有する蓄熱装置を備えることを特徴とする冷凍サイクル装置。 A compressor, an indoor heat exchanger connected to the compressor via a first pipe, an expansion valve connected to the indoor heat exchanger via a second pipe, the expansion valve and the third pipe An outdoor heat exchanger connected to the compressor, the refrigeration cycle apparatus connected to the compressor via a fourth pipe, wherein the hydrothermal fluid has a double bond between carbon and carbon. Using a refrigerant containing at least a fluoroolefin, a heat storage material arranged to surround the compressor and storing heat generated by the compressor, and heat storage heat for exchanging heat between the heat stored in the heat storage material and the refrigerant A refrigeration cycle apparatus comprising a heat storage device having an exchanger. 前記蓄熱装置の前記蓄熱材の温度を検出する温度検出手段を備えることを特徴とする請求項1記載の本発明の冷凍サイクル装置。 The refrigeration cycle apparatus of the present invention according to claim 1, further comprising temperature detection means for detecting a temperature of the heat storage material of the heat storage apparatus. 冷凍サイクル装置の運転停止時に、前記温度検出手段により検出された温度が設定値より低い場合、前記蓄熱材の温度が設定値より高くなるまで、前記圧縮機の運転を継続することを特徴とする請求項2に記載の冷凍サイクル装置。 The operation of the compressor is continued until the temperature of the heat storage material becomes higher than a set value when the temperature detected by the temperature detecting means is lower than a set value when the operation of the refrigeration cycle apparatus is stopped. The refrigeration cycle apparatus according to claim 2. 室外温度を検出する室外温度検出手段と、タイマーとを備え、冷凍サイクル装置の運転停止時に、タイマーにより一定時間後に運転開始するように設定され、前記温度検出手段により検出された温度が設定値より低い場合、室外温度検出手段により検出された室外温度と前記温度検出手段により検出された前記蓄熱材の温度とタイマーにより設定された停止時間とを用い、運転開始時までの前記蓄熱材の温度の低下温度を算出し、運転開始時に前記蓄熱材の温度が第2の設定値以上となるように、前記蓄熱材の温度が第2の設定値に前記低下温度を加えた第3の設定値より高くなるまで、前記圧縮機の運転を継続することを特徴とする請求項2に記載の冷凍サイクル装置。 An outdoor temperature detecting means for detecting the outdoor temperature and a timer are provided, and when the operation of the refrigeration cycle apparatus is stopped, it is set to start operation after a certain time by the timer, and the temperature detected by the temperature detecting means is from a set value. When the temperature is low, using the outdoor temperature detected by the outdoor temperature detection means, the temperature of the heat storage material detected by the temperature detection means, and the stop time set by the timer, the temperature of the heat storage material until the start of operation is calculated. The temperature of the heat storage material is calculated from a third set value obtained by adding the decrease temperature to the second set value so that the temperature of the heat storage material is equal to or higher than the second set value at the start of operation. The refrigeration cycle apparatus according to claim 2, wherein the operation of the compressor is continued until it becomes high. 前記圧縮機と前記第3配管とを第1電磁弁を介し接続する第5配管と、前記第2配管と前記蓄熱熱交換器とを第2電磁弁を介し接続する第6配管と、前記蓄熱熱交換器と第4配管とを接続し、前記蓄熱熱交換器からの冷媒を前記第4配管に導く第7配管とをさらに備えることを特徴とする請求項1〜4のいずれか1項に記載の冷凍サイクル装置。 A fifth pipe for connecting the compressor and the third pipe via a first solenoid valve; a sixth pipe for connecting the second pipe and the heat storage heat exchanger via a second solenoid valve; and the heat storage. 5. The apparatus according to claim 1, further comprising a seventh pipe that connects the heat exchanger and the fourth pipe and guides the refrigerant from the heat storage heat exchanger to the fourth pipe. The refrigeration cycle apparatus described. 前記ハイドロフルオロオレフィンはテトラフルオロプロペンまたはトリフルオロプロペンの単一冷媒、またはそれらをベース成分とし、地球温暖化係数が5以上、750以下となるように、望ましくは350以下、さらに望ましくは150以下となるように、2成分混合もしくは3成分混合した冷媒を用いたことを特徴と請求項1〜5のいずれか1項に記載の冷凍サイクル装置。 The hydrofluoroolefin is a single refrigerant of tetrafluoropropene or trifluoropropene, or a base component thereof, and preferably has a global warming potential of 5 or more and 750 or less, preferably 350 or less, and more preferably 150 or less. The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein a refrigerant mixed with two or three components is used. 前記ハイドロフルオロオレフィンはテトラフルオロプロペンまたはトリフルオロプロペンをベース成分とし、ジフルオロメタンまたはペンタフルオロエタンまたはテトラフルオロエタンを、地球温暖化係数が5以上、750以下となるように、望ましくは350以下、さらに望ましくは150以下となるようにそれぞれ2成分混合もしくは3成分混合した冷媒を用いたことを特徴とする請求項1〜5のいずれか1項に記載の冷凍サイクル装置。 The hydrofluoroolefin is based on tetrafluoropropene or trifluoropropene, and difluoromethane, pentafluoroethane, or tetrafluoroethane is preferably 350 or less, more preferably 350 or less, so that the global warming potential is 5 or more and 750 or less. The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein a refrigerant in which two components or three components are mixed is used so that it is desirably 150 or less. 前記圧縮機に用いる冷凍機油として、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコールまたはそのモノエーテルとポリビニルエーテルの共重合体、ポリオールエステル類、及びポリカーボネート類のいずれかの含酸素化合物を主成分とする合成油か、アルキルベンゼン類やαオレフィン類を主成分とする合成油を用いることを特徴とする請求項1〜7のいずれか1項に記載の冷凍サイクル装置。 As the refrigerating machine oil used in the compressor, polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycols or their monoether and polyvinyl ether copolymers, polyol esters, and polycarbonates containing oxygen The refrigeration cycle apparatus according to any one of claims 1 to 7, wherein a synthetic oil containing a compound as a main component or a synthetic oil containing an alkylbenzene or an α-olefin as a main component is used.
JP2010151771A 2010-07-02 2010-07-02 Refrigeration cycle equipment Active JP5659403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010151771A JP5659403B2 (en) 2010-07-02 2010-07-02 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010151771A JP5659403B2 (en) 2010-07-02 2010-07-02 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2012013349A true JP2012013349A (en) 2012-01-19
JP5659403B2 JP5659403B2 (en) 2015-01-28

Family

ID=45599994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010151771A Active JP5659403B2 (en) 2010-07-02 2010-07-02 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP5659403B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103895072A (en) * 2012-12-30 2014-07-02 牡丹江中大木工机械有限责任公司 Horizontal anti-crazing plate splicing machine
WO2014168117A1 (en) * 2013-04-10 2014-10-16 株式会社Ihi Heat pump unit and heat pump unit operation method
WO2020174684A1 (en) * 2019-02-28 2020-09-03 三菱電機株式会社 Refrigeration cycle device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153378A (en) * 1986-12-17 1988-06-25 ダイキン工業株式会社 Refrigerator
JPS63233263A (en) * 1987-03-20 1988-09-28 松下電器産業株式会社 Heat pump type air conditioner
JPH01306756A (en) * 1988-06-06 1989-12-11 Matsushita Electric Ind Co Ltd Method of controlling heat storage
JPH0213740A (en) * 1988-06-30 1990-01-18 Toshiba Corp Heat reserve type heat pump airconditioner and its control method
JP2004101031A (en) * 2002-09-06 2004-04-02 Daikin Ind Ltd Hot-water supply system
JP2010112693A (en) * 2008-10-07 2010-05-20 Panasonic Corp Air conditioner
WO2010059677A2 (en) * 2008-11-19 2010-05-27 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof
JP2010121927A (en) * 2008-10-22 2010-06-03 Panasonic Corp Cooling cycle device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153378A (en) * 1986-12-17 1988-06-25 ダイキン工業株式会社 Refrigerator
JPS63233263A (en) * 1987-03-20 1988-09-28 松下電器産業株式会社 Heat pump type air conditioner
JPH01306756A (en) * 1988-06-06 1989-12-11 Matsushita Electric Ind Co Ltd Method of controlling heat storage
JPH0213740A (en) * 1988-06-30 1990-01-18 Toshiba Corp Heat reserve type heat pump airconditioner and its control method
JP2004101031A (en) * 2002-09-06 2004-04-02 Daikin Ind Ltd Hot-water supply system
JP2010112693A (en) * 2008-10-07 2010-05-20 Panasonic Corp Air conditioner
JP2010121927A (en) * 2008-10-22 2010-06-03 Panasonic Corp Cooling cycle device
WO2010059677A2 (en) * 2008-11-19 2010-05-27 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103895072A (en) * 2012-12-30 2014-07-02 牡丹江中大木工机械有限责任公司 Horizontal anti-crazing plate splicing machine
WO2014168117A1 (en) * 2013-04-10 2014-10-16 株式会社Ihi Heat pump unit and heat pump unit operation method
JP2014202469A (en) * 2013-04-10 2014-10-27 株式会社Ihi Heat pump unit and operation method of heat pump unit
TWI564523B (en) * 2013-04-10 2017-01-01 Ihi股份有限公司 Heat pump unit and operating method of heat pump unit
WO2020174684A1 (en) * 2019-02-28 2020-09-03 三菱電機株式会社 Refrigeration cycle device
JPWO2020174684A1 (en) * 2019-02-28 2021-09-30 三菱電機株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JP5659403B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP6545337B1 (en) Refrigeration cycle device
CN105940079B (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
KR101309325B1 (en) Refrigeration cycle apparatus
WO2016024576A1 (en) Heat cycle system
US11009269B2 (en) Heat cycle system
CN105452417A (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
ES2528913T3 (en) Heat transfer methods and compositions
JP5906461B2 (en) Hermetic compressor
WO2015133587A1 (en) Working medium for heat cycle, and heat cycle system
KR20170003961A (en) Low gwp heat transfer compositions
JP2018177969A (en) Refrigeration cycle device
JP6450896B1 (en) Refrigerant composition and refrigeration cycle apparatus using the same
JP6906102B1 (en) Air conditioner
JP5659403B2 (en) Refrigeration cycle equipment
JP6736019B2 (en) Refrigerator, method for manufacturing refrigerator, and method for improving COP
JP6021077B2 (en) Refrigeration equipment
JP2003336916A (en) Refrigerating cycle and heat pump water heater
JP2020094698A (en) Refrigerating device
JP6260446B2 (en) Thermal cycle system
JP6924888B1 (en) Refrigeration cycle equipment
US20040118134A1 (en) Refrigerating device
JP2020029965A (en) Refrigeration cycle device
JPH11294873A (en) Refrigeration cycle device
JP6821075B1 (en) Refrigeration cycle equipment
WO2020050022A1 (en) Electric compressor, and refrigeration and air conditioning device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130626

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130712

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R151 Written notification of patent or utility model registration

Ref document number: 5659403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313133

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350