JP5287820B2 - Air conditioner - Google Patents
Air conditioner Download PDFInfo
- Publication number
- JP5287820B2 JP5287820B2 JP2010231249A JP2010231249A JP5287820B2 JP 5287820 B2 JP5287820 B2 JP 5287820B2 JP 2010231249 A JP2010231249 A JP 2010231249A JP 2010231249 A JP2010231249 A JP 2010231249A JP 5287820 B2 JP5287820 B2 JP 5287820B2
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- compressor
- way valve
- temperature
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
本発明は、圧縮機で発生した熱を蓄積する蓄熱材を収容する蓄熱槽と、蓄熱材の蓄熱で熱交換を行う蓄熱熱交換器とを備えた空気調和機に関する。 The present invention relates to an air conditioner including a heat storage tank that stores a heat storage material that stores heat generated by a compressor, and a heat storage heat exchanger that performs heat exchange by heat storage of the heat storage material.
従来、ヒートポンプ式空気調和機による暖房運転時、室外熱交換器に着霜した場合には、暖房サイクルから冷房サイクルに四方弁を切り替えて除霜を行っている。この除霜方式では、室内ファンは停止するものの、室内機から冷気が徐々に放出されることから暖房感が失われるという欠点がある。 Conventionally, when the outdoor heat exchanger is frosted during the heating operation by the heat pump air conditioner, defrosting is performed by switching the four-way valve from the heating cycle to the cooling cycle. In this defrosting method, although the indoor fan is stopped, there is a disadvantage that a feeling of heating is lost because cold air is gradually discharged from the indoor unit.
そこで、室外機に設けられた圧縮機に蓄熱装置を設け、暖房運転中に蓄熱槽に蓄えられた圧縮機の廃熱を利用して除霜するようにしたものが提案されている(例えば、特許文献1参照)。 Accordingly, a heat storage device is provided in the compressor provided in the outdoor unit, and the one that is defrosted using the waste heat of the compressor stored in the heat storage tank during the heating operation has been proposed (for example, Patent Document 1).
図7は、このような除霜方式を採用した冷凍サイクル装置の一例を示しており、室外機に設けられた圧縮機100と四方弁102と室外熱交換器104とキャピラリチューブ106と、室内機に設けられた室内熱交換器108とを冷媒配管で接続するとともに、キャピラリチューブ106をバイパスする第1バイパス回路110と、圧縮機100の吐出側から四方弁102を介して室内熱交換器108へ至る配管に一端を接続し他端をキャピラリチューブ106から室外熱交換器104へ至る配管に接続した第2バイパス回路112が設けられている。また、第1バイパス回路110には、二方弁114と逆止弁116と蓄熱熱交換器118が設けられ、第2バイパス回路112には、二方弁120と逆止弁122が設けられている。 FIG. 7 shows an example of a refrigeration cycle apparatus that employs such a defrosting method. The compressor 100, the four-way valve 102, the outdoor heat exchanger 104, the capillary tube 106, the indoor unit provided in the outdoor unit are shown. Is connected to the indoor heat exchanger 108 provided by the refrigerant pipe, the first bypass circuit 110 for bypassing the capillary tube 106, and the discharge side of the compressor 100 to the indoor heat exchanger 108 via the four-way valve 102. A second bypass circuit 112 is provided in which one end is connected to the connecting pipe and the other end is connected to the pipe extending from the capillary tube 106 to the outdoor heat exchanger 104. The first bypass circuit 110 is provided with a two-way valve 114, a check valve 116, and a heat storage heat exchanger 118, and the second bypass circuit 112 is provided with a two-way valve 120 and a check valve 122. Yes.
さらに、圧縮機100の周囲には蓄熱槽124が設けられており、蓄熱槽124の内部には、蓄熱熱交換器118と熱交換するための蓄熱材126が充填されている。 Further, a heat storage tank 124 is provided around the compressor 100, and the heat storage tank 124 is filled with a heat storage material 126 for exchanging heat with the heat storage heat exchanger 118.
この冷凍サイクルにおいて、除霜運転時には、二つの二方弁114,120が開弁され、圧縮機100から吐出された冷媒の一部は第2バイパス回路112へと流れ、残りの冷媒は四方弁102と室内熱交換器108へと流れる。また、室内熱交換器108を流れた冷媒は暖房に利用された後、わずかの冷媒がキャピラリチューブ106を通って室外熱交換器104へと流れる一方、残りの大部分の冷媒は第1バイパス回路110へ流入し、二方弁114を通って蓄熱熱交換器118へと流れて蓄熱材126より熱を奪い、逆止弁116を通った後、キャピラリチューブ106を通過した冷媒と合流して室外熱交換器104へと流れる。その後、室外熱交換器104の入口で第2バイパス回路112を流れてきた冷媒と合流し、冷媒が持つ熱を利用して除霜を行い、さらに四方弁102を通過した後、圧縮機100に吸入される。 In this refrigeration cycle, during the defrosting operation, the two two-way valves 114 and 120 are opened, a part of the refrigerant discharged from the compressor 100 flows to the second bypass circuit 112, and the remaining refrigerant is the four-way valve. 102 and the indoor heat exchanger 108. In addition, after the refrigerant flowing through the indoor heat exchanger 108 is used for heating, a small amount of refrigerant flows to the outdoor heat exchanger 104 through the capillary tube 106, while the remaining most of the refrigerant passes through the first bypass circuit. 110 flows into the heat storage heat exchanger 118 through the two-way valve 114, takes heat from the heat storage material 126, passes through the check valve 116, and then merges with the refrigerant that has passed through the capillary tube 106 to the outdoor. It flows to the heat exchanger 104. After that, it merges with the refrigerant flowing through the second bypass circuit 112 at the inlet of the outdoor heat exchanger 104, performs defrosting using the heat of the refrigerant, passes through the four-way valve 102, and then enters the compressor 100. Inhaled.
この冷凍サイクル装置においては、第2バイパス回路112を設けることで、除霜時に圧縮機100から吐出されたホットガスを室外熱交換器104に導くとともに、室外熱交換器104に流入する冷媒の圧力を高く保つことができるので、除霜能力を高めることができ、極めて短時間に除霜を完了することができる。 In this refrigeration cycle apparatus, by providing the second bypass circuit 112, the hot gas discharged from the compressor 100 during defrosting is guided to the outdoor heat exchanger 104 and the pressure of the refrigerant flowing into the outdoor heat exchanger 104 Therefore, the defrosting ability can be increased, and the defrosting can be completed in a very short time.
しかしながら、従来のような蓄熱材を有する空気調和機においては、暖房運転・冷房運転の如何に関わらず、圧縮機の運転に伴い蓄熱材に熱が蓄積され、蓄熱材の温度が上昇してしまい、蓄熱材の温度が過度に上昇してしまうと、蓄熱材の劣化を促進してしまうという課題を有していた。 However, in a conventional air conditioner having a heat storage material, heat is accumulated in the heat storage material with the operation of the compressor regardless of heating operation or cooling operation, and the temperature of the heat storage material increases. When the temperature of the heat storage material rises excessively, it has a problem of promoting the deterioration of the heat storage material.
本発明は、前記従来の課題を解決するもので、圧縮機で発生した熱を蓄積する蓄熱材の劣化を防止できる空気調和機を提供することを目的とする。 This invention solves the said conventional subject, and it aims at providing the air conditioner which can prevent deterioration of the thermal storage material which accumulate | stores the heat which generate | occur | produced with the compressor.
上記目的を達成するために、本発明の空気調和機は、暖房運転時に、圧縮機、四方弁、室内熱交換器、膨張弁、室外熱交換器、前記四方弁の順に冷媒が流れるように接続した冷凍サイクルと、前記圧縮機で発生した熱を蓄積する蓄熱材と蓄熱熱交換器を内蔵する蓄熱槽と、前記室内熱交換器と前記膨張弁との間と前記四方弁と前記圧縮機の吸入口との間を接続する蓄熱バイパス回路と、前記膨張弁と前記室外熱交換器との間と前記圧縮機の吐出口と前記四方弁との間を接続する除霜バイパス回路と、前記圧縮機の温度を検出する圧縮機温度検出手段を備えた空気調和機であって、前記蓄熱バイパス回路に前記蓄熱熱交換器と蓄熱二方弁とを配設し、前記圧縮機温度検出手段で検出された温度が第1の所定温度を超えると、前記蓄熱二方弁の開制御を行い、前記蓄熱材の温度を低下させ、さらに前記圧縮機温度検出手段で検出された温度が前記第1の所定温度より高い第2の所定温度を超えると、前記圧縮機を停止させることにより、蓄熱材の過度の温度上昇を防ぎ、特に圧縮機の周囲に沿って蓄熱材を設けているため、圧縮機と接する部分に位置する蓄熱材の局部沸騰を抑制することができ、引いては蓄熱材の劣化を抑制することができる。 In order to achieve the above object, the air conditioner of the present invention is connected so that the refrigerant flows in the order of the compressor, the four-way valve, the indoor heat exchanger, the expansion valve, the outdoor heat exchanger, and the four-way valve during heating operation. A refrigeration cycle, a heat storage material that stores heat generated in the compressor, a heat storage tank that contains a heat storage heat exchanger, a space between the indoor heat exchanger and the expansion valve, a four-way valve, and a compressor A heat storage bypass circuit connecting between the suction port, a defrosting bypass circuit connecting between the expansion valve and the outdoor heat exchanger, and between a discharge port of the compressor and the four-way valve, and the compression An air conditioner provided with a compressor temperature detecting means for detecting the temperature of the compressor, wherein the heat storage heat exchanger and a heat storage two-way valve are arranged in the heat storage bypass circuit, and detected by the compressor temperature detection means When the measured temperature exceeds the first predetermined temperature, the heat storage two-way valve is opened. Your was carried out, lowering the temperature of the heat storage material, the further the detected compressor temperature detector temperature exceeds a second predetermined temperature higher than the first predetermined temperature, stopping the compressor By preventing excessive temperature rise of the heat storage material, especially because the heat storage material is provided along the periphery of the compressor, it is possible to suppress the local boiling of the heat storage material located in the portion in contact with the compressor, Can suppress deterioration of the heat storage material.
本発明によれば、圧縮機で発生した熱を蓄積する蓄熱材の劣化を防止できる空気調和機を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the air conditioner which can prevent deterioration of the thermal storage material which accumulate | stores the heat which generate | occur | produced with the compressor can be provided.
第1の発明の空気調和機は、暖房運転時に、圧縮機、四方弁、室内熱交換器、膨張弁、室外熱交換器、前記四方弁の順に冷媒が流れるように接続した冷凍サイクルと、前記圧縮機で発生した熱を蓄積する蓄熱材と蓄熱熱交換器を内蔵する蓄熱槽と、前記室内熱交換器と前記膨張弁との間と前記四方弁と前記圧縮機の吸入口との間を接続する蓄熱バイパス回路と、前記膨張弁と前記室外熱交換器との間と前記圧縮機の吐出口と前記四方弁との間を接続する除霜バイパス回路と、前記圧縮機の温度を検出する圧縮機温度検出手段を備えた空気調和機であって、前記蓄熱バイパス回路に前記蓄熱熱交換器と蓄熱二方弁とを配設し、前記圧縮機温度検出手段で検出された温度が第1の所定温度を超えると、前記蓄熱二方弁の開制御を行い、前記蓄熱材の温度を低下させ、さらに前記圧縮機温度検出手段で検出された温度が前記第1の所定温度より高い第2の所定温度を超えると、前記圧縮機を停止させることにより、蓄熱材の過度の温度上昇を防ぎ、特に圧縮機の周囲に沿って蓄熱材を設けているため、圧縮機と接する部分に位置する蓄熱材の局部沸騰を抑制することができ、ひいては蓄熱材の劣化を抑制することができる。 In the air conditioner of the first invention, during the heating operation, the compressor, the four-way valve, the indoor heat exchanger, the expansion valve, the outdoor heat exchanger, the refrigeration cycle connected so that the refrigerant flows in the order of the four-way valve, A heat storage material that stores heat generated by the compressor, a heat storage tank that contains a heat storage heat exchanger, a space between the indoor heat exchanger and the expansion valve, a space between the four-way valve, and a suction port of the compressor. A heat storage bypass circuit to be connected, a defrost bypass circuit for connecting between the expansion valve and the outdoor heat exchanger, a discharge port of the compressor, and the four-way valve, and detecting the temperature of the compressor An air conditioner provided with a compressor temperature detecting means, wherein the heat storage bypass circuit is provided with the heat storage heat exchanger and a heat storage two-way valve, and the temperature detected by the compressor temperature detection means is first. When the predetermined temperature is exceeded, the heat storage two-way valve is controlled to open, and the heat storage material Lowering the temperature, the more the detected compressor temperature detector temperature exceeds a second predetermined temperature higher than the first predetermined temperature, by stopping the compressor, excessive temperature of the heat storage material Since the heat storage material is provided along the circumference of the compressor, particularly, the local boiling of the heat storage material located at the portion in contact with the compressor can be suppressed, and thus the deterioration of the heat storage material can be suppressed. it can.
第2の発明の空気調和機は、特に第1の発明において、圧縮機温度検出手段で検出する温度が所定の温度を検出すると、蓄熱二方弁を開き、さらに圧縮機の運転周波数を下げることにより、蓄熱二方弁の開く制御と圧縮機の運転周波数を下げる制御とを併用することによって、効果的に蓄熱材の過度の温度上昇を抑制することができる。 In the air conditioner of the second invention, particularly in the first invention, when the temperature detected by the compressor temperature detecting means detects a predetermined temperature, the heat storage two-way valve is opened and the operating frequency of the compressor is further lowered. Thus, by using both the control for opening the heat storage two-way valve and the control for lowering the operating frequency of the compressor, it is possible to effectively suppress an excessive temperature increase of the heat storage material.
第3の発明の空気調和機は、特に第1または第2の発明において、圧縮機温度検出手段で検出する温度が所定の温度を検出すると、蓄熱二方弁を開き、所定時間経過後に、蓄熱二方弁を閉じる一連の動作を周期的に繰り返し行うことにより、蓄熱二方弁を開いてから蓄熱材の温度低下までの時間に遅れが発生するため、蓄熱材の温度低下を確認するまで蓄熱二方弁を開いたまま保持すると、空調能力を低下気味にさせてしまうので、蓄熱二方弁を開く時間を予め決めておき、開閉動作を繰り返すことで、空調能力の落ちをできるだけ抑制し、かつ、蓄熱材の過度の温度上昇を抑制することができる。 In the air conditioner of the third invention, particularly in the first or second invention, when the temperature detected by the compressor temperature detecting means detects a predetermined temperature, the heat storage two-way valve is opened, and after a predetermined time has elapsed, the heat storage By repeating the series of operations to close the two-way valve periodically, there is a delay in the time from the opening of the heat storage two-way valve until the temperature of the heat storage material decreases. If the two-way valve is held open, the air conditioning capacity will be reduced, so the time to open the heat storage two-way valve is determined in advance and the opening / closing operation is repeated to suppress the decline in air conditioning capacity as much as possible. And the excessive temperature rise of a thermal storage material can be suppressed.
第4の発明の空気調和機は、特に第3の発明において、蓄熱二方弁の開く時間を、蓄熱二方弁の閉じる時間よりも短く設定したことにより、できるだけ空調環境を損なうことなく、蓄熱材の劣化を抑制することができる。 In the air conditioner of the fourth invention, particularly in the third invention, the time for opening the heat storage two-way valve is set shorter than the time for closing the heat storage two-way valve, so that the heat storage can be performed without impairing the air conditioning environment as much as possible Deterioration of the material can be suppressed.
第5の発明の空気調和機は、特に第3または第4の発明において、蓄熱二方弁の開閉動作の開閉周期において、暖房運転時の開閉周期を冷房運転時の開閉周期よりも短く設定したことにより、暖房運転時に室内熱交換器を通過した液相冷媒を流し、冷房時に室外熱交換器を通過した二相(気相と液相)冷媒を流すために、冷房運転時の方が冷媒が流れにくい状態になっているため、蓄熱二方弁の開閉周期を暖房運転と冷房運転とで異ならせることで、効率よく蓄熱材の劣化を抑制することができる。 In the air conditioner of the fifth invention, particularly in the third or fourth invention, the open / close cycle of the heat storage two-way valve is set shorter than the open / close cycle of the cooling operation in the open / close cycle of the heat storage two-way valve. Therefore, in order to flow the liquid phase refrigerant that has passed through the indoor heat exchanger during the heating operation and the two-phase (gas phase and liquid phase) refrigerant that has passed through the outdoor heat exchanger during the cooling operation, the refrigerant is more effective during the cooling operation. Therefore, it is possible to efficiently suppress deterioration of the heat storage material by making the open / close cycle of the heat storage two-way valve different between the heating operation and the cooling operation.
第6の発明の空気調和機は、特に第3から第5の発明の一つにおいて、蓄熱二方弁の開閉動作の回数に最大回数を設け、開閉動作の回数は最大回数を超えないことにより、蓄熱二方弁の信頼性を損なうことを抑制する。 In the air conditioner of the sixth invention, particularly in one of the third to fifth inventions, the maximum number of opening and closing operations of the heat storage two-way valve is provided, and the number of opening and closing operations does not exceed the maximum number of times. Suppresses impairing the reliability of the heat storage two-way valve.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(実施の形態1)
図1は、本発明に係る冷凍サイクル装置である空気調和機の構成を示しており、空気調和機は、冷媒配管で互いに接続された室外機2と室内機4とで構成されている。
(Embodiment 1)
FIG. 1 shows a configuration of an air conditioner that is a refrigeration cycle apparatus according to the present invention, and the air conditioner includes an outdoor unit 2 and an indoor unit 4 that are connected to each other through a refrigerant pipe.
図1に示されるように、室外機2の内部には、圧縮機6と四方弁8とストレーナ10と膨張弁12と室外熱交換器14とが設けられ、室内機4の内部には、室内熱交換器16が設けられ、これらは冷媒配管を介して互いに接続されることで冷凍サイクルを構成している。 As shown in FIG. 1, a compressor 6, a four-way valve 8, a strainer 10, an expansion valve 12, and an outdoor heat exchanger 14 are provided inside the outdoor unit 2. A heat exchanger 16 is provided, and these are connected to each other via a refrigerant pipe to constitute a refrigeration cycle.
さらに詳述すると、圧縮機6と室内熱交換器16は、四方弁8が設けられた冷媒配管18を介して接続され、室内熱交換器16と膨張弁12は、ストレーナ10が設けられた冷媒配管20を介して接続されている。また、膨張弁12と室外熱交換器14は冷媒配管22を介して接続され、室外熱交換器14と圧縮機6は冷媒配管24を介して接続されている。 More specifically, the compressor 6 and the indoor heat exchanger 16 are connected via a refrigerant pipe 18 provided with the four-way valve 8, and the indoor heat exchanger 16 and the expansion valve 12 are refrigerant provided with the strainer 10. It is connected via a pipe 20. The expansion valve 12 and the outdoor heat exchanger 14 are connected via a refrigerant pipe 22, and the outdoor heat exchanger 14 and the compressor 6 are connected via a refrigerant pipe 24.
冷媒配管24の中間部には四方弁8が配置されており、圧縮機6の冷媒吸入側における冷媒配管24には、液相冷媒と気相冷媒を分離するためのアキュームレータ26が設けられている。また、圧縮機6と冷媒配管22は、冷媒配管28を介して接続されており、冷媒配管28には除霜二方弁(例えば、電磁弁)30が設けられている。 A four-way valve 8 is disposed in the middle of the refrigerant pipe 24, and an accumulator 26 for separating the liquid-phase refrigerant and the gas-phase refrigerant is provided in the refrigerant pipe 24 on the refrigerant suction side of the compressor 6. . The compressor 6 and the refrigerant pipe 22 are connected via a refrigerant pipe 28, and the refrigerant pipe 28 is provided with a defrosting two-way valve (for example, an electromagnetic valve) 30.
さらに、圧縮機6の周囲には蓄熱槽32が設けられ、蓄熱槽32の内部には、蓄熱熱交換器34が設けられるとともに、蓄熱熱交換器34と熱交換するための蓄熱材(例えば、エチレングリコール水溶液)36が充填されており、蓄熱槽32と蓄熱熱交換器34と蓄熱材36とで蓄熱装置を構成している。 Further, a heat storage tank 32 is provided around the compressor 6, and a heat storage heat exchanger 34 is provided inside the heat storage tank 32, and a heat storage material for exchanging heat with the heat storage heat exchanger 34 (for example, An ethylene glycol aqueous solution) 36 is filled, and the heat storage tank 32, the heat storage heat exchanger 34, and the heat storage material 36 constitute a heat storage device.
また、冷媒配管20と蓄熱熱交換器34は冷媒配管38を介して接続され、蓄熱熱交換器34と冷媒配管24は冷媒配管40を介して接続されており、冷媒配管38には蓄熱二方弁(例えば、電磁弁)42が設けられている。 In addition, the refrigerant pipe 20 and the heat storage heat exchanger 34 are connected via a refrigerant pipe 38, and the heat storage heat exchanger 34 and the refrigerant pipe 24 are connected via a refrigerant pipe 40. A valve (for example, a solenoid valve) 42 is provided.
室内機4の内部には、室内熱交換器16に加えて、室内送風ファン16aと上下羽根(図示せず)と左右羽根(図示せず)とが設けられており、室内熱交換器16は、送風ファンにより室内機4の内部に吸込まれた室内空気と、室内熱交換器16の内部を流れる冷媒との熱交換を行い、暖房時には熱交換により暖められた空気を室内に吹き出す一方、冷房時には熱交換により冷却された空気を室内に吹き出す。上下羽根は、室内機4から吹き出される空気の方向を必要に応じて上下に変更し、左右羽根は、室内機4から吹き出される空気の方向を必要に応じて左右に変更する。 In addition to the indoor heat exchanger 16, an indoor fan 16a, upper and lower blades (not shown), and left and right blades (not shown) are provided inside the indoor unit 4, and the indoor heat exchanger 16 is The indoor air sucked into the interior of the indoor unit 4 by the blower fan is exchanged with the refrigerant flowing through the interior of the indoor heat exchanger 16, and the air warmed by the heat exchange is blown into the room during heating. Sometimes air cooled by heat exchange is blown into the room. The upper and lower blades change the direction of air blown from the indoor unit 4 up and down as necessary, and the left and right blades change the direction of air blown from the indoor unit 4 to right and left as needed.
また、室外熱交換器14には、暖房運転時の冷媒入口温度及び冷媒出口温度をそれぞれ検出する室外熱交換器入口温度検出手段44と室外熱交換器出口温度検出手段46が設けられ、室内熱交換器16には、室内熱交換器16の温度を検出する室内熱交換器温度検出手段48が設けられている。さらに、蓄熱槽32には、蓄熱槽32の温度を検出する蓄熱槽温度検出手段50が設けられており、室外機2には、外気温度を検出する外気温度検出手段52が設けられている。 The outdoor heat exchanger 14 is provided with an outdoor heat exchanger inlet temperature detecting means 44 and an outdoor heat exchanger outlet temperature detecting means 46 for detecting the refrigerant inlet temperature and the refrigerant outlet temperature during heating operation, respectively. The exchanger 16 is provided with an indoor heat exchanger temperature detecting means 48 that detects the temperature of the indoor heat exchanger 16. Furthermore, the heat storage tank 32 is provided with a heat storage tank temperature detection means 50 for detecting the temperature of the heat storage tank 32, and the outdoor unit 2 is provided with an outside air temperature detection means 52 for detecting the outside air temperature.
なお、圧縮機6、送風ファン、上下羽根、左右羽根、四方弁8、膨張弁12、除霜二方弁30、蓄熱二方弁42、室外熱交換器入口温度検出手段44、室外熱交換器出口温度検出手段46、室内熱交換器温度検出手段48、蓄熱槽温度検出手段50、外気温度検出手段52等はコントローラ54(例えば、マイコン)に電気的に接続され、圧縮機6、送風ファン、上下羽根、左右羽根、四方弁8、膨張弁12の運転あるいは動作は、コントローラ54からの制御信号に基づいて制御されるとともに、除霜二方弁30と蓄熱二方弁42はコントローラ54からの制御信号に基づいて開閉制御される。 In addition, the compressor 6, the blower fan, the upper and lower blades, the left and right blades, the four-way valve 8, the expansion valve 12, the defrost two-way valve 30, the heat storage two-way valve 42, the outdoor heat exchanger inlet temperature detection means 44, the outdoor heat exchanger The outlet temperature detection means 46, the indoor heat exchanger temperature detection means 48, the heat storage tank temperature detection means 50, the outside air temperature detection means 52 and the like are electrically connected to a controller 54 (for example, a microcomputer), and the compressor 6, the blower fan, The operation or operation of the upper and lower blades, the left and right blades, the four-way valve 8 and the expansion valve 12 is controlled based on a control signal from the controller 54, and the defrosting two-way valve 30 and the heat storage two-way valve 42 are supplied from the controller 54. Opening and closing is controlled based on the control signal.
上記構成の本発明に係る冷凍サイクル装置において、各部品の相互の接続関係と機能とを、暖房運転時の場合を例にとり冷媒の流れとともに説明する。 In the refrigeration cycle apparatus according to the present invention having the above-described configuration, the mutual connection relationship and function of each component will be described together with the flow of the refrigerant taking the case of heating operation as an example.
圧縮機6の吐出口から吐出された冷媒は、冷媒配管18を通って四方弁8から室内熱交換器16へと至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て冷媒配管20を通り、膨張弁12への異物侵入を防止するストレーナ10を通って、膨張弁12に至る。膨張弁12で減圧した冷媒は、冷媒配管22を通って室外熱交換器14に至り、室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、冷媒配管24と四方弁8とアキュームレータ26を通って圧縮機6の吸入口へと戻る。 The refrigerant discharged from the discharge port of the compressor 6 reaches the indoor heat exchanger 16 from the four-way valve 8 through the refrigerant pipe 18. The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 passes through the refrigerant pipe 20 through the indoor heat exchanger 16, passes through the strainer 10 that prevents foreign matter from entering the expansion valve 12, and then the expansion valve. To 12. The refrigerant decompressed by the expansion valve 12 reaches the outdoor heat exchanger 14 through the refrigerant pipe 22, and the refrigerant evaporated by exchanging heat with the outdoor air in the outdoor heat exchanger 14 is the refrigerant pipe 24, the four-way valve 8, and the accumulator. 26 and returns to the suction port of the compressor 6.
また、冷媒配管18の圧縮機6吐出口と四方弁8の間から分岐した冷媒配管28は、除霜二方弁30を介して冷媒配管22の膨張弁12と室外熱交換器14の間に合流している。 The refrigerant pipe 28 branched from the compressor 6 discharge port of the refrigerant pipe 18 and the four-way valve 8 is interposed between the expansion valve 12 of the refrigerant pipe 22 and the outdoor heat exchanger 14 via the defrosting two-way valve 30. Have joined.
さらに、内部に蓄熱材36と蓄熱熱交換器34を収納した蓄熱槽32は、圧縮機6に接して取り囲むように配置され、圧縮機6で発生した熱を蓄熱材36に蓄積し、冷媒配管20から室内熱交換器16とストレーナ10の間で分岐した冷媒配管38は、蓄熱二方弁4
2を経て蓄熱熱交換器34の入口へと至り、蓄熱熱交換器34の出口から出た冷媒配管40は、冷媒配管24における四方弁8とアキュームレータ26の間に合流する。
Furthermore, the heat storage tank 32 in which the heat storage material 36 and the heat storage heat exchanger 34 are housed is disposed so as to be in contact with and surround the compressor 6, and heat generated in the compressor 6 is stored in the heat storage material 36, and refrigerant piping The refrigerant pipe 38 branched from the indoor heat exchanger 16 and the strainer 10 from 20 is a heat storage two-way valve 4.
2, the refrigerant pipe 40 that reaches the inlet of the heat storage heat exchanger 34 and exits from the outlet of the heat storage heat exchanger 34 joins between the four-way valve 8 and the accumulator 26 in the refrigerant pipe 24.
次に、図1に示される空気調和機の通常暖房時の動作及び冷媒の流れを模式的に示す図2を参照しながら通常暖房時の動作を説明する。 Next, the operation during normal heating will be described with reference to FIG. 2 schematically showing the operation during normal heating and the flow of the refrigerant of the air conditioner shown in FIG.
通常暖房運転時、除霜二方弁30と蓄熱二方弁42は閉弁しており、上述したように圧縮機6の吐出口から吐出された冷媒は、冷媒配管18を通って四方弁8から室内熱交換器16に至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て、冷媒配管20を通り膨張弁12に至り、膨張弁12で減圧した冷媒は、冷媒配管22を通って室外熱交換器14に至る。室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、冷媒配管24を通って四方弁8から圧縮機6の吸入口へと戻る。 During the normal heating operation, the defrosting two-way valve 30 and the heat storage two-way valve 42 are closed, and the refrigerant discharged from the discharge port of the compressor 6 as described above passes through the refrigerant pipe 18 and the four-way valve 8. To the indoor heat exchanger 16. The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 exits the indoor heat exchanger 16 and reaches the expansion valve 12 through the refrigerant pipe 20. The refrigerant decompressed by the expansion valve 12 is refrigerant pipe 22. Through the outdoor heat exchanger 14. The refrigerant evaporated by exchanging heat with outdoor air in the outdoor heat exchanger 14 returns from the four-way valve 8 to the suction port of the compressor 6 through the refrigerant pipe 24.
また、圧縮機6で発生した熱は、圧縮機6の外壁から蓄熱槽32の外壁を介して蓄熱槽32の内部に収容された蓄熱材36に蓄積される。 Further, the heat generated in the compressor 6 is accumulated in the heat storage material 36 housed in the heat storage tank 32 from the outer wall of the compressor 6 through the outer wall of the heat storage tank 32.
次に、図1に示される空気調和機の除霜・暖房時の動作及び冷媒の流れを示す模式的に示す図3を参照しながら除霜・暖房時の動作を説明する。図中、実線矢印は暖房に供する冷媒の流れを示しており、破線矢印は除霜に供する冷媒の流れを示している。 Next, the operation during defrosting / heating will be described with reference to FIG. 3 schematically showing the operation of the air conditioner shown in FIG. 1 during defrosting / heating and the flow of refrigerant. In the figure, the solid line arrows indicate the flow of the refrigerant used for heating, and the broken line arrows indicate the flow of the refrigerant used for defrosting.
上述した通常暖房運転中に室外熱交換器14に着霜し、着霜した霜が成長すると、室外熱交換器14の通風抵抗が増加して風量が減少し、室外熱交換器14内の蒸発温度が低下する。本発明に係る冷凍サイクル装置である空気調和機には、図1に示されるように、暖房運転時における室外熱交換器14の冷媒入口温度を検出する室外熱交換器入口温度検出手段44が設けられており、非着霜時に比べて、蒸発温度が低下したことを室外熱交換器入口温度検出手段44で検出すると、コントローラ54から通常暖房運転から除霜・暖房運転への指示が出力される。 When the outdoor heat exchanger 14 is frosted during the above-described normal heating operation and the frosted frost grows, the ventilation resistance of the outdoor heat exchanger 14 increases and the air flow decreases, and the evaporation in the outdoor heat exchanger 14 increases. The temperature drops. As shown in FIG. 1, an air conditioner that is a refrigeration cycle apparatus according to the present invention is provided with an outdoor heat exchanger inlet temperature detection means 44 that detects the refrigerant inlet temperature of the outdoor heat exchanger 14 during heating operation. When the outdoor heat exchanger inlet temperature detecting means 44 detects that the evaporation temperature has decreased as compared with the time of non-frosting, the controller 54 outputs an instruction from the normal heating operation to the defrosting / heating operation. .
通常暖房運転から除霜・暖房運転に移行すると、除霜二方弁30と蓄熱二方弁42は開制御され、上述した通常暖房運転時の冷媒の流れに加え、圧縮機6の吐出口から出た気相冷媒の一部は冷媒配管28と除霜二方弁30を通り、冷媒配管22を通る冷媒に合流して、室外熱交換器14を加熱し、凝縮して液相化した後、冷媒配管24を通って四方弁8とアキュームレータ26を介して圧縮機6の吸入口へと戻る。 When the normal heating operation is shifted to the defrosting / heating operation, the defrosting two-way valve 30 and the heat storage two-way valve 42 are controlled to open, and in addition to the refrigerant flow during the normal heating operation described above, from the discharge port of the compressor 6. A part of the gas-phase refrigerant that has exited passes through the refrigerant pipe 28 and the defrosting two-way valve 30, joins the refrigerant that passes through the refrigerant pipe 22, heats the outdoor heat exchanger 14, and condenses into a liquid phase. Then, the refrigerant returns to the suction port of the compressor 6 through the refrigerant pipe 24 and the four-way valve 8 and the accumulator 26.
なお、膨張弁12と室外熱交換器14との間と、圧縮機6の吐出口と四方弁8との間を接続する冷媒配管28は、室外熱交換器14を加熱して除霜を行うための気相冷媒が通過することから、除霜バイパス回路ということもできる。 The refrigerant pipe 28 connecting the expansion valve 12 and the outdoor heat exchanger 14 and between the discharge port of the compressor 6 and the four-way valve 8 heats the outdoor heat exchanger 14 to perform defrosting. Therefore, it can also be referred to as a defrosting bypass circuit.
また、冷媒配管20における室内熱交換器16とストレーナ10の間で分流した液相冷媒の一部は、冷媒配管38と蓄熱二方弁42を経て、蓄熱熱交換器34で蓄熱材36から吸熱し蒸発、気相化して、冷媒配管40を通って冷媒配管24を通る冷媒に合流し、アキュームレータ26から圧縮機6の吸入口へと戻る。 In addition, a part of the liquid-phase refrigerant that is divided between the indoor heat exchanger 16 and the strainer 10 in the refrigerant pipe 20 passes through the refrigerant pipe 38 and the heat storage two-way valve 42, and absorbs heat from the heat storage material 36 in the heat storage heat exchanger 34. Then, it evaporates and vaporizes, merges with the refrigerant passing through the refrigerant pipe 24 through the refrigerant pipe 40, and returns from the accumulator 26 to the suction port of the compressor 6.
なお、室内熱交換器16と膨張弁12との間と、四方弁8と圧縮機6の吸入口との間を接続する冷媒配管38及び冷媒配管40は、蓄熱熱交換器34を通過して蓄熱材36から吸熱することから、これら二つの冷媒配管38、40を蓄熱バイパス回路ということもできる。 Note that the refrigerant pipe 38 and the refrigerant pipe 40 that connect between the indoor heat exchanger 16 and the expansion valve 12 and between the four-way valve 8 and the suction port of the compressor 6 pass through the heat storage heat exchanger 34. Since heat is absorbed from the heat storage material 36, these two refrigerant pipes 38 and 40 can also be called a heat storage bypass circuit.
アキュームレータ26に戻る冷媒には、室外熱交換器14から戻ってくる液相冷媒が含まれているが、これに蓄熱熱交換器34から戻ってくる高温の気相冷媒を混合することで
、液相冷媒の蒸発が促され、アキュームレータ26を通過して液相冷媒が圧縮機6に戻ることがなくなり、圧縮機6の信頼性の向上を図ることができる。
The refrigerant returning to the accumulator 26 includes the liquid phase refrigerant returning from the outdoor heat exchanger 14. By mixing this with the high-temperature gas phase refrigerant returning from the heat storage heat exchanger 34, The evaporation of the phase refrigerant is promoted, and the liquid phase refrigerant does not return to the compressor 6 through the accumulator 26, so that the reliability of the compressor 6 can be improved.
除霜・暖房開始時に霜の付着により氷点下となった室外熱交換器14の温度は、圧縮機6の吐出口から出た気相冷媒によって加熱されて、零度付近で霜が融解し、霜の融解が終わると、室外熱交換器14の温度は再び上昇し始める。この室外熱交換器14の温度上昇を室外熱交換器出口温度検出手段46で検出すると、除霜が完了したと判断し、コントローラ54から除霜・暖房運転から通常暖房運転への指示が出力される。 The temperature of the outdoor heat exchanger 14 that has become below freezing due to the attachment of frost at the start of defrosting and heating is heated by the gas-phase refrigerant discharged from the discharge port of the compressor 6, and the frost is melted near zero degrees. When melting is finished, the temperature of the outdoor heat exchanger 14 begins to rise again. When the temperature rise of the outdoor heat exchanger 14 is detected by the outdoor heat exchanger outlet temperature detecting means 46, it is determined that the defrosting is completed, and the controller 54 outputs an instruction from the defrosting / heating operation to the normal heating operation. The
次に、除霜・暖房運転時における蓄熱二方弁42と除霜二方弁30の動作について説明する。蓄熱材36に蓄積される熱量は有限であることから、この制御は、蓄熱材36に蓄積された熱量を有効利用するために、通常暖房運転から除霜・暖房運転に移行し、除霜二方弁30と蓄熱二方弁42を開制御するに際し、除霜二方弁30をまず開制御し、除霜二方弁30の開制御から所定時間(例えば、10〜20秒)が経過した後、蓄熱二方弁42を開制御するようにしている。 Next, the operation of the heat storage two-way valve 42 and the defrost two-way valve 30 during the defrosting / heating operation will be described. Since the amount of heat accumulated in the heat storage material 36 is finite, this control shifts from the normal heating operation to the defrosting / heating operation in order to effectively use the heat amount accumulated in the heat storage material 36, and the When opening the two-way valve 30 and the heat storage two-way valve 42, the defrosting two-way valve 30 is first opened and a predetermined time (for example, 10 to 20 seconds) has elapsed since the opening control of the defrosting two-way valve 30. Thereafter, the heat storage two-way valve 42 is controlled to be opened.
除霜・暖房運転は、除霜二方弁30と蓄熱二方弁42の両方が開状態で初めて行われることになるが、蓄熱二方弁42を除霜二方弁30より先に開制御すると、蓄熱材36に蓄積された熱量が無駄に使用されることになり、除霜二方弁30と蓄熱二方弁42の両方を同時に開制御すると、室外熱交換器14からの冷媒と室内熱交換器16からの冷媒が同時に圧縮機6に吸入されることになり、圧力変動を惹起するおそれがあることから、除霜二方弁30の開制御と蓄熱二方弁42の開制御に適切な時間差を設定することで、圧力変動を極力抑えることができるとともに、圧縮機6への液冷媒の流入を阻止して圧縮機6の信頼性を向上させることができる。 The defrosting / heating operation is performed for the first time when both the defrosting two-way valve 30 and the heat storage two-way valve 42 are open, but the heat storage two-way valve 42 is controlled to open before the defrosting two-way valve 30. Then, the amount of heat accumulated in the heat storage material 36 is wasted, and if both the defrost two-way valve 30 and the heat storage two-way valve 42 are simultaneously controlled to open, the refrigerant from the outdoor heat exchanger 14 and the indoor Since the refrigerant from the heat exchanger 16 is sucked into the compressor 6 at the same time, there is a risk of causing a pressure fluctuation. Therefore, the open control of the defrost two-way valve 30 and the open control of the heat storage two-way valve 42 are performed. By setting an appropriate time difference, it is possible to suppress pressure fluctuations as much as possible, and to prevent liquid refrigerant from flowing into the compressor 6 and improve the reliability of the compressor 6.
このため、図1に示されるように、コントローラ54には、時間をカウントするタイマー56が設けられており、通常暖房運転から除霜・暖房運転に移行した場合、除霜二方弁30の開制御からの経過時間をタイマー56でカウントし、タイマー56がカウントした時間が上述した所定時間に達すると、蓄熱二方弁42が開制御される。以下、この制御について、図3のフローチャートを参照しながら詳述する。 For this reason, as shown in FIG. 1, the controller 54 is provided with a timer 56 that counts time. When the normal heating operation is shifted to the defrosting / heating operation, the defrosting two-way valve 30 is opened. The elapsed time from the control is counted by the timer 56, and when the time counted by the timer 56 reaches the predetermined time described above, the heat storage two-way valve 42 is controlled to open. Hereinafter, this control will be described in detail with reference to the flowchart of FIG.
ステップS1においては、室内熱交換器温度検出手段48で検出された温度が所定温度Ta(例えば、45℃)かどうかを判定し、検出温度が所定温度Taに等しい場合には、ステップS5に移行する一方、等しくない場合には、ステップS2に移行し、検出温度が所定温度Taを超えているかどうかを判定する。検出温度が所定温度Taを超えている場合には、ステップS3において圧縮機6の運転周波数を減少させるのに対し、検出温度が所定温度Taを下回っている場合には、ステップS4において圧縮機6の運転周波数を増加させる。ステップS3あるいはS4における圧縮機6の周波数制御が終了すると、ステップS1に戻る。なお、ここでは所定温度Taを45℃として説明しているが、これに限定されることはない。 In step S1, it is determined whether the temperature detected by the indoor heat exchanger temperature detecting means 48 is a predetermined temperature Ta (for example, 45 ° C.). If the detected temperature is equal to the predetermined temperature Ta, the process proceeds to step S5. On the other hand, if they are not equal, the process proceeds to step S2 to determine whether or not the detected temperature exceeds a predetermined temperature Ta. If the detected temperature exceeds the predetermined temperature Ta, the operating frequency of the compressor 6 is decreased in step S3, whereas if the detected temperature is lower than the predetermined temperature Ta, the compressor 6 is determined in step S4. Increase the operating frequency. When the frequency control of the compressor 6 in step S3 or S4 is completed, the process returns to step S1. Although the predetermined temperature Ta is described as 45 ° C. here, it is not limited to this.
すなわち、冷凍サイクル内の圧力変動は、室内熱交換器16の温度が高く、高圧側と低圧側の圧力差が大きい場合に、除霜二方弁30と蓄熱二方弁42の開制御を行うことでも発生し、圧力変動は騒音を発生するおそれがあることから、室内熱交換器温度検出手段48で検出された温度が所定温度Taを超えている場合に、室内熱交換器温度検出手段48で検出された温度が所定温度Taになるまで圧縮機6の運転周波数を落とし、高圧側の圧力を低減する制御を行っている。 That is, the pressure fluctuation in the refrigeration cycle controls the opening of the defrosting two-way valve 30 and the heat storage two-way valve 42 when the temperature of the indoor heat exchanger 16 is high and the pressure difference between the high pressure side and the low pressure side is large. Therefore, if the temperature detected by the indoor heat exchanger temperature detecting means 48 exceeds the predetermined temperature Ta, the indoor heat exchanger temperature detecting means 48 may be generated. The operation frequency of the compressor 6 is lowered until the temperature detected in step 1 reaches the predetermined temperature Ta, and control is performed to reduce the pressure on the high pressure side.
また、室内熱交換器16で熱交換を行った後の冷媒が持つ熱量も除霜運転時に有効利用するために、室内熱交換器温度検出手段48が検出した温度が所定温度Ta未満の場合に
は、検出温度が所定温度Taになるまで圧縮機6の運転周波数を増加して、暖房運転後の除霜運転の効率化を図っている。
Further, in order to effectively use the heat quantity of the refrigerant after heat exchange in the indoor heat exchanger 16 during the defrosting operation, the temperature detected by the indoor heat exchanger temperature detecting means 48 is less than the predetermined temperature Ta. Increases the operating frequency of the compressor 6 until the detected temperature reaches a predetermined temperature Ta, thereby improving the efficiency of the defrosting operation after the heating operation.
ステップS1において、室内熱交換器温度検出手段48で検出された温度が所定温度Taになると、蓄熱槽32に蓄積した熱を有効利用しながら除霜運転を行うための通常蓄熱除霜運転を開始する。この除霜運転では、ステップS5において除霜二方弁30を開制御して圧縮機6より吐出された冷媒を室外熱交換器14に導き、ステップS6において、タイマー56によりカウントされた除霜二方弁30の開制御からの時間が上述した所定時間に達しているかどうかを判定し、所定時間に達していればステップS7において蓄熱二方弁42を開制御して室内熱交換器16を通過した冷媒を蓄熱熱交換器34に導く一方、所定時間に達していなければステップS6に戻る。 In step S1, when the temperature detected by the indoor heat exchanger temperature detecting means 48 reaches a predetermined temperature Ta, a normal heat storage defrosting operation for performing a defrosting operation while effectively using the heat accumulated in the heat storage tank 32 is started. To do. In this defrosting operation, the defrosting two-way valve 30 is controlled to open in step S5 and the refrigerant discharged from the compressor 6 is guided to the outdoor heat exchanger 14, and in step S6, the defrosting two counted by the timer 56 is guided. It is determined whether or not the time from the opening control of the direction valve 30 has reached the above-described predetermined time. If the predetermined time has been reached, the heat storage two-way valve 42 is controlled to open in step S7 and passes through the indoor heat exchanger 16. While the conducted refrigerant is guided to the heat storage heat exchanger 34, if the predetermined time has not been reached, the process returns to step S6.
ステップS7において蓄熱二方弁42が開制御されると、ステップS8において、室外熱交換器出口温度検出手段46で検出された温度と除霜運転終了の指標となる所定温度Tb(例えば、6℃)とが比較され、前者が後者未満であれば、残霜があるか、あるいは、残霜はないが基板(室外熱交換器14の上部及び下部)はまだ凍結していると判定して、除霜運転を継続し、ステップS9に移行する。 When the heat storage two-way valve 42 is controlled to open in step S7, in step S8, the temperature detected by the outdoor heat exchanger outlet temperature detecting means 46 and a predetermined temperature Tb (for example, 6 ° C.) serving as an index for the completion of the defrosting operation. If the former is less than the latter, it is determined that there is residual frost, or there is no residual frost, but the substrate (upper and lower portions of the outdoor heat exchanger 14) is still frozen, The defrosting operation is continued and the process proceeds to step S9.
ステップS9においては、タイマー56によりカウントされた除霜二方弁30の開制御からの時間が所定時間(例えば、7分)に達していなければ、ステップS8に戻る一方、室外熱交換器出口温度検出手段46で検出された温度が所定温度Tb以上であれば、残霜はなく基板凍結も解消されていると判定して、ステップS10において除霜二方弁30及び蓄熱二方弁42を同時に閉制御し、除霜運転を終了して通常暖房運転に戻る。 In step S9, if the time from the opening control of the defrosting two-way valve 30 counted by the timer 56 has not reached a predetermined time (for example, 7 minutes), the process returns to step S8, while the outdoor heat exchanger outlet temperature If the temperature detected by the detection means 46 is equal to or higher than the predetermined temperature Tb, it is determined that there is no residual frost and that the substrate has been frozen, and the defrosting two-way valve 30 and the heat storage two-way valve 42 are simultaneously set in step S10. Close control is performed, the defrosting operation is terminated, and the normal heating operation is resumed.
また、ステップS9においてタイマー56でカウントした時間が所定時間に達していれば、室外熱交換器出口温度検出手段46で検出された温度に関係なく、ステップS10に移行し、除霜二方弁30及び蓄熱二方弁42を同時に閉制御し、除霜運転を終了して通常暖房運転に戻るとともに、タイマー56のカウント時間をリセットする。 If the time counted by the timer 56 in step S9 has reached a predetermined time, the process proceeds to step S10 regardless of the temperature detected by the outdoor heat exchanger outlet temperature detecting means 46, and the defrosting two-way valve 30 is moved. The heat storage two-way valve 42 is closed and controlled at the same time, the defrosting operation is terminated and the normal heating operation is resumed, and the count time of the timer 56 is reset.
なお、ステップS9においてタイマー56でカウントした時間が所定時間に達した場合、除霜運転を強制的に終了するようにしたのは、蓄熱槽32の蓄熱量は有限で、前記所定時間で消費される程度の蓄熱量に設定されていることから、所定時間を超えて除霜運転を継続しても蓄熱量が既になく、除霜運転を行う意味がないからである。 In addition, when the time counted by the timer 56 in step S9 reaches a predetermined time, the defrosting operation is forcibly terminated because the heat storage amount of the heat storage tank 32 is limited and consumed in the predetermined time. This is because even if the defrosting operation is continued beyond a predetermined time, there is no heat storage amount, and there is no point in performing the defrosting operation.
また、本実施の形態では、除霜運転が開始されてから除霜運転が終了するまでの間、常時、室外熱交換器入口温度検出手段44で検出された温度と外気温度とを比較しており、外気温度の方が室外熱交換器入口温度より高い場合には、室外機2に設けられ室外熱交換器14に送風するための室外ファン(図示せず)の運転を継続している。このように制御することにより、外気温度が持つ熱量を有効的に活用して、室外熱交換器14の除霜を促進させることができる。 Further, in the present embodiment, the temperature detected by the outdoor heat exchanger inlet temperature detecting means 44 is always compared with the outside air temperature from the start of the defrosting operation to the end of the defrosting operation. When the outdoor air temperature is higher than the outdoor heat exchanger inlet temperature, the operation of an outdoor fan (not shown) that is provided in the outdoor unit 2 and blows air to the outdoor heat exchanger 14 is continued. By controlling in this way, defrosting of the outdoor heat exchanger 14 can be promoted by effectively utilizing the amount of heat of the outside air temperature.
但し、除霜運転中に、室外熱交換器入口温度が外気温度よりも高いと一旦判断された場合は、室外熱交換器入口温度が上昇するだけなので、除霜運転が終了するまで室外ファンを駆動させることはない。 However, once it is determined that the outdoor heat exchanger inlet temperature is higher than the outside air temperature during the defrosting operation, the outdoor heat exchanger inlet temperature only rises, so the outdoor fan must be turned off until the defrosting operation ends. It is not driven.
次に、蓄熱材36の保護制御について説明する。本実施の形態のように圧縮機の周囲に蓄熱材36を内部に有した蓄熱槽32を接して配置していると、圧縮機6の運転によっては圧縮機6自体の温度が過度に上昇してしまい、特に圧縮機6と接している蓄熱槽32付近の蓄熱材36が局部沸騰を起してしまい、蓄熱材36が劣化してしまうという課題がある。 Next, protection control of the heat storage material 36 will be described. When the heat storage tank 32 having the heat storage material 36 inside is disposed in contact with the periphery of the compressor as in the present embodiment, the temperature of the compressor 6 itself increases excessively depending on the operation of the compressor 6. In particular, there is a problem that the heat storage material 36 near the heat storage tank 32 in contact with the compressor 6 causes local boiling and the heat storage material 36 deteriorates.
蓄熱材36の温度が過度に上昇すると、蓄熱材36自体の変質(例えば、酸化)や蓄熱材36の水分沸騰を惹起し、蓄熱材36が劣化するおそれがあることから、本発明においては、圧縮機6の温度に基づいて蓄熱材の保護制御をコントローラ54が行うことにより、蓄熱材36の劣化を防止している。 In the present invention, if the temperature of the heat storage material 36 is excessively increased, the heat storage material 36 itself may be altered (for example, oxidation) or water boiling of the heat storage material 36 may be caused and the heat storage material 36 may deteriorate. The controller 54 performs protection control of the heat storage material based on the temperature of the compressor 6, thereby preventing the heat storage material 36 from being deteriorated.
これは、圧縮機6の温度は蓄熱材36の温度と密接に相関し、圧縮機6の温度が高くなれば、蓄熱材36の温度も高くなるためである。なお、この蓄熱材の保護制御については、暖房運転時に限らず、冷房運転時にも行われる。 This is because the temperature of the compressor 6 closely correlates with the temperature of the heat storage material 36, and the temperature of the heat storage material 36 increases as the temperature of the compressor 6 increases. The protection control of the heat storage material is performed not only during the heating operation but also during the cooling operation.
以下、圧縮機温度に基づく制御について説明する。図4に示されるように、この制御においては、圧縮機6の温度を検出する圧縮機温度検出手段58を設け、圧縮機温度検出手段58で検出された温度が第1の所定温度を超えると、蓄熱二方弁42の開制御を行い、暖房時には室内熱交換器16を、冷房時には室外熱交換器14を通過して温度が低下した冷媒を蓄熱熱交換器34に導くことで、蓄熱材36の温度を低下させている。なお、圧縮機温度検出手段58とは温度を検知できるサーミスタ等が挙げられる。 Hereinafter, control based on the compressor temperature will be described. As shown in FIG. 4, in this control, a compressor temperature detecting means 58 for detecting the temperature of the compressor 6 is provided, and when the temperature detected by the compressor temperature detecting means 58 exceeds a first predetermined temperature. Then, the heat storage two-way valve 42 is controlled to open, and the refrigerant that has passed through the indoor heat exchanger 16 at the time of heating and the outdoor heat exchanger 14 at the time of cooling to the heat storage heat exchanger 34 is guided to the heat storage heat exchanger 34. The temperature of 36 is lowered. The compressor temperature detecting means 58 may be a thermistor that can detect the temperature.
さらに詳述すると、図5に示されるように、圧縮機温度検出手段58で検出された温度が第1の所定温度(例えば、95℃)を超えると、蓄熱二方弁42を開制御し、圧縮機6の最大運転周波数を制限する。蓄熱二方弁42を開弁すると、蓄熱材36の過度の温度上昇を防止することができ、特に、蓄熱材36は圧縮機6の周囲に沿って配置されていることから、圧縮機6と蓄熱材36が接する部分の局部沸騰を防止して、蓄熱材36の蒸発を極力低減することができる。 More specifically, as shown in FIG. 5, when the temperature detected by the compressor temperature detecting means 58 exceeds a first predetermined temperature (for example, 95 ° C.), the heat storage two-way valve 42 is controlled to open, The maximum operating frequency of the compressor 6 is limited. When the heat storage two-way valve 42 is opened, an excessive temperature rise of the heat storage material 36 can be prevented. In particular, since the heat storage material 36 is disposed along the periphery of the compressor 6, It is possible to prevent local boiling of the portion in contact with the heat storage material 36 and to reduce evaporation of the heat storage material 36 as much as possible.
その後、さらに圧縮機温度検出手段58で検出された温度が第1の所定温度より高い第2の所定温度(例えば、103℃)を超えると、圧縮機6を停止させる。 Thereafter, when the temperature detected by the compressor temperature detecting means 58 further exceeds a second predetermined temperature (for example, 103 ° C.) higher than the first predetermined temperature, the compressor 6 is stopped.
なお、圧縮機温度検出手段58で検出された温度が第1の所定温度(例えば、95℃)を超えると、蓄熱二方弁42の開制御に代えて、圧縮機6の運転周波数を下げる制御を行うこともでき、蓄熱二方弁42の開制御とともに圧縮機6の運転周波数を下げる制御を同時に行うようにしてもよい。すなわち、圧縮機6の運転周波数を下げると、圧縮機6の温度が低下し、圧縮機6の近傍に位置する蓄熱材36の局部沸騰を防止することができるからである。 In addition, when the temperature detected by the compressor temperature detecting means 58 exceeds a first predetermined temperature (for example, 95 ° C.), control for lowering the operating frequency of the compressor 6 instead of opening control of the heat storage two-way valve 42. It is also possible to perform the control for lowering the operating frequency of the compressor 6 simultaneously with the opening control of the heat storage two-way valve 42. That is, if the operating frequency of the compressor 6 is lowered, the temperature of the compressor 6 is lowered, and local boiling of the heat storage material 36 located in the vicinity of the compressor 6 can be prevented.
また、圧縮機温度検出手段58で検出された温度が第2の所定温度を超えた後、圧縮機6を停止することにより圧縮機温度検出手段58で検出された温度が徐々に低下し、第2の所定温度より低い(例えば、5℃)第3の所定温度を下回ると、圧縮機6は再度運転を開始するが、蓄熱二方弁42は依然として開弁しており、圧縮機温度検出手段58で検出された温度がさらに低下して、第1の所定温度より低い(例えば、5℃)第4の所定温度を下回ると、蓄熱二方弁42は閉制御される。 Further, after the temperature detected by the compressor temperature detecting means 58 exceeds the second predetermined temperature, the temperature detected by the compressor temperature detecting means 58 gradually decreases by stopping the compressor 6, When the temperature falls below a third predetermined temperature lower than a predetermined temperature of 2 (for example, 5 ° C.), the compressor 6 starts operating again, but the heat storage two-way valve 42 is still open, and the compressor temperature detecting means When the temperature detected at 58 further decreases and falls below a fourth predetermined temperature lower than the first predetermined temperature (for example, 5 ° C.), the heat storage two-way valve 42 is closed.
温度下降方向の第3の所定温度及び第4の所定温度は、温度上昇方向の第1の所定温度及び第2の所定温度よりそれぞれ低く設定したのは、蓄熱二方弁42の開閉動作や圧縮機6のON/OFFの頻繁な繰り返し(ハンチング)を防止するためである。なお、本実施の形態では第1の所定温度から5℃低い値を第4の所定温度とし、第2の所定温度から5℃低い値を第4の所定温度としたが、5℃に限定されることはなく、ハンチングを防止できるような値であれば問題はない。 The third predetermined temperature and the fourth predetermined temperature in the temperature decreasing direction are set lower than the first predetermined temperature and the second predetermined temperature in the temperature increasing direction, respectively. This is to prevent frequent repetition (hunting) of ON / OFF of the machine 6. In this embodiment, a value 5 ° C. lower than the first predetermined temperature is set as the fourth predetermined temperature, and a value 5 ° C. lower than the second predetermined temperature is set as the fourth predetermined temperature. However, the value is limited to 5 ° C. There is no problem as long as the value can prevent hunting.
また、第1の所定温度とは、蓄熱材36の沸点によって変わってくるものであるが、本実施の形態で用いられているエチレングリコール水溶液(水75%・エチレングリコール
25%)の蓄熱材であれば沸点は大気圧が1013hPaの下では大凡105℃程度である。そのため、沸点を超えない温度で第1の所定温度を設けている。
The first predetermined temperature varies depending on the boiling point of the heat storage material 36, but is a heat storage material of an ethylene glycol aqueous solution (75% water, 25% ethylene glycol) used in the present embodiment. If present, the boiling point is about 105 ° C. under atmospheric pressure of 1013 hPa. Therefore, the first predetermined temperature is set at a temperature not exceeding the boiling point.
つまり、第1の所定温度=蓄熱材36の沸点−所定温度αを満たす式で定義されるが、このとき所定温度αは実験的に求められる局部沸騰を抑制できる数値であり、一義的に決定できない。しかしながら、所定温度αを5℃から20℃程度の範囲にすれば蓄熱材36にある程度の熱を蓄えつつ、蓄熱材36の劣化も抑制することができる。特に、空気調和機を設置する場所の大気圧が低くなれば、蓄熱材36の沸点も低くなってしまうため、ある程度余裕を見て決定するのが良い。 That is, the first predetermined temperature is defined by an expression satisfying the boiling point of the heat storage material 36−the predetermined temperature α. At this time, the predetermined temperature α is a numerical value that can suppress the local boiling obtained experimentally and is uniquely determined. Can not. However, if the predetermined temperature α is in the range of about 5 ° C. to 20 ° C., a certain amount of heat is stored in the heat storage material 36 and deterioration of the heat storage material 36 can be suppressed. In particular, if the atmospheric pressure at the place where the air conditioner is installed is lowered, the boiling point of the heat storage material 36 is also lowered.
なお、上述した蓄熱二方弁42の開制御に代えて、図6に示されるように、開弁状態と閉弁状態を周期的に繰り返す開閉制御を行うのが好ましく、この蓄熱二方弁42の開閉制御の場合、暖房時には、例えば10秒間の開弁と、例えば30秒間の閉弁を最大10回繰り返し、冷房時には、例えば30秒間の開弁と、例えば90秒間の閉弁を最大10回繰り返す。 Instead of the above-described opening control of the heat storage two-way valve 42, as shown in FIG. 6, it is preferable to perform opening / closing control that periodically repeats the valve opening state and the valve closing state. In the case of heating / closing control, for example, when heating, for example, 10 seconds of opening and 30 seconds of closing are repeated a maximum of 10 times, and during cooling, for example, 30 seconds of opening and, for example, 90 seconds of closing are closed up to 10 times. repeat.
このように蓄熱二方弁42を開閉制御するのは、蓄熱二方弁42を開制御しても、蓄熱材36の温度が直ぐに低下するわけではなく、ある程度の時間遅れの後、蓄熱材36の温度が徐々に低下するという追従性の問題を考慮したものである。 The open / close control of the heat storage two-way valve 42 in this way does not immediately decrease the temperature of the heat storage material 36 even if the heat storage two-way valve 42 is controlled to open, but after a certain time delay, the heat storage material 36 This is a consideration of the followability problem in which the temperature of the film gradually decreases.
また、暖房時の蓄熱二方弁42の開弁時間と閉弁時間を、冷房時の蓄熱二方弁42の開弁時間と閉弁時間より短く設定したのは、暖房時は、室内熱交換器16を通過した液相冷媒が蓄熱二方弁42を通過するのに対し、冷房時は、室外熱交換器14を通過した二相(気相と液相)冷媒が蓄熱二方弁42を通過することになるが、液相冷媒は二相冷媒より密度が高く、冷媒量が多いからである。 The opening time and closing time of the heat storage two-way valve 42 during heating are set shorter than the valve opening time and valve closing time of the heat storage two-way valve 42 during cooling. While the liquid-phase refrigerant that has passed through the storage unit 16 passes through the heat storage two-way valve 42, during cooling, the two-phase (gas phase and liquid phase) refrigerant that has passed through the outdoor heat exchanger 14 passes through the heat storage two-way valve 42. This is because the liquid-phase refrigerant has a higher density and a larger amount of refrigerant than the two-phase refrigerant.
さらに、蓄熱二方弁42の開閉制御を最大10回に制限したのは、蓄熱二方弁42の耐久性を考慮してのことである。 Further, the opening / closing control of the heat storage two-way valve 42 is limited to a maximum of 10 times in consideration of the durability of the heat storage two-way valve 42.
以上のように、本実施の形態では、圧縮機6の温度が過度に上昇した時に、蓄熱二方弁42を開く制御を行うことによって、蓄熱材の劣化を抑制することができる。 As mentioned above, in this Embodiment, when the temperature of the compressor 6 rises too much, deterioration of a thermal storage material can be suppressed by performing control which opens the thermal storage two-way valve 42. FIG.
本発明に係る空気調和機は、蓄熱装置内の有限の蓄熱量を用いて効率的な除霜運転を行うことができるので、冬季に着霜のおそれがある他の冷凍サイクル装置にも有効利用することができる。 Since the air conditioner according to the present invention can perform an efficient defrosting operation using a finite amount of heat stored in the heat storage device, it is also effectively used for other refrigeration cycle devices that may be frosted in winter. can do.
2 室外機
4 室内機
6 圧縮機
8 四方弁
10 ストレーナ
12 膨張弁
14 室外熱交換器
16 室内熱交換器
26 アキュームレータ
30 除霜二方弁
32 蓄熱槽
34 蓄熱熱交換器
36 蓄熱材
42 蓄熱二方弁
44 室外熱交換器入口温度検出手段
46 室外熱交換器出口温度検出手段
48 室内熱交換器温度検出手段
50 蓄熱槽温度検出手段
52 外気温度検出手段
54 コントローラ、
56 タイマー
58 圧縮機温度検出手段
2 outdoor unit 4 indoor unit 6 compressor 8 four-way valve 10 strainer 12 expansion valve 14 outdoor heat exchanger 16 indoor heat exchanger 26 accumulator 30 defrost two-way valve 32 heat storage tank 34 heat storage heat exchanger 36 heat storage material 42 heat storage two-way Valve 44 Outdoor heat exchanger inlet temperature detection means 46 Outdoor heat exchanger outlet temperature detection means 48 Indoor heat exchanger temperature detection means 50 Thermal storage tank temperature detection means 52 Outdoor air temperature detection means 54 Controller,
56 Timer 58 Compressor temperature detection means
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010231249A JP5287820B2 (en) | 2010-10-14 | 2010-10-14 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010231249A JP5287820B2 (en) | 2010-10-14 | 2010-10-14 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012083065A JP2012083065A (en) | 2012-04-26 |
JP5287820B2 true JP5287820B2 (en) | 2013-09-11 |
Family
ID=46242116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010231249A Expired - Fee Related JP5287820B2 (en) | 2010-10-14 | 2010-10-14 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5287820B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103423927B (en) * | 2012-05-15 | 2016-05-11 | 约克广州空调冷冻设备有限公司 | For the Defrost method of air source heat pump system |
WO2017138108A1 (en) * | 2016-02-10 | 2017-08-17 | 三菱電機株式会社 | Air conditioning device |
JP6771661B2 (en) * | 2017-04-27 | 2020-10-21 | 三菱電機株式会社 | Refrigeration cycle equipment |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60175976A (en) * | 1984-02-21 | 1985-09-10 | 松下電器産業株式会社 | Defroster for air conditioner |
JPS6358063A (en) * | 1986-08-29 | 1988-03-12 | 株式会社東芝 | Refrigeration cycle device |
JPS63156980A (en) * | 1986-12-19 | 1988-06-30 | 松下電器産業株式会社 | Heat pump type air conditioner |
JPH051868A (en) * | 1991-06-25 | 1993-01-08 | Nippondenso Co Ltd | Refrigerating device |
JPH0682117A (en) * | 1992-09-01 | 1994-03-22 | Matsushita Refrig Co Ltd | Multi-room type air-conditioning apparatus |
JP2005337665A (en) * | 2004-05-31 | 2005-12-08 | Daikin Ind Ltd | Air conditioner |
-
2010
- 2010-10-14 JP JP2010231249A patent/JP5287820B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012083065A (en) | 2012-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102523754B (en) | Refrigerating circulatory device | |
JP5108923B2 (en) | Air conditioner | |
JP5144728B2 (en) | Air conditioner | |
JP2012057869A (en) | Air conditioner | |
JP5204189B2 (en) | Refrigeration cycle equipment | |
JP2012077942A (en) | Air conditioner | |
EP2623897B1 (en) | Refrigeration cycle equipment | |
JP5903585B2 (en) | Air conditioner | |
JP5445570B2 (en) | Air conditioner | |
JP2013104623A (en) | Refrigeration cycle device and air conditioner with the same | |
JP5287820B2 (en) | Air conditioner | |
JP5287821B2 (en) | Air conditioner | |
JP5440466B2 (en) | Air conditioner | |
JP5293714B2 (en) | Air conditioner | |
JP6465332B2 (en) | Heat pump hot water supply system | |
JP5218510B2 (en) | Air conditioner | |
CN102782423B (en) | Refrigeration cycle device | |
JP5310696B2 (en) | Air conditioner | |
JP5927500B2 (en) | Refrigeration cycle apparatus and air conditioner equipped with the same | |
JP5307096B2 (en) | Air conditioner | |
JP5927502B2 (en) | Refrigeration cycle apparatus and air conditioner equipped with the same | |
JP2012037130A (en) | Refrigeration cycle device | |
JP2012077938A (en) | Refrigerating cycle device | |
JP2013104586A (en) | Refrigerating cycle device and air conditioner with the same | |
JPH07107471B2 (en) | Heat pump air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120918 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121002 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121107 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20121218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130507 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130520 |
|
LAPS | Cancellation because of no payment of annual fees |