JPH01179874A - Air-conditioner - Google Patents

Air-conditioner

Info

Publication number
JPH01179874A
JPH01179874A JP33576287A JP33576287A JPH01179874A JP H01179874 A JPH01179874 A JP H01179874A JP 33576287 A JP33576287 A JP 33576287A JP 33576287 A JP33576287 A JP 33576287A JP H01179874 A JPH01179874 A JP H01179874A
Authority
JP
Japan
Prior art keywords
heat exchanger
indoor heat
compressor
indoor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33576287A
Other languages
Japanese (ja)
Other versions
JPH076714B2 (en
Inventor
Nobuo Suzuki
信雄 鈴木
Tetsuya Hoshino
哲也 星野
Toshihiro Kizawa
木沢 敏浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP33576287A priority Critical patent/JPH076714B2/en
Publication of JPH01179874A publication Critical patent/JPH01179874A/en
Publication of JPH076714B2 publication Critical patent/JPH076714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To permit defrosting with a simple constitution, by the constitution wherein the excessive amount of refrigerant upon effecting defrosting operation is stored in any one of a plurality of indoor heat exchangers while gas refrigerant, discharged out of a compressor, is supplied to an outdoor heat exchanger directly through the other indoor heat exchangers. CONSTITUTION:When gas refrigerant, discharged out of a compressor 1 and supplied to respective indoor heat exchangers 15, 16, passes through the specified indoor heat exchanger 15 upon defrosting operation effected by a defrosting operation control unit 31, an indoor fan 21, provided in the specified indoor heat exchanger 15, is stopped. Accordingly, the gas refrigerant is not condensed and pressure reducing effect is not applied in a motor-driven expansion valve 17, whose opening degree is controlled so as to be opened fully, and the gas is supplied to an outdoor heat exchanger 8 directly through a liquid pipe 9. On the other hand, the gas refrigerant, discharged out of the compressor 1 and supplied to the other indoor heat exchanger 16, is condensed in the indoor heat exchanger 16 and stored in the same since the opening degree of the other motor-driven expansion valve 18 is controlled to the side of a small opening degree. The gas refrigerant is supplied to the heat exchanger 8 in such a manner, whereby defrosting may be effected.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は空気調和機に関するものであり、特に除霜運
転への切換機能を有する空気調和機に係る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an air conditioner, and particularly to an air conditioner having a function of switching to defrosting operation.

(従来の技術) 例えばセパレート形空気調和機において、暖房運転時に
蒸発器として作用する室外熱交換器に付着する霜を除(
除霜の方式としては、冷媒循環方向を、室内熱交換器側
から室外熱交換器への暖房時の循環方向からそれとは逆
の方向に切換えて行う、いわゆる逆ザイクルデフロスト
方式と、暖房時に圧縮機から室内熱交換器へと供給され
る吐出ガス冷媒を、除霜時には分流してその一方を直接
室外熱交換器に供給する、いわゆる正サイクルデフロス
ト方式とがある。この正サイクルデフロスト方式は、室
内の温度低下の度合を小さくでき、また冷媒循環方向の
切換え、すなわち四路切換弁の切換えの必要がないので
騒音が少ない等の利点があり、このため比較的多用され
ている。例えばその従来例としては、特開昭59−21
0269号公報記載の装置を挙げることができ、その装
置について第3図に基づいて説明すると、図において5
1は圧縮機であって、この圧縮機51から吐出される冷
媒は、第1ガス管52、凝縮器53、液管54、蒸発器
55を順次経由して、第2ガス管56から上記圧縮機5
1の吸込側へと返流される回路内を循環し得るようにな
されている。なお57は上記液管54に介設されている
膨張弁、58はアキュームレータである。
(Prior art) For example, in a separate air conditioner, the frost that adheres to the outdoor heat exchanger that acts as an evaporator during heating operation is removed (
Defrosting methods include the so-called reverse cycle defrosting method, in which the refrigerant circulation direction is switched from the indoor heat exchanger side to the outdoor heat exchanger during heating to the opposite direction, and the other is the reverse cycle defrosting method, which is performed by switching the refrigerant circulation direction from the indoor heat exchanger side to the outdoor heat exchanger side during heating. There is a so-called positive cycle defrost system in which the discharged gas refrigerant supplied from the air conditioner to the indoor heat exchanger is divided during defrosting and one part is directly supplied to the outdoor heat exchanger. This positive cycle defrost system has the advantage of being able to reduce the degree of indoor temperature drop, as well as producing less noise because it does not require switching the refrigerant circulation direction, that is, switching the four-way switching valve, and is therefore relatively frequently used. has been done. For example, as a conventional example, JP-A-59-21
An example of the device described in Japanese Patent No. 0269 can be mentioned, and the device will be explained based on FIG. 3.
Reference numeral 1 denotes a compressor, and the refrigerant discharged from the compressor 51 passes through a first gas pipe 52, a condenser 53, a liquid pipe 54, and an evaporator 55 in order, and is then sent to the compressor from a second gas pipe 56. machine 5
It is possible to circulate within the circuit where the flow is returned to the suction side of the pump. Note that 57 is an expansion valve installed in the liquid pipe 54, and 58 is an accumulator.

そして上記の装置においては、第1ガス管52と液管5
4との間に、電磁開閉弁59の介設されたバイパス管6
0がさらに接続されており、上記電磁開閉弁59を開弁
じて、圧縮機51から吐出されるガス冷媒を上記バイパ
ス管60を通して直接的に蒸発器55内に導入すること
によって、この蒸発器55の除霜が行われる。
In the above device, the first gas pipe 52 and the liquid pipe 5
4, a bypass pipe 6 with an electromagnetic on-off valve 59 interposed therebetween.
0 is further connected to the evaporator 55 by opening the electromagnetic on-off valve 59 and introducing the gas refrigerant discharged from the compressor 51 directly into the evaporator 55 through the bypass pipe 60. defrosting is performed.

ところで近年においては、圧縮機や室外熱交換器等を内
蔵する一台の室外ユニットに、それぞれ室内熱交換器を
内蔵する複数の室内ユニットを互いに並列に接続し、多
室に渡る同時空調運転を可能にしたマルチタイプの空気
調和機も実用化されているが、このような装置において
も、上記のような正サイクルデフロスト方式による除霜
機能を有する装置においては、各室内熱交換器と室外熱
交換器、圧縮機を接続して構成した冷媒循環回路とは別
に、−上記のような開閉弁の介設されたバイパス配管を
さらに設け、このバイパス配管を通して圧縮機からの吐
出ガス冷媒を室外熱交換器に直接的に供給して除霜を行
うようになされている。
However, in recent years, multiple indoor units, each with a built-in indoor heat exchanger, are connected in parallel to a single outdoor unit with a built-in compressor, outdoor heat exchanger, etc., allowing simultaneous air conditioning operation in multiple rooms. Multi-type air conditioners have also been put into practical use, but even in such devices, devices that have a defrosting function using the positive cycle defrost method described above require a separate connection between each indoor heat exchanger and the outdoor heat exchanger. In addition to the refrigerant circulation circuit that connects the exchanger and compressor, a bypass pipe with an on-off valve as described above is provided, and the gas refrigerant discharged from the compressor is transferred to outdoor heat through this bypass pipe. It is designed to defrost by supplying it directly to the exchanger.

(発明が解決しようとする問題点) 上記のように、正サイクルデフロスト方式による除霜運
転を行うためには、従来、除霜運転時にのみ冷媒が流通
するバイパス配管を別途設ける必要があり、さらにこの
バイパス配管に介設される電磁開閉弁を開閉制御するた
めには、駆動リレー等の電気制御機器等も必要となるた
めに、構造が複雑になると共に、設計工数、組立工数等
も増加することによって製作費も高くなるという問題が
ある。
(Problems to be Solved by the Invention) As mentioned above, in order to perform defrosting operation using the positive cycle defrost method, it has conventionally been necessary to separately provide bypass piping through which refrigerant flows only during defrosting operation. In order to control the opening and closing of the electromagnetic on-off valve installed in the bypass piping, electrical control equipment such as a drive relay is required, which complicates the structure and increases the number of design and assembly steps. This poses a problem in that the production cost also increases.

この発明は上記従来の問題点に鑑みなされたものであっ
て、その目的は、特に前記した一台の室外ユニットに複
数の室内ユニットを接続するようなマルチタイプの空気
調和機において、より簡素な構成で前記した正サイクル
デフロスト方式による除霜を可能とする空気調和機を提
供することにある。
This invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide a simpler solution for the multi-type air conditioner in which multiple indoor units are connected to one outdoor unit. An object of the present invention is to provide an air conditioner that enables defrosting using the above-described positive cycle defrost method.

(問題点を解決するための手段) そこでこの発明の空気調和機は、圧縮機1の吐出側に第
1ガス管6を接続すると共に、上記圧縮機1の吸込側に
第2ガス管7、蒸発器として機能する室外熱交換器8、
液管9を順次接続し、また上記第1ガス管6の先端から
分岐した複数の第1ガス支管13.14と、上記液管9
の先端から分岐すると共にそれぞれ電動膨張弁17.1
8の介設された複数の液支管11.12との間に、それ
ぞれ凝縮器として機能する室内熱交換器15.16を接
続して冷媒循環回路を構成し、上記各室内熱交換器15
.16側の空調負荷に応じて上記各電動膨張弁17.1
8の開度制御を行いながら上記圧縮機1から吐出される
冷媒を上記室内熱交換器15.16側から上記室外熱交
換器8へと回流させて運転を制御する運転制御手段30
を有して成る空気調和機であって、さらに、少なくとも
一つの特定の室内熱交換器15に付設された室内ファン
21を停止すると共に、この特定の室内熱交換器15に
接続された上記電動膨張弁17を全開側に開度制御する
一方、上記特定の室内熱交換器15以外の室内熱交換器
16に接続された上記電動膨張弁18を小開度側に開度
制御すると共に、上記室外熱交換器8に付設された室外
ファン1つを停止して、上記圧縮機1から吐出される冷
媒を」−配室内熱交換器15側から室外熱交換器8へと
回流させる除霜運転制御手段31を有している。
(Means for Solving the Problems) Therefore, in the air conditioner of the present invention, a first gas pipe 6 is connected to the discharge side of the compressor 1, and a second gas pipe 7 is connected to the suction side of the compressor 1. an outdoor heat exchanger 8 functioning as an evaporator;
A plurality of first gas branch pipes 13 and 14 branched from the tip of the first gas pipe 6 and the liquid pipe 9 are sequentially connected to each other.
branch from the tip of the electric expansion valve 17.1.
A refrigerant circulation circuit is constructed by connecting indoor heat exchangers 15 and 16 each functioning as a condenser between the plurality of liquid branch pipes 11 and 12 interposed in each of the indoor heat exchangers 15 and 15.
.. Each of the electric expansion valves 17.1 above according to the air conditioning load on the 16 side.
an operation control means 30 for controlling the operation by circulating the refrigerant discharged from the compressor 1 from the indoor heat exchanger 15, 16 side to the outdoor heat exchanger 8 while controlling the opening degree of the outdoor heat exchanger 8;
The air conditioner further comprises: stopping the indoor fan 21 attached to at least one specific indoor heat exchanger 15; and stopping the indoor fan 21 attached to the specific indoor heat exchanger 15; While controlling the opening of the expansion valve 17 to the full open side, controlling the opening of the electric expansion valve 18 connected to the indoor heat exchanger 16 other than the specific indoor heat exchanger 15 to the small opening side, and A defrosting operation in which one outdoor fan attached to the outdoor heat exchanger 8 is stopped and the refrigerant discharged from the compressor 1 is circulated from the distribution indoor heat exchanger 15 side to the outdoor heat exchanger 8. It has a control means 31.

(作用) 上記の空気調和機においては、除霜運転制御手段31に
よる除霜運転時には、圧縮機]から吐出されて各室内熱
交換器15.16に供給されるガス冷媒は、特定の室内
熱交換器15を通過する際にば、この室内熱交換器15
に付設されている室内ファン21が停止されているため
に凝縮を生じず、さらに全開側に開度制御されている電
動膨張弁17においては減圧作用も与えられることなく
、直接的に液管9を経て室外熱交換器8へと供給される
。一方、」二記特定の室内熱交換器15以外の室内熱交
換器(以下、他方の室内熱交換器と言う)16に供給さ
れた圧縮機1からの吐出ガス冷媒は、この室内熱交換器
16側の電動膨張弁18が小開度側に開度制御されてい
るために、この室内熱交換器16内で凝縮して液状態と
なって溜まっていくこととなる。つまり」−記除霜運転
時以外の、運転制御手段30による定常運転時において
、各室内熱交換器15.16、及び室外熱交換器8の液
管9側の配管径路内を液相状態で流通していた冷媒量は
、上記除霜運転時には余剰量として」−記他方の室内熱
交換器16内に貯溜されていくこととなるのである。こ
れにより」二記特定の室内熱交換器15と室外熱交換器
8との液管9例の配管径路内もガス状態での冷媒流通が
可能となり、したがって圧縮機1からの吐出ガス冷媒が
、上記特定の室内熱交換器15を経由して液管9からガ
ス状態のままで直接的に室外熱交換器8に供給されるこ
ととなり、従来の正サイクルデフロスト方式と路間等の
作用で室外熱交換器8に付着した霜の除霜が行われるこ
ととなる。このように各室内熱交換器15.16と室外
熱交換器8、圧縮a1を接続して構成した冷媒循環回路
以外には、例えば従来の開閉弁を介設したバイパス配管
の追設等を必要とせずに除霜運転を行うことができ、構
成を簡素なものにすることが可能となる。
(Function) In the above-mentioned air conditioner, during the defrosting operation by the defrosting operation control means 31, the gas refrigerant discharged from the compressor and supplied to each indoor heat exchanger 15, 16 has a specific indoor heat level. When passing through the exchanger 15, this indoor heat exchanger 15
Because the indoor fan 21 attached to the valve is stopped, no condensation occurs, and the electric expansion valve 17, whose opening is controlled to the fully open side, does not have a pressure reducing effect and directly flows into the liquid pipe 9. The heat is then supplied to the outdoor heat exchanger 8. On the other hand, the discharge gas refrigerant from the compressor 1 supplied to the indoor heat exchanger 16 other than the specified indoor heat exchanger 15 (hereinafter referred to as the other indoor heat exchanger) is Since the electric expansion valve 18 on the 16 side is controlled to have a small opening, the liquid condenses in the indoor heat exchanger 16 and accumulates in a liquid state. In other words, during steady operation by the operation control means 30 other than during defrosting operation, the pipe paths on the liquid pipe 9 side of each indoor heat exchanger 15, 16 and outdoor heat exchanger 8 are in a liquid phase state. The amount of refrigerant that has been circulating will be stored in the other indoor heat exchanger 16 as a surplus amount during the defrosting operation. As a result, the refrigerant can flow in a gas state also in the piping path of the nine liquid pipes between the specified indoor heat exchanger 15 and the outdoor heat exchanger 8, and therefore the gas refrigerant discharged from the compressor 1 can It is directly supplied to the outdoor heat exchanger 8 in a gaseous state from the liquid pipe 9 via the above-mentioned specific indoor heat exchanger 15. The frost adhering to the heat exchanger 8 will be defrosted. In addition to the refrigerant circulation circuit configured by connecting each indoor heat exchanger 15, 16, outdoor heat exchanger 8, and compressor a1, it is necessary to add, for example, bypass piping with a conventional on-off valve. It is possible to perform defrosting operation without having to do so, and it is possible to simplify the configuration.

(実施例) 次にこの発明の空気調和機の具体的な実施例について、
図面を参照しつつ詳細に説明する。
(Example) Next, regarding a specific example of the air conditioner of this invention,
This will be explained in detail with reference to the drawings.

第1図には、1台の室外ユニッ)Xに、A室及びB室に
それぞれ配置された2台の室内ユニットA、Bを接続し
た構成の、いわゆるマルチエアコンの例を示している。
FIG. 1 shows an example of a so-called multi-air conditioner in which one outdoor unit (X) is connected to two indoor units A and B, which are placed in rooms A and B, respectively.

図において、1は圧縮機であって、この圧縮機1の吐出
配管2と吸込配管3とは、それぞれ四路切換弁4に接続
されており、上記吸込配管3にはアキュームレータ5が
介設されている。上記四路切換弁4には第1ガス管6と
第2ガス管7とが接続されており、この第2ガス管7に
は、室外熱交換器8が接続されている。この室外熱交換
器8ば、暖房運転時には蒸発器として、また冷房運転時
には凝縮器としてそれぞれ機能するものである。また上
記室外熱交換器8にはさらに液管9が接続されると共に
、この液管9の先端から互いに分岐した二本の液支管1
1.12と、上記第1ガス管6の先端から互いに分岐し
た二本の第1ガス支管13.14との間に、上記各室内
ユニットA、B内にそれぞれ配置されている室内熱交換
器15.16が互いに並列に接続されている。これらの
各室内熱交換器15.16は、暖房運転時には凝縮器と
して、また冷房運転時には蒸発器としてそれぞれ機能す
るものである。上記各液支管11.12にはそれぞれ電
動膨張弁17.18が介設されている。なお同図中、1
9は上記室外熱交換器8に付設されている室外ファン、
また21.22はそれぞれ上記各室内熱交換器15.1
6に付設されている室内ファンである。さらに上記室外
ユニットX内には、冷房及び暖房時の運転を制御する冷
暖運転制御部(運転制御手段)30と、除霜運転の制御
を行う除霜運転制御部(除霜運転制御手段)31とを有
する室外制御装置32が配置されており、また各室内ユ
ニットA、、Bには、利用者のスイッチ操作に応じて、
冷房又は暖房の運転要求信号等を上記室外制2MII装
置に発する室内制御装置(図示せず)がそれぞれ設けら
れている。
In the figure, 1 is a compressor, and a discharge pipe 2 and a suction pipe 3 of the compressor 1 are each connected to a four-way switching valve 4, and an accumulator 5 is interposed in the suction pipe 3. ing. A first gas pipe 6 and a second gas pipe 7 are connected to the four-way switching valve 4, and an outdoor heat exchanger 8 is connected to the second gas pipe 7. This outdoor heat exchanger 8 functions as an evaporator during heating operation and as a condenser during cooling operation. Further, a liquid pipe 9 is further connected to the outdoor heat exchanger 8, and two liquid branch pipes 1 are branched from the tip of the liquid pipe 9.
1.12 and two first gas branch pipes 13.14 that are mutually branched from the tip of the first gas pipe 6, the indoor heat exchangers are respectively arranged in the indoor units A and B. 15 and 16 are connected in parallel with each other. Each of these indoor heat exchangers 15 and 16 functions as a condenser during heating operation and as an evaporator during cooling operation. Each of the liquid branch pipes 11.12 is provided with an electric expansion valve 17.18. In the same figure, 1
9 is an outdoor fan attached to the outdoor heat exchanger 8;
21.22 are each of the above indoor heat exchangers 15.1
This is an indoor fan attached to 6. Furthermore, inside the outdoor unit An outdoor control device 32 having
Each room is provided with an indoor control device (not shown) that issues a cooling or heating operation request signal to the outdoor control 2MII device.

上記装置乙こおいては、冷暖運転制御部30によって、
室内ユニッ)A、B側からの運転要求に応じた冷房、或
いは暖房運転が次のように行われる。
In the above device B, the cooling/heating operation control section 30:
Indoor unit) Cooling or heating operation according to the operation requests from the A and B sides is performed as follows.

すなわち室内側から冷房運転の要求がある場合には、四
路切換弁4を図中実線で示す切換位置に位置させ、また
室外ファン19、及び室内ファン21.22をそれぞれ
起動して、圧縮機1を運転する。これにより圧縮機1か
ら吐出される冷媒は、第1図に実線で示すように循環し
、室外熱交換器8で凝縮する一方、各室内熱交換器15
.16で蒸発して冷房運転が行われる。この場合、蒸発
冷媒の過熱度を所定の値に維持するように各電動膨張弁
17.18の開度制御を行うことによって、室内側の空
調負荷に見合う冷媒循環量の調整がなされた冷房運転が
行われる。なお各室内ユニットA、Bのいずれかで運転
要求のない一室運転時には、運転停止側の室内ファンの
停止と電動膨張弁の閉弁操作とが行われる。
That is, when there is a request for cooling operation from the indoor side, the four-way switching valve 4 is placed in the switching position shown by the solid line in the figure, and the outdoor fan 19 and indoor fans 21 and 22 are started, respectively, and the compressor is switched on. Drive 1. As a result, the refrigerant discharged from the compressor 1 circulates as shown by the solid line in FIG.
.. At step 16, the air is evaporated and cooling operation is performed. In this case, by controlling the opening of each electric expansion valve 17, 18 to maintain the degree of superheating of the evaporative refrigerant at a predetermined value, cooling operation is performed in which the amount of refrigerant circulation is adjusted to match the indoor air conditioning load. will be held. Note that when each indoor unit A or B is in single-room operation without an operation request, the indoor fan on the side that is not in operation is stopped and the electric expansion valve is closed.

一方、室内側から暖房運転の要求がある場合には、四路
切換弁4が図中破線で示す切換位置に切換えられ、圧縮
機1からの吐出冷媒を、第1図に破線で示すように、各
室内熱交換器15.16で凝縮させ、室外熱交換器8で
蒸発させる方向に回流させる運転が上記冷暖運転制御部
30によって行われる。なおこのとき各室内ユニッl−
A、Bのいずれかで運転要求のない場合には、その室内
ユニットにて空調負荷がないものとして、その運転停止
側の室内ファンは停止されると共に、電動膨張弁は小開
度状態に維持される。この電動膨張弁を通してわずかな
冷媒の流通が可能な状態に保持することによって、停止
側の室内熱交換器における高圧圧力の上昇を防止するよ
うになされているのである。
On the other hand, when there is a request for heating operation from the indoor side, the four-way switching valve 4 is switched to the switching position shown by the broken line in the figure, and the refrigerant discharged from the compressor 1 is changed to the position shown by the broken line in FIG. The cooling/heating operation control unit 30 performs an operation in which the heat is condensed in each of the indoor heat exchangers 15 and 16 and circulated in the direction of evaporation in the outdoor heat exchanger 8. At this time, each indoor unit
If there is no operation request in either A or B, it is assumed that there is no air conditioning load on that indoor unit, and the indoor fan on the side that is not operating is stopped, and the electric expansion valve is maintained at a small opening. be done. By maintaining a state in which a small amount of refrigerant can flow through this electric expansion valve, a rise in high pressure in the indoor heat exchanger on the stopped side is prevented.

そして上記の暖房運転時に室外熱交換器8に着霜し、こ
の着霜量が多くなって、例えば上記室外熱交換器8の検
出温度が予め設定されている除霜開始温度以下となった
ことが検出された場合には、上記冷暖運転制御部30に
よる暖房運転の制御から、除霜運転制御部31による次
のような除霜運転に切換わるようになされている。
When the outdoor heat exchanger 8 is frosted during the above-mentioned heating operation, the amount of frosting becomes large and, for example, the detected temperature of the outdoor heat exchanger 8 becomes lower than the preset defrosting start temperature. When detected, the heating operation control by the cooling/heating operation control section 30 is switched to the following defrosting operation by the defrosting operation control section 31.

まず四路切換弁4は前記暖房運転側の切換位置状態を継
続する。そして室外ファン19を停止すると共に、室内
ユニッ)AXBのいずれか一方の室内ファンを停止する
。つまりそれまでの暖房運転が一室のみの単独運転であ
った場合には、そのときの運転停止側の室内ファンの停
止状態を維持し、またそれまでの暖房運転が二室同時運
転であった場合には、予め定められている側の室内ユニ
ットにおける室内ファンを停止する。いま、こうして室
内ファンの停止した側を室内ユニットAとして説明する
と、さらにこの室内ユニットAに接続されている液支管
〕1における電動膨張弁17をそれまでの空調負荷に見
合った制御開度状態から、或いは暖房の停止状態であっ
た場合には、前記のような小開度状態からそれぞれ全開
状態に開く開度制御が行われる。一方、室内ファン22
の駆動を継続している室内ユニットB側の液支管12に
おける電動膨張弁18はそれまでの空調負荷に見合った
制御開度から小開度に絞る開度制御を行う。このような
制tftlが行われることによって、圧縮機1から吐出
され第1ガス管6から各第1ガス支管13.14に分流
するガス冷媒はA室側の室内熱交換器15内においては
、室内ファン21が停止状態にあるために、室内大気と
の熱交換が殆どなされず、したがって暖房運転時のよう
な凝縮を生ずることなくガス状態で液支管11へと流通
してい(こととなる。さらにこの液支管11に介設され
ている電動膨張弁17が全開状態にあるために、上記ガ
ス状態の冷媒は減圧作用も受けることなく、そのまま室
外熱交換器8へと流入するのである。このようにA室側
の室内熱交換器15を経由するものの、圧縮機1からの
吐出ガス冷媒が直接的に室外熱交換器8に供給される冷
媒の循環がなされることによって、従来の、いわゆる正
サイクルデフロストと同様に、圧縮機lの圧縮仕事量が
室外熱交換器8に転送され、これにより室外熱交換器8
の除霜が行われることとなる。
First, the four-way switching valve 4 continues in the switching position state on the heating operation side. Then, the outdoor fan 19 is stopped, and at the same time, one of the indoor fans of the indoor unit AXB is stopped. In other words, if the previous heating operation had been in single room operation in only one room, the indoor fan on the side that was stopped at that time would remain stopped, and if the previous heating operation was in two rooms at the same time. In this case, the indoor fan in the indoor unit on the predetermined side is stopped. Now, if we describe the side where the indoor fan has stopped in this way as the indoor unit A, then the electric expansion valve 17 in the liquid branch pipe] 1 connected to this indoor unit A is changed from the controlled opening state corresponding to the air conditioning load. , or when the heating is stopped, the opening control is performed from the small opening state as described above to the full opening state. On the other hand, indoor fan 22
The electric expansion valve 18 in the liquid branch pipe 12 on the indoor unit B side, which continues to be driven, performs opening control to reduce the opening from the previously controlled opening commensurate with the air conditioning load to a small opening. By carrying out such control TFTl, the gas refrigerant discharged from the compressor 1 and branched from the first gas pipe 6 to each of the first gas branch pipes 13 and 14 is in the indoor heat exchanger 15 on the room A side. Since the indoor fan 21 is in a stopped state, there is almost no heat exchange with the indoor atmosphere, and therefore the liquid flows to the liquid branch pipe 11 in a gaseous state without condensing as occurs during heating operation. Furthermore, since the electric expansion valve 17 provided in the liquid branch pipe 11 is fully open, the gaseous refrigerant flows directly into the outdoor heat exchanger 8 without being subjected to any pressure reduction action. Although the refrigerant passes through the indoor heat exchanger 15 on the room A side, the refrigerant is circulated so that the discharged gas refrigerant from the compressor 1 is directly supplied to the outdoor heat exchanger 8. Similar to the positive cycle defrost, the compression work of the compressor l is transferred to the outdoor heat exchanger 8.
Defrosting will be carried out.

一方、室内ユニットB側の第1ガス支管14に分流され
る圧縮機1からの吐出ガス冷媒は、室内ユニットBにお
ける室内ファン22の駆動が継続されているために、室
内熱交換器16において砂槽する。しかしながらこの室
内熱交換器16に接続されている液支管12の電動膨張
弁18は小開度状態になされているために、−上記室内
熱交換器16においてm縮した液冷媒は殆どが上記室内
熱交換器16内に貯め込まれることとなる。つまり、A
室側の室内熱交換器15及び室外熱交換器8の液管9側
の配管径路内をガス冷媒を流通させる前記正サイクルデ
フロス1〜時においては、その冷媒循環量に対して、暖
房運転時に上記液管9側の配管径路内を流通していた液
冷媒量に略相当する量が過剰となるために、この過剰冷
媒量をB室側の室内熱交換器16内に溜めることとし、
これにより、例えば容量の大きなアキュームレータを別
途設けたりすることなく、室内熱交換器15から室外熱
交換器8に至る液支管11、液管9をガス配管とした−
に記正ザイクルデフロストを可能としているのである。
On the other hand, since the indoor fan 22 in the indoor unit B continues to be driven, the discharged gas refrigerant from the compressor 1, which is diverted to the first gas branch pipe 14 on the indoor unit B side, is disposed of in the indoor heat exchanger 16. To tank. However, since the electric expansion valve 18 of the liquid branch pipe 12 connected to this indoor heat exchanger 16 is kept in a small opening state, most of the liquid refrigerant compressed in the indoor heat exchanger 16 is transferred to the indoor heat exchanger 16. It will be stored in the heat exchanger 16. In other words, A
During the positive cycle defrosting period 1 to 1, in which the gas refrigerant is circulated through the piping paths on the liquid pipe 9 side of the indoor heat exchanger 15 and the outdoor heat exchanger 8, heating operation is performed with respect to the refrigerant circulation amount. At times, an amount approximately equivalent to the amount of liquid refrigerant flowing through the piping path on the liquid pipe 9 side becomes excessive, so this excess amount of refrigerant is stored in the indoor heat exchanger 16 on the side of room B,
As a result, the liquid branch pipe 11 and the liquid pipe 9 from the indoor heat exchanger 15 to the outdoor heat exchanger 8 can be used as gas pipes, for example, without separately providing a large-capacity accumulator.
This makes it possible to perform cycle defrosting.

上記B室側の室内熱交換器16内への液溜めを行ってい
る間、例えば液溜め量の増加、ずなわち冷媒循環量の低
下による吐出圧力の変化を検出しており、これが、後述
する除霜完了信号が発せられる前に所定値以下となった
ときには、」二記室内ユニットB側の室内ファン22も
停止する。これにより室内熱交換器16における凝縮は
抑えられ、したがってA室側の室内熱交換器15を経由
する正サイクルデフロストに必要な冷媒循環量が確保さ
れて、室外熱交換器8の除霜が進行する。そして除霜が
完了して、例えば室外熱交換器8の検出温度が予め定め
ている除霜完了温度を越えた信号が除霜運転制御部31
に入力されると、次に前記冷暖運転制御部30による運
転制御に切換えられ、暖房運転が再開される。
While the liquid is being stored in the indoor heat exchanger 16 on the B room side, changes in the discharge pressure due to, for example, an increase in the amount of liquid stored or a decrease in the amount of refrigerant circulation are detected, which will be explained later. When the temperature drops below the predetermined value before the defrosting completion signal is issued, the indoor fan 22 on the indoor unit B side also stops. As a result, condensation in the indoor heat exchanger 16 is suppressed, and therefore, the amount of refrigerant circulation necessary for the positive cycle defrost via the indoor heat exchanger 15 on the room A side is ensured, and the defrosting of the outdoor heat exchanger 8 progresses. do. When defrosting is completed, for example, a signal indicating that the detected temperature of the outdoor heat exchanger 8 exceeds a predetermined defrosting completion temperature is sent to the defrosting operation control unit 31.
When this is input, the operation control is then switched to the cooling/heating operation control section 30, and the heating operation is restarted.

以上の説明のように上記実施例においては、除霜運転時
に余剰となる冷媒量を、複数の室内ユニッ)A、Bの一
方に貯め込むと共に、上記各室内ユニットA、Bの他方
を経由させて圧縮機1がらの吐出ガス冷媒を室外熱交換
器8に直接的に供給する除霜運転がなされ、従来のバイ
パス配管のような除霜運転のためだけに必要な配管は不
要であす、したがって構成を簡素にすることができ、こ
の結果、例えば装置の小形化や製作費の低減等を回るこ
とができる。また上記実施例においては、余剰の冷媒を
室内ユニントに貯留しているので、除霜終了後に暖房運
転を再開する場合に、例えば圧縮機1の吸込配管3に容
量の大きなアキュームレークを別途介設して、このアキ
ュームレータに余剰冷媒を貯める構成等に比べて、暖房
運転に必要な冷媒循環量及び循環状態への復帰がより短
時間でなされることとなり、暖房運転再開時の速暖性も
向上される。
As explained above, in the above embodiment, the amount of refrigerant that becomes surplus during the defrosting operation is stored in one of the plurality of indoor units A and B, and is transferred through the other of the indoor units A and B. The defrosting operation is performed by directly supplying the discharged gas refrigerant from the compressor 1 to the outdoor heat exchanger 8, and there is no need for piping required just for the defrosting operation, such as conventional bypass piping. The configuration can be simplified, and as a result, the device can be made smaller and the manufacturing cost can be reduced, for example. In addition, in the above embodiment, surplus refrigerant is stored in the indoor unit, so when restarting heating operation after defrosting, for example, a large-capacity accumulation rake is separately interposed in the suction pipe 3 of the compressor 1. Compared to a configuration in which surplus refrigerant is stored in this accumulator, the amount of refrigerant circulated necessary for heating operation and the return to the circulating state can be achieved in a shorter time, and the heating speed when heating operation is resumed is also improved. be done.

なお上記実施例はこの発明を限定するものではなく、こ
の発明の範囲内で種々の変更が可能であり、例えば上記
は二室空調可能なマルチタイプの空気調和機について説
明したが、王室以上の空気調和機や室内ユニットと給湯
加熱ユニット等を並列に接続したその他のマルチタイプ
の空気調和機においてこの発明の適用が可能である。
Note that the above embodiments do not limit this invention, and various modifications can be made within the scope of this invention. For example, the above example describes a multi-type air conditioner that can air condition two rooms, but The present invention can be applied to air conditioners and other multi-type air conditioners in which an indoor unit and a hot water heating unit are connected in parallel.

また上記実施例の構成に、第2図に示すように、各第1
ガス支管13.14にそれぞれ電磁開閉弁41.42を
介設し、例えばA室側の室内熱交換器15内に所定量の
液溜めが行われたあとには、A室側の室内ファン21の
停止操作と共に上記電磁開閉弁41を閉弁するように構
成することも可能であり、これにより上記電磁開閉弁4
1の閉弁操作後には圧縮機1からの吐出ガス冷媒が全量
室外熱交換器8に供給されることとなるので、室内側で
のヒートロスが低減され除霜時間の短縮が可能となる。
Furthermore, in the configuration of the above embodiment, each first
Electromagnetic on-off valves 41 and 42 are interposed in each of the gas branch pipes 13 and 14, and for example, after a predetermined amount of liquid has been stored in the indoor heat exchanger 15 on the A room side, the indoor fan 21 on the A room side It is also possible to configure the electromagnetic on-off valve 41 to close together with the stop operation of the electromagnetic on-off valve 4.
After the valve closing operation 1, the entire amount of the gas refrigerant discharged from the compressor 1 is supplied to the outdoor heat exchanger 8, so that the heat loss on the indoor side is reduced and the defrosting time can be shortened.

また上記実施例においては、−室単独運転時の除霜運転
では、それまでの運転室側に液溜めを行うこととして説
明したが、逆に停止室側に液溜めをするように構成する
ことも可能である。また二室同時運転時の除霜運転では
、上記においては予め定めた側に液溜めをすることとし
て説明したが、例えば除霜運転切換時において、室温の
低い側を液溜め側にすることや、利用者による室温希望
設定温度と検出室温との差の大きい側を液溜め側とする
ように構成すること等も可能であり、液溜め側では除霜
運転開始後もしばらくは室内ファンの駆動、ずなわら温
風の吹出しが継続されるので、室温の低下をより小さく
した除霜運転が行われ、空調快適性をより向上すること
が可能となる。
Furthermore, in the above embodiment, in the defrosting operation during single-chamber operation, it was explained that the liquid was stored in the driver's cab, but it could be configured so that the liquid was stored in the stop chamber. is also possible. In addition, in the defrosting operation when two chambers are operated simultaneously, the explanation above is that the liquid reservoir is placed on a predetermined side. It is also possible to configure the liquid reservoir side to be the side where the difference between the room temperature desired by the user and the detected room temperature is large, and the indoor fan is not driven on the liquid reservoir side for a while after the defrosting operation starts. Since the hot air continues to be blown out, defrosting operation is performed with a smaller drop in room temperature, making it possible to further improve air conditioning comfort.

(発明の効果) 上記のようにこの発明の空気調和機においては、除霜運
転を行う際の余剰の冷媒量を複数の室内熱交換器のいず
れかに貯め込むと共に他の室内熱交換器を経由させて圧
縮機からの吐出ガス冷媒を直接的に室外熱交換器に供給
することによる除霜運転が行われるので、除霜運転のた
めだけに必要な配管等が不要となり、このため構成を簡
素にすることが可能となる。
(Effects of the Invention) As described above, in the air conditioner of the present invention, the surplus refrigerant amount during defrosting operation is stored in one of the plurality of indoor heat exchangers, and the other indoor heat exchanger is Since defrosting operation is performed by directly supplying the discharged gas refrigerant from the compressor to the outdoor heat exchanger through the It becomes possible to simplify the process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の空気調和機の一実施例における冷媒
回路図、第2図はこの発明の空気調和機の他の実施例に
おける冷媒回路図、第3図は従来例の冷媒回路図である
。 1・・・圧縮機、6・・・第1ガス管、7・・・第2ガ
ス管、8・・・室外熱交換器(蒸発器)、9・・・液管
、11.12・・・液受管、13.14・・・第1ガス
支管、15.16・・・室内熱交換器(凝縮器)、17
.18・・・電動膨張弁、19・・・室外ファン、21
・・・室内ファン、30・・・冷暖運転制御部(運転制
御手段)、31・・・除霜運転制御部(除霜運転制御手
段)。
Fig. 1 is a refrigerant circuit diagram of an embodiment of the air conditioner of the present invention, Fig. 2 is a refrigerant circuit diagram of another embodiment of the air conditioner of the invention, and Fig. 3 is a refrigerant circuit diagram of a conventional example. be. DESCRIPTION OF SYMBOLS 1... Compressor, 6... First gas pipe, 7... Second gas pipe, 8... Outdoor heat exchanger (evaporator), 9... Liquid pipe, 11.12...・Liquid receiving pipe, 13.14...First gas branch pipe, 15.16...Indoor heat exchanger (condenser), 17
.. 18... Electric expansion valve, 19... Outdoor fan, 21
... Indoor fan, 30... Cooling/heating operation control section (operation control means), 31... Defrosting operation control section (defrosting operation control means).

Claims (1)

【特許請求の範囲】[Claims] 1. 圧縮機(1)の吐出側に第1ガス管(6)を接続
すると共に、上記圧縮機(1)の吸込側に第2ガス管(
7)、蒸発器として機能する室外熱交換器(8)、液管
(9)を順次接続し、また上記第1ガス管(6)の先端
から分岐した複数の第1ガス支管(13)(14)と、
上記液管(9)の先端から分岐すると共にそれぞれ電動
膨張弁(17)(18)の介設された複数の液支管(1
1)(12)との間に、それぞれ凝縮器として機能する
室内熱交換器(15)(16)を接続して冷媒循環回路
を構成し、上記各室内熱交換器(15)(16)側の空
調負荷に応じて上記各電動膨張弁(17)(18)の開
度制御を行いながら上記圧縮機(1)から吐出される冷
媒を上記室内熱交換器(15)(16)側から上記室外
熱交換器(8)へと回流させて運転を制御する運転制御
手段(30)を有して成る空気調和機であって、さらに
、少なくとも一つの特定の室内熱交換器(15)に付設
された室内ファン(21)を停止すると共に、この特定
の室内熱交換器(15)に接続された上記電動膨張弁(
17)を全開側に開度制御する一方、上記特定の室内熱
交換器(15)以外の室内熱交換器(16)に接続され
た上記電動膨張弁(18)を小開度側に開度制御すると
共に、上記室外熱交換器(8)に付設された室外ファン
(19)を停止して、上記圧縮機(1)から吐出される
冷媒を上記室内熱交換器(15)側から室外熱交換器(
8)へと回流させる除霜運転制御手段(31)を有して
いることを特徴とする空気調和機。
1. A first gas pipe (6) is connected to the discharge side of the compressor (1), and a second gas pipe (6) is connected to the suction side of the compressor (1).
7), an outdoor heat exchanger (8) functioning as an evaporator and a liquid pipe (9) are connected in sequence, and a plurality of first gas branch pipes (13) branched from the tip of the first gas pipe (6) ( 14) and
A plurality of liquid branch pipes (1) branch from the tip of the liquid pipe (9) and each have electric expansion valves (17, 18)
1) and (12), connect indoor heat exchangers (15) and (16), each of which functions as a condenser, to form a refrigerant circulation circuit. The refrigerant discharged from the compressor (1) is transferred from the indoor heat exchanger (15) (16) side to the indoor heat exchanger (15) (16) while controlling the opening degree of each electric expansion valve (17) (18) according to the air conditioning load. An air conditioner comprising an operation control means (30) for controlling operation by circulating air to an outdoor heat exchanger (8), the air conditioner further being attached to at least one specific indoor heat exchanger (15). At the same time, the electric expansion valve (21) connected to this particular indoor heat exchanger (15) is stopped.
17) to the full open side, while controlling the electric expansion valve (18) connected to the indoor heat exchanger (16) other than the specific indoor heat exchanger (15) to the small opening side. At the same time, the outdoor fan (19) attached to the outdoor heat exchanger (8) is stopped, and the refrigerant discharged from the compressor (1) is transferred from the indoor heat exchanger (15) side to the outdoor heat exchanger. Exchanger (
An air conditioner characterized in that it has a defrosting operation control means (31) for circulating air to the air conditioner (8).
JP33576287A 1987-12-29 1987-12-29 Air conditioner Expired - Lifetime JPH076714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33576287A JPH076714B2 (en) 1987-12-29 1987-12-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33576287A JPH076714B2 (en) 1987-12-29 1987-12-29 Air conditioner

Publications (2)

Publication Number Publication Date
JPH01179874A true JPH01179874A (en) 1989-07-17
JPH076714B2 JPH076714B2 (en) 1995-01-30

Family

ID=18292175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33576287A Expired - Lifetime JPH076714B2 (en) 1987-12-29 1987-12-29 Air conditioner

Country Status (1)

Country Link
JP (1) JPH076714B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066273A1 (en) * 2018-09-28 2020-04-02 ダイキン工業株式会社 Heat pump device
CN111928343A (en) * 2020-07-03 2020-11-13 珠海格力电器股份有限公司 Heat pump air conditioning system and defrosting method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066273A1 (en) * 2018-09-28 2020-04-02 ダイキン工業株式会社 Heat pump device
JP2020056515A (en) * 2018-09-28 2020-04-09 ダイキン工業株式会社 Heat pump device
CN112739966A (en) * 2018-09-28 2021-04-30 大金工业株式会社 Heat pump device
US20210341192A1 (en) * 2018-09-28 2021-11-04 Daikin Industries, Ltd. Heat pump device
EP3859245A4 (en) * 2018-09-28 2022-03-16 Daikin Industries, Ltd. Heat pump device
CN111928343A (en) * 2020-07-03 2020-11-13 珠海格力电器股份有限公司 Heat pump air conditioning system and defrosting method thereof

Also Published As

Publication number Publication date
JPH076714B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US5467604A (en) Multiroom air conditioner and driving method therefor
US4766734A (en) Heat pump system with hot water defrost
US7770411B2 (en) System and method for using hot gas reheat for humidity control
CN109945330B (en) Refrigerating system capable of continuously heating and defrosting control method
CN101438109A (en) Multi-loop air conditioner system with variable capacity
JPS63210577A (en) Integrated heat pump and hot-water supply device
JP6987234B2 (en) Refrigeration cycle device
JP2989491B2 (en) Air conditioner
JP2002188873A (en) Refrigerating equipment of air conditioner
JPH0420764A (en) Air conditioner
JPH01179874A (en) Air-conditioner
JP3511161B2 (en) Air conditioner
JP2005283058A (en) Reheating dehumidifying type air conditioner
JPH09257333A (en) Air-conditioner
JPH03102150A (en) Defrost control method for air conditioner
CN111578450A (en) Air conditioning system and defrosting method thereof
JP2698179B2 (en) Air conditioning
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JPH10325641A (en) Refrigerating device
KR19980027426A (en) Refrigerant control device of multi-room air conditioner
JP3268967B2 (en) Air conditioner
JP2001336858A (en) Air conditioning apparatus
KR100239477B1 (en) Heating and cooling cycle of air conditioner
JPS6017639Y2 (en) Heat pump air conditioner
JPH025323Y2 (en)