JP2006275449A - Heat storage type air conditioner - Google Patents

Heat storage type air conditioner Download PDF

Info

Publication number
JP2006275449A
JP2006275449A JP2005097641A JP2005097641A JP2006275449A JP 2006275449 A JP2006275449 A JP 2006275449A JP 2005097641 A JP2005097641 A JP 2005097641A JP 2005097641 A JP2005097641 A JP 2005097641A JP 2006275449 A JP2006275449 A JP 2006275449A
Authority
JP
Japan
Prior art keywords
heat storage
heat
heat exchanger
compressor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005097641A
Other languages
Japanese (ja)
Inventor
Osamu Morimoto
修 森本
Jiro Okajima
次郎 岡島
Koji Taki
幸司 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005097641A priority Critical patent/JP2006275449A/en
Publication of JP2006275449A publication Critical patent/JP2006275449A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat storage type air conditioner having sufficient cold storage capability while quickly coping with the case that the amount of heat storage medium in a heat storage tank is less than a proper amount. <P>SOLUTION: The heat storage type air conditioner capable of cold storage operation comprises a pressure sensor 33 provided on the suction side of a compressor 1 which entraps refrigerant passing through a heat storage heat exchanger 21, for detecting the suction pressure of the compressor, and an operation control means 50 for performing protecting operation of at least either stopping the compressor 1 or issuing an alarm when the pressure sensor 33 detects a preset pressure value which defines the heat storage medium in the heat storage tank to be in an insufficient condition in a preset target cold storage time during cold storage operation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、室外機と、蓄冷熱可能な蓄熱媒体を内蔵し蓄冷熱用熱交換器を持つ蓄熱槽と、室内機とを備え、冷暖房を行うことのできる蓄熱式空調装置に関するものである。   The present invention relates to a regenerative air conditioner that includes an outdoor unit, a heat storage tank that has a built-in heat storage medium capable of storing cold heat and has a heat exchanger for cold storage heat, and an indoor unit, and that can perform air conditioning.

蓄熱式空調装置は、夜間の蓄冷熱運転を利用して昼間の冷房運転時等のピークカット対応運転ができるという利点を備えている(例えば、特許文献1)。また、これに関連して、蓄氷式熱交換器における蒸発温度に対応した温度を検出し、その検出温度が所定温度より低下した場合に、圧縮機を停止する蓄氷運転保護装置も知られている(例えば、特許文献2)。   The heat storage type air conditioner has an advantage that it can perform peak cut-compatible operation such as during daytime cooling operation by using cold storage heat operation at night (for example, Patent Document 1). In addition, an ice storage operation protection device that detects a temperature corresponding to the evaporation temperature in an ice storage type heat exchanger and stops the compressor when the detected temperature falls below a predetermined temperature is also known. (For example, Patent Document 2).

特許登録3284582号(段落[0106]、図2)Patent Registration No. 3284582 (paragraph [0106], FIG. 2) 特許登録2836411号(段落[0014]、図1)Patent Registration No. 2836411 (paragraph [0014], FIG. 1)

しかしながら従来の蓄熱式空調装置は、蓄熱槽内の蓄熱媒体(通常は水)がもともとない場合、もしくは蓄冷熱媒体が基準水位よりも低下した場合に、それらに気がつかずに蓄冷運転と蓄熱運転を繰り返し、このため蓄熱式空調機として十分な能力を発揮できないという問題があった。
この発明は上記課題に対応してなされたもので、蓄熱槽内の蓄熱媒体が適正量より少なくなった場合に、素早い対応を可能にして、蓄熱式空調装置が有する蓄冷熱能力を無駄なく十分に発揮させることができる蓄熱式空調装置を提案するものである。
However, conventional heat storage air conditioners do not recognize the heat storage medium (usually water) in the heat storage tank, or if the cold storage heat medium drops below the reference water level, and perform cold storage operation and heat storage operation without noticing them. Repeatedly, for this reason, there was a problem that sufficient capacity as a regenerative air conditioner could not be exhibited.
This invention has been made in response to the above-mentioned problem, and when the heat storage medium in the heat storage tank becomes less than the appropriate amount, it is possible to respond quickly, and the regenerative heat capacity of the regenerative air conditioner is sufficient without waste. The present invention proposes a regenerative air conditioner that can be used in the future.

この発明の蓄熱式空調装置は、圧縮機及び熱源側熱交換器を有する室外機と、負荷側熱交換器を有する室内機と、蓄熱媒体を貯留し該蓄熱媒体と冷媒との熱交換を行う蓄熱熱交換器を有する蓄熱槽とを備え、前記圧縮機、前記熱源側熱交換器、前記負荷側熱交換器及び蓄熱熱交換器が接続された冷媒回路を有した蓄熱式空調装置であって、前記蓄熱熱交換器を通過した冷媒を取り込む前記圧縮機の吸入側に設けた該圧縮機の吸入圧力を検出する圧力検出装置と、蓄冷運転中、予め設定した目標蓄冷時間以内において、前記圧力検出装置が前記蓄熱槽内の蓄熱媒体を不足状態とみなす予め設定した圧力値を検出した場合に、前記圧縮機を停止させるか又は警報を発するかの少なくともいずれかの保護運転を行う運転制御手段とを備えたものである。
また、圧縮機及び熱源側熱交換器を有する室外機と、負荷側熱交換器を有する室内機と、蓄熱媒体を貯留し該蓄熱媒体と冷媒との熱交換を行う蓄熱熱交換器を有する蓄熱槽とを備え、前記圧縮機、前記熱源側熱交換器、前記負荷側熱交換器及び蓄熱熱交換器が接続された冷媒回路を有した蓄熱式空調装置であって、前記蓄熱媒体の温度を検出する蓄熱媒体温度検出装置と、前記蓄熱熱交換器を通過した冷媒の凝縮温度を検出する冷媒凝縮温度検出装置と、蓄熱運転中、前記蓄熱媒体温度検出装置による温度と前記冷媒凝縮温度検出装置による温度との差が前記蓄熱槽内の蓄熱媒体を不足状態とみなす予め設定した値となった場合に、前記圧縮機を停止させるか又は警報を発するかの少なくともいずれかの保護運転を行う運転制御手段とを備えたものである。
The heat storage type air conditioner of the present invention stores an outdoor unit having a compressor and a heat source side heat exchanger, an indoor unit having a load side heat exchanger, a heat storage medium, and performs heat exchange between the heat storage medium and the refrigerant. A heat storage type air conditioner having a refrigerant circuit including a heat storage tank having a heat storage heat exchanger and connected to the compressor, the heat source side heat exchanger, the load side heat exchanger, and the heat storage heat exchanger. A pressure detection device that detects the suction pressure of the compressor provided on the suction side of the compressor that takes in the refrigerant that has passed through the heat storage heat exchanger, and the pressure within a preset target cold storage time during the cold storage operation When the detection device detects a preset pressure value that considers the heat storage medium in the heat storage tank to be in a deficient state, the operation control means performs a protective operation of at least one of stopping the compressor or issuing an alarm. With .
Also, an outdoor unit having a compressor and a heat source side heat exchanger, an indoor unit having a load side heat exchanger, and a heat storage unit having a heat storage heat exchanger that stores the heat storage medium and performs heat exchange between the heat storage medium and the refrigerant. A heat storage air conditioner having a refrigerant circuit to which the compressor, the heat source side heat exchanger, the load side heat exchanger, and the heat storage heat exchanger are connected, the temperature of the heat storage medium being A heat storage medium temperature detection device for detecting, a refrigerant condensation temperature detection device for detecting a condensation temperature of the refrigerant that has passed through the heat storage heat exchanger, a temperature by the heat storage medium temperature detection device during the heat storage operation, and the refrigerant condensation temperature detection device Operation that performs at least one of the protective operation of stopping the compressor or issuing an alarm when the difference from the temperature by the temperature becomes a preset value that regards the heat storage medium in the heat storage tank as a shortage state And control means It is intended.

この発明の蓄熱式空調装置は、蓄熱熱交換器を通過した冷媒を取り込む圧縮機の吸入側に設けた該圧縮機の吸入圧力を検出する圧力検出装置と、蓄冷運転中、予め設定した目標蓄冷時間以内において、圧力検出装置が蓄熱槽内の蓄熱媒体を不足状態とみなす予め設定した圧力値を検出した場合に、圧縮機を停止させるか又は警報を発するかの少なくともいずれかの保護運転を行う運転制御手段とを備える。このため、蓄熱槽内の蓄熱媒体の不足に対する対処が迅速に行えることになり、蓄熱式空調装置の冷房能力を無駄にすることなく十分に活用することが可能となる。
また、蓄熱媒体の温度を検出する蓄熱媒体温度検出装置と、蓄熱熱交換器を通過した冷媒の凝縮温度を検出する冷媒凝縮温度検出装置と、蓄熱運転中、蓄熱媒体温度検出装置による温度と冷媒凝縮温度検出装置による温度との差が蓄熱槽内の蓄熱媒体を不足状態とみなす予め設定した値となった場合に、圧縮機を停止させるか又は警報を発するかの少なくともいずれかの保護運転を行う運転制御手段とを備える。このため、蓄熱槽内の蓄熱媒体の不足に対する対処を迅速に行えることになり、蓄熱式空調装置の暖房能力を無駄にすることなく十分に活用することが可能となる。
The heat storage type air conditioner of the present invention includes a pressure detection device that detects the suction pressure of the compressor provided on the suction side of the compressor that takes in the refrigerant that has passed through the heat storage heat exchanger, and a preset target cold storage during the cold storage operation. Within a time, when the pressure detection device detects a preset pressure value that considers the heat storage medium in the heat storage tank to be in a shortage state, at least one of the protective operation of stopping the compressor or issuing an alarm is performed. Operation control means. For this reason, it is possible to quickly cope with the shortage of the heat storage medium in the heat storage tank, and it is possible to fully utilize the cooling capacity of the heat storage type air conditioner without wasting it.
Also, a heat storage medium temperature detection device that detects the temperature of the heat storage medium, a refrigerant condensation temperature detection device that detects the condensation temperature of the refrigerant that has passed through the heat storage heat exchanger, and the temperature and refrigerant generated by the heat storage medium temperature detection device during the heat storage operation When the difference from the temperature by the condensing temperature detection device becomes a preset value that considers the heat storage medium in the heat storage tank to be in a shortage state, at least one of the protective operation of stopping the compressor or issuing an alarm is performed. Operation control means to perform. For this reason, it is possible to quickly cope with the shortage of the heat storage medium in the heat storage tank, and it is possible to fully utilize the heating capacity of the heat storage type air conditioner without wasting it.

以下、本発明をその実施形態に基づいて説明する。図1はこの発明の実施形態に係る蓄熱式空調装置の構成図である。この蓄熱式空調装置は、室外機A(室外ユニット)、蓄熱槽B(蓄熱ユニット)、及び室内機C1及びC2(室内ユニット)が接続された冷凍サイクルを構成している。室外機Aと蓄熱槽Bとは、液管P3、低圧ガス管P2、及び高圧ガス管P1により接続され、蓄熱槽Bと室内機C1及びC2とは、液側延長配管P5、及びガス側延長配管P4により接続されている。なお、この例では2台の室内機を備える構成としているが、その台数は2台に限定されるものではい。   Hereinafter, the present invention will be described based on the embodiments. FIG. 1 is a configuration diagram of a regenerative air conditioner according to an embodiment of the present invention. This heat storage type air conditioner constitutes a refrigeration cycle to which an outdoor unit A (outdoor unit), a heat storage tank B (heat storage unit), and indoor units C1 and C2 (indoor units) are connected. The outdoor unit A and the heat storage tank B are connected by a liquid pipe P3, a low pressure gas pipe P2, and a high pressure gas pipe P1, and the heat storage tank B and the indoor units C1 and C2 are a liquid side extension pipe P5 and a gas side extension. It is connected by piping P4. In this example, two indoor units are provided. However, the number is not limited to two.

さらに、蓄熱式空調装置には後述する各運転の制御を行う運転制御手段50が設けられ、室外機A、蓄熱槽B、及び室内機C1及びC2の各構成機器のうち、運転制御に関係する機器に接続されている。運転制御手段50は、運転制御アルゴリズムが記載されたプログラムとそのプログラムを動作させるCPU(中央処理装置)あるいはマイコン等から構成できる。なお、運転制御手段50は通常、室外機Aに設置されるが、その設置場所は特に限定されるものではなく適宜決定して良い。   Furthermore, the heat storage type air conditioner is provided with operation control means 50 for controlling each operation described later, and is related to operation control among the constituent devices of the outdoor unit A, the heat storage tank B, and the indoor units C1 and C2. Connected to the device. The operation control means 50 can be composed of a program in which an operation control algorithm is described and a CPU (central processing unit) or a microcomputer for operating the program. The operation control means 50 is usually installed in the outdoor unit A, but the installation location is not particularly limited and may be determined as appropriate.

室外機Aは圧縮機1、流路切替装置としての四方弁2、熱源側熱交換器である室外熱交換器3、過冷却熱交換器4、及び第3の流量制御弁5が配管により接続されて構成されている。また、過冷却熱交換器4と室外熱交換器3との間の配管、過冷却熱交換器4と第3の流量制御弁5との間の配管、過冷却熱交換器4と圧縮機1との間の配管には、それぞれ第1、第2、第3の温度センサ6、7、8が設けられている。さらに、圧縮機1の吐出側冷媒回路と吸入側冷媒回路には、該回路内の圧力を測定する高圧圧力センサ32と低圧圧力センサ33をそれぞれ備える。   The outdoor unit A has a compressor 1, a four-way valve 2 as a flow switching device, an outdoor heat exchanger 3 as a heat source side heat exchanger, a supercooling heat exchanger 4, and a third flow control valve 5 connected by piping. Has been configured. Also, piping between the supercooling heat exchanger 4 and the outdoor heat exchanger 3, piping between the supercooling heat exchanger 4 and the third flow control valve 5, supercooling heat exchanger 4 and the compressor 1 The first, second, and third temperature sensors 6, 7, and 8 are respectively provided in the pipes between the two. Furthermore, the discharge side refrigerant circuit and the suction side refrigerant circuit of the compressor 1 are each provided with a high pressure sensor 32 and a low pressure sensor 33 for measuring the pressure in the circuit.

蓄熱槽Bは水等の蓄熱媒体を貯留し該蓄熱媒体と冷媒との熱交換を行う蓄熱熱交換器21を有する。蓄熱熱交換器21の一端は第2の流量制御弁23、第1の流量制御弁22を介して液管P3に接続されている。また、蓄熱熱交換器21の他端は3つに分割され、第1の開閉弁24を介して高圧ガス管P1と、第2の開閉弁25を介して低圧ガス管P2と、そして、第1の逆止弁28及び第4の開閉弁27を介し液延長配管P5とにそれぞれ接続している。
また、第2の流量制御弁23と第1の流量制御弁22との接続配管より分岐した配管が、第3の開閉弁26を介して、第1の逆止弁28と第4の開閉弁27との接続配管に接続している。
また、液側延長配管P5の第4の開閉弁27との接続部より分岐し、第3の開閉弁26と第1の流量制御弁22とを接続する配管の中途に接続する配管に第2逆止弁29が設けられている。
さらに、蓄熱熱交換器21の出入口配管には、出入口配管を通過する冷媒の温度を検出する第4,第5の温度センサ30,31が設けられている。
これらに加えて、蓄熱槽Bには、貯留している蓄熱媒体の温度を測定する蓄熱媒体温度センサ34も備えられている。
The heat storage tank B has a heat storage heat exchanger 21 that stores a heat storage medium such as water and performs heat exchange between the heat storage medium and the refrigerant. One end of the heat storage heat exchanger 21 is connected to the liquid pipe P <b> 3 via the second flow control valve 23 and the first flow control valve 22. The other end of the heat storage heat exchanger 21 is divided into three, a high pressure gas pipe P1 via a first on-off valve 24, a low pressure gas pipe P2 via a second on-off valve 25, and a first The first check valve 28 and the fourth on-off valve 27 are connected to the liquid extension pipe P5.
A pipe branched from a connection pipe between the second flow control valve 23 and the first flow control valve 22 is connected to a first check valve 28 and a fourth open / close valve via a third open / close valve 26. 27 is connected to the connection pipe.
In addition, the second branch pipe is connected to the middle of the pipe connecting the third on-off valve 26 and the first flow control valve 22, branching off from the connection portion of the liquid side extension pipe P5 with the fourth on-off valve 27. A check valve 29 is provided.
Furthermore, the entrance and exit piping of the heat storage heat exchanger 21 is provided with fourth and fifth temperature sensors 30 and 31 for detecting the temperature of the refrigerant passing through the entrance and exit piping.
In addition to these, the heat storage tank B is also provided with a heat storage medium temperature sensor 34 for measuring the temperature of the stored heat storage medium.

室内機C1は負荷側熱交換器としての室内熱交換器40a、室内流量制御弁41a、室内熱交換器40aの出入口配管に設けられた第6,第7の温度センサ42a,43aを備えてなる。同様に、室内機C2は負荷側熱交換器としての室内熱交換器40b、室内流量制御弁41b、室内熱交換器40bの出入口配管に設けられた第8,第9の温度センサ42b,43bを備えてなる。   The indoor unit C1 includes an indoor heat exchanger 40a as a load-side heat exchanger, an indoor flow rate control valve 41a, and sixth and seventh temperature sensors 42a and 43a provided in the inlet / outlet piping of the indoor heat exchanger 40a. . Similarly, the indoor unit C2 includes an indoor heat exchanger 40b as a load-side heat exchanger, an indoor flow rate control valve 41b, and eighth and ninth temperature sensors 42b and 43b provided in the inlet / outlet piping of the indoor heat exchanger 40b. Prepare.

室外機Aを構成する圧縮機1、四方弁2、室外熱交換器3、過冷却熱交換器4及び第3の流量制御弁5は、高圧ガス管P1とガス側延長配管P4を介して、室内機C1,C2を構成する室内熱交換器40a,40bの一方の出入口に接続され、さらに液管P3と液側延長配管P5を介して、室内熱交換器40a,40bの他方の出入口に接続されている。そして、この室外機Aと室内機C1,C2からなる冷媒回路の間に蓄熱熱交換器21が接続されている。   The compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the supercooling heat exchanger 4 and the third flow control valve 5 constituting the outdoor unit A are connected via a high pressure gas pipe P1 and a gas side extension pipe P4. Connected to one inlet / outlet of the indoor heat exchangers 40a and 40b constituting the indoor units C1 and C2, and further connected to the other inlet / outlet of the indoor heat exchangers 40a and 40b via the liquid pipe P3 and the liquid side extension pipe P5. Has been. And the heat storage heat exchanger 21 is connected between the refrigerant circuit which consists of this outdoor unit A and indoor unit C1, C2.

次に、上記のように構成された蓄熱式空調装置の運転動作について説明する。この蓄熱式空調装置の運転動作には、冷房関連運転として冷房、蓄冷、利用冷房の各運転があり、暖房関連運転として暖房、蓄熱、利用暖房、併用暖房、利用デフロストの各運転がある。以下、これらの運転動作について順次説明する。
表1に冷房関連運転時の制御弁の動作状態をまとめて示す。
Next, the operation of the regenerative air conditioner configured as described above will be described. The operation operation of this heat storage type air conditioner includes cooling, cold storage, and utilization cooling operations as cooling-related operations, and heating, heat storage, utilization heating, combined heating, and utilization defrost operations as heating-related operations. Hereinafter, these driving operations will be sequentially described.
Table 1 summarizes the operating state of the control valve during cooling-related operation.

Figure 2006275449
Figure 2006275449

(冷房運転)
図2は図1の蓄熱式空調装置の冷房運転時の冷媒の流れを示す図である。圧縮機1から吐出された高温高圧ガス冷媒は、四方弁2を介して室外熱交換器3に流入し、冷却され凝縮液化する。そして、この凝縮液化した冷媒は過冷却熱交換器4に流入し、更に冷却されて過冷却した液となる。第3の流量制御弁5は第2の温度センサ7と第3の温度センサ8とが検知した温度差が所定範囲となるよう流量制御する。過冷却状態の液冷媒は液管P3から第1の流量制御弁22(全開)、第3の開閉弁26、第4の開閉弁27を通り室内機C1,C2に流入し、室内流量制御弁41a、41bにより低圧まで減圧される。そして、低圧となった冷媒は室内熱交換器40a、40bで室内空気と熱交換して蒸発、ガス状態となり配管P4及びP1を通り圧縮機1に吸入される。室内流量制御弁41aは第6、第7の温度センサ42a、43aで検出した温度を基に、室内流量制御弁41bは第8、第9の温度センサ42b、43bで検出した温度を基に、冷媒の加熱度が所定範囲となるよう流量制御する。
このように、過冷却熱交換器4により室外機1から出る冷媒の過冷却度を十分大きくすることで、蓄熱槽B、室内機C1,C2を接続する接続配管P3,P5が長い場合や、これらのユニット間に高低差があって、圧損により圧力が低下しても冷媒を液状態とすることができ、室内流量制御弁41a,41bの制御性を確保することができる。
(Cooling operation)
FIG. 2 is a diagram showing a refrigerant flow during the cooling operation of the heat storage type air conditioner of FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2 and is cooled and condensed into liquid. The condensed and liquefied refrigerant flows into the supercooling heat exchanger 4 and is further cooled to become supercooled liquid. The third flow rate control valve 5 controls the flow rate so that the temperature difference detected by the second temperature sensor 7 and the third temperature sensor 8 falls within a predetermined range. The supercooled liquid refrigerant flows from the liquid pipe P3 into the indoor units C1 and C2 through the first flow control valve 22 (fully open), the third on-off valve 26, and the fourth on-off valve 27, and the indoor flow control valve. The pressure is reduced to a low pressure by 41a and 41b. The low-pressure refrigerant exchanges heat with indoor air in the indoor heat exchangers 40a and 40b, evaporates and becomes a gas state, and is sucked into the compressor 1 through the pipes P4 and P1. The indoor flow control valve 41a is based on the temperatures detected by the sixth and seventh temperature sensors 42a and 43a, and the indoor flow control valve 41b is based on the temperatures detected by the eighth and ninth temperature sensors 42b and 43b. The flow rate is controlled so that the heating degree of the refrigerant falls within a predetermined range.
As described above, when the supercooling heat exchanger 4 sufficiently increases the degree of supercooling of the refrigerant coming out of the outdoor unit 1, the connection pipes P3 and P5 connecting the heat storage tank B and the indoor units C1 and C2 are long, Even if there is a height difference between these units and the pressure drops due to pressure loss, the refrigerant can be in a liquid state, and the controllability of the indoor flow control valves 41a and 41b can be ensured.

(蓄冷運転)
次に、蓄熱槽Bの内部に溜められた蓄熱媒体である水を冷却して、冷水や氷とする蓄冷運転の動作について説明する。図3は図1の蓄熱式空調装置の蓄冷運転時の冷媒の流れを示す図である。圧縮機1から吐出された高温高圧ガス冷媒は、四方弁2を介して室外熱交換器3、過冷却熱交換器4に流入し過冷却した液冷媒となる。第3の流量制御弁5は第2の温度センサ7と第3の温度センサ8とで検出した温度差が所定範囲となるよう流量制御する。この過冷却した液冷媒は液配管P3から第1の流量制御弁22に流入し低圧まで減圧される。その後、液冷媒は第2の流量制御弁23(全開)を通り蓄熱熱交換器21に流入し、そこで熱交換してガス状態となり、第1の開閉弁24、第2の開閉弁25を通って圧縮機1に吸入される。第1の流量制御弁22は蓄熱熱交換器21の出入口配管に設けられた第4、第5の温度センサ30、31の検出温度を基に加熱度が所定範囲となるよう流量制御する。
第3の流量制御弁5は、第2の温度センサ7と第3の温度センサ8の検出温度を基にその温度差が所定範囲となるよう流量制御するが、室外熱交換器3の出口に設けられた第1の温度センサ6と圧縮機1の吐出側に設けられた高圧センサ32の値を基に求められた蓄熱熱交換器21の出口冷媒の過冷却度が所定値以上となった場合は、過冷却度の制御に切り替え、過冷却度が所定値以下となるよう制御する。
このように制御することにより、蓄熱熱交換器21に流入する冷媒の過冷却度が十分大きくなるため蓄熱熱交換器21の圧力損失が小さく、また、室外熱交換器3の過冷却度が過度に大きくなることがないため、液溜めを設けなくても高圧を適正にすることができる等により効率の高い運転が可能となる。
(Cool storage operation)
Next, the operation of the cold storage operation in which water, which is a heat storage medium stored in the heat storage tank B, is cooled to produce cold water or ice will be described. FIG. 3 is a diagram showing a refrigerant flow during the cold storage operation of the heat storage type air conditioner of FIG. The high-temperature high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 and the supercooling heat exchanger 4 via the four-way valve 2 and becomes supercooled liquid refrigerant. The third flow rate control valve 5 controls the flow rate so that the temperature difference detected by the second temperature sensor 7 and the third temperature sensor 8 falls within a predetermined range. The supercooled liquid refrigerant flows into the first flow control valve 22 from the liquid pipe P3 and is depressurized to a low pressure. Thereafter, the liquid refrigerant passes through the second flow control valve 23 (fully opened) and flows into the heat storage heat exchanger 21, where it exchanges heat and enters a gas state, passes through the first on-off valve 24 and the second on-off valve 25. And sucked into the compressor 1. The first flow rate control valve 22 controls the flow rate so that the degree of heating is within a predetermined range based on the detected temperatures of the fourth and fifth temperature sensors 30 and 31 provided in the inlet / outlet piping of the heat storage heat exchanger 21.
The third flow rate control valve 5 controls the flow rate so that the temperature difference is within a predetermined range based on the temperature detected by the second temperature sensor 7 and the third temperature sensor 8, but at the outlet of the outdoor heat exchanger 3. The degree of supercooling of the outlet refrigerant of the heat storage heat exchanger 21 obtained based on the values of the first temperature sensor 6 provided and the high-pressure sensor 32 provided on the discharge side of the compressor 1 became a predetermined value or more. In such a case, the control is switched to the supercooling degree control so that the supercooling degree becomes a predetermined value or less.
By controlling in this way, the degree of supercooling of the refrigerant flowing into the heat storage heat exchanger 21 becomes sufficiently large, so the pressure loss of the heat storage heat exchanger 21 is small, and the degree of supercooling of the outdoor heat exchanger 3 is excessive. Therefore, high-efficiency operation is possible because the high pressure can be made appropriate without providing a liquid reservoir.

ここで、上記蓄冷運転の制御アルゴリズムについて説明する。図4はこの発明の実施形態に係る運転制御手段50による蓄冷運転のアルゴリズムを示すフローチャートである。蓄冷運転は蓄冷運転指令を受けて開始する(STEP1)。次に、昼間の空調運転時間や負荷の状態を冷凍サイクルの高低圧と圧縮機の運転周波数から得て、目標蓄冷時間t1を算出する(STEP2)。次に、低圧センサ33で圧縮機1の吸入圧力(低圧)Psを検出する(STEP3)。次に、蓄冷運転開始からの時間t2とSTEP2で決定した目標蓄冷時間t1を比較する(STEP4)。STEP4で、開始からの蓄冷運転時間t2が目標蓄冷時間t1に達していない場合は、STEP3で検知した低圧圧力Psと予め定めた低圧圧力の下限値Pbとを比較し、PsがPb以上であればSTEP4に戻り、PsがPbよりも小さい場合にはSTEP6に進む(STEP5)。ただし、通常は、目標蓄冷時間t1の方が開始からの蓄冷運転時間t2より大きくなっているため、STEP4からSTEP6への進行は事実上行われない。
なお、予め定めた低圧圧力の下限値Pbとは、蓄熱槽B内の蓄熱媒体量の適正範囲の下限値に対応する圧力値であり、Psがこの下限値Pbを下回る場合、蓄熱槽B内の蓄熱媒体の量を不足状態とみなしている。
STEP6では、開始からの蓄冷運転時間t2と予め定めた所定の運転時間t3とを比較し、開始からの蓄冷運転時間が所定の運転時間よりも短い場合にはSTEP7に進む。そして、STEP7では、圧縮機1を停止して蓄冷運転を終了するとともに、室内機C1,C2やリモコン(図示せず)等に蓄熱槽B内の水が不足している旨の警報を発報する。この発報はランプ表示及び/又は音声出力により行うことができる。なお、この場合、圧縮機1の停止又は警報の発報のいずれか一方だけの処理としても良い。これにより、蓄熱槽内の蓄熱媒体の不足に対する対処が迅速に行えることになり、蓄熱式空調装置の冷房能力を無駄にすることなく十分に活用することが可能となる。
一方、STEP6で、開始からの蓄冷運転時間が所定の運転時間t3以上の場合には、圧縮機1の運転を停止させて蓄冷運転を終了する。
Here, the control algorithm of the cold storage operation will be described. FIG. 4 is a flowchart showing an algorithm for cold storage operation by the operation control means 50 according to the embodiment of the present invention. The cold storage operation starts upon receiving a cold storage operation command (STEP 1). Next, the air conditioning operation time during the daytime and the load state are obtained from the high and low pressures of the refrigeration cycle and the operation frequency of the compressor, and the target cold storage time t1 is calculated (STEP 2). Next, the suction pressure (low pressure) Ps of the compressor 1 is detected by the low pressure sensor 33 (STEP 3). Next, the time t2 from the start of the cool storage operation is compared with the target cool storage time t1 determined in STEP 2 (STEP 4). In STEP 4, when the cool storage operation time t2 from the start does not reach the target cool storage time t1, the low pressure Ps detected in STEP 3 is compared with a predetermined lower limit Pb of the low pressure, and Ps is equal to or greater than Pb. If the Ps is smaller than Pb, the process proceeds to STEP 6 (STEP 5). However, since the target cool storage time t1 is usually longer than the cool storage operation time t2 from the start, the progress from STEP 4 to STEP 6 is virtually not performed.
The predetermined lower limit Pb of the low pressure is a pressure value corresponding to the lower limit of the appropriate range of the amount of heat storage medium in the heat storage tank B, and when Ps is less than the lower limit Pb, The amount of heat storage medium is regarded as a shortage.
In STEP 6, the cool storage operation time t2 from the start is compared with a predetermined operation time t3, and if the cool storage operation time from the start is shorter than the predetermined operation time, the process proceeds to STEP 7. Then, in STEP 7, the compressor 1 is stopped and the cold storage operation is finished, and an alarm that the water in the heat storage tank B is insufficient is issued to the indoor units C1, C2, a remote controller (not shown), and the like. To do. This notification can be performed by lamp display and / or voice output. In this case, only one of the stop of the compressor 1 and the alarm notification may be processed. Thereby, it becomes possible to quickly cope with the shortage of the heat storage medium in the heat storage tank, and it is possible to fully utilize the cooling capacity of the heat storage type air conditioner without wasting it.
On the other hand, if the cold storage operation time from the start is greater than or equal to the predetermined operation time t3 in STEP 6, the operation of the compressor 1 is stopped and the cold storage operation is terminated.

ところで、上記STEP6における所定の時間t3とは、目標の蓄熱量を蓄熱槽Bに蓄積する前に、蓄熱槽B内の水位が低下したことにより、蓄冷運転を終了しなければならない時間を予め試験等で求めておき、それを運転制御手段50等に記憶しておいたものである。所定の時間t3は、例えば吸入圧力(低圧)Psとの関係データとして予め求めておくことができ、STEP6では低圧センサ33で測定された吸入圧力(低圧)Psに対応して決定される時間となる。従って、STEP6は、蓄熱槽B内の水が低下して所定の蓄熱量を溜められない運転を継続することを防止し、能力を確保するのに寄与するとともに、誤動作防止にも役立っている。   By the way, the predetermined time t3 in the above STEP 6 is a test in advance of the time that the cold storage operation should be terminated because the water level in the heat storage tank B has decreased before the target heat storage amount is stored in the heat storage tank B. Etc. and stored in the operation control means 50 or the like. The predetermined time t3 can be obtained in advance as, for example, relational data with the suction pressure (low pressure) Ps. In STEP 6, the time determined in accordance with the suction pressure (low pressure) Ps measured by the low pressure sensor 33 is used. Become. Accordingly, STEP 6 prevents the water in the heat storage tank B from dropping and continues the operation in which a predetermined heat storage amount cannot be stored, contributes to securing the capability, and also serves to prevent malfunction.

なお、蓄熱媒体の水位が正常になるまでは、蓄熱槽を利用した空調運転及び蓄冷運転をしないようにすることで、異常な状態で装置を運転し続け、装置が破損することを防止することができる。また、蓄熱媒体の水位が正常位置に戻ったことを確認した場合には、リセットボタンで異常をリセットすることで、蓄熱槽を利用する正常な運転に戻るようにしても良い。さらに、定期的に異常を自動リセットさせて、再度、蓄熱媒体の水位が低下した異常を検知したら、蓄熱槽を利用した空調運転をしないように設定しても良い。   Until the water level of the heat storage medium becomes normal, avoiding air conditioning operation and cold storage operation using the heat storage tank to keep the device operating in an abnormal state and prevent the device from being damaged. Can do. When it is confirmed that the water level of the heat storage medium has returned to the normal position, the normal operation using the heat storage tank may be returned by resetting the abnormality with the reset button. Furthermore, if the abnormality is automatically reset periodically and an abnormality in which the water level of the heat storage medium is lowered is detected again, the air conditioning operation using the heat storage tank may not be performed.

(利用冷房運転)
ここでは、蓄熱槽B内部に溜められた冷水及び氷の冷熱を室外機出口冷媒の冷却に利用する利用冷房の動作について説明する。図5は図1の蓄熱式空調装置の利用冷房運転時の冷媒の流れを示す図である。
圧縮機1から吐出された高温高圧ガス冷媒は、四方弁2を介して室外熱交換器3に流入し、冷却され凝縮液化する。そして、この凝縮液化した冷媒は過冷却熱交換器4に流入するが、第3の流量制御弁5は全閉状態とされるため冷却されずに過冷却熱交換器4を通り液配管P3から蓄熱槽Bに流入して、第1の流量制御弁22(全開)、第2の流量制御弁23(中間開度)を通り熱交換器21に入りそこで冷却され過冷却状態まで冷却される。そして更に、この冷媒は第1の逆止弁28、第4の開閉弁27を通り室内流量制御弁41a,41bで低圧まで減圧され、室内熱交換器40a、40bで室内空気と熱交換することによりガス状態となり接続配管P4、P1から圧縮機1に吸入される。このとき、室内流量制御弁41a,41は冷房運転の時と同様に制御される。このようにして、蓄熱槽Bに溜められた冷熱により冷媒を過冷却度状態としているので、効率の高い冷房運転が行える。
(Use cooling operation)
Here, the operation of the utilization cooling which uses the cold water and the cold heat of ice stored in the heat storage tank B for cooling the outdoor unit outlet refrigerant will be described. FIG. 5 is a diagram showing the refrigerant flow during the cooling use operation of the regenerative air conditioner of FIG.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the outdoor heat exchanger 3 through the four-way valve 2 and is cooled and condensed into liquid. The condensed and liquefied refrigerant flows into the supercooling heat exchanger 4, but the third flow rate control valve 5 is fully closed so that it is not cooled and passes through the supercooling heat exchanger 4 and from the liquid pipe P3. It flows into the heat storage tank B, passes through the first flow control valve 22 (fully open) and the second flow control valve 23 (intermediate opening), enters the heat exchanger 21 and is cooled there to a supercooled state. Further, the refrigerant passes through the first check valve 28 and the fourth on-off valve 27, is reduced to a low pressure by the indoor flow control valves 41a and 41b, and exchanges heat with the indoor air by the indoor heat exchangers 40a and 40b. Thus, a gas state is obtained, and the refrigerant is sucked into the compressor 1 from the connection pipes P4 and P1. At this time, the indoor flow control valves 41a and 41 are controlled in the same manner as in the cooling operation. Thus, since the refrigerant is in a supercooled state by the cold heat stored in the heat storage tank B, a highly efficient cooling operation can be performed.

次に、図1の蓄熱式空調装置による暖房関連の運転、すなわち、暖房、蓄熱、利用暖房、併用暖房、利用デフロストの各運転について説明する。表2にこれらの運転の制御弁制御状態をまとめて示す。   Next, operations related to heating by the heat storage type air conditioner of FIG. 1, that is, operations of heating, heat storage, use heating, combined heating, and use defrost will be described. Table 2 summarizes the control valve control states of these operations.

Figure 2006275449
Figure 2006275449

(暖房運転)
図6は図1の蓄熱式空調装置の暖房運転時の冷媒の流れを示す図である。圧縮機1から吐出された高温高圧ガス冷媒は高圧ガス管P1から蓄熱ユニットB、ガス側延長配管P4を通り室内熱交換器40a、40bに流入し、室内空気と熱交換して凝縮液化する。そして、この冷媒液は室内流量制御弁41a、41bにより低圧まで減圧され、第4の開閉弁27、第3の開閉弁26と第2の逆止弁29とを流通して全開状態の第1の流量制御弁22を通り室外熱交換器3で蒸発、ガス常態となり圧縮機1に吸入される。室内流量制御弁41a、41bは第6〜第9の温度センサ42a,43a,42b、43bの検出値を基に、冷媒の過冷却度が所定範囲となるよう流量制御する。室内流量制御弁41a,41bの出口側は低圧となっているため制御弁の出入口の差圧が大きく、複数の室内機間での配管長差や高低差が大きい場合にも適性流量を流すことができ、複数室内機での能力にアンバランスを発生することがない。
(Heating operation)
FIG. 6 is a diagram illustrating the refrigerant flow during the heating operation of the regenerative air conditioner of FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the indoor heat exchangers 40a and 40b from the high-pressure gas pipe P1 through the heat storage unit B and the gas side extension pipe P4, and exchanges heat with indoor air to be condensed and liquefied. Then, the refrigerant liquid is depressurized to a low pressure by the indoor flow control valves 41a and 41b, and flows through the fourth on-off valve 27, the third on-off valve 26, and the second check valve 29 so as to be fully opened. Through the flow rate control valve 22, evaporates in the outdoor heat exchanger 3, becomes a gas normal state, and is sucked into the compressor 1. The indoor flow rate control valves 41a and 41b control the flow rate so that the degree of refrigerant supercooling falls within a predetermined range based on the detection values of the sixth to ninth temperature sensors 42a, 43a, 42b, and 43b. Since the outlet side of the indoor flow control valves 41a and 41b is low pressure, the differential pressure at the inlet and outlet of the control valve is large, and the appropriate flow rate is allowed to flow even when there are large pipe length differences or height differences between multiple indoor units. And no imbalance occurs in the capacity of multiple indoor units.

(蓄熱運転)
次に、蓄熱槽Bに溜められた蓄熱媒体である水を加熱、温水として蓄熱する蓄熱運転について説明する。図7は図1の蓄熱式空調装置の蓄熱運転時の冷媒の流れを示す図である。圧縮機1から吐出された高温高圧ガス冷媒は四方弁2、第1の開閉弁24を通り熱交換器21に流入し、蓄熱槽B内の水と熱交換して凝縮液化する。そして、この液冷媒は全開状態の第2の流量制御弁23を通り、第1の流量制御弁22で低圧に減圧され室外熱交換器3に流入し、そこで外気と熱交換してガス状態となり圧縮機1に吸入される。第1の流量制御弁22は第4の温度センサ30と高圧センサ32から冷媒の過冷却度を検知し、過冷却度が所定範囲内となるよう流量制御する。
上記の場合、第1の流量制御弁22で流量制御するようにしたが、第2の流量制御弁23で流量制御した場合、第2の流量制御弁23の開度により第1の流量制御弁22の入口冷媒状態が変化するため、この制御弁での圧損が変化する。このため低圧が異常に低下する運転となり室外熱交換器3に着霜したり、冷媒循環量が減少し立ち上がりに長時間を要してしまう。
なお、室内流量制御弁41a、41bは全閉状態とされるが、一定時間毎に開き、ガス側延長配管P4、室内熱交換器40a,40bに溜まり込んだ冷媒を室外機A側に回収しても良い。
(Heat storage operation)
Next, a heat storage operation in which water, which is a heat storage medium stored in the heat storage tank B, is heated and stored as warm water will be described. FIG. 7 is a diagram showing the refrigerant flow during the heat storage operation of the heat storage type air conditioner of FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the heat exchanger 21 through the four-way valve 2 and the first on-off valve 24 and exchanges heat with water in the heat storage tank B to be condensed and liquefied. The liquid refrigerant passes through the fully opened second flow rate control valve 23, is reduced in pressure to the low pressure by the first flow rate control valve 22, and flows into the outdoor heat exchanger 3, where it exchanges heat with the outside air to become a gas state. It is sucked into the compressor 1. The first flow control valve 22 detects the degree of supercooling of the refrigerant from the fourth temperature sensor 30 and the high pressure sensor 32 and controls the flow rate so that the degree of supercooling falls within a predetermined range.
In the above case, the flow rate is controlled by the first flow rate control valve 22, but when the flow rate is controlled by the second flow rate control valve 23, the first flow rate control valve 23 is controlled by the opening of the second flow rate control valve 23. Since the inlet 22 refrigerant state changes, the pressure loss at this control valve changes. For this reason, it becomes the operation | movement from which a low voltage | pressure falls abnormally, it forms frost on the outdoor heat exchanger 3, or a refrigerant | coolant circulation amount reduces and it takes a long time to start.
Although the indoor flow control valves 41a and 41b are fully closed, they are opened at regular intervals, and the refrigerant accumulated in the gas side extension pipe P4 and the indoor heat exchangers 40a and 40b is recovered to the outdoor unit A side. May be.

ここで、蓄熱運転の制御アルゴリズムについて説明する。図8はこの発明の実施形態に係る運転制御手段50による蓄熱運転のアルゴリズムを示すフローチャートである。蓄熱運転は、STEP1で蓄熱運転指令を受けて蓄熱運転を開始する。STEP2では、蓄熱運転開始からの時間t5と最大蓄熱時間t4を比較し、蓄熱運転開始からの時間t5が最大蓄熱時間t4以上の場合には、STEP5に進み蓄熱運転を終了する。なお、最大蓄熱時間t4とは、機器毎に定められた定格の蓄熱量をためるのに必要な時間である。STEP2で、蓄熱運転開始からの時間t5が最大蓄熱時間t4未満の場合には、STEP3に進む。STEP3では、蓄熱媒体の水温T1を検知し、水温T1が予め定めておいた上限値T2以上の場合には、STEP5に進み蓄熱運転を終了する。STEP3で、水温T1が上限値T2未満の場合には、STEP4に進む。STEP4で、冷媒の凝縮温度T3と蓄熱媒体の水温T1との差として予め決定しておいた所定の温度差T4とを比較し、凝縮温度T3と蓄熱媒体の水温T1の差が所定の温度差T4よりも小さい場合は、STEP2に戻る。STEP4で、凝縮温度T3と蓄熱媒体の水温T1の差が所定の温度差T4以上の場合は、STEP6に進む。STEP6では、圧縮機1を停止して蓄熱運転を終了するとともに、室内機C1,C2やリモコン(図示せず)等に蓄熱槽B内の水が不足している旨の警報を発報する。警告の発報はランプ表示及び/又は音声出力により行うことができる。なお、この場合、圧縮機1の停止又は警報の発報のいずれか一方だけの処理としても良い。これにより、蓄熱槽内の蓄熱媒体の不足に対する対処を迅速に行えることになり、蓄熱式空調装置の暖房能力を無駄にすることなく十分に活用することが可能となる。   Here, a control algorithm of the heat storage operation will be described. FIG. 8 is a flowchart showing an algorithm for the heat storage operation by the operation control means 50 according to the embodiment of the present invention. The heat storage operation starts the heat storage operation in response to the heat storage operation command in STEP 1. In STEP2, the time t5 from the start of the heat storage operation is compared with the maximum heat storage time t4. If the time t5 from the start of the heat storage operation is equal to or greater than the maximum heat storage time t4, the process proceeds to STEP5 and the heat storage operation is terminated. The maximum heat storage time t4 is a time required for accumulating the rated heat storage amount determined for each device. If the time t5 from the start of the heat storage operation is less than the maximum heat storage time t4 in STEP2, the process proceeds to STEP3. In STEP3, the water temperature T1 of the heat storage medium is detected. If the water temperature T1 is equal to or higher than the predetermined upper limit value T2, the process proceeds to STEP5 and the heat storage operation is terminated. If the water temperature T1 is lower than the upper limit value T2 in STEP 3, the process proceeds to STEP 4. In STEP 4, a predetermined temperature difference T4 previously determined as a difference between the refrigerant condensing temperature T3 and the heat storage medium water temperature T1 is compared, and the difference between the condensing temperature T3 and the heat storage medium water temperature T1 is a predetermined temperature difference. If smaller than T4, return to STEP2. If the difference between the condensation temperature T3 and the water temperature T1 of the heat storage medium is greater than or equal to the predetermined temperature difference T4 in STEP 4, the process proceeds to STEP 6. In STEP6, the compressor 1 is stopped and the heat storage operation is terminated, and an alarm that the water in the heat storage tank B is insufficient is issued to the indoor units C1, C2, a remote controller (not shown), and the like. The warning can be issued by lamp display and / or voice output. In this case, only one of the stop of the compressor 1 and the alarm notification may be processed. Thereby, it is possible to quickly cope with the shortage of the heat storage medium in the heat storage tank, and it is possible to fully utilize the heating capacity of the heat storage type air conditioner without wasting it.

ところで、上記STEP4における所定の温度差T4とは、蓄熱槽B内の水位が低下したことにより、蓄熱槽B内の伝熱管が水没しなくなり、蓄熱槽伝熱管の伝熱状態が悪化して凝縮温度T3と水温T1の差が広がる現象を、予め試験等で水位と温度差の関係を調査し水位低下となる温度差を決定して、それを所定の温度差T4として運転制御手段50等に記憶しておいたものである。これによって、蓄熱槽B内の水が低下して所定の蓄熱量を溜められない運転を継続することを防止し、能力を確保できるようになる。   By the way, the predetermined temperature difference T4 in STEP 4 means that the water level in the heat storage tank B is lowered, the heat transfer pipe in the heat storage tank B is not submerged, and the heat transfer state of the heat storage tank heat transfer pipe deteriorates and condenses. For the phenomenon in which the difference between the temperature T3 and the water temperature T1 widens, the relationship between the water level and the temperature difference is investigated in advance by a test or the like to determine the temperature difference that causes the water level to drop, and this is set as a predetermined temperature difference T4 to the operation control means 50 or the like. I remembered it. As a result, it is possible to prevent the water in the heat storage tank B from being lowered and to continue the operation in which the predetermined heat storage amount cannot be stored, and to secure the capacity.

なお、蓄熱媒体の水位が正常になるまでは、蓄熱槽を利用した空調運転及び蓄熱運転をしないようにすることで、異常な状態で装置を運転し続け、装置が破損することを防止することができる。また、蓄熱媒体の水位が正常位置に戻ったことを確認した場合には、リセットボタンで異常をリセットすることで、蓄熱槽を利用する正常な運転に戻るようにしても良い。さらに、定期的に異常を自動リセットさせて、再度、蓄熱媒体の水位が低下した異常を検知したら、蓄熱槽を利用した空調運転をしないように設定しても良い。   Until the water level of the heat storage medium becomes normal, do not perform air-conditioning operation or heat storage operation using the heat storage tank, and keep the device operating in an abnormal state and prevent the device from being damaged. Can do. When it is confirmed that the water level of the heat storage medium has returned to the normal position, the normal operation using the heat storage tank may be returned by resetting the abnormality with the reset button. Furthermore, if the abnormality is automatically reset periodically and an abnormality in which the water level of the heat storage medium is lowered is detected again, the air conditioning operation using the heat storage tank may not be performed.

(利用暖房運転)
次に、蓄熱槽Bに溜められた温水及び水から吸熱する利用暖房運転について説明する。図9は図1の蓄熱式空調装置の利用暖房時の冷媒の流れを示す図である。圧縮機1から吐出された高温高圧ガス冷媒は、四方弁2、高圧ガス管P1から蓄熱ユニットB、ガス側延長配管P4を通り室内熱交換器40a、40bに流入し、そこで室内空気と熱交換して凝縮液化する。そして、この冷媒液は室内流量制御弁41a、41bにより低圧まで減圧され第4の開閉弁27、第3の開閉弁26、第2の逆止弁29を通過し、さらに、全開状態の第2の流量制御弁23を通り蓄熱熱交換器21で蓄熱媒体の温水より吸熱して蒸発、ガス状態となって、第2の開閉弁25、低圧ガス管P2から圧縮機1に戻る。なお、室内流量制御弁41a,41bは上記暖房運転の場合と同様に制御される。
(Use heating operation)
Next, hot water stored in the heat storage tank B and utilization heating operation for absorbing heat from the water will be described. FIG. 9 is a diagram showing a refrigerant flow during utilization heating of the heat storage type air conditioner of FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the indoor heat exchangers 40a and 40b from the four-way valve 2 and the high-pressure gas pipe P1 through the heat storage unit B and the gas side extension pipe P4, and exchanges heat with room air there. To condense. Then, the refrigerant liquid is decompressed to a low pressure by the indoor flow control valves 41a and 41b, passes through the fourth on-off valve 27, the third on-off valve 26, and the second check valve 29, and further, the second on-open state second valve. The heat storage heat exchanger 21 absorbs heat from the hot water of the heat storage medium, evaporates and enters a gas state, and returns to the compressor 1 from the second on-off valve 25 and the low-pressure gas pipe P2. The indoor flow control valves 41a and 41b are controlled in the same manner as in the heating operation.

(併用暖房運転)
併用暖房運転は上記利用暖房において、蓄熱媒体の温水温度が低下して吸入飽和温度が外気温度を下回った場合に、蓄熱槽B内の水と外気の両方から吸熱して暖房運転するものである。図10は図1の蓄熱式空調装置の併用暖房時の冷媒の流れを示す図である。圧縮機1から吐出された冷媒は、四方弁2、高圧ガス管P1から蓄熱ユニットB、ガス側延長配管P4を通り室内熱交換器40a,40bに流入し、室内流量制御弁41a、41bにより低圧まで減圧され、第4の開閉弁27、第3の開閉弁26、第2の逆止弁29を通過し、一部の冷媒は第2の流量制御弁23から蓄熱熱交換器21に流入し、そこで熱交換してガス状態となり、第2の開閉弁25から低圧ガス管P2を通り圧縮機1に吸入される。一方、残りの冷媒は第1の流量制御弁22を通過し、室外熱交換器3で外気と熱交換してガス状態となり、低圧ガス管P2からの冷媒と合流して圧縮機1に吸入される。この場合、第2の流量制御弁23は全開状態のままとし、第1の流量制御弁22は所定開度開いた状態とする。
(Combined heating operation)
The combined heating operation is a heating operation in which heat is absorbed from both the water in the heat storage tank B and the outside air when the hot water temperature of the heat storage medium is lowered and the intake saturation temperature is lower than the outside air temperature in the above-described heating. . FIG. 10 is a diagram showing a refrigerant flow during combined heating of the heat storage type air conditioner of FIG. The refrigerant discharged from the compressor 1 flows into the indoor heat exchangers 40a and 40b from the four-way valve 2 and the high-pressure gas pipe P1 through the heat storage unit B and the gas-side extension pipe P4, and is reduced in pressure by the indoor flow control valves 41a and 41b. And the refrigerant passes through the fourth on-off valve 27, the third on-off valve 26, and the second check valve 29, and a part of the refrigerant flows into the heat storage heat exchanger 21 from the second flow control valve 23. Therefore, heat is exchanged to form a gas state, and the gas is sucked into the compressor 1 from the second on-off valve 25 through the low-pressure gas pipe P2. On the other hand, the remaining refrigerant passes through the first flow control valve 22, exchanges heat with the outside air in the outdoor heat exchanger 3, enters a gas state, merges with the refrigerant from the low-pressure gas pipe P 2, and is sucked into the compressor 1. The In this case, the second flow rate control valve 23 remains in a fully opened state, and the first flow rate control valve 22 is in a state opened by a predetermined opening.

(利用デフロスト運転)
最後に、蓄熱槽Bから吸熱して室外熱交換器3に付着した霜を融解する利用デフロスト運転について説明する。図11は図1の蓄熱式空調装置の利用デフロスト運転時の冷媒の流れを示す図である。圧縮機1から高温高圧ガス冷媒を四方弁2を介して室外熱交換器3に流入させ霜を加熱してデフロストする。霜と熱交換し凝縮した冷媒は、第1の流量制御弁22、第2の流量制御弁23を通り、蓄熱熱交換器21に流入して熱交換しガス状態となり第2の開閉弁25から低圧ガス管P2を通り圧縮機1に吸入される。
デフロスト運転の入切条件は、例えば、室外熱交換器3の接続配管に設けられた第1の温度センサ6の温度とタイマ(図示せず)により行い、デフロスト入条件は第1の温度センサ6の温度が所定温度より低下し、かつその時間をタイマによりカウントして所定時間を越えた場合とする。また、デフロスト切条件は、第1の温度センサ6の温度が所定温度以上となった場合とする。なおこの運転時、第2の流量制御弁23は予め決められた開度に固定する。
(Use defrost operation)
Finally, the utilization defrost operation which absorbs heat from the heat storage tank B and melts frost attached to the outdoor heat exchanger 3 will be described. FIG. 11 is a diagram showing the flow of the refrigerant during the use defrost operation of the heat storage type air conditioner of FIG. A high-temperature high-pressure gas refrigerant flows from the compressor 1 through the four-way valve 2 into the outdoor heat exchanger 3 to heat and defrost the frost. The refrigerant that has exchanged heat with frost and condensed passes through the first flow control valve 22 and the second flow control valve 23, flows into the heat storage heat exchanger 21, exchanges heat, and enters a gas state from the second opening / closing valve 25. It is sucked into the compressor 1 through the low-pressure gas pipe P2.
The on / off condition of the defrost operation is performed by, for example, the temperature of the first temperature sensor 6 provided in the connection pipe of the outdoor heat exchanger 3 and a timer (not shown), and the defrost on condition is the first temperature sensor 6. , When the temperature falls below a predetermined temperature and the time is counted by a timer and exceeds the predetermined time. The defrost cut condition is when the temperature of the first temperature sensor 6 is equal to or higher than a predetermined temperature. During this operation, the second flow control valve 23 is fixed at a predetermined opening.

ところで、上記実施形態において説明した各温度センサや各圧力センサは、温度計や圧力計等他の温度検出装置や圧力検出装置で代用しても良い。また、室外機Aに備えた四方弁2は同様の作用を果たす他の弁や切替装置等で代用しても良い。さらに、上記実施形態では運転制御手段50が蓄冷運転制御と蓄熱運転制御の両方を行う態様としたが、必要に応じてこれらのうちの一方の制御だけを行うようにしても良い。   By the way, each temperature sensor and each pressure sensor which were demonstrated in the said embodiment may substitute with other temperature detection apparatuses and pressure detection apparatuses, such as a thermometer and a pressure gauge. Further, the four-way valve 2 provided in the outdoor unit A may be replaced with another valve or a switching device that performs the same function. Furthermore, in the said embodiment, although the operation control means 50 was set as the aspect which performs both cold storage operation control and heat storage operation control, you may make it perform only one control of these as needed.

この発明の実施形態に係る蓄熱式空調装置の構成図。The block diagram of the thermal storage type air conditioner which concerns on embodiment of this invention. 図1の蓄熱式空調装置の冷房運転時の冷媒の流れを示す図。The figure which shows the flow of the refrigerant | coolant at the time of the air_conditionaing | cooling operation of the thermal storage air conditioner of FIG. 図1の蓄熱式空調装置の蓄冷運転時の冷媒の流れを示す図。The figure which shows the flow of the refrigerant | coolant at the time of the cool storage operation of the thermal storage type air conditioner of FIG. この発明の実施形態に係る蓄冷運転のアルゴリズムを示すフローチャート。The flowchart which shows the algorithm of the cool storage driving | operation which concerns on embodiment of this invention. 図1の蓄熱式空調装置の利用冷房運転時の冷媒の流れを示す図。The figure which shows the flow of the refrigerant | coolant at the time of utilization air_conditionaing | cooling operation of the thermal storage air conditioner of FIG. 図1の蓄熱式空調装置の暖房運転時の冷媒の流れを示す図。The figure which shows the flow of the refrigerant | coolant at the time of the heating operation of the thermal storage air conditioner of FIG. 図1の蓄熱式空調装置の蓄熱運転時の冷媒の流れを示す図。The figure which shows the flow of the refrigerant | coolant at the time of the thermal storage driving | operation of the thermal storage type air conditioner of FIG. この発明の実施形態に係る蓄熱運転のアルゴリズムを示すフローチャート。The flowchart which shows the algorithm of the thermal storage driving | operation which concerns on embodiment of this invention. 図1の蓄熱式空調装置の利用暖房時の冷媒の流れを示す図。The figure which shows the flow of the refrigerant | coolant at the time of utilization heating of the thermal storage type air conditioner of FIG. 図1の蓄熱式空調装置の併用暖房時の冷媒の流れを示す図。The figure which shows the flow of the refrigerant | coolant at the time of combined heating of the thermal storage air conditioner of FIG. 図1の蓄熱式空調装置の利用デフロスト運転時の冷媒の流れを示す図。The figure which shows the flow of the refrigerant | coolant at the time of utilization defrost driving | operation of the thermal storage type air conditioner of FIG.

符号の説明Explanation of symbols

1 圧縮機、2 四方弁、3 室外熱交換器、4 過冷却熱交換器、5 第3の流量制御弁、6〜8 第1〜第3の温度センサ、21 蓄熱熱交換器、24〜27、第1〜第4の開閉弁、28,29 第1,第2の逆止弁、30,31 第4,第5の温度センサ、32 高圧センサ、33 低圧センサ、34 蓄熱媒体温度センサ、40a,40b 室内熱交換器、41a,41b 室内流量制御弁、42a,43a 第6,第7の温度センサ、42b,43b 第8,第9の温度センサ、50 運転制御手段、A 室外機、B 蓄熱槽、C1,C2 室内機。
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four way valve, 3 Outdoor heat exchanger, 4 Supercooling heat exchanger, 5 3rd flow control valve, 6-8 1st-3rd temperature sensor, 21 Heat storage heat exchanger, 24-27 , 1st to 4th on-off valve, 28, 29 1st, 2nd check valve, 30, 31 4th, 5th temperature sensor, 32 high pressure sensor, 33 low pressure sensor, 34 heat storage medium temperature sensor, 40a , 40b Indoor heat exchanger, 41a, 41b Indoor flow control valve, 42a, 43a 6th, 7th temperature sensor, 42b, 43b 8th, 9th temperature sensor, 50 operation control means, A outdoor unit, B heat storage Tank, C1, C2 indoor unit.

Claims (5)

圧縮機及び熱源側熱交換器を有する室外機と、負荷側熱交換器を有する室内機と、蓄熱媒体を貯留し該蓄熱媒体と冷媒との熱交換を行う蓄熱熱交換器を有する蓄熱槽とを備え、前記圧縮機、前記熱源側熱交換器、前記負荷側熱交換器及び蓄熱熱交換器が接続された冷媒回路を有した蓄熱式空調装置であって、
前記蓄熱熱交換器を通過した冷媒を取り込む前記圧縮機の吸入側に設けた該圧縮機の吸入圧力を検出する圧力検出装置と、
蓄冷運転中、予め設定した目標蓄冷時間以内において、前記圧力検出装置が前記蓄熱槽内の蓄熱媒体を不足状態とみなす予め設定した圧力値を検出した場合に、前記圧縮機を停止させるか又は警報を発するかの少なくともいずれかの保護運転を行う運転制御手段とを、備えたことを特徴とする蓄熱式空調装置。
An outdoor unit having a compressor and a heat source side heat exchanger, an indoor unit having a load side heat exchanger, a heat storage tank having a heat storage heat exchanger for storing the heat storage medium and performing heat exchange between the heat storage medium and the refrigerant, and A heat storage type air conditioner having a refrigerant circuit to which the compressor, the heat source side heat exchanger, the load side heat exchanger and the heat storage heat exchanger are connected,
A pressure detection device that detects the suction pressure of the compressor provided on the suction side of the compressor that takes in the refrigerant that has passed through the heat storage heat exchanger;
During the cold storage operation, if the pressure detection device detects a preset pressure value that considers the heat storage medium in the heat storage tank to be in a shortage state within a preset target cold storage time, the compressor is stopped or alarmed A heat storage type air conditioner comprising: an operation control means for performing at least one of the protective operation of generating
前記運転制御手段は、開始からの蓄冷運転時間を予め定めた所定の時間と比較し、開始からの蓄冷運転時間が前記所定の時間よりも短い場合に、前記保護運転を実行することを特徴とする請求項1記載の蓄熱式空調装置。   The operation control means compares the cool storage operation time from the start with a predetermined time, and executes the protection operation when the cool storage operation time from the start is shorter than the predetermined time. The regenerative air conditioner according to claim 1. 前記運転制御手段は、前記圧力検出装置が前記蓄熱槽内にある蓄熱媒体を正常量であるとみなす圧力値を検出するまでは前記蓄熱熱交換器を利用する運転を不可能にすることを特徴とする請求項1又は2記載の蓄熱式空調装置。   The operation control means disables the operation using the heat storage heat exchanger until the pressure detection device detects a pressure value that regards the heat storage medium in the heat storage tank as a normal amount. The regenerative air conditioner according to claim 1 or 2. 圧縮機及び熱源側熱交換器を有する室外機と、負荷側熱交換器を有する室内機と、蓄熱媒体を貯留し該蓄熱媒体と冷媒との熱交換を行う蓄熱熱交換器を有する蓄熱槽とを備え、前記圧縮機、前記熱源側熱交換器、前記負荷側熱交換器及び蓄熱熱交換器が接続された冷媒回路を有した蓄熱式空調装置であって、
前記蓄熱媒体の温度を検出する蓄熱媒体温度検出装置と、
前記蓄熱熱交換器を通過した冷媒の凝縮温度を検出する冷媒凝縮温度検出装置と、
蓄熱運転中、前記蓄熱媒体温度検出装置による温度と前記冷媒凝縮温度検出装置による温度との差が前記蓄熱槽内の蓄熱媒体を不足状態とみなす予め設定した値となった場合に、前記圧縮機を停止させるか又は警報を発するかの少なくともいずれかの保護運転を行う運転制御手段とを、備えたことを特徴とする蓄熱式空調装置。
An outdoor unit having a compressor and a heat source side heat exchanger, an indoor unit having a load side heat exchanger, a heat storage tank having a heat storage heat exchanger for storing the heat storage medium and performing heat exchange between the heat storage medium and the refrigerant, and A heat storage type air conditioner having a refrigerant circuit to which the compressor, the heat source side heat exchanger, the load side heat exchanger and the heat storage heat exchanger are connected,
A heat storage medium temperature detection device for detecting the temperature of the heat storage medium;
A refrigerant condensing temperature detecting device for detecting a condensing temperature of the refrigerant that has passed through the heat storage heat exchanger;
During the heat storage operation, when the difference between the temperature by the heat storage medium temperature detection device and the temperature by the refrigerant condensing temperature detection device becomes a preset value that regards the heat storage medium in the heat storage tank as an insufficient state, the compressor A regenerative air conditioner comprising: an operation control means for performing at least one protection operation of stopping the operation or issuing an alarm.
前記運転制御手段は、前記温度差が前記蓄熱槽内にある蓄熱媒体を正常量であるとみなす温度差になるまでは前記蓄熱熱交換器を利用する運転を不可能にすることを特徴とする請求項4記載の蓄熱式空調装置。
The operation control means makes the operation using the heat storage heat exchanger impossible until the temperature difference becomes a temperature difference which considers the heat storage medium in the heat storage tank as a normal amount. The regenerative air conditioner according to claim 4.
JP2005097641A 2005-03-30 2005-03-30 Heat storage type air conditioner Withdrawn JP2006275449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097641A JP2006275449A (en) 2005-03-30 2005-03-30 Heat storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097641A JP2006275449A (en) 2005-03-30 2005-03-30 Heat storage type air conditioner

Publications (1)

Publication Number Publication Date
JP2006275449A true JP2006275449A (en) 2006-10-12

Family

ID=37210392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097641A Withdrawn JP2006275449A (en) 2005-03-30 2005-03-30 Heat storage type air conditioner

Country Status (1)

Country Link
JP (1) JP2006275449A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015063846A1 (en) * 2013-10-29 2015-05-07 三菱電機株式会社 Air conditioning device
CN105588360A (en) * 2015-06-30 2016-05-18 青岛海信日立空调系统有限公司 Heat accumulation outdoor unit, heat pump system and control method of heat accumulation outdoor unit and heat pump system
CN106885406A (en) * 2017-04-17 2017-06-23 珠海格力电器股份有限公司 Air conditioning control method, device and system
US20180058769A1 (en) * 2016-08-24 2018-03-01 Ford Global Technologies, Llc Systems and methods for thermal battery control

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015063846A1 (en) * 2013-10-29 2015-05-07 三菱電機株式会社 Air conditioning device
JP5963971B2 (en) * 2013-10-29 2016-08-03 三菱電機株式会社 Air conditioner
CN105588360A (en) * 2015-06-30 2016-05-18 青岛海信日立空调系统有限公司 Heat accumulation outdoor unit, heat pump system and control method of heat accumulation outdoor unit and heat pump system
CN105588360B (en) * 2015-06-30 2018-09-25 青岛海信日立空调系统有限公司 A kind of accumulation of heat outdoor unit, heat pump system and its control method
US20180058769A1 (en) * 2016-08-24 2018-03-01 Ford Global Technologies, Llc Systems and methods for thermal battery control
US11002493B2 (en) * 2016-08-24 2021-05-11 Ford Global Technologies, Llc Systems and methods for thermal battery control
CN106885406A (en) * 2017-04-17 2017-06-23 珠海格力电器股份有限公司 Air conditioning control method, device and system
CN106885406B (en) * 2017-04-17 2023-09-05 珠海格力电器股份有限公司 Air conditioner control method, device and system

Similar Documents

Publication Publication Date Title
CN102272534B (en) Air conditioning apparatus
KR101155345B1 (en) Air conditioner and method for controlling of air conditioner
CN102378881B (en) Refrigeration cycle device
JP2017142039A (en) Air conditioner
KR100821728B1 (en) Air conditioning system
WO2012032680A1 (en) Refrigeration cycle apparatus
WO2011093050A1 (en) Refrigeration cycle apparatus
EP2891849A1 (en) Heat reclaim for a multifunction heat pump and a multifunction air conditioner
JP2010234945A (en) Heat pump air conditioning device for railway vehicle
EP2623897B1 (en) Refrigeration cycle equipment
JP6479181B2 (en) Air conditioner
JP2013104623A (en) Refrigeration cycle device and air conditioner with the same
CN101307964B (en) Refrigeration cycle apparatus
JP2006275449A (en) Heat storage type air conditioner
JP2011153812A (en) Refrigerating cycle device
JP2006242506A (en) Thermal storage type air conditioner
JP5138292B2 (en) Air conditioner
JP6715655B2 (en) Cooling system
JP5693990B2 (en) Air source heat pump air conditioner
CN106895519A (en) Air-conditioning system and air-conditioner control method
JP2018036002A (en) Air Conditioning Hot Water Supply System
JP5287820B2 (en) Air conditioner
JP5927500B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP4186492B2 (en) Air conditioner
WO2011108019A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603