JP2012077942A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2012077942A
JP2012077942A JP2010221157A JP2010221157A JP2012077942A JP 2012077942 A JP2012077942 A JP 2012077942A JP 2010221157 A JP2010221157 A JP 2010221157A JP 2010221157 A JP2010221157 A JP 2010221157A JP 2012077942 A JP2012077942 A JP 2012077942A
Authority
JP
Japan
Prior art keywords
temperature
heat storage
heat exchanger
defrosting
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010221157A
Other languages
Japanese (ja)
Inventor
Hiroyuki Daimon
寛幸 大門
Hirokazu Kamota
廣和 加守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010221157A priority Critical patent/JP2012077942A/en
Publication of JP2012077942A publication Critical patent/JP2012077942A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner with a start-up made quicker in a heating operation.SOLUTION: The air conditioner includes: a heat storage tank having a regenerative heat exchanger and a heat storage material that stores heat generated by a compressor, both installed in the tank; a heat storage bypass circuit connecting a path between an indoor heat exchanger and an expansion valve to a path between a four-way valve and a suction port of the compressor; and a defrosting bypass circuit connecting a path between the expansion valve and an outdoor heat exchanger to a path between a discharge port of the compressor and the four-way valve. The regenerative heat exchanger and a heat storage two-way valve are laid in the heat storage bypass circuit, while a defrosting two-way valve is laid in the defrosting bypass circuit. When a start temperature of defrosting is detected by a detecting means for an entrance temperature of the indoor heat exchanger, the air conditioner opens the heat storage two-way valve and the defrosting two-way valve to carry out a defrosting operation while continuing a heating operation. After the defrosting operation is completed, the air conditioner sets a frequency of the compressor to the frequency of the compressor before starting the defrosting operation.

Description

本発明は、圧縮機で発生した熱を蓄積する蓄熱材を収容する蓄熱槽と、蓄熱材の蓄熱で熱交換を行う蓄熱熱交換器とを備えた空気調和機に関する。   The present invention relates to an air conditioner including a heat storage tank that stores a heat storage material that stores heat generated by a compressor, and a heat storage heat exchanger that performs heat exchange by heat storage of the heat storage material.

従来、ヒートポンプ式空気調和機による暖房運転時、室外熱交換器に着霜した場合には、暖房サイクルから冷房サイクルに四方弁を切り替えて除霜を行っている。この除霜方式では、室内ファンは停止するものの、室内機から冷気が徐々に放出されることから暖房感が失われるという欠点がある。   Conventionally, when the outdoor heat exchanger is frosted during the heating operation by the heat pump air conditioner, defrosting is performed by switching the four-way valve from the heating cycle to the cooling cycle. In this defrosting method, although the indoor fan is stopped, there is a disadvantage that a feeling of heating is lost because cold air is gradually discharged from the indoor unit.

そこで、室外機に設けられた圧縮機に蓄熱装置を設け、暖房運転中に蓄熱槽に蓄えられた圧縮機の廃熱を利用して除霜するようにしたものが提案されている(例えば、特許文献1参照)。   Accordingly, a heat storage device is provided in the compressor provided in the outdoor unit, and the one that is defrosted using the waste heat of the compressor stored in the heat storage tank during the heating operation has been proposed (for example, Patent Document 1).

図21は、このような除霜方式を採用した冷凍サイクル装置の一例を示しており、室外機に設けられた圧縮機100と四方弁102と室外熱交換器104とキャピラリチューブ106と、室内機に設けられた室内熱交換器108とを冷媒配管で接続するとともに、キャピラリチューブ106をバイパスする第1バイパス回路110と、圧縮機100の吐出側から四方弁102を介して室内熱交換器108へ至る配管に一端を接続し他端をキャピラリチューブ106から室外熱交換器104へ至る配管に接続した第2バイパス回路112が設けられている。また、第1バイパス回路110には、二方弁114と逆止弁116と蓄熱熱交換器118が設けられ、第2バイパス回路112には、二方弁120と逆止弁122が設けられている。   FIG. 21 shows an example of a refrigeration cycle apparatus adopting such a defrosting method. The compressor 100, the four-way valve 102, the outdoor heat exchanger 104, the capillary tube 106, the indoor unit provided in the outdoor unit are shown. Is connected to the indoor heat exchanger 108 provided by the refrigerant pipe, the first bypass circuit 110 for bypassing the capillary tube 106, and the discharge side of the compressor 100 to the indoor heat exchanger 108 via the four-way valve 102. A second bypass circuit 112 is provided in which one end is connected to the connecting pipe and the other end is connected to the pipe extending from the capillary tube 106 to the outdoor heat exchanger 104. The first bypass circuit 110 is provided with a two-way valve 114, a check valve 116, and a heat storage heat exchanger 118, and the second bypass circuit 112 is provided with a two-way valve 120 and a check valve 122. Yes.

さらに、圧縮機100の周囲には蓄熱槽124が設けられており、蓄熱槽124の内部には、蓄熱熱交換器118と熱交換するための蓄熱材126が充填されている。   Further, a heat storage tank 124 is provided around the compressor 100, and the heat storage tank 124 is filled with a heat storage material 126 for exchanging heat with the heat storage heat exchanger 118.

この冷凍サイクルにおいて、除霜運転時には、二つの二方弁114,120が開弁され、圧縮機100から吐出された冷媒の一部は第2バイパス回路112へと流れ、残りの冷媒は四方弁102と室内熱交換器108へと流れる。また、室内熱交換器108を流れた冷媒は暖房に利用された後、わずかの冷媒がキャピラリチューブ106を通って室外熱交換器104へと流れる一方、残りの大部分の冷媒は第1バイパス回路110へ流入し、二方弁114を通って蓄熱熱交換器118へと流れて蓄熱材126より熱を奪い、逆止弁116を通った後、キャピラリチューブ106を通過した冷媒と合流して室外熱交換器104へと流れる。その後、室外熱交換器104の入口で第2バイパス回路112を流れてきた冷媒と合流し、冷媒が持つ熱を利用して除霜を行い、さらに四方弁102を通過した後、圧縮機100に吸入される。   In this refrigeration cycle, during the defrosting operation, the two two-way valves 114 and 120 are opened, a part of the refrigerant discharged from the compressor 100 flows to the second bypass circuit 112, and the remaining refrigerant is the four-way valve. 102 and the indoor heat exchanger 108. In addition, after the refrigerant flowing through the indoor heat exchanger 108 is used for heating, a small amount of refrigerant flows to the outdoor heat exchanger 104 through the capillary tube 106, while the remaining most of the refrigerant passes through the first bypass circuit. 110 flows into the heat storage heat exchanger 118 through the two-way valve 114, takes heat from the heat storage material 126, passes through the check valve 116, and then merges with the refrigerant that has passed through the capillary tube 106 to the outdoor. It flows to the heat exchanger 104. After that, it merges with the refrigerant flowing through the second bypass circuit 112 at the inlet of the outdoor heat exchanger 104, performs defrosting using the heat of the refrigerant, passes through the four-way valve 102, and then enters the compressor 100. Inhaled.

この冷凍サイクル装置においては、第2バイパス回路112を設けることで、除霜時に圧縮機100から吐出されたホットガスを室外熱交換器104に導くとともに、室外熱交換器104に流入する冷媒の圧力を高く保つことができるので、除霜能力を高めることができ、極めて短時間に除霜を完了することができる。   In this refrigeration cycle apparatus, by providing the second bypass circuit 112, the hot gas discharged from the compressor 100 during defrosting is guided to the outdoor heat exchanger 104 and the pressure of the refrigerant flowing into the outdoor heat exchanger 104 Therefore, the defrosting ability can be increased, and the defrosting can be completed in a very short time.

特開平3−31666号公報JP-A-3-31666

しかしながら、除霜運転中も暖房サイクルを継続するため室内負荷によっては除霜復帰後に能力過多となり設定温度より室温上昇が発生するという課題を有していた。   However, since the heating cycle is continued even during the defrosting operation, depending on the indoor load, there is a problem that the capacity becomes excessive after defrosting recovery and the room temperature rises from the set temperature.

本発明は、前記従来の課題を解決するもので、除霜運転から復帰した後であっても、最適な空調運転を行うことができる空気調和機を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the air conditioner which can perform an optimal air-conditioning driving | operation even after returning from a defrosting driving | operation.

上記目的を達成するために、本発明は、暖房運転時に、圧縮機、四方弁、室内熱交換器、膨張弁、室外熱交換器、四方弁の順に冷媒が流れるように接続した冷凍サイクルと、室外熱交換器の入口温度を検出する室外熱交換器入口温度検出手段と、圧縮機で発生した熱を蓄積する蓄熱材と蓄熱熱交換器を内蔵する蓄熱槽と、室内熱交換器と膨張弁との間と四方弁と圧縮機の吸入口との間を接続する蓄熱バイパス回路と、膨張弁と室外熱交換器との間と圧縮機の吐出口と四方弁との間を接続する除霜バイパス回路とを備えた空気調和機であって、蓄熱バイパス回路に蓄熱熱交換器と蓄熱二方弁とを配設し、除霜バイパス回路に除霜二方弁を配設し、室外熱交換器入口温度検出手段で除霜開始温度を検出すると、蓄熱二方弁と除霜二方弁とを開き、暖房運転を継続しながら除霜運転を行うとともに、除霜運転が終了後の圧縮機の周波数は、除霜運転が開始する前の圧縮機の周波数に設定するものである。   In order to achieve the above object, the present invention comprises a refrigeration cycle in which a refrigerant flows in the order of a compressor, a four-way valve, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, and a four-way valve during heating operation. Outdoor heat exchanger inlet temperature detecting means for detecting the inlet temperature of the outdoor heat exchanger, a heat storage material for storing heat generated by the compressor, a heat storage tank incorporating the heat storage heat exchanger, an indoor heat exchanger and an expansion valve Storage bypass circuit connecting between the four-way valve and the compressor inlet, defrosting connecting between the expansion valve and the outdoor heat exchanger, and between the compressor outlet and the four-way valve An air conditioner having a bypass circuit, wherein a heat storage heat exchanger and a heat storage two-way valve are disposed in the heat storage bypass circuit, a defrost two-way valve is disposed in the defrost bypass circuit, and outdoor heat exchange When the defrost start temperature is detected by the inlet temperature detection means, the heat storage two-way valve and the defrost two-way valve are opened, Performs defrosting operation while continuing tufts operation frequency of the compressor after the defrosting operation is completed, it is to set the frequency of the compressor before the defrosting operation is started.

本発明によれば、除霜運転から復帰した後であっても、最適な空調運転を行うことができる空気調和機を提供することができる。   According to the present invention, it is possible to provide an air conditioner capable of performing an optimal air conditioning operation even after returning from the defrosting operation.

本発明に係る蓄熱装置を備えた空気調和機の配管系統図Piping system diagram of an air conditioner equipped with a heat storage device according to the present invention 図1の空気調和機の通常暖房時の動作及び冷媒の流れを示す模式図The schematic diagram which shows the operation | movement at the time of normal heating of the air conditioner of FIG. 1, and the flow of a refrigerant | coolant. 図1の空気調和機の除霜・暖房時の動作及び冷媒の流れを示す模式図The schematic diagram which shows the operation | movement at the time of defrosting and heating of the air conditioner of FIG. 1, and the flow of a refrigerant | coolant. 通常暖房運転時と速暖モード時の暖房運転時の周波数変化図Frequency change diagram during normal heating operation and heating operation in rapid heating mode 速暖モード時の室内熱交換器温度上昇図Indoor heat exchanger temperature rise figure in quick heating mode 速暖モード時の室内送風ファンの回転数制限値を示す図The figure which shows the rotation speed limit value of the indoor ventilation fan at the time of rapid heating mode 外気温度に基づいて設定される除霜運転開始温度と蓄熱材温度上昇開始温度を示すグラフGraph showing defrosting operation start temperature and heat storage material temperature rise start temperature set based on outside air temperature 除霜・暖房運転制御を示すフローチャートFlow chart showing defrosting / heating operation control 除霜運転開始後の室外熱交換器の冷媒出口温度の推移を示すグラフGraph showing the transition of the refrigerant outlet temperature of the outdoor heat exchanger after the start of the defrosting operation 除霜運転から暖房運転に復帰した後の制御を示すフローチャートFlowchart showing control after returning from defrosting operation to heating operation 各種温度検出手段の取付位置を示す配管系統図Piping system diagram showing the mounting position of various temperature detection means 圧縮機温度に基づく蓄熱材の保護制御を示す概略図Schematic showing protection control of heat storage material based on compressor temperature 蓄熱二方弁の開閉制御を示すタイミングチャートTiming chart showing open / close control of heat storage two-way valve 吐出冷媒温度に基づく蓄熱材の保護制御を示す概略図Schematic showing protection control of heat storage material based on discharge refrigerant temperature 吐出冷媒温度に基づく蓄熱材の別の保護制御を示す概略図Schematic showing another protection control of heat storage material based on discharge refrigerant temperature 外気温度が2℃の場合の蓄熱材の実温度、蓄熱槽温度検出手段で検出された温度、及び、検出温度を補正した温度との関係を示すグラフA graph showing the relationship between the actual temperature of the heat storage material when the outside air temperature is 2 ° C., the temperature detected by the heat storage tank temperature detecting means, and the temperature corrected for the detected temperature 外気温度が−7℃の場合の蓄熱材の実温度、蓄熱槽温度検出手段で検出された温度、及び、検出温度を補正した温度との関係を示すグラフThe graph which shows the relationship with the temperature which correct | amended the actual temperature of the thermal storage material in case external temperature is -7 degreeC, the temperature detected by the thermal storage tank temperature detection means, and the detection temperature 外気温度が−20℃の場合の蓄熱材の実温度、蓄熱槽温度検出手段で検出された温度、及び、検出温度を補正した温度との関係を示すグラフThe graph which shows the relationship with the temperature which correct | amended the actual temperature of the thermal storage material in case external temperature is -20 degreeC, the temperature detected by the thermal storage tank temperature detection means, and the detection temperature 外気温度が35℃の場合の蓄熱材の実温度、蓄熱槽温度検出手段で検出された温度、及び、検出温度を補正した温度との関係を示すグラフA graph showing the relationship between the actual temperature of the heat storage material when the outside air temperature is 35 ° C., the temperature detected by the heat storage tank temperature detecting means, and the temperature corrected for the detected temperature 蓄熱槽内の蓄熱材充填量が十分な場合と不十分な場合における除霜運転後の蓄熱材の温度変化を示すグラフThe graph which shows the temperature change of the heat storage material after the defrost operation in the case where heat storage material filling amount in a heat storage tank is enough, and when it is insufficient 従来の冷凍サイクル装置の構成を示す模式図Schematic diagram showing the configuration of a conventional refrigeration cycle apparatus

第1の発明は、暖房運転時に、圧縮機、四方弁、室内熱交換器、膨張弁、室外熱交換器、四方弁の順に冷媒が流れるように接続した冷凍サイクルと、室外熱交換器の入口温度を検出する室外熱交換器入口温度検出手段と、圧縮機で発生した熱を蓄積する蓄熱材と蓄熱熱交換器を内蔵する蓄熱槽と、室内熱交換器と膨張弁との間と四方弁と圧縮機の吸入口との間を接続する蓄熱バイパス回路と、膨張弁と室外熱交換器との間と圧縮機の吐出口と四方弁との間を接続する除霜バイパス回路とを備えた空気調和機であって、蓄熱バイパス回路に蓄熱熱交換器と蓄熱二方弁とを配設し、除霜バイパス回路に除霜二方弁を配設し、室外熱交換器入口温度検出手段で除霜開始温度を検出すると、蓄熱二方弁と除霜二方弁とを開き、暖房運転を継続しながら除霜運転を行うとともに、除霜運転が終了後の圧縮機の周波数は、除霜運転が開始する前の圧縮機の周波数に設定することにより、部屋の負荷に応じた最適な復帰周波数を決定することができる。   The first invention is a refrigeration cycle in which a refrigerant flows in the order of a compressor, a four-way valve, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, and a four-way valve during heating operation, and an inlet of the outdoor heat exchanger Outdoor heat exchanger inlet temperature detection means for detecting temperature, heat storage material for storing heat generated by the compressor and a heat storage tank incorporating the heat storage heat exchanger, and between the indoor heat exchanger and the expansion valve, and a four-way valve A heat storage bypass circuit that connects between the compressor and the compressor inlet, and a defrost bypass circuit that connects between the expansion valve and the outdoor heat exchanger and between the compressor outlet and the four-way valve An air conditioner, in which a heat storage heat exchanger and a heat storage two-way valve are arranged in the heat storage bypass circuit, a two-way defrost valve is arranged in the defrost bypass circuit, and an outdoor heat exchanger inlet temperature detection means When the defrost start temperature is detected, the heat storage two-way valve and the defrost two-way valve are opened and the heating operation is continued. While performing the frost operation, the frequency of the compressor after the defrosting operation is set to the frequency of the compressor before the defrosting operation is started, thereby determining an optimum return frequency according to the load of the room. be able to.

第2の発明は、特に第1の発明において、暖房運転を継続しながら除霜運転を開始するときは、除霜二方弁の開制御から所定時間経過後に、蓄熱二方弁を開制御することにより、除霜運転開始時に、除霜二方弁と蓄熱二方弁を同時に開制御する場合に比べ、有限である蓄熱槽の蓄熱量のロスを防止することができ、効率的な除霜運転を行うことができる。   In the second invention, particularly in the first invention, when the defrosting operation is started while continuing the heating operation, the heat storage two-way valve is controlled to open after a predetermined time has elapsed from the opening control of the defrosting two-way valve. Therefore, compared with the case where the defrosting two-way valve and the heat storage two-way valve are simultaneously controlled to open at the start of the defrosting operation, it is possible to prevent the loss of the heat storage amount of the finite heat storage tank and to efficiently perform the defrosting. You can drive.

第3の発明は、特に第1または第2の発明において、室内熱交換器の温度を検出する室内熱交換器温度検出手段を備え、室内熱交換器温度検出手段で検出された温度が所定温度を超えている場合は、圧縮機の運転周波数を減少させる一方、室内熱交換器温度検出手段で検出された温度が所定温度未満の場合は、圧縮機の運転周波数を増加させるようにしたことにより、冷凍サイクル内の圧力変動を抑制して騒音を極力低減することができるとともに、室内熱交換器で熱交換を行った後の冷媒が持つ熱量も除霜運転時に有効利用することができ暖房運転後の除霜運転を効率的に行うことができる。   The third invention is the first or second invention, particularly comprising an indoor heat exchanger temperature detecting means for detecting the temperature of the indoor heat exchanger, wherein the temperature detected by the indoor heat exchanger temperature detecting means is a predetermined temperature. If the temperature detected by the indoor heat exchanger temperature detecting means is lower than the predetermined temperature, the compressor operating frequency is increased. In addition, the pressure fluctuation in the refrigeration cycle can be suppressed and noise can be reduced as much as possible, and the heat quantity of the refrigerant after heat exchange with the indoor heat exchanger can be used effectively during the defrosting operation. The subsequent defrosting operation can be performed efficiently.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明に係る冷凍サイクル装置である空気調和機の構成を示しており、空気調和機は、冷媒配管で互いに接続された室外機2と室内機4とで構成されている。
(Embodiment 1)
FIG. 1 shows a configuration of an air conditioner that is a refrigeration cycle apparatus according to the present invention, and the air conditioner includes an outdoor unit 2 and an indoor unit 4 that are connected to each other through a refrigerant pipe.

図1に示されるように、室外機2の内部には、圧縮機6と四方弁8とストレーナ10と膨張弁12と室外熱交換器14とが設けられ、室内機4の内部には、室内熱交換器16が設けられ、これらは冷媒配管を介して互いに接続されることで冷凍サイクルを構成している。   As shown in FIG. 1, a compressor 6, a four-way valve 8, a strainer 10, an expansion valve 12, and an outdoor heat exchanger 14 are provided inside the outdoor unit 2. A heat exchanger 16 is provided, and these are connected to each other via a refrigerant pipe to constitute a refrigeration cycle.

さらに詳述すると、圧縮機6と室内熱交換器16は、四方弁8が設けられた冷媒配管18を介して接続され、室内熱交換器16と膨張弁12は、ストレーナ10が設けられた冷媒配管20を介して接続されている。また、膨張弁12と室外熱交換器14は冷媒配管22を介して接続され、室外熱交換器14と圧縮機6は冷媒配管24を介して接続されている。   More specifically, the compressor 6 and the indoor heat exchanger 16 are connected via a refrigerant pipe 18 provided with the four-way valve 8, and the indoor heat exchanger 16 and the expansion valve 12 are refrigerant provided with the strainer 10. It is connected via a pipe 20. The expansion valve 12 and the outdoor heat exchanger 14 are connected via a refrigerant pipe 22, and the outdoor heat exchanger 14 and the compressor 6 are connected via a refrigerant pipe 24.

冷媒配管24の中間部には四方弁8が配置されており、圧縮機6の冷媒吸入側における冷媒配管24には、液相冷媒と気相冷媒を分離するためのアキュームレータ26が設けら
れている。また、圧縮機6と冷媒配管22は、冷媒配管28を介して接続されており、冷媒配管28には除霜二方弁(例えば、電磁弁)30が設けられている。
A four-way valve 8 is disposed in the middle of the refrigerant pipe 24, and an accumulator 26 for separating the liquid-phase refrigerant and the gas-phase refrigerant is provided in the refrigerant pipe 24 on the refrigerant suction side of the compressor 6. . The compressor 6 and the refrigerant pipe 22 are connected via a refrigerant pipe 28, and the refrigerant pipe 28 is provided with a defrosting two-way valve (for example, an electromagnetic valve) 30.

さらに、圧縮機6の周囲には蓄熱槽32が設けられ、蓄熱槽32の内部には、蓄熱熱交換器34が設けられるとともに、蓄熱熱交換器34と熱交換するための蓄熱材(例えば、エチレングリコール水溶液)36が充填されており、蓄熱槽32と蓄熱熱交換器34と蓄熱材36とで蓄熱装置を構成している。   Further, a heat storage tank 32 is provided around the compressor 6, and a heat storage heat exchanger 34 is provided inside the heat storage tank 32, and a heat storage material for exchanging heat with the heat storage heat exchanger 34 (for example, An ethylene glycol aqueous solution) 36 is filled, and the heat storage tank 32, the heat storage heat exchanger 34, and the heat storage material 36 constitute a heat storage device.

また、冷媒配管20と蓄熱熱交換器34は冷媒配管38を介して接続され、蓄熱熱交換器34と冷媒配管24は冷媒配管40を介して接続されており、冷媒配管38には蓄熱二方弁(例えば、電磁弁)42が設けられている。   In addition, the refrigerant pipe 20 and the heat storage heat exchanger 34 are connected via a refrigerant pipe 38, and the heat storage heat exchanger 34 and the refrigerant pipe 24 are connected via a refrigerant pipe 40. A valve (for example, a solenoid valve) 42 is provided.

室内機4の内部には、室内熱交換器16に加えて、室内送風ファン16aと上下羽根(図示せず)と左右羽根(図示せず)とが設けられており、室内熱交換器16は、送風ファンにより室内機4の内部に吸込まれた室内空気と、室内熱交換器16の内部を流れる冷媒との熱交換を行い、暖房時には熱交換により暖められた空気を室内に吹き出す一方、冷房時には熱交換により冷却された空気を室内に吹き出す。上下羽根は、室内機4から吹き出される空気の方向を必要に応じて上下に変更し、左右羽根は、室内機4から吹き出される空気の方向を必要に応じて左右に変更する。   In addition to the indoor heat exchanger 16, an indoor fan 16a, upper and lower blades (not shown), and left and right blades (not shown) are provided inside the indoor unit 4, and the indoor heat exchanger 16 is The indoor air sucked into the interior of the indoor unit 4 by the blower fan is exchanged with the refrigerant flowing through the interior of the indoor heat exchanger 16, and the air warmed by the heat exchange is blown into the room during heating. Sometimes air cooled by heat exchange is blown into the room. The upper and lower blades change the direction of air blown from the indoor unit 4 up and down as necessary, and the left and right blades change the direction of air blown from the indoor unit 4 to right and left as needed.

また、室外熱交換器14には、暖房運転時の冷媒入口温度及び冷媒出口温度をそれぞれ検出する室外熱交換器入口温度検出手段44と室外熱交換器出口温度検出手段46が設けられ、室内熱交換器16には、室内熱交換器16の温度を検出する室内熱交換器温度検出手段48が設けられている。さらに、蓄熱槽32には、蓄熱槽32の温度を検出する蓄熱槽温度検出手段50が設けられており、室外機2には、外気温度を検出する外気温度検出手段52が設けられている。   The outdoor heat exchanger 14 is provided with an outdoor heat exchanger inlet temperature detecting means 44 and an outdoor heat exchanger outlet temperature detecting means 46 for detecting the refrigerant inlet temperature and the refrigerant outlet temperature during heating operation, respectively. The exchanger 16 is provided with an indoor heat exchanger temperature detecting means 48 that detects the temperature of the indoor heat exchanger 16. Furthermore, the heat storage tank 32 is provided with a heat storage tank temperature detection means 50 for detecting the temperature of the heat storage tank 32, and the outdoor unit 2 is provided with an outside air temperature detection means 52 for detecting the outside air temperature.

なお、圧縮機6、送風ファン、上下羽根、左右羽根、四方弁8、膨張弁12、除霜二方弁30、蓄熱二方弁42、室外熱交換器入口温度検出手段44、室外熱交換器出口温度検出手段46、室内熱交換器温度検出手段48、蓄熱槽温度検出手段50、外気温度検出手段52等はコントローラ54(例えば、マイコン)に電気的に接続され、圧縮機6、送風ファン、上下羽根、左右羽根、四方弁8、膨張弁12の運転あるいは動作は、コントローラ54からの制御信号に基づいて制御されるとともに、除霜二方弁30と蓄熱二方弁42はコントローラ54からの制御信号に基づいて開閉制御される。   In addition, the compressor 6, the blower fan, the upper and lower blades, the left and right blades, the four-way valve 8, the expansion valve 12, the defrost two-way valve 30, the heat storage two-way valve 42, the outdoor heat exchanger inlet temperature detection means 44, the outdoor heat exchanger The outlet temperature detection means 46, the indoor heat exchanger temperature detection means 48, the heat storage tank temperature detection means 50, the outside air temperature detection means 52 and the like are electrically connected to a controller 54 (for example, a microcomputer), and the compressor 6, the blower fan, The operation or operation of the upper and lower blades, the left and right blades, the four-way valve 8 and the expansion valve 12 is controlled based on a control signal from the controller 54, and the defrosting two-way valve 30 and the heat storage two-way valve 42 are supplied from the controller 54. Opening and closing is controlled based on the control signal.

上記構成の本発明に係る冷凍サイクル装置において、各部品の相互の接続関係と機能とを、暖房運転時の場合を例にとり冷媒の流れとともに説明する。   In the refrigeration cycle apparatus according to the present invention having the above-described configuration, the mutual connection relationship and function of each component will be described together with the flow of the refrigerant, taking the case of heating operation as an example.

圧縮機6の吐出口から吐出された冷媒は、冷媒配管18を通って四方弁8から室内熱交換器16へと至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て冷媒配管20を通り、膨張弁12への異物侵入を防止するストレーナ10を通って、膨張弁12に至る。膨張弁12で減圧した冷媒は、冷媒配管22を通って室外熱交換器14に至り、室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、冷媒配管24と四方弁8とアキュームレータ26を通って圧縮機6の吸入口へと戻る。   The refrigerant discharged from the discharge port of the compressor 6 reaches the indoor heat exchanger 16 from the four-way valve 8 through the refrigerant pipe 18. The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 passes through the refrigerant pipe 20 through the indoor heat exchanger 16, passes through the strainer 10 that prevents foreign matter from entering the expansion valve 12, and then the expansion valve. To 12. The refrigerant decompressed by the expansion valve 12 reaches the outdoor heat exchanger 14 through the refrigerant pipe 22, and the refrigerant evaporated by exchanging heat with the outdoor air in the outdoor heat exchanger 14 is the refrigerant pipe 24, the four-way valve 8, and the accumulator. 26 and returns to the suction port of the compressor 6.

また、冷媒配管18の圧縮機6吐出口と四方弁8の間から分岐した冷媒配管28は、除霜二方弁30を介して冷媒配管22の膨張弁12と室外熱交換器14の間に合流している。   The refrigerant pipe 28 branched from the compressor 6 discharge port of the refrigerant pipe 18 and the four-way valve 8 is interposed between the expansion valve 12 of the refrigerant pipe 22 and the outdoor heat exchanger 14 via the defrosting two-way valve 30. Have joined.

さらに、内部に蓄熱材36と蓄熱熱交換器34を収納した蓄熱槽32は、圧縮機6に接
して取り囲むように配置され、圧縮機6で発生した熱を蓄熱材36に蓄積し、冷媒配管20から室内熱交換器16とストレーナ10の間で分岐した冷媒配管38は、蓄熱二方弁42を経て蓄熱熱交換器34の入口へと至り、蓄熱熱交換器34の出口から出た冷媒配管40は、冷媒配管24における四方弁8とアキュームレータ26の間に合流する。
Furthermore, the heat storage tank 32 in which the heat storage material 36 and the heat storage heat exchanger 34 are housed is disposed so as to be in contact with and surround the compressor 6, and heat generated in the compressor 6 is stored in the heat storage material 36, and refrigerant piping The refrigerant pipe 38 branched from the indoor heat exchanger 16 and the strainer 10 from 20 reaches the inlet of the heat storage heat exchanger 34 via the heat storage two-way valve 42, and the refrigerant pipe exits from the outlet of the heat storage heat exchanger 34. 40 joins between the four-way valve 8 and the accumulator 26 in the refrigerant pipe 24.

次に、図1に示される空気調和機の通常暖房時の動作及び冷媒の流れを模式的に示す図2を参照しながら通常暖房時の動作を説明する。   Next, the operation during normal heating will be described with reference to FIG. 2 schematically showing the operation during normal heating and the flow of the refrigerant of the air conditioner shown in FIG.

通常暖房運転時、除霜二方弁30と蓄熱二方弁42は閉弁しており、上述したように圧縮機6の吐出口から吐出された冷媒は、冷媒配管18を通って四方弁8から室内熱交換器16に至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て、冷媒配管20を通り膨張弁12に至り、膨張弁12で減圧した冷媒は、冷媒配管22を通って室外熱交換器14に至る。室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、冷媒配管24を通って四方弁8から圧縮機6の吸入口へと戻る。   During the normal heating operation, the defrosting two-way valve 30 and the heat storage two-way valve 42 are closed, and the refrigerant discharged from the discharge port of the compressor 6 as described above passes through the refrigerant pipe 18 and the four-way valve 8. To the indoor heat exchanger 16. The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 exits the indoor heat exchanger 16 and reaches the expansion valve 12 through the refrigerant pipe 20. The refrigerant decompressed by the expansion valve 12 is refrigerant pipe 22. Through the outdoor heat exchanger 14. The refrigerant evaporated by exchanging heat with outdoor air in the outdoor heat exchanger 14 returns from the four-way valve 8 to the suction port of the compressor 6 through the refrigerant pipe 24.

また、圧縮機6で発生した熱は、圧縮機6の外壁から蓄熱槽32の外壁を介して蓄熱槽32の内部に収容された蓄熱材36に蓄積される。   Further, the heat generated in the compressor 6 is accumulated in the heat storage material 36 housed in the heat storage tank 32 from the outer wall of the compressor 6 through the outer wall of the heat storage tank 32.

次に、図1に示される空気調和機の除霜・暖房時の動作及び冷媒の流れを示す模式的に示す図3を参照しながら除霜・暖房時の動作を説明する。図中、実線矢印は暖房に供する冷媒の流れを示しており、破線矢印は除霜に供する冷媒の流れを示している。   Next, the operation during defrosting / heating will be described with reference to FIG. 3 schematically showing the operation of the air conditioner shown in FIG. 1 during defrosting / heating and the flow of refrigerant. In the figure, the solid line arrows indicate the flow of the refrigerant used for heating, and the broken line arrows indicate the flow of the refrigerant used for defrosting.

上述した通常暖房運転中に室外熱交換器14に着霜し、着霜した霜が成長すると、室外熱交換器14の通風抵抗が増加して風量が減少し、室外熱交換器14内の蒸発温度が低下する。本発明に係る冷凍サイクル装置である空気調和機には、図1に示されるように、暖房運転時における室外熱交換器14の冷媒入口温度を検出する室外熱交換器入口温度検出手段44が設けられており、非着霜時に比べて、蒸発温度が低下したことを室外熱交換器入口温度検出手段44で検出すると、コントローラ54から通常暖房運転から除霜・暖房運転への指示が出力される。   When the outdoor heat exchanger 14 is frosted during the above-described normal heating operation and the frosted frost grows, the ventilation resistance of the outdoor heat exchanger 14 increases and the air flow decreases, and the evaporation in the outdoor heat exchanger 14 increases. The temperature drops. As shown in FIG. 1, an air conditioner that is a refrigeration cycle apparatus according to the present invention is provided with an outdoor heat exchanger inlet temperature detection means 44 that detects the refrigerant inlet temperature of the outdoor heat exchanger 14 during heating operation. When the outdoor heat exchanger inlet temperature detecting means 44 detects that the evaporation temperature has decreased as compared with the time of non-frosting, the controller 54 outputs an instruction from the normal heating operation to the defrosting / heating operation. .

通常暖房運転から除霜・暖房運転に移行すると、除霜二方弁30と蓄熱二方弁42は開制御され、上述した通常暖房運転時の冷媒の流れに加え、圧縮機6の吐出口から出た気相冷媒の一部は冷媒配管28と除霜二方弁30を通り、冷媒配管22を通る冷媒に合流して、室外熱交換器14を加熱し、凝縮して液相化した後、冷媒配管24を通って四方弁8とアキュームレータ26を介して圧縮機6の吸入口へと戻る。   When the normal heating operation is shifted to the defrosting / heating operation, the defrosting two-way valve 30 and the heat storage two-way valve 42 are controlled to open, and in addition to the refrigerant flow during the normal heating operation described above, from the discharge port of the compressor 6. A part of the gas-phase refrigerant that has exited passes through the refrigerant pipe 28 and the defrosting two-way valve 30, joins the refrigerant that passes through the refrigerant pipe 22, heats the outdoor heat exchanger 14, and condenses into a liquid phase. Then, the refrigerant returns to the suction port of the compressor 6 through the refrigerant pipe 24 and the four-way valve 8 and the accumulator 26.

なお、膨張弁12と室外熱交換器14との間と、圧縮機6の吐出口と四方弁8との間を接続する冷媒配管28は、室外熱交換器14を加熱して除霜を行うための気相冷媒が通過することから、除霜バイパス回路ということもできる。   The refrigerant pipe 28 connecting the expansion valve 12 and the outdoor heat exchanger 14 and between the discharge port of the compressor 6 and the four-way valve 8 heats the outdoor heat exchanger 14 to perform defrosting. Therefore, it can also be referred to as a defrosting bypass circuit.

また、冷媒配管20における室内熱交換器16とストレーナ10の間で分流した液相冷媒の一部は、冷媒配管38と蓄熱二方弁42を経て、蓄熱熱交換器34で蓄熱材36から吸熱し蒸発、気相化して、冷媒配管40を通って冷媒配管24を通る冷媒に合流し、アキュームレータ26から圧縮機6の吸入口へと戻る。   In addition, a part of the liquid-phase refrigerant that is divided between the indoor heat exchanger 16 and the strainer 10 in the refrigerant pipe 20 passes through the refrigerant pipe 38 and the heat storage two-way valve 42, and absorbs heat from the heat storage material 36 in the heat storage heat exchanger 34. Then, it evaporates and vaporizes, merges with the refrigerant passing through the refrigerant pipe 24 through the refrigerant pipe 40, and returns from the accumulator 26 to the suction port of the compressor 6.

なお、室内熱交換器16と膨張弁12との間と、四方弁8と圧縮機6の吸入口との間を接続する冷媒配管38及び冷媒配管40は、蓄熱熱交換器34を通過して蓄熱材36から吸熱することから、これら二つの冷媒配管38,40を蓄熱バイパス回路ということもできる。   Note that the refrigerant pipe 38 and the refrigerant pipe 40 that connect between the indoor heat exchanger 16 and the expansion valve 12 and between the four-way valve 8 and the suction port of the compressor 6 pass through the heat storage heat exchanger 34. Since heat is absorbed from the heat storage material 36, these two refrigerant pipes 38 and 40 can also be called a heat storage bypass circuit.

アキュームレータ26に戻る冷媒には、室外熱交換器14から戻ってくる液相冷媒が含まれているが、これに蓄熱熱交換器34から戻ってくる高温の気相冷媒を混合することで、液相冷媒の蒸発が促され、アキュームレータ26を通過して液相冷媒が圧縮機6に戻ることがなくなり、圧縮機6の信頼性の向上を図ることができる。   The refrigerant returning to the accumulator 26 includes the liquid phase refrigerant returning from the outdoor heat exchanger 14. By mixing this with the high-temperature gas phase refrigerant returning from the heat storage heat exchanger 34, The evaporation of the phase refrigerant is promoted, and the liquid phase refrigerant does not return to the compressor 6 through the accumulator 26, so that the reliability of the compressor 6 can be improved.

除霜・暖房開始時に霜の付着により氷点下となった室外熱交換器14の温度は、圧縮機6の吐出口から出た気相冷媒によって加熱されて、零度付近で霜が融解し、霜の融解が終わると、室外熱交換器14の温度は再び上昇し始める。この室外熱交換器14の温度上昇を室外熱交換器出口温度検出手段46で検出すると、除霜が完了したと判断し、コントローラ54から除霜・暖房運転から通常暖房運転への指示が出力される。   The temperature of the outdoor heat exchanger 14 that has become below freezing due to the attachment of frost at the start of defrosting and heating is heated by the gas-phase refrigerant discharged from the discharge port of the compressor 6, and the frost is melted near zero degrees. When melting is finished, the temperature of the outdoor heat exchanger 14 begins to rise again. When the temperature rise of the outdoor heat exchanger 14 is detected by the outdoor heat exchanger outlet temperature detecting means 46, it is determined that the defrosting is completed, and the controller 54 outputs an instruction from the defrosting / heating operation to the normal heating operation. The

また、本実施の形態では、速暖運転モードを有している。室内機4への運転指示を行なうリモコン装置(図示せず)によって速暖運転モードが起動する設定にしている場合、次回の暖房運転起動時には速暖運転モードが起動して暖房運転が開始される。例えば、リモコン装置に「パワフル運転」等のボタンを設けており、それを押下することによって「パワフル運転」が有効となり、運転停止時も「パワフル運転」が有効となったまま、空気調和機の運転が停止する。そして、翌朝等に暖房運転を開始すると「パワフル運転」すなわち速暖運転モードが起動する設定となっているので、通常の暖房運転モードではなく、速暖運転モードによる暖房運転が起動する。   Moreover, in this Embodiment, it has a quick warming operation mode. In the case where the rapid warming operation mode is set to be activated by a remote control device (not shown) that gives an operation instruction to the indoor unit 4, the rapid warming operation mode is activated and the heating operation is started at the next heating operation activation. . For example, a button such as “Powerful operation” is provided on the remote control device, and when it is pressed, “Powerful operation” becomes effective, and “Powerful operation” remains effective even when the operation is stopped. Operation stops. Then, when the heating operation is started in the next morning or the like, the “powerful operation”, that is, the quick warming operation mode is set to be activated. Therefore, the heating operation based on the quick warming operation mode is activated instead of the normal heating operation mode.

次に、速暖運転モードについて説明する。速暖運転モードによる暖房運転が開始すると、蓄熱二方弁42を所定時間(例えば、20秒)開く。そして、圧縮機6へは室外熱交換器14を経た冷媒と、蓄熱熱交換器34を経た冷媒とが合流して吸入される。   Next, the quick warming operation mode will be described. When the heating operation in the rapid heating operation mode is started, the heat storage two-way valve 42 is opened for a predetermined time (for example, 20 seconds). Then, the refrigerant that has passed through the outdoor heat exchanger 14 and the refrigerant that has passed through the heat storage heat exchanger 34 join and are sucked into the compressor 6.

図4は、通常の暖房運転時の圧縮機の周波数変更速度(実線)と、速暖運転モードの暖房運転時の圧縮機の周波数変更速度(点線)とを示した図である。蓄熱槽32を持たない通常の暖房運転では、暖房運転の起動時には、低圧の落ち込みや液バック等が条件によっては発生するため、耐久性の観点から圧縮機の周波数を極端に上げることができない。   FIG. 4 is a diagram showing the frequency change speed (solid line) of the compressor during normal heating operation and the frequency change speed (dotted line) of the compressor during heating operation in the quick warming operation mode. In a normal heating operation without the heat storage tank 32, when the heating operation is started, a drop in low pressure, liquid back, or the like may occur depending on conditions, and therefore the frequency of the compressor cannot be increased extremely from the viewpoint of durability.

そのため図4に示すように、通常の暖房運転時においては、圧縮機6の運転周波数を徐々に上昇させているが、蓄熱槽32を有する速暖モードの暖房運転時においては、通常の暖房運転時よりも駆動速度を速めている。これは、蓄熱二方弁42をあけることによって室外熱交換器14をバイパスさせて圧縮機6の吸入側へ冷媒を供給し、さらに、蓄熱二方弁を開くことによって、蓄熱材36に残っている蓄熱量を冷媒へ与えることができるため、圧縮機の運転起動時における低圧の落ち込みを抑制することができ、その結果、圧縮機6の運転周波数の変更速度を上げることができる。また、所定の周波数(本実施の形態では、70Hz)に到達すると、一定にして圧縮機6を制御している。   Therefore, as shown in FIG. 4, during the normal heating operation, the operating frequency of the compressor 6 is gradually increased, but during the heating operation in the quick heating mode having the heat storage tank 32, the normal heating operation is performed. Drive speed is faster than time. This is because the outdoor heat exchanger 14 is bypassed by opening the heat storage two-way valve 42 to supply the refrigerant to the suction side of the compressor 6, and further, the heat storage two-way valve is opened to remain in the heat storage material 36. Since the amount of stored heat can be given to the refrigerant, it is possible to suppress a drop in low pressure at the start of operation of the compressor, and as a result, it is possible to increase the speed of changing the operating frequency of the compressor 6. Further, when a predetermined frequency (70 Hz in the present embodiment) is reached, the compressor 6 is controlled to be constant.

また、蓄熱槽32が圧縮機6の周りに配設されることで、圧縮機6の運転停止時の温度低下も防ぐことができ、蓄熱槽32がない場合に比べて吐出温度を早く上昇させることができる。   Moreover, the heat storage tank 32 is arrange | positioned around the compressor 6, the temperature fall at the time of the operation stop of the compressor 6 can also be prevented, and discharge temperature is raised earlier compared with the case where there is no heat storage tank 32. be able to.

また、室内熱交換器温度検出手段48で検出する温度が、通常の暖房運転時には所定の暖房開始温度(例えば、22℃)を検知すると室内送風ファン16aの駆動を開始している。そして室内熱交換器温度検出手段48で検出する温度が上昇するにしたがって、室内送風ファン16aの回転速度を速めている。   Further, when the temperature detected by the indoor heat exchanger temperature detecting means 48 detects a predetermined heating start temperature (for example, 22 ° C.) during normal heating operation, the driving of the indoor fan 16a is started. Then, as the temperature detected by the indoor heat exchanger temperature detecting means 48 increases, the rotational speed of the indoor fan 16a is increased.

一方、速暖モード時の暖房運転時には、通常の暖房運転時の室内送風ファン16aの駆動開始温度(例えば、22℃)よりも、さらに高い温度(例えば、45℃)を検知すると室内送風ファン16aの駆動を開始するようにしている。通常の暖房運転開始時であれば
、室内送風ファン16aの駆動が開始される時間は約5分程度掛かってしまうが、速暖モード時の室内送風ファン16aの駆動開始の温度を、通常の暖房運転時の駆動開始の温度よりも高くしていても、2分程度の室内送風ファン16aの駆動が開始する。これは圧縮機6の周波数変更速度を通常時よりも速めていることと、蓄熱槽32が圧縮機6の周りに配置して圧縮機6の冷え込みを抑制することで、圧縮機6からの吐出温度を上昇させることができる。
On the other hand, during the heating operation in the fast heating mode, the indoor blower fan 16a is detected when a temperature (for example, 45 ° C) higher than the drive start temperature (eg, 22 ° C) of the indoor blower fan 16a during the normal heating operation is detected. The drive is started. At the start of normal heating operation, it takes about 5 minutes to start driving the indoor blower fan 16a. Even if the temperature is higher than the driving start temperature during operation, the driving of the indoor fan 16a for about 2 minutes starts. This is because the frequency change speed of the compressor 6 is made faster than normal, and the heat storage tank 32 is arranged around the compressor 6 to suppress the cooling of the compressor 6, thereby discharging from the compressor 6. The temperature can be raised.

図5は、速暖運転モード時における室内送風ファン16aの駆動開始のタイミングを示した図である。図5に示すように、所定温度Yb(本実施の形態では45℃)を検知すると、室内送風ファン16aを駆動させるようにしている。しかしながら暖房運転開始時にいきなり高回転で室内送風ファン16aを駆動すると、急に室内熱交換器温度が低下してしまう恐れがある。   FIG. 5 is a diagram showing the drive start timing of the indoor fan 16a in the quick warming operation mode. As shown in FIG. 5, when a predetermined temperature Yb (45 ° C. in the present embodiment) is detected, the indoor blower fan 16a is driven. However, if the indoor fan 16a is suddenly driven at a high speed at the start of the heating operation, the temperature of the indoor heat exchanger may suddenly decrease.

そこで、本実施の形態では、室内熱交換器の温度が所定温度Ya(例えば、25℃)を検知してから所定温度Yb(本実施の形態では45℃)を検知するまでの時間に基づいて、室内送風ファン16aの駆動開始時の回転数に制限値を設けている。よって、室内送風ファン16aの駆動開始時の回転数は制限値に制限される。   Therefore, in the present embodiment, the temperature of the indoor heat exchanger is detected based on the time from when the predetermined temperature Ya (for example, 25 ° C.) is detected until the predetermined temperature Yb (for example, 45 ° C.) is detected. A limit value is provided for the rotational speed at the start of driving of the indoor fan 16a. Therefore, the rotation speed at the start of driving the indoor blower fan 16a is limited to the limit value.

より具体的には、所定温度Yaから所定温度Ybまでの時間が長いほど、室内送風ファン16aの駆動開始時の回転数の制限値を小さくしている。図6は、本実施の形態における室内送風ファン16aの駆動開始時の回転数の制限値を示す図である。なお、図6は、所定温度Yaに25℃、所定温度Ybに45℃を設定した時の制限値を示すもので、これに限定されるものではない。   More specifically, as the time from the predetermined temperature Ya to the predetermined temperature Yb is longer, the limit value of the rotational speed at the start of driving the indoor fan 16a is made smaller. FIG. 6 is a diagram illustrating a rotational speed limit value at the start of driving of the indoor fan 16a in the present embodiment. FIG. 6 shows the limit values when the predetermined temperature Ya is set to 25 ° C. and the predetermined temperature Yb is set to 45 ° C., but is not limited to this.

図6において、例えば、所定温度Yaから所定温度Ybまでの時間が45秒掛かったとすると、初期回転数は850rpmに制限される。通常の暖房運転時には室内熱交換器の温度が所定温度Yb(45℃)に達していると、様々な条件があるものの1200rpm程度になっている可能性もあるが、暖房運転の立ち上がり時に、いきなり風量を大きくしてしまうと、室内熱交換器の温度が一気に低下してしまい、快適性を損なってしまうおそれがある。そのため、本実施の形態では図6に示すような制限値を設けている。なお、図6ではある時間間隔毎に固定の値で制限値を設けているが、これに限定されることはなく、時間に応じて関数的に算出される値としてもよい。   In FIG. 6, for example, if it takes 45 seconds from the predetermined temperature Ya to the predetermined temperature Yb, the initial rotational speed is limited to 850 rpm. During normal heating operation, if the temperature of the indoor heat exchanger reaches the predetermined temperature Yb (45 ° C), it may be about 1200 rpm although there are various conditions, but suddenly at the start of heating operation If the air volume is increased, the temperature of the indoor heat exchanger may drop at a stretch, which may impair comfort. Therefore, in this embodiment, a limit value as shown in FIG. 6 is provided. In FIG. 6, the limit value is set to a fixed value for each certain time interval, but is not limited to this, and may be a value calculated functionally according to time.

また、図5には3通りの立ち上がり状況を図面に示している。所定温度Yaから所定温度Ybとなるまでに所定時間において、一点鎖線で示す状況(CaseA)の場合は所定時間t1掛かり、実線で示す状況(CaseB)の場合は所定時間t2掛かり、二点鎖線で示す状況(CaseC)の場合は所定時間t3掛かっていることを示すものである。   FIG. 5 shows three rising situations in the drawing. In the predetermined time from the predetermined temperature Ya to the predetermined temperature Yb, it takes a predetermined time t1 in the case indicated by the one-dot chain line (Case A), and takes a predetermined time t2 in the case indicated by the solid line (Case B). The situation shown (Case C) indicates that the predetermined time t3 is being used.

図5に示すCaseA〜CaseCの3通りにおいては、所定時間t1<所定時間t2<所定時間t3の関係より、室内送風ファン16aの駆動開始時の制限値は、CaseA>CaseB>CaseCとなっている。これは立ち上がりが遅いほど、外気温度等の影響が大きく、いきなり風量を大きくしてしまうと室内熱交換器温度が急に低下してしまう恐れがあるために、制限値を低く設け、また立ち上がりが早いほど、外気温度等の影響が小さく、風量をある程度大きくしても室内熱交換器温度の温度低下が少ないであろうと推定して、制限値を高く設けている。   In the three cases of Case A to Case C shown in FIG. 5, the limit value at the start of driving of the indoor fan 16a is Case A> Case B> Case C from the relationship of predetermined time t1 <predetermined time t2 <predetermined time t3. . This means that the slower the rise, the greater the influence of outside air temperature, etc., and suddenly increasing the air volume may cause the indoor heat exchanger temperature to drop suddenly. The earlier, the lower the influence of the outside air temperature or the like, the lower the temperature of the indoor heat exchanger temperature will be less even if the air volume is increased to some extent, and a higher limit value is provided.

また、室内送風ファン16aの回転が開始してから所定時間毎(例えば、5秒毎)に制限値を徐々に上げていくようにしている。例えば、5秒毎に10rpmずつ制限値を増加させていく。このように行なうことで、冷凍サイクルの安定をとりながらも、暖房運転の効果を高めている。なお、この室内送風ファンの回転速度の制限の解除は、成り行きで解
除してもよいし、ある一定の時間を設けて解除してもよい。
Further, the limit value is gradually increased every predetermined time (for example, every 5 seconds) after the rotation of the indoor blower fan 16a is started. For example, the limit value is increased by 10 rpm every 5 seconds. By performing in this way, the effect of heating operation is enhanced while stabilizing the refrigeration cycle. It should be noted that the release of the restriction on the rotational speed of the indoor blower fan may be released after the event, or may be released after a certain period of time.

次に、除霜判定及び除霜開始条件について説明する。図7は、外気温度に基づいて、室外熱交換器入口温度検出手段44で検出された室外熱交換器14の冷媒入口温度に設定された除霜運転開始ライン(βライン)と、この除霜運転開始ラインより室外熱交換器14の冷媒入口温度が高い蓄熱材温度上昇開始ライン(θライン)を示している。   Next, defrost determination and defrost start conditions will be described. FIG. 7 shows the defrosting operation start line (β line) set to the refrigerant inlet temperature of the outdoor heat exchanger 14 detected by the outdoor heat exchanger inlet temperature detecting means 44 based on the outside air temperature, and this defrosting. A heat storage material temperature rise start line (θ line) in which the refrigerant inlet temperature of the outdoor heat exchanger 14 is higher than the operation start line is shown.

除霜運転開始ラインは、ある外気温度において、室外熱交換器入口温度検出手段44で検出された温度が除霜開始温度(除霜運転開始ライン)を下回った場合に、除霜運転を開始するための閾値を示しており、蓄熱材温度上昇開始ラインは、ある外気温度において、室外熱交換器入口温度検出手段44で検出された温度が蓄熱材温度上昇制御開始温度(蓄熱材温度上昇開始ライン)を下回った場合に、除霜運転の開始を予測し、蓄熱材36の温度上昇制御の判定を行うためのもので、除霜運転に必要な熱量が蓄熱槽32に確保されているかどうかを判定し、確保されていなければ、蓄熱槽32の温度を上昇させて蓄熱量を増加させるための制御を行うようにしている。   The defrosting operation start line starts the defrosting operation when the temperature detected by the outdoor heat exchanger inlet temperature detection means 44 falls below the defrosting start temperature (defrosting operation start line) at a certain outdoor temperature. The temperature of the heat storage material temperature rise start line indicates that the temperature detected by the outdoor heat exchanger inlet temperature detection means 44 is the heat storage material temperature rise control start temperature (heat storage material temperature rise start line) at a certain outdoor temperature. ), The start of the defrosting operation is predicted, and the temperature increase control of the heat storage material 36 is determined. Whether or not the heat storage tank 32 has enough heat for the defrosting operation is determined. If it is determined and not secured, control is performed to increase the heat storage amount by increasing the temperature of the heat storage tank 32.

具体的には、室外熱交換器入口温度検出手段44で検出された温度が蓄熱材温度上昇開始ラインを下回った場合に、蓄熱槽温度検出手段50で検出された温度が所定温度(例えば30℃)に達していなければ、圧縮機6の回転数を上昇させることにより、あるいは、膨張弁12の開度を絞って高圧側の圧力を上昇させることにより、蓄熱槽32の温度を所定温度(例えば、2〜3℃)上昇させるようにしている。このときの所定温度(本実施の形態では30℃とした)は、実験等より算出した温度であり、冷凍サイクルの構成等によって適宜変更できるものであるが、本実施の形態では30℃程度の温度を有していれば、700グラム〜800グラム程度の霜を融かすことができる。要するに、ある一定の霜を融かすことが出来るだけの熱量があるかどうかを判断できる所定温度を設ければよい。   Specifically, when the temperature detected by the outdoor heat exchanger inlet temperature detection means 44 falls below the heat storage material temperature rise start line, the temperature detected by the heat storage tank temperature detection means 50 is a predetermined temperature (for example, 30 ° C.). ), The temperature of the heat storage tank 32 is set to a predetermined temperature (for example, by increasing the number of rotations of the compressor 6 or by increasing the pressure on the high pressure side by reducing the opening of the expansion valve 12). , 2-3 ° C.). The predetermined temperature (30 ° C. in the present embodiment) at this time is a temperature calculated from an experiment or the like and can be appropriately changed depending on the configuration of the refrigeration cycle, but in this embodiment, it is about 30 ° C. If it has temperature, about 700 to 800 grams of frost can be melted. In short, it is only necessary to provide a predetermined temperature at which it can be determined whether there is enough heat to melt a certain amount of frost.

なお、圧縮機6の回転数上昇は入力増大を伴うことから、省エネの観点からは、膨張弁12の開度を絞って蓄熱槽32の温度を上昇させるのが好ましいが、圧縮機6の回転数上昇を行なって蓄熱槽32の温度を上昇させてもよい。   Note that since the increase in the rotational speed of the compressor 6 is accompanied by an increase in input, from the viewpoint of energy saving, it is preferable to increase the temperature of the heat storage tank 32 by reducing the opening of the expansion valve 12. The temperature of the heat storage tank 32 may be increased by increasing the number.

上述したように、蓄熱材温度上昇開始温度(θ)は、外気温度に基づいて設定されるが、除霜開始温度(β)に依存し、例えば、β<θ≦β+4のように設定される。   As described above, the heat storage material temperature rise start temperature (θ) is set based on the outside air temperature, but depends on the defrost start temperature (β), and is set as, for example, β <θ ≦ β + 4. .

このように、除霜運転が開始される前に、蓄熱槽32に一定の蓄熱量が確保されているかどうかを判断することで、確実に除霜運転を行ないながら、暖房運転を継続することができる。   Thus, before starting the defrosting operation, it is possible to continue the heating operation while reliably performing the defrosting operation by determining whether or not a certain amount of heat storage is ensured in the heat storage tank 32. it can.

次に、除霜・暖房運転制御について説明する。蓄熱材36に蓄積される熱量は有限であることから、この制御は、蓄熱材36に蓄積された熱量を有効利用するために、通常暖房運転から除霜・暖房運転に移行し、除霜二方弁30と蓄熱二方弁42を開制御するに際し、除霜二方弁30をまず開制御し、除霜二方弁30の開制御から所定時間(例えば、10〜20秒)が経過した後、蓄熱二方弁42を開制御するようにしている。   Next, defrosting / heating operation control will be described. Since the amount of heat accumulated in the heat storage material 36 is finite, this control shifts from the normal heating operation to the defrosting / heating operation in order to effectively use the heat amount accumulated in the heat storage material 36, and the When opening the two-way valve 30 and the heat storage two-way valve 42, the defrosting two-way valve 30 is first opened and a predetermined time (for example, 10 to 20 seconds) has elapsed since the opening control of the defrosting two-way valve 30. Thereafter, the heat storage two-way valve 42 is controlled to be opened.

除霜・暖房運転は、除霜二方弁30と蓄熱二方弁42の両方が開状態で初めて行われることになるが、蓄熱二方弁42を除霜二方弁30より先に開制御すると、蓄熱材36に蓄積された熱量が無駄に使用されることになり、除霜二方弁30と蓄熱二方弁42の両方を同時に開制御すると、室外熱交換器14からの冷媒と室内熱交換器16からの冷媒が同時に圧縮機6に吸入されることになり、圧力変動を惹起するおそれがあることから、除霜二方弁30の開制御と蓄熱二方弁42の開制御に適切な時間差を設定することで、圧力変動を極力抑えることができるとともに、圧縮機6への液冷媒の流入を阻止して圧縮機6の信
頼性を向上させることができる。
The defrosting / heating operation is performed for the first time when both the defrosting two-way valve 30 and the heat storage two-way valve 42 are open, but the heat storage two-way valve 42 is controlled to open before the defrosting two-way valve 30. Then, the amount of heat accumulated in the heat storage material 36 is wasted, and if both the defrost two-way valve 30 and the heat storage two-way valve 42 are simultaneously controlled to open, the refrigerant from the outdoor heat exchanger 14 and the indoor Since the refrigerant from the heat exchanger 16 is sucked into the compressor 6 at the same time, there is a risk of causing a pressure fluctuation. Therefore, the open control of the defrost two-way valve 30 and the open control of the heat storage two-way valve 42 are performed. By setting an appropriate time difference, it is possible to suppress pressure fluctuations as much as possible, and to prevent liquid refrigerant from flowing into the compressor 6 and improve the reliability of the compressor 6.

このため、図1に示されるように、コントローラ54には、時間をカウントするタイマー56が設けられており、通常暖房運転から除霜・暖房運転に移行した場合、除霜二方弁30の開制御からの経過時間をタイマー56でカウントし、タイマー56がカウントした時間が上述した所定時間に達すると、蓄熱二方弁42が開制御される。   For this reason, as shown in FIG. 1, the controller 54 is provided with a timer 56 that counts time. When the normal heating operation is shifted to the defrosting / heating operation, the defrosting two-way valve 30 is opened. The elapsed time from the control is counted by the timer 56, and when the time counted by the timer 56 reaches the predetermined time described above, the heat storage two-way valve 42 is controlled to open.

以下、この制御について、図8のフローチャートを参照しながら詳述する。   Hereinafter, this control will be described in detail with reference to the flowchart of FIG.

ステップS1においては、室内熱交換器温度検出手段48で検出された温度が所定温度Ta(例えば、45℃)かどうかを判定し、検出温度が所定温度Taに等しい場合には、ステップS5に移行する一方、等しくない場合には、ステップS2に移行し、検出温度が所定温度Taを超えているかどうかを判定する。検出温度が所定温度Taを超えている場合には、ステップS3において圧縮機6の運転周波数を減少させるのに対し、検出温度が所定温度Taを下回っている場合には、ステップS4において圧縮機6の運転周波数を増加させる。ステップS3あるいはS4における圧縮機6の周波数制御が終了すると、ステップS1に戻る。なお、ここでは所定温度Taを45℃として説明しているが、これに限定されることはない。   In step S1, it is determined whether the temperature detected by the indoor heat exchanger temperature detecting means 48 is a predetermined temperature Ta (for example, 45 ° C.). If the detected temperature is equal to the predetermined temperature Ta, the process proceeds to step S5. On the other hand, if they are not equal, the process proceeds to step S2 to determine whether or not the detected temperature exceeds a predetermined temperature Ta. If the detected temperature exceeds the predetermined temperature Ta, the operating frequency of the compressor 6 is decreased in step S3, whereas if the detected temperature is lower than the predetermined temperature Ta, the compressor 6 is determined in step S4. Increase the operating frequency. When the frequency control of the compressor 6 in step S3 or S4 is completed, the process returns to step S1. Although the predetermined temperature Ta is described as 45 ° C. here, it is not limited to this.

すなわち、冷凍サイクル内の圧力変動は、室内熱交換器16の温度が高く、高圧側と低圧側の圧力差が大きい場合に、除霜二方弁30と蓄熱二方弁42の開制御を行うことでも発生し、圧力変動は騒音を発生するおそれがあることから、室内熱交換器温度検出手段48で検出された温度が所定温度Taを超えている場合に、室内熱交換器温度検出手段48で検出された温度が所定温度Taになるまで圧縮機6の運転周波数を落とし、高圧側の圧力を低減する制御を行っている。   That is, the pressure fluctuation in the refrigeration cycle controls the opening of the defrosting two-way valve 30 and the heat storage two-way valve 42 when the temperature of the indoor heat exchanger 16 is high and the pressure difference between the high pressure side and the low pressure side is large. Therefore, if the temperature detected by the indoor heat exchanger temperature detecting means 48 exceeds the predetermined temperature Ta, the indoor heat exchanger temperature detecting means 48 may be generated. The operation frequency of the compressor 6 is lowered until the temperature detected in step 1 reaches the predetermined temperature Ta, and control is performed to reduce the pressure on the high pressure side.

また、室内熱交換器16で熱交換を行った後の冷媒が持つ熱量も除霜運転時に有効利用するために、室内熱交換器温度検出手段48が検出した温度が所定温度Ta未満の場合には、検出温度が所定温度Taになるまで圧縮機6の運転周波数を増加して、暖房運転後の除霜運転の効率化を図っている。   Further, in order to effectively use the heat quantity of the refrigerant after heat exchange in the indoor heat exchanger 16 during the defrosting operation, the temperature detected by the indoor heat exchanger temperature detecting means 48 is less than the predetermined temperature Ta. Increases the operating frequency of the compressor 6 until the detected temperature reaches a predetermined temperature Ta, thereby improving the efficiency of the defrosting operation after the heating operation.

ステップS1において、室内熱交換器温度検出手段48で検出された温度が所定温度Taになると、蓄熱槽32に蓄積した熱を有効利用しながら除霜運転を行うための通常蓄熱除霜運転を開始する。この除霜運転では、ステップS5において除霜二方弁30を開制御して圧縮機6より吐出された冷媒を室外熱交換器14に導き、ステップS6において、タイマー56によりカウントされた除霜二方弁30の開制御からの時間が上述した所定時間に達しているかどうかを判定し、所定時間に達していればステップS7において蓄熱二方弁42を開制御して室内熱交換器16を通過した冷媒を蓄熱熱交換器34に導く一方、所定時間に達していなければステップS6に戻る。   In step S1, when the temperature detected by the indoor heat exchanger temperature detecting means 48 reaches a predetermined temperature Ta, a normal heat storage defrosting operation for performing a defrosting operation while effectively using the heat accumulated in the heat storage tank 32 is started. To do. In this defrosting operation, the defrosting two-way valve 30 is controlled to open in step S5 and the refrigerant discharged from the compressor 6 is guided to the outdoor heat exchanger 14, and in step S6, the defrosting two counted by the timer 56 is guided. It is determined whether or not the time from the opening control of the direction valve 30 has reached the above-described predetermined time. If the predetermined time has been reached, the heat storage two-way valve 42 is controlled to open in step S7 and passes through the indoor heat exchanger 16. While the conducted refrigerant is guided to the heat storage heat exchanger 34, if the predetermined time has not been reached, the process returns to step S6.

ステップS7において蓄熱二方弁42が開制御されると、ステップS8において、室外熱交換器出口温度検出手段46で検出された温度と除霜運転終了の指標となる所定温度Tb(例えば、6℃)とが比較され、前者が後者未満であれば、残霜があるか、あるいは、残霜はないが基板(室外熱交換器14の上部及び下部)はまだ凍結していると判定して、除霜運転を継続し、ステップS9に移行する。   When the heat storage two-way valve 42 is controlled to open in step S7, in step S8, the temperature detected by the outdoor heat exchanger outlet temperature detecting means 46 and a predetermined temperature Tb (for example, 6 ° C.) serving as an index for the completion of the defrosting operation. If the former is less than the latter, it is determined that there is residual frost, or there is no residual frost, but the substrate (upper and lower portions of the outdoor heat exchanger 14) is still frozen, The defrosting operation is continued and the process proceeds to step S9.

ステップS9においては、タイマー56によりカウントされた除霜二方弁30の開制御からの時間が所定時間(例えば、7分)に達していなければ、ステップS8に戻る一方、室外熱交換器出口温度検出手段46で検出された温度が所定温度Tb以上であれば、残霜はなく基板凍結も解消されていると判定して、ステップS10において除霜二方弁30及
び蓄熱二方弁42を同時に閉制御し、除霜運転を終了して通常暖房運転に戻る。
In step S9, if the time from the opening control of the defrosting two-way valve 30 counted by the timer 56 has not reached a predetermined time (for example, 7 minutes), the process returns to step S8, while the outdoor heat exchanger outlet temperature If the temperature detected by the detection means 46 is equal to or higher than the predetermined temperature Tb, it is determined that there is no residual frost and that the substrate has been frozen, and the defrosting two-way valve 30 and the heat storage two-way valve 42 are simultaneously set in step S10. Close control is performed, the defrosting operation is terminated, and the normal heating operation is resumed.

また、ステップS9においてタイマー56でカウントした時間が所定時間に達していれば、室外熱交換器出口温度検出手段46で検出された温度に関係なく、ステップS10に移行し、除霜二方弁30及び蓄熱二方弁42を同時に閉制御し、除霜運転を終了して通常暖房運転に戻るとともに、タイマー56のカウント時間をリセットする。   If the time counted by the timer 56 in step S9 has reached a predetermined time, the process proceeds to step S10 regardless of the temperature detected by the outdoor heat exchanger outlet temperature detecting means 46, and the defrosting two-way valve 30 is moved. The heat storage two-way valve 42 is closed and controlled at the same time, the defrosting operation is terminated and the normal heating operation is resumed, and the count time of the timer 56 is reset.

なお、ステップS9においてタイマー56でカウントした時間が所定時間に達した場合、除霜運転を強制的に終了するようにしたのは、蓄熱槽32の蓄熱量は有限で、前記所定時間で消費される程度の蓄熱量に設定されていることから、所定時間を超えて除霜運転を継続しても蓄熱量が既になく、除霜運転を行う意味がないからである。   In addition, when the time counted by the timer 56 in step S9 reaches a predetermined time, the defrosting operation is forcibly terminated because the heat storage amount of the heat storage tank 32 is limited and consumed in the predetermined time. This is because even if the defrosting operation is continued beyond a predetermined time, there is no heat storage amount and there is no point in performing the defrosting operation.

また、本実施の形態では、除霜運転が開始されてから除霜運転が終了するまでの間、常時、室外熱交換器入口温度検出手段44で検出された温度と外気温度とを比較しており、外気温度の方が室外熱交換器入口温度より高い場合には、室外機2に設けられ室外熱交換器14に送風するための室外ファン(図示せず)の運転を継続している。このように制御することにより、外気温度が持つ熱量を有効的に活用して、室外熱交換器14の除霜を促進させることができる。   Further, in the present embodiment, the temperature detected by the outdoor heat exchanger inlet temperature detecting means 44 is always compared with the outside air temperature from the start of the defrosting operation to the end of the defrosting operation. When the outdoor air temperature is higher than the outdoor heat exchanger inlet temperature, the operation of an outdoor fan (not shown) that is provided in the outdoor unit 2 and blows air to the outdoor heat exchanger 14 is continued. By controlling in this way, defrosting of the outdoor heat exchanger 14 can be promoted by effectively utilizing the amount of heat of the outside air temperature.

但し、除霜運転中に、室外熱交換器入口温度が外気温度よりも高いと一旦判断された場合は、室外熱交換器入口温度が上昇するだけなので、除霜運転が終了するまで室外ファンを駆動させることはない。   However, once it is determined that the outdoor heat exchanger inlet temperature is higher than the outside air temperature during the defrosting operation, the outdoor heat exchanger inlet temperature only rises, so the outdoor fan must be turned off until the defrosting operation ends. It is not driven.

次に、除霜運転終了後の暖房フローについて説明する。図9は除霜運転開始後の室外熱交換器14の冷媒出口温度の推移を示すグラフであり、図9に示されるように、除霜運転開始時には、室外熱交換器14の冷媒出口温度は氷点下の温度(例えば、−10℃)を示しているが、除霜運転開始直後は、室外熱交換器14の冷媒出口温度は急激に上昇し、その後霜を融解中の所定の温度範囲(例えば、0〜2℃)では室外熱交換器14の冷媒出口温度は徐々に上昇するものの、温度上昇は停滞傾向にある。この温度範囲を超えると、霜は略融解しているが、室外熱交換器14の基板はまだ凍結している可能性が高く、除霜運転を継続することで霜の融解後は室外熱交換器14の温度が上昇する。このときの温度上昇は、残霜がないことから霜の融解中の温度上昇より大きく、基板凍結が略解消すると、除霜運転は室外熱交換器14の予熱のために行われ、その冷媒出口温度はさらに徐々に上昇する。   Next, the heating flow after the completion of the defrosting operation will be described. FIG. 9 is a graph showing the transition of the refrigerant outlet temperature of the outdoor heat exchanger 14 after the start of the defrosting operation. As shown in FIG. 9, at the start of the defrosting operation, the refrigerant outlet temperature of the outdoor heat exchanger 14 is Although the temperature below freezing point (for example, −10 ° C.) is shown, immediately after the start of the defrosting operation, the refrigerant outlet temperature of the outdoor heat exchanger 14 rapidly increases, and then a predetermined temperature range (for example, thawing frost) 0-2 ° C.), the refrigerant outlet temperature of the outdoor heat exchanger 14 gradually rises, but the temperature rise tends to stagnate. If this temperature range is exceeded, the frost is almost thawed, but the substrate of the outdoor heat exchanger 14 is likely to be frozen, and the outdoor heat exchange after the frost is thawed by continuing the defrosting operation. The temperature of the vessel 14 rises. The temperature rise at this time is larger than the temperature rise during frost melting because there is no residual frost, and when the substrate freezing is substantially eliminated, the defrosting operation is performed for preheating the outdoor heat exchanger 14, and the refrigerant outlet The temperature increases further gradually.

本発明においては、除霜運転中の室外熱交換器14の冷媒出口温度に二つの閾値を設け、除霜運転から暖房運転への復帰時の室外熱交換器14の冷媒出口温度に応じて、その後の除霜運転の形態を変更するようにしている。   In the present invention, two threshold values are provided for the refrigerant outlet temperature of the outdoor heat exchanger 14 during the defrosting operation, and depending on the refrigerant outlet temperature of the outdoor heat exchanger 14 when returning from the defrosting operation to the heating operation, The form of the subsequent defrosting operation is changed.

すなわち、図9のグラフに基づいて、室外熱交換器14の冷媒出口温度に第1の閾値(例えば、2℃)と、第1の閾値より大きい第2の閾値(例えば、6℃)を設け、除霜運転から暖房運転への復帰時の室外熱交換器14の冷媒出口温度を第1及び第2の閾値と比較し、比較結果を示す所定の数値をコントローラ54に設けられたメモリ(図示せず)に加算し、メモリに積算された数値に基づいて、図10に示されるように、暖房運転、蓄熱除霜運転、あるいは、暖房運転から冷房運転への四方弁8の切り替えによる除霜運転を行っている。   That is, based on the graph of FIG. 9, the refrigerant outlet temperature of the outdoor heat exchanger 14 is provided with a first threshold (for example, 2 ° C.) and a second threshold (for example, 6 ° C.) that is greater than the first threshold. A memory provided in the controller 54 for comparing the refrigerant outlet temperature of the outdoor heat exchanger 14 at the time of returning from the defrosting operation to the heating operation with the first and second threshold values and indicating a comparison result (FIG. 10, and based on the numerical value accumulated in the memory, as shown in FIG. 10, defrosting by heating operation, heat storage defrosting operation, or switching of the four-way valve 8 from heating operation to cooling operation I am driving.

なお、本明細書において、単に「除霜運転」という場合は、上述した通常蓄熱除霜運転のことを意味し、暖房運転から冷房運転への四方弁8の切り替えによる除霜運転は「四方弁除霜運転」と称しており、この除霜運転は、除霜二方弁30及び蓄熱二方弁42を閉弁
した状態で行われる。
In the present specification, the simple “defrosting operation” means the above-described normal heat storage defrosting operation, and the defrosting operation by switching the four-way valve 8 from the heating operation to the cooling operation is “four-way valve”. This defrosting operation is performed with the defrosting two-way valve 30 and the heat storage two-way valve 42 closed.

また、除霜運転から暖房運転への復帰時の室外熱交換器14の冷媒出口温度が第2の閾値以上の場合を「A復帰」と称し、冷媒出口温度が第1の閾値以上で第2の閾値未満の場合を「B復帰」と称し、冷媒出口温度が第1の閾値未満の場合を「C復帰」と称している。   Moreover, the case where the refrigerant | coolant exit temperature of the outdoor heat exchanger 14 at the time of the return | restoration from a defrost operation to heating operation is more than a 2nd threshold value is called "A return", and a refrigerant | coolant exit temperature is more than a 1st threshold value, and 2nd The case where the refrigerant outlet temperature is lower than the first threshold is referred to as “B return”, and the case where the refrigerant outlet temperature is lower than the first threshold is referred to as “C return”.

さらに詳述すると、空気調和機の当初の運転時はメモリの積算値Mはリセット(M=0)されており、通常暖房運転終了後、上述したように、室内熱交換器温度検出手段48で検出された温度が所定温度Taになると、通常蓄熱除霜運転を開始する。除霜運転終了後、室外熱交換器14の冷媒出口温度が第2の閾値以上の場合は、残霜なし、基板凍結なしと判定して、メモリの積算値Mをリセットして、暖房運転を行う(A復帰)。   More specifically, the integrated value M of the memory is reset (M = 0) during the initial operation of the air conditioner. After the normal heating operation is completed, the indoor heat exchanger temperature detection means 48 performs the operation as described above. When the detected temperature reaches a predetermined temperature Ta, the normal heat storage defrosting operation is started. When the refrigerant outlet temperature of the outdoor heat exchanger 14 is equal to or higher than the second threshold after completion of the defrosting operation, it is determined that there is no remaining frost and no substrate freezing, the integrated value M of the memory is reset, and the heating operation is performed. (A return).

また、除霜運転終了後、室外熱交換器14の冷媒出口温度が第1の閾値以上で第2の閾値未満の場合は、残霜はないが基板凍結ありと判定して、メモリに第1の所定値(例えば、1)を加算し、暖房運転を行う(B復帰)。   When the refrigerant outlet temperature of the outdoor heat exchanger 14 is equal to or higher than the first threshold value and lower than the second threshold value after completion of the defrosting operation, it is determined that there is no residual frost but the substrate is frozen, and the first is stored in the memory. The predetermined value (for example, 1) is added, and the heating operation is performed (B return).

さらに、除霜運転終了後、室外熱交換器14の冷媒出口温度が第1の閾値未満の場合は、残霜ありと判定して、メモリに第1の所定値より大きい第2の所定値(例えば、2)を加算し、暖房運転を行う(C復帰)。   Further, after the defrosting operation is completed, when the refrigerant outlet temperature of the outdoor heat exchanger 14 is lower than the first threshold value, it is determined that there is residual frost, and a second predetermined value (which is larger than the first predetermined value) is stored in the memory. For example, 2) is added and the heating operation is performed (C return).

なお、A復帰の場合は、図10のステップS21において暖房運転を行った後、図10の制御は終了する。   In the case of returning to A, the heating operation is performed in step S21 in FIG. 10, and then the control in FIG. 10 ends.

一方、B復帰あるいはC復帰の場合は、暖房運転終了後、除霜運転から暖房運転への復帰状態に応じて、すなわち、メモリの積算値Mに応じて、その後の制御は異なる。   On the other hand, in the case of B return or C return, the subsequent control differs depending on the return state from the defrosting operation to the heating operation after the heating operation is completed, that is, depending on the integrated value M of the memory.

まずB復帰の場合は、ステップS22において暖房運転を行った後、ステップS23において除霜運転を行い、B復帰後のA復帰の場合は、ステップS24おいて暖房運転を行ってメモリの積算値Mをリセット(M:1→0)した後、制御を終了する。   First, in the case of B return, after performing the heating operation in step S22, the defrosting operation is performed in step S23. In the case of A return after B return, the heating operation is performed in step S24 and the integrated value M of the memory After resetting (M: 1 → 0), the control is terminated.

B復帰後さらにB復帰した場合(M=2)には、ステップS25おいて暖房運転を行い、ステップS26おいて除霜運転を行って、除霜運転から暖房運転への復帰状態に応じて、その後の制御をさらには分岐させている。   In the case of further returning to B after returning to B (M = 2), the heating operation is performed in step S25, the defrosting operation is performed in step S26, and according to the return state from the defrosting operation to the heating operation, The subsequent control is further branched.

B復帰を2度繰り返した後、A復帰の場合は、ステップS27おいて暖房運転を行ってメモリの積算値Mをリセット(M:2→0)した後、制御を終了する。   In the case of A return after repeating B return twice, the heating operation is performed in step S27 to reset the integrated value M of the memory (M: 2 → 0), and then the control is finished.

一方、B復帰(M=3)あるいはC復帰(M=4)の場合は、除霜に必要な熱が蓄熱材36に蓄積されていないと判定して、ステップS28おいて暖房運転を第1の所定時間行った後、ステップS29おいて除霜運転を行う。なお、ここでいう「第1の所定時間」とは、蓄熱に必要な時間のことで、着霜判定の指標となる室外熱交換器入口温度検出手段44で検出された温度にかかわらず暖房運転は行われ、第1の所定時間は、例えば30分に設定される。その後、A復帰の場合は、ステップS30おいて暖房運転を行ってメモリの積算値Mをリセットした後、制御を終了する。   On the other hand, in the case of B return (M = 3) or C return (M = 4), it is determined that the heat necessary for defrosting is not accumulated in the heat storage material 36, and the heating operation is first performed in step S28. After the predetermined time, the defrosting operation is performed in step S29. Here, the “first predetermined time” refers to a time required for heat storage, regardless of the temperature detected by the outdoor heat exchanger inlet temperature detecting means 44 serving as an index for determining frost formation. The first predetermined time is set to 30 minutes, for example. Thereafter, in the case of returning to A, the heating operation is performed in step S30 to reset the integrated value M of the memory, and then the control is terminated.

また、B復帰あるいはC復帰の場合は、通常蓄熱除霜運転では、完全な除霜は不可能と判定して、ステップS31おいて暖房運転を第1の所定時間より短い第2の所定時間行って四方弁除霜運転を行い、室外熱交換器14に付着した霜を完全に除去する。なお、ここでいう「第2の所定時間」とは、冷凍サイクル内の冷凍機油のバランス等を考慮して冷凍
サイクルを安定化させるために必要な暖房運転時間のことで、例えば10分に設定される。四方弁除霜運転後、メモリの積算値Mはリセットされる。
In the case of B return or C return, it is determined that complete defrosting is impossible in the normal heat storage defrosting operation, and the heating operation is performed for a second predetermined time shorter than the first predetermined time in step S31. Then, a four-way valve defrosting operation is performed to completely remove frost attached to the outdoor heat exchanger 14. Here, the “second predetermined time” is a heating operation time necessary for stabilizing the refrigeration cycle in consideration of the balance of the refrigeration oil in the refrigeration cycle, and is set to 10 minutes, for example. Is done. After the four-way valve defrosting operation, the integrated value M in the memory is reset.

また、ステップS23おいて除霜運転を行った後、C復帰の場合は、ステップS32、S33、S34、S35おいてそれぞれステップS28、S29、S30、S31と同様の制御が行われる。   In the case of C return after performing the defrosting operation in step S23, the same control as in steps S28, S29, S30, and S31 is performed in steps S32, S33, S34, and S35, respectively.

なお、図10の制御のうち、右列のフロー(C復帰後のフロー)におけるステップS36、S37、S38、S39、S40、S41、S42は、上述したステップS25、S26、S27、S28、S29、S30、S31と同じなので、その説明は省略する。   In the control of FIG. 10, steps S36, S37, S38, S39, S40, S41, and S42 in the flow in the right column (steps S25, S26, S27, S28, S29, and S29) described above are performed. Since it is the same as S30 and S31, its description is omitted.

図10の制御を要約すると、
・室外熱交換器出口温度検出手段46で検出された温度が所定温度に達することなく暖房運転への復帰が少なくとも2回続き、メモリの積算値Mが第3の所定値(例えば、3)以上の場合には、室外熱交換器入口温度検出手段44で検出された温度にかかわらず、暖房運転を所定時間継続させた後、除霜運転に移行する。
・室外熱交換器出口温度検出手段46で検出された温度が所定温度に達することなく暖房運転への復帰が少なくとも3回続き、メモリの積算値Mが第3の所定値より大きい第4の所定値(例えば、4)以上の場合には、除霜二方弁30及び蓄熱二方弁42を閉弁した状態で、四方弁8を冷房運転方向に切り替えて除霜運転を行う。
To summarize the control of FIG.
-The temperature detected by the outdoor heat exchanger outlet temperature detection means 46 does not reach the predetermined temperature, and the return to the heating operation continues at least twice, and the integrated value M of the memory is not less than a third predetermined value (for example, 3). In this case, the heating operation is continued for a predetermined time regardless of the temperature detected by the outdoor heat exchanger inlet temperature detection means 44, and then the defrosting operation is started.
The return to the heating operation continues at least three times without the temperature detected by the outdoor heat exchanger outlet temperature detecting means 46 reaching the predetermined temperature, and the fourth predetermined value in which the integrated value M of the memory is larger than the third predetermined value In the case of a value (for example, 4) or more, the defrosting operation is performed by switching the four-way valve 8 in the cooling operation direction with the defrosting two-way valve 30 and the heat storage two-way valve 42 closed.

なお、図9のグラフでは、除霜運転中の室外熱交換器14の冷媒出口温度に二つの閾値を設けたが、第2の閾値を設けることなく一つの閾値(第1の閾値のみ)を使用して図10の制御を行うこともできる。   In the graph of FIG. 9, two threshold values are provided for the refrigerant outlet temperature of the outdoor heat exchanger 14 during the defrosting operation, but one threshold value (only the first threshold value) is set without providing the second threshold value. The control shown in FIG. 10 can also be performed.

この場合、図9のA復帰とB復帰を一つにまとめてA復帰とし、図10の左列のフロー(A復帰後のフロー)と右列のフロー(C復帰後のフロー、ただし、このフローのB復帰は削除)のみ行えばよい。   In this case, A return and B return in FIG. 9 are combined into A return, and the flow in the left column (flow after A return) and the flow in the right column (flow after C return in FIG. It is only necessary to delete (return B of the flow).

また、本実施の形態では、第2の閾値は、上述した所定温度Tbと等しく設定されており、室外熱交換器出口温度検出手段46で検出する温度が所定温度Tbを超えたときに除霜運転を終了する場合は、常にA復帰となっている。ただし、第2の閾値はこれに限定されるものではなく、第2の閾値と所定温度Tbとは異なる値であってもよく、第2の閾値は完全に霜が融解されている状態を検知できる温度に設定されていればよい。   In the present embodiment, the second threshold value is set equal to the above-mentioned predetermined temperature Tb, and defrosting is performed when the temperature detected by the outdoor heat exchanger outlet temperature detection means 46 exceeds the predetermined temperature Tb. When the operation is terminated, A return is always performed. However, the second threshold value is not limited to this, and the second threshold value and the predetermined temperature Tb may be different values, and the second threshold value detects a state in which frost is completely melted. It is sufficient that the temperature is set to be possible.

また、本実施の形態の空気調和機は、除霜・暖房運転から通常の暖房運転に復帰した際の圧縮機の運転周波数は、除霜・暖房運転が開始される前の運転周波数としている。これは、暖房運転を継続しながら除霜運転を行っているので、除霜運転が終了した時に圧縮機の周波数が低い周波数に設定されてしまう場合があり、空調環境を損なう恐れがある。   In the air conditioner of the present embodiment, the operating frequency of the compressor when returning from the defrosting / heating operation to the normal heating operation is the operating frequency before the defrosting / heating operation is started. Since the defrosting operation is performed while continuing the heating operation, the compressor frequency may be set to a low frequency when the defrosting operation is completed, which may impair the air conditioning environment.

そのため、除霜運転から復帰したときの圧縮機の運転周波数は、除霜・暖房運転が開始される前の運転周波数として、室内環境を維持するようにしている。   Therefore, the operating frequency of the compressor when returning from the defrosting operation is the operating frequency before the defrosting / heating operation is started, so that the indoor environment is maintained.

また、本実施の形態の空気調和機は、リモコン(図示せず)等により暖房運転の指示を受けると、次回の暖房運転時に着霜による能力低下を阻止するために、除霜運転を行なってから圧縮機6を停止させている。以下に、暖房運転停止時における除霜運転について説明する。   In addition, when the air conditioner of the present embodiment receives a heating operation instruction from a remote controller (not shown) or the like, the air conditioner performs a defrosting operation in order to prevent a decrease in capacity due to frosting during the next heating operation. The compressor 6 is stopped. Below, the defrost operation at the time of heating operation stop is demonstrated.

まず、暖房運転停止の指示を受けると、室外熱交換器入口温度検出手段44で検出される温度が除霜開始温度を下回っている場合は、室内送風ファン16aの運転を停止し、除
霜二方弁30及び蓄熱二方弁42を開く。このとき、通常の除霜・暖房運転と同じように、除霜二方弁30の開制御を行なってから蓄熱二方弁42が開制御される。このとき、膨張弁12の開度は所定の開度となるように制御される。
First, when an instruction to stop the heating operation is received, if the temperature detected by the outdoor heat exchanger inlet temperature detection means 44 is lower than the defrosting start temperature, the operation of the indoor fan 16a is stopped and The direction valve 30 and the heat storage two-way valve 42 are opened. At this time, the heat storage two-way valve 42 is controlled to be opened after the opening control of the defrosting two-way valve 30 is performed as in the normal defrosting / heating operation. At this time, the opening degree of the expansion valve 12 is controlled to be a predetermined opening degree.

そして、通常の除霜・暖房運転と同じように、室外熱交換器出口温度検出手段46で検出される温度が、除霜運転終了の指標となる所定温度Tb(例えば、6℃)を超えているかどうかを判断し、所定温度Tbを超えている場合には除霜運転を終了する。一方、所定温度Tbを超えていない場合は除霜運転を継続するが、蓄熱槽32の蓄熱量は有限であるので、室外熱交換器出口温度検出手段46で検出する温度が如何に関わらず、除霜運転が開始してから所定時間Tes(例えば、10分)が経過すると、圧縮機6の運転を停止させる。   Then, as in the normal defrosting / heating operation, the temperature detected by the outdoor heat exchanger outlet temperature detection means 46 exceeds a predetermined temperature Tb (for example, 6 ° C.) that serves as an index for the completion of the defrosting operation. If the temperature exceeds the predetermined temperature Tb, the defrosting operation is terminated. On the other hand, if the predetermined temperature Tb is not exceeded, the defrosting operation is continued, but the amount of heat stored in the heat storage tank 32 is finite, so regardless of the temperature detected by the outdoor heat exchanger outlet temperature detection means 46, When a predetermined time Tes (for example, 10 minutes) has elapsed since the start of the defrosting operation, the operation of the compressor 6 is stopped.

ここで、通常の除霜・暖房運転時においても、暖房を継続しながらの除霜運転は、室外熱交換器出口温度検出手段46で検出する温度に関わらず、除霜運転を開始してから所定時間Tusが経過すると、除霜運転を終了していた。一方、暖房運転停止時における除霜運転においても、除霜運転を開始してから所定時間Tesが経過すると、除霜運転を終了するようにしている。   Here, even during the normal defrosting / heating operation, the defrosting operation while continuing the heating is performed after the defrosting operation is started regardless of the temperature detected by the outdoor heat exchanger outlet temperature detection means 46. When the predetermined time Tus has elapsed, the defrosting operation has been completed. On the other hand, also in the defrosting operation when the heating operation is stopped, the defrosting operation is terminated when a predetermined time Tes has elapsed since the start of the defrosting operation.

しかしながら、暖房運転終了時における除霜運転では、室内送風ファン16aを停止しているため、室内熱交換器16での放熱は少ない。そのため、室内熱交換器16での熱交換はあまりされずに、その熱を除霜運転に有効的に活用することができる。そのため、所定時間Tesは所定時間Tusよりも長く設定しており、除霜運転の時間を長くすることができ、確実に除霜を促すことができる。   However, in the defrosting operation at the end of the heating operation, the indoor blower fan 16a is stopped, so that the heat radiation in the indoor heat exchanger 16 is small. Therefore, the heat exchange in the indoor heat exchanger 16 is not so much, and the heat can be effectively utilized for the defrosting operation. Therefore, the predetermined time Tes is set longer than the predetermined time Tus, the time for the defrosting operation can be lengthened, and the defrosting can be surely promoted.

以上のように、本実施の形態では、暖房運転終了時に、蓄熱二方弁と除霜二方弁とを開いて除霜運転を行うことによって、四方弁を切り替えて除霜運転を行なわないので、四方切換弁の切換による切換音および圧力変動音が聞こえ、使用者に違和感・不快感を与えるということを抑制することができ、次回暖房運転開始時の着霜による能力低下を阻止することができる。   As described above, in the present embodiment, at the end of the heating operation, the defrosting operation is not performed by switching the four-way valve by performing the defrosting operation by opening the heat storage two-way valve and the defrosting two-way valve. The switching sound and pressure fluctuation sound due to the switching of the four-way switching valve can be heard, and it can be suppressed that the user feels uncomfortable and uncomfortable, and the ability reduction due to frost at the start of the next heating operation can be prevented. it can.

次に、除霜開始条件の変更について説明する。上述したB復帰あるいはC復帰の繰り返しは、室外熱交換器14の着霜量が多く、蓄熱槽32に収容された蓄熱材36の蓄熱量不足に起因することから、本発明においては、図7に示されるように、除霜運転開始ライン(βライン)より所定温度(例えば、2℃)高い別の除霜運転開始ライン(β2ライン)を設定している。   Next, the change of defrost start conditions is demonstrated. The repetition of the B return or the C return described above has a large amount of frost formation in the outdoor heat exchanger 14 and is caused by an insufficient heat storage amount of the heat storage material 36 accommodated in the heat storage tank 32. Therefore, in the present invention, FIG. As shown in Fig. 5, another defrosting operation start line (β2 line) higher by a predetermined temperature (for example, 2 ° C) than the defrosting operation start line (β line) is set.

ここで、温度β2は、除霜開始温度(β)より高く設定され、除霜運転から暖房運転に復帰したときの室外熱交換器14の着霜状態と除霜時間に基づいて、例えばβ+1≦β2≦β+5(初期値:β2=β+2)のように可変設定される。   Here, the temperature β2 is set higher than the defrosting start temperature (β), and is based on the frosting state and the defrosting time of the outdoor heat exchanger 14 when returning from the defrosting operation to the heating operation, for example, β + 1 ≦ It is variably set such that β2 ≦ β + 5 (initial value: β2 = β + 2).

すなわち、除霜運転から暖房運転に復帰した際に、室外熱交換器出口温度検出手段46で検出された温度が上述した所定温度Tbに達していない場合(B復帰あるいはC復帰)は、除霜開始温度を所定温度高くすることにより、早めに除霜運転を開始して着霜量を極力低減するようにしている。   That is, when the temperature detected by the outdoor heat exchanger outlet temperature detecting means 46 does not reach the above-described predetermined temperature Tb (B return or C return) when returning from the defrosting operation to the heating operation, the defrosting is performed. By increasing the start temperature by a predetermined temperature, the defrosting operation is started early to reduce the amount of frost formation as much as possible.

除霜運転開始ラインの上昇は繰り返し行われ、B復帰あるいはC復帰の場合は、除霜開始温度を所定温度高くし、その後さらに、B復帰あるいはC復帰した場合も、除霜開始温度を所定温度高く設定する。なお、除霜開始ラインの上昇はA復帰によりリセット(β2→β)される。   The defrosting operation start line is repeatedly raised. In the case of B return or C return, the defrost start temperature is increased by a predetermined temperature, and when the B return or C return is further increased, the defrost start temperature is set to the predetermined temperature. Set high. The rise in the defrosting start line is reset (β2 → β) by A recovery.

しかしながら、除霜開始温度としてβ2ラインが設定されると、βラインに設定された場合に比べて、除霜運転から復帰してもすぐにβ2ラインを検出してしまい、蓄熱材36の蓄熱量が不十分であるにもかかわらず、除霜運転が早く開始されてしまう可能性がある。   However, when the β2 line is set as the defrosting start temperature, the β2 line is detected immediately after returning from the defrosting operation as compared with the case where the βline is set, and the heat storage amount of the heat storage material 36 is detected. In spite of insufficient, there is a possibility that the defrosting operation is started early.

そこで、本発明においては、除霜開始温度としてβ2ラインを設定するとともに、最低暖房運転時間Txなるものを設けており、除霜運転からB復帰あるいはC復帰した場合は、最低暖房運転時間Txの間は暖房運転を継続することにより蓄熱量が不十分あるいは無い状態での除霜運転を極力低減することができる。   Therefore, in the present invention, the β2 line is set as the defrosting start temperature, and the minimum heating operation time Tx is provided, and when the B or C recovery is performed from the defrosting operation, the minimum heating operation time Tx is set. In the meantime, by continuing the heating operation, it is possible to reduce the defrosting operation in a state where the amount of heat storage is insufficient or absent.

つまり、除霜運転からB復帰あるいはC復帰した場合は、室外熱交換器入口温度検出手段44で検出する温度が、β2ラインに設定されている除霜開始温度を下回った場合であっても、暖房運転時間が最低暖房運転時間Txに達していない場合は、除霜運転に入らない。   In other words, when B or C is returned from the defrosting operation, even if the temperature detected by the outdoor heat exchanger inlet temperature detection means 44 is lower than the defrosting start temperature set in the β2 line, When the heating operation time has not reached the minimum heating operation time Tx, the defrosting operation is not started.

なお、この場合の暖房運転の継続時間は室内負荷に応じて、例えば30分〜2時間の範囲で可変設定することもでき、室内負荷が低い場合は、所定時間を長く設定し、室内負荷が高い場合は、所定時間を短く設定するのが好ましい。これは室内負荷が低い場合は、着霜速度が遅いと判断しできる限り暖房運転を継続させることができ、室内負荷が高いと、着霜速度が早いと判断してできる限り除霜運転を早期に開始することができるためである。   Note that the duration of the heating operation in this case can be variably set within a range of, for example, 30 minutes to 2 hours according to the indoor load. When the indoor load is low, the predetermined time is set long and the indoor load is If it is high, it is preferable to set the predetermined time short. If the indoor load is low, the heating operation can be continued as long as it can be determined that the frosting speed is slow. If the indoor load is high, it is determined that the frosting speed is fast and the defrosting operation is performed as early as possible. Because you can start with.

このようなβ2ラインの考え方について、図10を用いて説明する。上述したように、本実施の形態では、通常の暖房運転中に着霜を検知すると除霜運転に入り、室外熱交換器出口温度検出手段46で検出される温度に基づいて、除霜運転から通常の暖房運転に戻る。   The concept of the β2 line will be described with reference to FIG. As described above, in the present embodiment, when frost formation is detected during normal heating operation, the defrost operation is started, and based on the temperature detected by the outdoor heat exchanger outlet temperature detection means 46, the defrost operation is started. Return to normal heating operation.

ところが、本実施の形態のように、除霜運転中に並行して行われる暖房運転は、蓄熱材36の熱量に制限されてしまうため、蓄熱材36の熱量がなくなると暖房運転を継続することができなくなってしまう。   However, since the heating operation performed in parallel during the defrosting operation is limited to the amount of heat of the heat storage material 36 as in the present embodiment, the heating operation is continued when the amount of heat of the heat storage material 36 is lost. Will not be able to.

そのため、除霜運転から暖房運転への通常の復帰は、室外熱交換器出口温度検出手段46で検出する温度が所定温度Tbを超えると、除霜運転を終了して暖房運転へ復帰するようにしているが、所定時間以内に所定温度Tbを超えなければ、強制的に除霜運転を解除し、暖房運転に戻るようにしている。これは所定時間経過すると蓄熱材36の熱量がなくなり、除霜運転を続けながら並行して暖房運転ができないからである。   Therefore, the normal return from the defrosting operation to the heating operation is such that when the temperature detected by the outdoor heat exchanger outlet temperature detection means 46 exceeds the predetermined temperature Tb, the defrosting operation is terminated and the operation returns to the heating operation. However, if the predetermined temperature Tb is not exceeded within a predetermined time, the defrosting operation is forcibly canceled and the operation returns to the heating operation. This is because when the predetermined time has elapsed, the amount of heat of the heat storage material 36 is lost, and the heating operation cannot be performed in parallel while the defrosting operation is continued.

例えば、図10に示すステップS21ではA復帰なので、室外熱交換器出口温度検出手段46で検出する温度が所定温度Tbを超えて除霜運転を終了しているため、次回の除霜運転が入る除霜開始温度はβラインとなる。   For example, since A is returned in step S21 shown in FIG. 10, since the temperature detected by the outdoor heat exchanger outlet temperature detecting means 46 exceeds the predetermined temperature Tb and the defrosting operation is terminated, the next defrosting operation is started. The defrosting start temperature is the β line.

一方、ステップS22やステップS36ではB復帰またはC復帰なので、除霜運転終了時には室外熱交換器出口温度検出手段46で検出する温度は所定温度Tb(第2の閾値)を超えていない。よって、次回の除霜運転が入る除霜開始温度はβラインよりも高い温度のβ2(例えば、β+2℃)ラインとなる。これによって、次回の除霜運転は、通常の除霜運転よりも早めに入ることになる。   On the other hand, in step S22 and step S36, since B return or C return, the temperature detected by the outdoor heat exchanger outlet temperature detecting means 46 at the end of the defrosting operation does not exceed the predetermined temperature Tb (second threshold). Therefore, the defrosting start temperature at which the next defrosting operation is performed is a β2 (for example, β + 2 ° C.) line having a higher temperature than the β line. As a result, the next defrosting operation enters earlier than the normal defrosting operation.

ところが、ステップS23およびステップS37は、室外熱交換器出口温度検出手段46で検出する温度が所定温度Tb(第2の閾値)に達することなく暖房運転へ復帰しているため、霜の融け残りがある可能性が高い。そのため、蓄熱材36に熱量が溜まることな
く、すぐに室外熱交換器入口温度検出手段44で検出する温度が、β2ラインで設定されている除霜開始温度に達してしまい、除霜運転にすぐに移行してしまう可能性がある。
However, in steps S23 and S37, since the temperature detected by the outdoor heat exchanger outlet temperature detecting means 46 has returned to the heating operation without reaching the predetermined temperature Tb (second threshold value), frost has not melted. There is a high possibility. For this reason, the heat detected by the outdoor heat exchanger inlet temperature detecting means 44 immediately reaches the defrosting start temperature set in the β2 line without accumulating heat in the heat storage material 36, so that the defrosting operation is immediately performed. There is a possibility of moving to.

その場合、仮に除霜運転に移行したとしても、蓄熱材36には十分に蓄熱されていないため、暖房運転を継続しながら除霜運転を行なうことができない。   In that case, even if the defrosting operation is shifted to, the heat storage material 36 is not sufficiently stored, so the defrosting operation cannot be performed while continuing the heating operation.

よって、本実施の形態では、少なくとも最低暖房運転時間Txの間は暖房運転を継続させることによって、蓄熱材36に蓄熱して次回の除霜運転時においても、確実に暖房運転を継続しながら除霜運転を行なうことができるようにしている。   Therefore, in the present embodiment, by continuing the heating operation for at least the minimum heating operation time Tx, heat is stored in the heat storage material 36 and the heating operation is reliably continued even during the next defrosting operation. The frost operation can be performed.

なお、β2ラインにて除霜運転を行なった後に、暖房運転復帰する際に、B復帰もしくはC復帰した場合には、さらにβ2ラインの温度を高温側(例えば、β+3℃)に上げて、さらに次回以降の除霜運転を入りやすくしている。   In addition, when performing the defrosting operation in the β2 line and then returning to the heating operation, if the B recovery or C recovery is performed, the temperature of the β2 line is further increased to the high temperature side (for example, β + 3 ° C.), The defrosting operation after the next time is made easy to enter.

また、本実施の形態ではβ2ラインの初期値をβ+2℃としているが、これに限定されることは無く、例えば、β+1℃であっても良い。すなわちβ2ラインがβラインよりも高い温度であれば、本実施の形態の制御が満足されることになる。   In the present embodiment, the initial value of the β2 line is set to β + 2 ° C. However, the present invention is not limited to this, and may be β + 1 ° C., for example. That is, if the β2 line has a higher temperature than the β line, the control of the present embodiment is satisfied.

次に、蓄熱材の保護制御について説明する。ここで、図2に示される通常暖房運転に注目すると、除霜運転を行わない通常の暖房運転の場合、除霜二方弁30及び蓄熱二方弁42は閉弁した状態で圧縮機6は運転され、圧縮機6で発生した熱は蓄熱材36に蓄積されるので、その温度は徐々に上昇する。   Next, protection control of the heat storage material will be described. Here, paying attention to the normal heating operation shown in FIG. 2, in the normal heating operation in which the defrosting operation is not performed, the compressor 6 is in a state in which the defrosting two-way valve 30 and the heat storage two-way valve 42 are closed. Since the heat generated and generated in the compressor 6 is accumulated in the heat storage material 36, the temperature gradually rises.

しかしながら、蓄熱材36の温度が過度に上昇すると、蓄熱材36自体の変質(例えば、酸化)や蓄熱材36の水分沸騰を惹起し、蓄熱材36が劣化するおそれがあることから、本発明においては、圧縮機6の温度、圧縮機6から吐出された冷媒の温度、あるいは、蓄熱槽32の温度に基づいて蓄熱材の保護制御をコントローラ54が行うことにより、蓄熱材36の劣化を防止している。   However, if the temperature of the heat storage material 36 rises excessively, the heat storage material 36 itself may be altered (for example, oxidation) or water boiling of the heat storage material 36 may occur, and the heat storage material 36 may be deteriorated. The controller 54 controls the heat storage material based on the temperature of the compressor 6, the temperature of the refrigerant discharged from the compressor 6, or the temperature of the heat storage tank 32, thereby preventing deterioration of the heat storage material 36. ing.

これは次の理由による。
・圧縮機温度:圧縮機6の温度は蓄熱材36の温度と密接に相関し、圧縮機6の温度が高くなれば、蓄熱材36の温度も高くなる。
・吐出冷媒温度:圧縮機6から吐出された冷媒の温度は蓄熱材36の温度と密接に相関し、吐出冷媒の温度が高くなれば、蓄熱材36の温度も高くなる。
・蓄熱槽温度:蓄熱槽32の温度は蓄熱材36の温度と密接に相関し、蓄熱槽32の温度が高くなれば、蓄熱材36の温度も高くなる。
This is due to the following reason.
Compressor temperature: The temperature of the compressor 6 closely correlates with the temperature of the heat storage material 36, and the temperature of the heat storage material 36 increases as the temperature of the compressor 6 increases.
-Discharge refrigerant temperature: The temperature of the refrigerant discharged from the compressor 6 closely correlates with the temperature of the heat storage material 36. If the temperature of the discharge refrigerant increases, the temperature of the heat storage material 36 also increases.
-Thermal storage tank temperature: The temperature of the thermal storage tank 32 correlates closely with the temperature of the thermal storage material 36, and the temperature of the thermal storage material 36 increases as the temperature of the thermal storage tank 32 increases.

なお、この蓄熱材の保護制御については、暖房運転時と同様、冷房運転時にも行われる。   Note that the protection control of the heat storage material is performed during the cooling operation as in the heating operation.

まず、圧縮機温度に基づく制御について説明する。図11に示されるように、この制御においては、圧縮機6の温度を検出する圧縮機温度検出手段58を設け、圧縮機温度検出手段58で検出された温度が第1の所定温度を超えると、蓄熱二方弁42の開制御を行い、暖房時には室内熱交換器16を、冷房時には室外熱交換器14を通過して温度が低下した冷媒を蓄熱熱交換器34に導くことで、蓄熱材36の温度を低下させている。   First, control based on the compressor temperature will be described. As shown in FIG. 11, in this control, a compressor temperature detecting means 58 for detecting the temperature of the compressor 6 is provided, and when the temperature detected by the compressor temperature detecting means 58 exceeds a first predetermined temperature. Then, the heat storage two-way valve 42 is controlled to open, and the refrigerant that has passed through the indoor heat exchanger 16 at the time of heating and the outdoor heat exchanger 14 at the time of cooling to the heat storage heat exchanger 34 is guided to the heat storage heat exchanger 34. The temperature of 36 is lowered.

さらに詳述すると、図12に示されるように、圧縮機温度検出手段58で検出された温度が第1の所定温度(例えば、95℃)を超えると、蓄熱二方弁42を開制御し、圧縮機6の最大運転周波数を制限する。蓄熱二方弁42を開弁すると、蓄熱材36の過度の温度上昇を防止することができ、特に、蓄熱材36は圧縮機6の周囲に沿って配置されている
ことから、圧縮機6と蓄熱材36が接する部分の局部沸騰を防止して、蓄熱材36の蒸発を極力低減することができる。
More specifically, as shown in FIG. 12, when the temperature detected by the compressor temperature detecting means 58 exceeds a first predetermined temperature (for example, 95 ° C.), the heat storage two-way valve 42 is controlled to open, The maximum operating frequency of the compressor 6 is limited. When the heat storage two-way valve 42 is opened, an excessive temperature rise of the heat storage material 36 can be prevented. In particular, since the heat storage material 36 is disposed along the periphery of the compressor 6, It is possible to prevent local boiling of the portion in contact with the heat storage material 36 and to reduce evaporation of the heat storage material 36 as much as possible.

その後、さらに圧縮機温度検出手段58で検出された温度が第1の所定温度より高い第2の所定温度(例えば、103℃)を超えると、圧縮機6を停止させる。   Thereafter, when the temperature detected by the compressor temperature detecting means 58 further exceeds a second predetermined temperature (for example, 103 ° C.) higher than the first predetermined temperature, the compressor 6 is stopped.

なお、圧縮機温度検出手段58で検出された温度が第1の所定温度(例えば、95℃)を超えると、蓄熱二方弁42の開制御に代えて、圧縮機6の運転周波数を下げる制御を行うこともでき、蓄熱二方弁42の開制御とともに圧縮機6の運転周波数を下げる制御を同時に行うようにしてもよい。すなわち、圧縮機6の運転周波数を下げると、圧縮機6の温度が低下し、圧縮機6の近傍に位置する蓄熱材36の局部沸騰を防止することができるからである。   In addition, when the temperature detected by the compressor temperature detecting means 58 exceeds a first predetermined temperature (for example, 95 ° C.), control for lowering the operating frequency of the compressor 6 instead of opening control of the heat storage two-way valve 42. It is also possible to perform the control for lowering the operating frequency of the compressor 6 simultaneously with the opening control of the heat storage two-way valve 42. That is, if the operating frequency of the compressor 6 is lowered, the temperature of the compressor 6 is lowered, and local boiling of the heat storage material 36 located in the vicinity of the compressor 6 can be prevented.

また、圧縮機温度検出手段58で検出された温度が第2の所定温度を超えた後、圧縮機6を停止することにより圧縮機温度検出手段58で検出された温度が徐々に低下し、第2の所定温度より低い(例えば、5℃)第3の所定温度を下回ると、圧縮機6は再度運転を開始するが、蓄熱二方弁42は依然として開弁しており、圧縮機温度検出手段58で検出された温度がさらに低下して、第1の所定温度より低い(例えば、5℃)第4の所定温度を下回ると、蓄熱二方弁42は閉制御される。   Further, after the temperature detected by the compressor temperature detecting means 58 exceeds the second predetermined temperature, the temperature detected by the compressor temperature detecting means 58 gradually decreases by stopping the compressor 6, When the temperature falls below a third predetermined temperature lower than a predetermined temperature of 2 (for example, 5 ° C.), the compressor 6 starts operating again, but the heat storage two-way valve 42 is still open, and the compressor temperature detecting means When the temperature detected at 58 further decreases and falls below a fourth predetermined temperature lower than the first predetermined temperature (for example, 5 ° C.), the heat storage two-way valve 42 is closed.

温度下降方向の第3の所定温度及び第4の所定温度は、温度上昇方向の第1の所定温度及び第2の所定温度よりそれぞれ低く設定したのは、蓄熱二方弁42の開閉動作や圧縮機6のON/OFFの頻繁な繰り返し(ハンチング)を防止するためである。   The third predetermined temperature and the fourth predetermined temperature in the temperature decreasing direction are set lower than the first predetermined temperature and the second predetermined temperature in the temperature increasing direction, respectively. This is to prevent frequent repetition (hunting) of ON / OFF of the machine 6.

なお、上述した蓄熱二方弁42の開制御に代えて、図13に示されるように、開弁状態と閉弁状態を周期的に繰り返す開閉制御を行うのが好ましく、この蓄熱二方弁42の開閉制御の場合、暖房時には、例えば10秒間の開弁と、例えば30秒間の閉弁を最大10回繰り返し、冷房時には、例えば30秒間の開弁と、例えば90秒間の閉弁を最大10回繰り返す。   In place of the above-described opening control of the heat storage two-way valve 42, as shown in FIG. 13, it is preferable to perform opening / closing control that periodically repeats the valve opening state and the valve closing state. In the case of heating / closing control, for example, when heating, for example, 10 seconds of opening and 30 seconds of closing are repeated a maximum of 10 times, and during cooling, for example, 30 seconds of opening and, for example, 90 seconds of closing are closed up to 10 times. repeat.

このように蓄熱二方弁42を開閉制御するのは、蓄熱二方弁42を開制御しても、蓄熱材36の温度が直ぐに低下するわけではなく、ある程度の時間遅れの後、蓄熱材36の温度が徐々に低下するという追従性の問題を考慮したものである。   The open / close control of the heat storage two-way valve 42 in this way does not immediately decrease the temperature of the heat storage material 36 even if the heat storage two-way valve 42 is controlled to open, but after a certain time delay, the heat storage material 36 This is a consideration of the followability problem in which the temperature of the film gradually decreases.

また、暖房時の蓄熱二方弁42の開弁時間と閉弁時間を、冷房時の蓄熱二方弁42の開弁時間と閉弁時間より短く設定したのは、暖房時は、室内熱交換器16を通過した液相冷媒が蓄熱二方弁42を通過するのに対し、冷房時は、室外熱交換器14を通過した二相(気相と液相)冷媒が蓄熱二方弁42を通過することになるが、液相冷媒は二相冷媒より密度が高く、冷媒量が多いからである。   The opening time and closing time of the heat storage two-way valve 42 during heating are set shorter than the valve opening time and valve closing time of the heat storage two-way valve 42 during cooling. While the liquid-phase refrigerant that has passed through the storage unit 16 passes through the heat storage two-way valve 42, during cooling, the two-phase (gas phase and liquid phase) refrigerant that has passed through the outdoor heat exchanger 14 passes through the heat storage two-way valve 42. This is because the liquid-phase refrigerant has a higher density and a larger amount of refrigerant than the two-phase refrigerant.

さらに、蓄熱二方弁42の開閉制御を最大10回に制限したのは、蓄熱二方弁42の耐久性を考慮してのことである。   Further, the opening / closing control of the heat storage two-way valve 42 is limited to a maximum of 10 times in consideration of the durability of the heat storage two-way valve 42.

次に、吐出冷媒温度に基づく制御について説明する。図11に示されるように、この制御においては、圧縮機6から吐出される冷媒の温度を検出する圧縮機吐出温度検出手段60を設け、圧縮機吐出温度検出手段60で検出された温度に基づいて図14のように制御される。図14の制御は図12の制御と類似しており、以下異なる点のみ説明する。
・第1の所定温度:例えば、90℃
・第2の所定温度:例えば、93℃
・第3の所定温度:第2の所定温度より低い温度
・第4の所定温度:第1の所定温度に同じ
ここで、第4の所定温度を第1の所定温度と同じ値に設定したのは、吐出冷媒温度に基づく制御は、ハンチングの可能性が極めて低いからである。但し、第4の所定温度と第1の所定温度とを異ならせても良いことは言うまでも無い。
Next, control based on the discharged refrigerant temperature will be described. As shown in FIG. 11, in this control, compressor discharge temperature detecting means 60 for detecting the temperature of the refrigerant discharged from the compressor 6 is provided, and based on the temperature detected by the compressor discharge temperature detecting means 60. As shown in FIG. The control in FIG. 14 is similar to the control in FIG. 12, and only the differences will be described below.
First predetermined temperature: for example, 90 ° C.
Second predetermined temperature: for example, 93 ° C.
-Third predetermined temperature: temperature lower than the second predetermined temperature-Fourth predetermined temperature: the same as the first predetermined temperature Here, the fourth predetermined temperature was set to the same value as the first predetermined temperature. This is because the control based on the discharged refrigerant temperature has a very low possibility of hunting. However, it goes without saying that the fourth predetermined temperature may be different from the first predetermined temperature.

なお、この吐出冷媒温度に基づく制御は、例えば寝込み時で冷媒循環量が少ない場合に特に有効で、寝込み時においては、圧縮機6の温度の立ち上がりが悪く、圧縮機温度検出手段58で検出された温度と蓄熱材36の温度が大きく乖離する可能性があることから、圧縮機温度検出手段58で検出された温度に基づいて蓄熱材36の温度を推定することが難しい。そこで、追従性のよい吐出冷媒温度を検出して蓄熱材の保護制御を行うことで、寝込み時においても蓄熱材36の温度を効率的に下げることができる。   The control based on the discharged refrigerant temperature is particularly effective when, for example, the refrigerant circulation amount is small at the time of stagnation, and the rise of the temperature of the compressor 6 is poor at the time of stagnation and is detected by the compressor temperature detecting means 58. Therefore, it is difficult to estimate the temperature of the heat storage material 36 based on the temperature detected by the compressor temperature detection means 58. Therefore, the temperature of the heat storage material 36 can be efficiently lowered even when sleeping by detecting the discharge refrigerant temperature with good followability and performing protection control of the heat storage material.

図15は図14の変形例を示しており、図15の吐出冷媒温度に基づく制御では、圧縮機吐出温度検出手段60で検出された温度が第1の所定温度を超えると、膨張弁12の開度を増大する制御(増分:例えば、30パルス/分)を行い、その後、さらに圧縮機吐出温度検出手段60で検出された温度が第2の所定温度を超えると、蓄熱二方弁42を開制御あるいは開閉制御するようにしている。   FIG. 15 shows a modification of FIG. 14. In the control based on the discharge refrigerant temperature of FIG. 15, when the temperature detected by the compressor discharge temperature detection means 60 exceeds the first predetermined temperature, the expansion valve 12 Control for increasing the opening degree (increment: for example, 30 pulses / minute) is performed, and then, when the temperature detected by the compressor discharge temperature detection means 60 exceeds the second predetermined temperature, the heat storage two-way valve 42 is turned on. Open control or open / close control is performed.

また、圧縮機吐出温度検出手段60で検出された温度が第2の所定温度を超えた後、蓄熱二方弁42を開制御あるいは開閉制御することにより圧縮機吐出温度検出手段60で検出された温度が徐々に低下し、第3の所定温度を下回ると、蓄熱二方弁42を閉制御し、圧縮機吐出温度検出手段60で検出された温度がさらに低下して、第4の所定温度を下回ると、膨張弁12の開度を一定にして通常制御に戻る。   Further, after the temperature detected by the compressor discharge temperature detecting means 60 exceeds the second predetermined temperature, the heat storage two-way valve 42 is controlled to be opened or closed and detected by the compressor discharge temperature detecting means 60. When the temperature gradually decreases and falls below the third predetermined temperature, the heat storage two-way valve 42 is controlled to be closed, and the temperature detected by the compressor discharge temperature detecting means 60 is further decreased to obtain the fourth predetermined temperature. If it falls below, the opening degree of the expansion valve 12 is made constant and the normal control is resumed.

次に、蓄熱槽温度に基づく制御について説明する。この制御においては、蓄熱槽温度検出手段50で検出された温度に基づいて図12の制御と略同様に制御され、図12の制御と異なる点は次のとおりである。
・第1の所定温度:例えば、93℃
・第2の所定温度:例えば、95℃
・第3の所定温度:例えば、90℃
・第4の所定温度:例えば、88℃
また、この蓄熱槽温度に基づく制御においては、蓄熱槽温度検出手段50で蓄熱槽32自体の温度を検出していることから、蓄熱槽温度検出手段50で検出された温度が第1の所定温度を超えると、蓄熱二方弁42の開制御あるいは開閉制御のみ行い、圧縮機6の運転周波数を下げる制御を行わなくてもよい。
Next, control based on the heat storage tank temperature will be described. In this control, control is performed in substantially the same manner as the control in FIG. 12 based on the temperature detected by the heat storage tank temperature detecting means 50, and the points different from the control in FIG. 12 are as follows.
First predetermined temperature: for example, 93 ° C.
Second predetermined temperature: for example, 95 ° C.
Third predetermined temperature: for example, 90 ° C.
-4th predetermined temperature: For example, 88 degreeC
In the control based on the heat storage tank temperature, since the temperature of the heat storage tank 32 itself is detected by the heat storage tank temperature detection means 50, the temperature detected by the heat storage tank temperature detection means 50 is the first predetermined temperature. If it exceeds the upper limit, only the opening control or the opening / closing control of the heat storage two-way valve 42 is performed, and the control for lowering the operation frequency of the compressor 6 may not be performed.

この蓄熱槽温度に基づく制御は、蓄熱材36の局部沸騰のみならず、蓄熱材36全体の沸騰を確実に防止することができる。   The control based on the temperature of the heat storage tank can surely prevent not only the local boiling of the heat storage material 36 but also the entire heat storage material 36.

なお、蓄熱槽32の温度を検出する蓄熱槽温度検出手段50に代えて、蓄熱槽32に収容された蓄熱材36の温度を検出する蓄熱材温度検出手段を設け、蓄熱材温度検出手段で検出した温度に基づいて同様の制御を行うこともできる。   In addition, it replaces with the thermal storage tank temperature detection means 50 which detects the temperature of the thermal storage tank 32, the thermal storage material temperature detection means which detects the temperature of the thermal storage material 36 accommodated in the thermal storage tank 32 is provided, and it detects with the thermal storage material temperature detection means Similar control can be performed based on the measured temperature.

以上、圧縮機温度、吐出冷媒温度あるいは蓄熱槽温度に基づく蓄熱材36の保護制御を説明したが、圧縮機温度、吐出冷媒温度及び蓄熱槽温度は次のような関係にあり、どのような状態でも蓄熱材36の保護を行なうためには、これらの温度のすべてに基づいて蓄熱材36の保護制御を行うのが最も好ましい。   The protection control of the heat storage material 36 based on the compressor temperature, the discharge refrigerant temperature, or the heat storage tank temperature has been described above, but the compressor temperature, the discharge refrigerant temperature, and the heat storage tank temperature have the following relationship and what state However, in order to protect the heat storage material 36, it is most preferable to perform protection control of the heat storage material 36 based on all of these temperatures.

・立ち上げ・安定時:吐出冷媒温度>圧縮機温度>蓄熱槽温度
・冷媒量極小・冷凍サイクル閉塞時:圧縮機温度=蓄熱槽温度>吐出冷媒温度
次に、蓄熱材の温度推定について説明する。蓄熱槽32に収容された蓄熱材36の蓄熱量を検出するためには、蓄熱材36の温度を検出する必要があるが、蓄熱材36の中に蓄熱材温度検出手段を配置する構成の場合、腐食、防水性等の問題を考慮する必要がある。
・ Start-up / Stable: Discharged refrigerant temperature> Compressor temperature> Heat storage tank temperature ・ Minimum refrigerant amount and refrigeration cycle closed: Compressor temperature = heat storage tank temperature> discharged refrigerant temperature Next, temperature estimation of the heat storage material will be described. . In order to detect the heat storage amount of the heat storage material 36 accommodated in the heat storage tank 32, it is necessary to detect the temperature of the heat storage material 36, but in the case where the heat storage material temperature detection means is arranged in the heat storage material 36. It is necessary to consider problems such as corrosion and waterproofness.

また、蓄熱槽32の内部に蓄熱材温度検出手段を配置した場合、生産時に蓄熱槽32を傾けて圧縮機6へ装着したり、室外機2を設置する際に傾けて設置してしまうと、蓄熱槽32の内部に設けた蓄熱材温度検出手段が蓄熱材から露出するおそれがあり、蓄熱材温度検出手段が露出してしまうと、蓄熱材36の温度を正確に検出することができないという問題もある。   In addition, when the heat storage material temperature detection means is disposed inside the heat storage tank 32, when the heat storage tank 32 is tilted during production and attached to the compressor 6 or when the outdoor unit 2 is installed, There is a possibility that the heat storage material temperature detection means provided inside the heat storage tank 32 may be exposed from the heat storage material, and if the heat storage material temperature detection means is exposed, the temperature of the heat storage material 36 cannot be detected accurately. There is also.

そこで、本発明においては、図11に示されるように、蓄熱槽温度検出手段50を蓄熱槽32の外側に取り付け、蓄熱槽温度検出手段50で検出される温度を外気温度検出手段52で検出された温度に基づいて補正し、蓄熱材36の温度を推定している。このように構成することで、蓄熱材36の温度を確実に得ることができるとともに、生産性の向上を図りつつ、品質不良の発生を防ぐことができる。   Therefore, in the present invention, as shown in FIG. 11, the heat storage tank temperature detection means 50 is attached to the outside of the heat storage tank 32, and the temperature detected by the heat storage tank temperature detection means 50 is detected by the outside air temperature detection means 52. The temperature of the heat storage material 36 is estimated based on the corrected temperature. By comprising in this way, while being able to obtain the temperature of the thermal storage material 36 reliably, generation | occurrence | production of a quality defect can be prevented, aiming at the improvement of productivity.

さらに詳述すると、図16乃至図19は、外気温度に基づく蓄熱材36の実際の温度(実線)と蓄熱槽温度検出手段50で検出された温度(破線)とを示しており、前者と後者は一致しない場合が多いことが分かる。   More specifically, FIGS. 16 to 19 show the actual temperature (solid line) of the heat storage material 36 based on the outside air temperature and the temperature (broken line) detected by the heat storage tank temperature detection means 50, the former and the latter. It can be seen that often does not match.

本願発明者らは、これらの実験結果に基づいて、蓄熱槽温度検出手段50で検出される温度Tcを外気温度検出手段52で検出された温度Toutに基づいて次の式を用いて補正することで、この補正値が蓄熱材36の実際の温度と略一致することを見いだした。   Based on these experimental results, the inventors of the present application correct the temperature Tc detected by the heat storage tank temperature detecting means 50 using the following formula based on the temperature Tout detected by the outside air temperature detecting means 52. Thus, it was found that this correction value substantially coincides with the actual temperature of the heat storage material 36.

補正温度=Tc+(Tc−Tout)×α(α=0.15)
この式を使って算出した補正温度が、図16乃至図19のグラフに一点鎖線で示されており、一点鎖線で示された補正温度と実線で示される蓄熱材36の実際の温度が略一致しているのが分かる。なお、αは上記値に限定されることはなく、実験等に応じてその冷凍サイクルや蓄熱槽温度検出手段の精度のバラツキを考慮した最適な値に変更できる。
Correction temperature = Tc + (Tc−Tout) × α (α = 0.15)
The correction temperature calculated using this equation is indicated by a one-dot chain line in the graphs of FIGS. 16 to 19, and the correction temperature indicated by the one-dot chain line and the actual temperature of the heat storage material 36 indicated by the solid line are substantially equal. You can see that you are doing. In addition, (alpha) is not limited to the said value, According to experiment etc., it can change to the optimal value which considered the variation in the precision of the refrigerating cycle or the thermal storage tank temperature detection means.

また、通常、蓄熱槽32には蓄熱材36が十分充填されているが、蓄熱槽32の割れや蓄熱材36の蒸発により蓄熱材36が減少すると、除霜運転時、蓄熱材36の温度低下率(温度勾配)が緩慢になることから、蓄熱槽温度検出手段50で検出される温度Tcに基づいてエラー判定を行うようにしている。   Usually, the heat storage tank 32 is sufficiently filled with the heat storage material 36. However, if the heat storage material 36 decreases due to cracking of the heat storage tank 32 or evaporation of the heat storage material 36, the temperature of the heat storage material 36 decreases during the defrosting operation. Since the rate (temperature gradient) becomes slow, error determination is performed based on the temperature Tc detected by the heat storage tank temperature detection means 50.

図20は、蓄熱槽32内の蓄熱材36の充填量が十分な場合と、不十分な場合の除霜運転後の蓄熱材36の温度変化を示しており、特に充填量が100%の場合(実線)と50%の場合(破線)における蓄熱槽温度検出手段50で検出される温度Tcの変化を示している。   FIG. 20 shows the temperature change of the heat storage material 36 after the defrosting operation when the filling amount of the heat storage material 36 in the heat storage tank 32 is sufficient and when it is insufficient, especially when the filling amount is 100%. The change of the temperature Tc detected by the thermal storage tank temperature detection means 50 in the case of (solid line) and 50% (broken line) is shown.

図20のグラフから分かるように、除霜運転開始後、所定時間の温度低下率(温度勾配)は蓄熱材36の充填量が多いほど大きく、本発明においては、蓄熱槽温度検出手段50で検出された温度Tcの所定時間の低下率が所定の低下率より小さい場合には、蓄熱槽32に収容された蓄熱材36が不足していると判定している。   As can be seen from the graph of FIG. 20, the temperature decrease rate (temperature gradient) for a predetermined time after the start of the defrosting operation increases as the filling amount of the heat storage material 36 increases, and in the present invention, the temperature is detected by the heat storage tank temperature detection means 50. When the decrease rate of the temperature Tc that has been performed for a predetermined time is smaller than the predetermined decrease rate, it is determined that the heat storage material 36 accommodated in the heat storage tank 32 is insufficient.

具体的には、蓄熱二方弁42の開弁から所定時間(例えば、3〜4分)の蓄熱槽32の温度低下率を算出し、この温度低下率が所定値(例えば、2℃/分)未満の場合に警告を出すようにしており、警告は、室内機4や室内機4へ運転を指示するリモコン(図示せず)に設けたランプの点滅や文字情報、警告音等により、視覚的あるいは聴覚的に居住者に知らせることができる。   Specifically, the temperature decrease rate of the heat storage tank 32 for a predetermined time (for example, 3 to 4 minutes) from the opening of the heat storage two-way valve 42 is calculated, and this temperature decrease rate is a predetermined value (for example, 2 ° C./minute). ), A warning is displayed by blinking a lamp, text information, a warning sound, etc. provided on the indoor unit 4 or a remote controller (not shown) for instructing the indoor unit 4 to operate. Residents can be informed or audible.

また、この警告は、蓄熱除霜運転が所定時間の経過により終了した場合(図8のステップS9がYESの場合)と組み合わせて行うようにしてもよい。   In addition, this warning may be performed in combination with the case where the heat storage defrosting operation is terminated after a predetermined time has elapsed (when step S9 in FIG. 8 is YES).

なお、蓄熱槽温度検出手段50で検出される温度は、蓄熱材不足の判定手段として使用され、蓄熱材不足は、蓄熱槽32内の蓄熱材36のレベル低下となって現れるので、蓄熱槽温度検出手段50は蓄熱槽32の高さ方向の中心より上方に取り付けるのが好ましい。   The temperature detected by the heat storage tank temperature detection means 50 is used as a determination means for the shortage of the heat storage material, and the shortage of the heat storage material appears as a decrease in the level of the heat storage material 36 in the heat storage tank 32. The detection means 50 is preferably attached above the center of the heat storage tank 32 in the height direction.

本発明に係る空気調和機は、蓄熱装置内の有限の蓄熱量を用いて効率的な除霜運転を行うことができるので、冬季に着霜のおそれがある他の冷凍サイクル装置にも有効利用することができる。   Since the air conditioner according to the present invention can perform an efficient defrosting operation using a finite amount of heat stored in the heat storage device, it is also effectively used for other refrigeration cycle devices that may be frosted in winter. can do.

2 室外機
4 室内機
6 圧縮機
8 四方弁
10 ストレーナ
12 膨張弁
14 室外熱交換器
16 室内熱交換器
18 冷媒配管
26 アキュームレータ
30 除霜二方弁
32 蓄熱槽
34 蓄熱熱交換器
36 蓄熱材
42 蓄熱二方弁
44 室外熱交換器入口温度検出手段
46 室外熱交換器出口温度検出手段
48 室内熱交換器温度検出手段
50 蓄熱槽温度検出手段
52 外気温度検出手段
54 コントローラ、
56 タイマー
58 圧縮機温度検出手段
60 圧縮機吐出温度検出手段
DESCRIPTION OF SYMBOLS 2 Outdoor unit 4 Indoor unit 6 Compressor 8 Four-way valve 10 Strainer 12 Expansion valve 14 Outdoor heat exchanger 16 Indoor heat exchanger 18 Refrigerant piping 26 Accumulator 30 Defrosting two-way valve 32 Thermal storage tank 34 Thermal storage heat exchanger 36 Thermal storage material 42 Heat storage two-way valve 44 Outdoor heat exchanger inlet temperature detection means 46 Outdoor heat exchanger outlet temperature detection means 48 Indoor heat exchanger temperature detection means 50 Heat storage tank temperature detection means 52 Outside air temperature detection means 54 Controller,
56 timer 58 compressor temperature detection means 60 compressor discharge temperature detection means

Claims (3)

暖房運転時に、圧縮機、四方弁、室内熱交換器、膨張弁、室外熱交換器、前記四方弁の順に冷媒が流れるように接続した冷凍サイクルと、前記室外熱交換器の入口温度を検出する室外熱交換器入口温度検出手段と、前記圧縮機で発生した熱を蓄積する蓄熱材と蓄熱熱交換器を内蔵する蓄熱槽と、前記室内熱交換器と前記膨張弁との間と前記四方弁と前記圧縮機の吸入口との間を接続する蓄熱バイパス回路と、前記膨張弁と前記室外熱交換器との間と前記圧縮機の吐出口と前記四方弁との間を接続する除霜バイパス回路とを備えた空気調和機であって、前記蓄熱バイパス回路に前記蓄熱熱交換器と蓄熱二方弁とを配設し、前記除霜バイパス回路に除霜二方弁を配設し、前記室外熱交換器入口温度検出手段で除霜開始温度を検出すると、前記蓄熱二方弁と前記除霜二方弁とを開き、暖房運転を継続しながら除霜運転を行うとともに、前記除霜運転が終了後の前記圧縮機の周波数は、前記除霜運転が開始する前の前記圧縮機の周波数に設定することを特徴とする空気調和機。 During heating operation, a compressor, a four-way valve, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, a refrigeration cycle connected so that refrigerant flows in this order, and an inlet temperature of the outdoor heat exchanger are detected Outdoor heat exchanger inlet temperature detection means, a heat storage material that stores heat generated by the compressor, a heat storage tank that contains a heat storage heat exchanger, a space between the indoor heat exchanger and the expansion valve, and the four-way valve Between the expansion valve and the outdoor heat exchanger, and between the discharge port of the compressor and the four-way valve. An air conditioner comprising a circuit, wherein the heat storage heat exchanger and the heat storage two-way valve are disposed in the heat storage bypass circuit, and a defrost two-way valve is disposed in the defrost bypass circuit, When the defrosting start temperature is detected by the outdoor heat exchanger inlet temperature detection means, the heat storage While opening the direction valve and the two-way defrosting valve and performing the defrosting operation while continuing the heating operation, the frequency of the compressor after the defrosting operation is completed is the frequency before the defrosting operation is started. The air conditioner is set to a frequency of the compressor. 暖房運転を継続しながら除霜運転を開始するときは、前記除霜二方弁の開制御から所定時間経過後に、前記蓄熱二方弁を開制御することを特徴とする請求項1に記載の空気調和機。 2. When the defrosting operation is started while continuing the heating operation, the heat storage two-way valve is controlled to open after a lapse of a predetermined time from the opening control of the defrosting two-way valve. Air conditioner. 室内熱交換器の温度を検出する室内熱交換器温度検出手段を備え、前記室内熱交換器温度検出手段で検出された温度が所定温度を超えている場合は、前記圧縮機の運転周波数を減少させる一方、前記室内熱交換器温度検出手段で検出された温度が所定温度未満の場合は、前記圧縮機の運転周波数を増加させるようにしたことを特徴とする請求項1または2に記載の空気調和機。 An indoor heat exchanger temperature detecting means for detecting the temperature of the indoor heat exchanger is provided, and when the temperature detected by the indoor heat exchanger temperature detecting means exceeds a predetermined temperature, the operating frequency of the compressor is decreased. 3. The air according to claim 1, wherein when the temperature detected by the indoor heat exchanger temperature detecting means is lower than a predetermined temperature, the operating frequency of the compressor is increased. Harmony machine.
JP2010221157A 2010-09-30 2010-09-30 Air conditioner Pending JP2012077942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010221157A JP2012077942A (en) 2010-09-30 2010-09-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010221157A JP2012077942A (en) 2010-09-30 2010-09-30 Air conditioner

Publications (1)

Publication Number Publication Date
JP2012077942A true JP2012077942A (en) 2012-04-19

Family

ID=46238413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010221157A Pending JP2012077942A (en) 2010-09-30 2010-09-30 Air conditioner

Country Status (1)

Country Link
JP (1) JP2012077942A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809255A (en) * 2012-08-22 2012-12-05 海尔集团公司 Air conditioner defrosting system and defrosting method
CN103423927A (en) * 2012-05-15 2013-12-04 约克广州空调冷冻设备有限公司 Defrosting method used for air source heat pump system
CN103575004A (en) * 2012-08-01 2014-02-12 青岛海尔空调电子有限公司 Defrosting method and defrosting device for air conditioner
CN104567149A (en) * 2013-10-16 2015-04-29 海尔集团公司 Low-temperature heat-storage defrosting-assisting air conditioner and control method
CN105588220A (en) * 2014-12-29 2016-05-18 海信(山东)空调有限公司 Outdoor unit, air conditioning system and defrosting method of air conditioning system
JP2016121824A (en) * 2014-12-24 2016-07-07 株式会社富士通ゼネラル Heat pump type heating water heater
CN112665116A (en) * 2019-10-16 2021-04-16 广东美的制冷设备有限公司 Multi-online defrosting method and device, multi-online air conditioning system and readable storage medium
CN114413415A (en) * 2021-12-15 2022-04-29 珠海格力电器股份有限公司 Air conditioner defrosting control method and controller thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175976A (en) * 1984-02-21 1985-09-10 松下電器産業株式会社 Defroster for air conditioner
JPH0518586A (en) * 1991-07-10 1993-01-26 Toshiba Corp Air conditioner
JP2008101819A (en) * 2006-10-18 2008-05-01 Hitachi Appliances Inc Air conditioner
JP2008224070A (en) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd Heat pump water heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175976A (en) * 1984-02-21 1985-09-10 松下電器産業株式会社 Defroster for air conditioner
JPH0518586A (en) * 1991-07-10 1993-01-26 Toshiba Corp Air conditioner
JP2008101819A (en) * 2006-10-18 2008-05-01 Hitachi Appliances Inc Air conditioner
JP2008224070A (en) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd Heat pump water heater

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103423927A (en) * 2012-05-15 2013-12-04 约克广州空调冷冻设备有限公司 Defrosting method used for air source heat pump system
CN103423927B (en) * 2012-05-15 2016-05-11 约克广州空调冷冻设备有限公司 For the Defrost method of air source heat pump system
CN103575004A (en) * 2012-08-01 2014-02-12 青岛海尔空调电子有限公司 Defrosting method and defrosting device for air conditioner
CN102809255A (en) * 2012-08-22 2012-12-05 海尔集团公司 Air conditioner defrosting system and defrosting method
CN104567149A (en) * 2013-10-16 2015-04-29 海尔集团公司 Low-temperature heat-storage defrosting-assisting air conditioner and control method
JP2016121824A (en) * 2014-12-24 2016-07-07 株式会社富士通ゼネラル Heat pump type heating water heater
CN105588220A (en) * 2014-12-29 2016-05-18 海信(山东)空调有限公司 Outdoor unit, air conditioning system and defrosting method of air conditioning system
CN112665116A (en) * 2019-10-16 2021-04-16 广东美的制冷设备有限公司 Multi-online defrosting method and device, multi-online air conditioning system and readable storage medium
CN114413415A (en) * 2021-12-15 2022-04-29 珠海格力电器股份有限公司 Air conditioner defrosting control method and controller thereof

Similar Documents

Publication Publication Date Title
JP5108923B2 (en) Air conditioner
JP2012057869A (en) Air conditioner
JP5144728B2 (en) Air conditioner
JP2012077942A (en) Air conditioner
JP5113447B2 (en) Control method for heat pump water heater
JP5095295B2 (en) Water heater
JP5634071B2 (en) Air conditioner and defrosting operation method of air conditioner
EP2940407B1 (en) Heat pump hot water heater
JP6137461B2 (en) Air conditioner
JP2013104606A (en) Refrigeration cycle apparatus and hot water producing apparatus
EP2437009B1 (en) Air conditioner
JP5375904B2 (en) Air conditioner
JP2011202938A (en) Refrigeration cycle device
JP2013104623A (en) Refrigeration cycle device and air conditioner with the same
JP5293714B2 (en) Air conditioner
JP5440466B2 (en) Air conditioner
JP2010032063A (en) Outdoor unit and heat pump device
JP5218510B2 (en) Air conditioner
JP5287821B2 (en) Air conditioner
JP5287820B2 (en) Air conditioner
JP2007333340A (en) Heat pump type hot water supply apparatus
JP5307096B2 (en) Air conditioner
JP5310696B2 (en) Air conditioner
CN102782423B (en) Refrigeration cycle device
JP2012037130A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514