JP2008224070A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2008224070A
JP2008224070A JP2007059434A JP2007059434A JP2008224070A JP 2008224070 A JP2008224070 A JP 2008224070A JP 2007059434 A JP2007059434 A JP 2007059434A JP 2007059434 A JP2007059434 A JP 2007059434A JP 2008224070 A JP2008224070 A JP 2008224070A
Authority
JP
Japan
Prior art keywords
refrigerant
hot water
heat exchanger
bypass circuit
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007059434A
Other languages
Japanese (ja)
Other versions
JP5034569B2 (en
Inventor
Kazuto Nakatani
和人 中谷
Shinji Watanabe
伸二 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007059434A priority Critical patent/JP5034569B2/en
Publication of JP2008224070A publication Critical patent/JP2008224070A/en
Application granted granted Critical
Publication of JP5034569B2 publication Critical patent/JP5034569B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump water heater capable of performing a defrosting operation while continuing a hot water supplying operation. <P>SOLUTION: This heat pump water heater comprises a heat pump-type refrigerant cycle, a water-refrigerant heat exchanger 16 exchanging heat with a radiator 5, a first bypass circuit 11 connecting a compressor 4 and the radiator 5, and a pressure reducing means 6 and an air-refrigerant heat exchanger 7, and a second bypass circuit 13 connecting the pressure reducing means 6 and the radiator 5 and the compressor 4 and the air-refrigerant heat exchanger 7 in a state that they are disposed in an integrated housing 1. The first bypass circuit is provided with a first two-way valve 12, and the second bypass circuit is provided with a second two-way valve 15, and a refrigerant heating device 14 for heating the refrigerant by a heater 14a in series. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ヒートポンプ方式のヒートポンプ給湯機に関するものであり、特に給湯水の加熱運転に際して、給湯水の加熱運転を行いながら、除霜運転を行うことができるヒートポンプ給湯機に関するものである。   The present invention relates to a heat pump type heat pump water heater, and more particularly to a heat pump water heater capable of performing a defrosting operation while performing a hot water heating operation during a hot water heating operation.

従来、給湯機としては、ガスや石油を燃料として用い、その燃焼熱で水道水を加熱する給湯機が使用されてきた。   Conventionally, hot water heaters that use gas or petroleum as fuel and heat tap water with the combustion heat have been used as hot water heaters.

これらは、速湯性に優れているという利点がある半面、ガス、石油といった燃料が必要でその供給が不可欠であること、燃焼後の排気ガスが大気に放出され大気汚染を招くこと、燃焼時の音が大きいことなどの課題があった。   These have the advantage of being excellent in hot water properties, but on the other hand, fuel such as gas and oil is necessary and its supply is indispensable, exhaust gas after combustion is released into the atmosphere, causing air pollution, There were problems such as loud sounds.

特に近年増えている、エネルギー源を全て電気で行うというオール電化の住宅やマンションでは、燃料を供給する方法がないため、使用できないケースも増えてきている。   Especially in all-electric houses and condominiums where all energy sources are electricity, which has been increasing in recent years, there is no way to supply fuel, so there are more cases where it cannot be used.

そこで、貯湯タンクを備えた貯湯式のヒートポンプ式給湯機が開発されている。これは、燃焼による給湯機の問題を解決し、オール電化の住宅、マンションでも新たなインフラ整備を必要としないで手軽に設置することができ、ヒートポンプ式であるため、入力に対する能力は3倍以上確保することが可能となり、熱効率が良く、運転に際しては安価な深夜電力を用いて、貯湯タンクに高温の湯を貯めることが可能となり、ランニングコストも安価となるなどと言う特長を持ち、徐々に普及してきている。   Accordingly, a hot water storage type heat pump type hot water heater equipped with a hot water storage tank has been developed. This solves the problem of hot water heaters due to combustion, and can be installed easily in all-electric homes and condominiums without the need for new infrastructure development. It is possible to ensure high thermal efficiency, and it is possible to store hot water in a hot water storage tank using inexpensive late-night power for operation, and the running cost is gradually reduced. It has become widespread.

このような給湯機として、図4とともに説明する。   Such a water heater will be described with reference to FIG.

このヒートポンプ式給湯機は、図4に示すように、給湯サイクル71と冷媒サイクル72を備え、それぞれ別の本体ユニットである。給湯サイクル71を含む貯湯ユニットと冷媒サイクル72を含むヒートポンプユニットの二箱に入れられている。   As shown in FIG. 4, the heat pump hot water heater includes a hot water supply cycle 71 and a refrigerant cycle 72, which are separate main body units. Two boxes of a hot water storage unit including a hot water supply cycle 71 and a heat pump unit including a refrigerant cycle 72 are provided.

この給湯サイクル71は、底壁に設けられた給水口73と上壁に設けられた給湯口74を有する貯湯タンク75と、水熱交換路76と、水循環用ポンプ77とを備え、水熱交換路76と水循環用ポンプ77が、貯湯タンク75の取水口78と湯入口79とを連結する循環路80に介設されている。   This hot water supply cycle 71 includes a hot water storage tank 75 having a hot water supply port 73 provided on the bottom wall and a hot water supply port 74 provided on the upper wall, a water heat exchange path 76, and a water circulation pump 77, and performs water heat exchange. A passage 76 and a water circulation pump 77 are provided in a circulation passage 80 that connects a water intake 78 and a hot water inlet 79 of the hot water storage tank 75.

また、冷媒サイクル72は、圧縮機81と、熱交換路76を構成する水−冷媒熱交換器82と、減圧機構83と、冷媒蒸発器である空気−冷媒熱交換器84とを順に冷媒通路85で接続して構成する冷媒サイクルを備える。   In addition, the refrigerant cycle 72 includes a compressor passage, a water-refrigerant heat exchanger 82 that constitutes the heat exchange path 76, a decompression mechanism 83, and an air-refrigerant heat exchanger 84 that is a refrigerant evaporator in order. The refrigerant | coolant cycle comprised by connecting with 85 is provided.

更に、給湯サイクル71と冷媒サイクル72は、室外側に配設されている連絡配管86,87にて連結される。そして、給水口73から給水し、水循環用ポンプ77にて循環路78に流出させた低温水を水−冷媒熱交換器82(即ち、水熱交換路76)で沸き上げ、給湯口74から出湯する構成となっている(例えば、特許文献1参照)。   Further, the hot water supply cycle 71 and the refrigerant cycle 72 are connected by connecting pipes 86 and 87 arranged on the outdoor side. Then, the low-temperature water supplied from the water supply port 73 and discharged to the circulation path 78 by the water circulation pump 77 is boiled by the water-refrigerant heat exchanger 82 (that is, the water heat exchange path 76) and discharged from the hot water supply port 74. (For example, refer patent document 1).

そして、このヒートポンプ給湯機は、夜間の安価な電力を利用してエネルギー効率の良い冷媒サイクル(ヒートポンプ回路)72を運転し、貯湯タンク75内の水を水順間ポンプ77で循環させながら水−冷媒熱交換器82で所定の湯温になるまで温め、所定の湯温に達したことを検知して、冷媒サイクル72の運転を停止するようにしている。   This heat pump water heater operates an energy efficient refrigerant cycle (heat pump circuit) 72 using inexpensive electric power at night, and circulates water in the hot water storage tank 75 with a water flow pump 77 while water- The refrigerant heat exchanger 82 warms up to a predetermined hot water temperature, detects that the predetermined hot water temperature has been reached, and stops the operation of the refrigerant cycle 72.

通常給湯口74で湯を使用する際には、貯湯タンク75内の湯温より低温の水道水と混合して、使用者の所望する適切な温度にして、温水を供給することになるので、貯湯タンク75に貯湯する湯の温度はできるだけ高くする方が良く、それにより温度を下げるために加える水道水の量を多くして、貯湯タンク75から取り出す湯の量を少なくするようにして、湯切れなどの不具合が生じにくいようにしている。   When hot water is used at the normal hot water supply port 74, it is mixed with tap water having a temperature lower than the hot water temperature in the hot water storage tank 75 to obtain an appropriate temperature desired by the user. The temperature of the hot water stored in the hot water storage tank 75 should be as high as possible, thereby increasing the amount of tap water added to lower the temperature and reducing the amount of hot water removed from the hot water storage tank 75. It is designed to prevent problems such as cutting.

ただし、この冷媒サイクルにおいて、初冬などの外気温度が低く、比較的多湿の環境下で運転を行うと、外気と熱交換する冷媒蒸発器である空気−冷媒熱交換器84に着霜が発生するため、着霜した霜を取り除くための除霜運転が必要となる。その除霜方法としては、いわゆるホットガスバイパス方式と呼ばれているもの(例えば、特許文献2参照)と共に、図5に示すような、冷媒サイクルに冷媒加熱手段を設けると共に、除霜運転時に冷媒加熱手段にて冷媒の加熱を行うことにより、除霜を行うものが提案されている(例えば、特許文献3参照)。   However, in this refrigerant cycle, when the outside air temperature is low, such as in early winter, and operation is performed in a relatively humid environment, frost formation occurs in the air-refrigerant heat exchanger 84 that is a refrigerant evaporator that exchanges heat with the outside air. Therefore, a defrosting operation for removing the frost that has formed frost is required. As the defrosting method, a so-called hot gas bypass method (see, for example, Patent Document 2) and a refrigerant heating means are provided in the refrigerant cycle as shown in FIG. The thing which defrosts by heating a refrigerant | coolant with a heating means is proposed (for example, refer patent document 3).

これは、冷媒サイクル72の低圧側に冷媒加熱ヒータ88を設けるとともに、制御装置89は、除霜運転時に冷媒加熱ヒータ88にて冷媒の加熱を行っている。水−冷媒熱交換器82の熱容量によって初期的には高温冷媒が温度低下してしまい除霜能力が十分確保されない場合があるが、そこでこの高温側からの冷媒の熱エネルギーに加え、低圧側に冷媒加熱ヒータ88などの冷媒加熱手段を設けて、冷媒を直接加熱することにより、除霜能力を格段に向上させて除霜時間を短縮しようというものである。
特開2003−222392号公報 特公平7−99297号公報 特開2005−180869号公報
This is provided with a refrigerant heater 88 on the low-pressure side of the refrigerant cycle 72, and the controller 89 heats the refrigerant with the refrigerant heater 88 during the defrosting operation. The heat capacity of the water-refrigerant heat exchanger 82 may initially cause the temperature of the high-temperature refrigerant to drop, so that sufficient defrosting capability may not be ensured. By providing a refrigerant heating means such as the refrigerant heater 88 and directly heating the refrigerant, the defrosting capability is remarkably improved and the defrosting time is shortened.
JP 2003-222392 A Japanese Examined Patent Publication No. 7-99297 JP 2005-180869 A

しかしながら、上記特許文献1、特許文献2の構成では、冷媒サイクル72の空気−冷媒熱交換器84に着霜した場合には、除霜するまでに多くの時間を要することとなり、貯湯タンク75の残湯量が減じたい際に、除霜運転に入った場合は、貯湯タンク75から給湯できないために、給湯運転を停止せざるを得ないという課題を有している。   However, in the configurations of Patent Document 1 and Patent Document 2, when the air-refrigerant heat exchanger 84 of the refrigerant cycle 72 is frosted, it takes a long time to defrost. When the defrosting operation is started when the amount of remaining hot water is desired to be reduced, the hot water supply operation cannot be performed because the hot water cannot be supplied from the hot water storage tank 75.

また、特許文献3の構成でも同様に、除霜運転に入ると、減圧機構83である電動膨張弁をほぼ全開とし、さらに水循環用ポンプ77を停止させ、水熱交換器82での熱交換を抑える。それから圧縮機81の回転数を調整する。それにより、高温のままの冷媒が減圧装置83で減圧されて、空気熱交換器(蒸発器)へ送られ、除霜が行われる。   Similarly, in the configuration of Patent Document 3, when the defrosting operation is started, the electric expansion valve that is the decompression mechanism 83 is almost fully opened, the water circulation pump 77 is stopped, and the heat exchange in the water heat exchanger 82 is performed. suppress. Then, the rotation speed of the compressor 81 is adjusted. Thereby, the refrigerant | coolant with high temperature is pressure-reduced with the decompression device 83, it sends to an air heat exchanger (evaporator), and defrosting is performed.

その際に、冷媒加熱ヒータ88で冷媒を加熱して、除霜能力を高めているものである。   In that case, the refrigerant | coolant is heated with the refrigerant | coolant heater 88, and the defrosting capability is improved.

ところが、水熱交換器82での熱交換を抑えるために、水循環ポンプ77を停止させているために、貯湯タンク75の残湯量が減じた際に、除霜運転に入った場合は、貯湯タンク75から給湯できないために、給湯運転を停止せざるを得ないという課題を有している。   However, in order to suppress heat exchange in the water heat exchanger 82, the water circulation pump 77 is stopped. Therefore, when the defrosting operation is started when the remaining hot water amount in the hot water storage tank 75 is reduced, the hot water storage tank Since hot water cannot be supplied from 75, the hot water supply operation has to be stopped.

本発明は、このような従来の課題を解決するものであり、冷媒サイクルが簡易なバイパス回路で構成でき、除霜を短時間で行うことができるとともに、貯湯タンクの残湯量がかなり減じている場合にも、給湯運転を継続しながら、除霜運転を実施できるヒートポンプ給湯機を提供することを目的とする。   The present invention solves such a conventional problem, and the refrigerant cycle can be configured with a simple bypass circuit, defrosting can be performed in a short time, and the amount of remaining hot water in the hot water storage tank is considerably reduced. Even in this case, an object is to provide a heat pump water heater capable of performing the defrosting operation while continuing the hot water supply operation.

前記従来の課題を解決するために、本発明のヒートポンプ給湯機は、圧縮機、放熱器、減圧手段および空気−冷媒熱交換器を順次接続して閉回路を構成し、冷媒を循環させるヒートポンプ式冷媒サイクルと、前記放熱器と熱交換を行う水−冷媒熱交換器と、前記圧縮機と前記放熱器の間と、前記減圧手段と前記空気−冷媒熱交換器の間を連結する第1バイパス回路と、前記減圧手段と前記放熱器の間と、前記圧縮機と前記空気−冷媒熱交換器の間を連結する第2バイパス回路を設け、前記第1バイパス回路には第1二方弁を設け、前記第2バイパス回路には第2二方弁と、ヒータにより加熱する冷媒加熱装置を直列に設け、前記空気−冷媒熱交換器の除霜を行う際には、前記第1バイパス回路の二方弁を開放して前記空気−冷媒熱交換器に冷媒を通過させる第1バイパス回路運転運転させ、その後に、前記第2バイパス回路の二方弁を開放して、前記冷媒加熱装置で加熱された冷媒を前記圧縮機の吸入側に流す第2バイパス回路運転を行うことを特徴とするものである。   In order to solve the above-described conventional problems, a heat pump water heater of the present invention is a heat pump type in which a compressor, a radiator, a decompression unit, and an air-refrigerant heat exchanger are sequentially connected to form a closed circuit and the refrigerant is circulated. A first bypass connecting the refrigerant cycle, a water-refrigerant heat exchanger for exchanging heat with the radiator, the compressor and the radiator, and the pressure reducing means and the air-refrigerant heat exchanger. A circuit, a second bypass circuit for connecting the decompression means and the radiator, and between the compressor and the air-refrigerant heat exchanger are provided, and the first bypass circuit includes a first two-way valve. The second bypass circuit is provided with a second two-way valve and a refrigerant heating device heated by a heater in series, and when the air-refrigerant heat exchanger is defrosted, Open the two-way valve to cool the air-refrigerant heat exchanger. A second bypass circuit for operating the first bypass circuit for allowing the refrigerant to pass, and then opening the two-way valve of the second bypass circuit to flow the refrigerant heated by the refrigerant heating device to the suction side of the compressor It is characterized by driving.

本発明によれば、冷媒サイクルが簡易なバイパス回路で構成でき、除霜を短時間で行うことができるとともに、貯湯タンクの残湯量がかなり減じている場合にも、給湯運転を継続しながら、除霜運転を実施することができ、使用者に対して、使用継続性に優れたヒートポンプ給湯機を提供できると共に、湯切れの心配がなくなるので貯湯タンクの容量を小さくすることが可能となり、コンパクトな本体構成とすることができる。   According to the present invention, the refrigerant cycle can be configured with a simple bypass circuit, defrosting can be performed in a short time, and even when the amount of remaining hot water in the hot water storage tank is considerably reduced, while continuing the hot water supply operation, A defrosting operation can be performed, and a heat pump water heater with excellent continuity of use can be provided to the user, and the capacity of the hot water storage tank can be reduced because there is no fear of running out of hot water. The main body configuration can be obtained.

第1の発明は、圧縮機、放熱器、減圧手段および空気−冷媒熱交換器を順次接続して閉回路を構成し、冷媒を循環させるヒートポンプ式冷媒サイクルと、前記放熱器と熱交換を行う水−冷媒熱交換器と、前記圧縮機と前記放熱器の間と、前記減圧手段と前記空気−冷媒熱交換器の間を連結する第1バイパス回路と、前記減圧手段と前記放熱器の間と、前記圧縮機と前記空気−冷媒熱交換器の間を連結する第2バイパス回路を設け、前記第1バイパス回路には第1二方弁を設け、前記第2バイパス回路には、第2二方弁と、冷媒加熱装置を直列に設けたことを特徴とするものである。   In the first invention, a compressor, a radiator, a decompression means, and an air-refrigerant heat exchanger are sequentially connected to form a closed circuit, and a heat pump type refrigerant cycle for circulating the refrigerant and heat exchange with the radiator are performed. A water-refrigerant heat exchanger; a first bypass circuit connecting between the compressor and the radiator; a pressure reducing means and the air-refrigerant heat exchanger; and between the pressure reducing means and the radiator. And a second bypass circuit that connects between the compressor and the air-refrigerant heat exchanger, a first two-way valve is provided in the first bypass circuit, and a second bypass circuit is provided in the second bypass circuit. The two-way valve and the refrigerant heating device are provided in series.

これにより、前記空気−冷媒熱交換器の除霜を行う際には、前記第1バイパス回路の二方弁を開放して前記空気−冷媒熱交換器に冷媒を通過させる第1バイパス回路運転運転と共に、前記第2バイパス回路の二方弁を開放して、前記冷媒加熱装置で加熱された冷媒を前記圧縮機の吸入側に流す第2バイパス回路運転を行うことが可能となり、給湯運転を行ないながら除霜運転を実施することができる。   Thereby, when performing defrosting of the air-refrigerant heat exchanger, the first bypass circuit operation operation of opening the two-way valve of the first bypass circuit and allowing the refrigerant to pass through the air-refrigerant heat exchanger. At the same time, it is possible to perform the second bypass circuit operation in which the two-way valve of the second bypass circuit is opened and the refrigerant heated by the refrigerant heating device flows to the suction side of the compressor, and the hot water supply operation is performed. The defrosting operation can be carried out.

そのため、貯湯タンクの残湯量がかなり減じている場合にも、給湯運転を継続しながら、除霜運転を実施できることにより、貯湯タンクの容量を小さくすることが可能となり、ひいては筐体を小さくすることにより、設置性の大幅な向上を図ることができる。また、冷媒サイクル中全体冷媒の一部を除霜用に利用することにより、冷媒加熱装置に極端に多くの冷媒が流れないことから、冷媒加熱装置をコンパクトにすることができ、合理化を図ることができる。   Therefore, even when the amount of hot water remaining in the hot water storage tank is considerably reduced, it is possible to reduce the capacity of the hot water storage tank by reducing the capacity of the hot water storage tank by allowing the defrosting operation to be performed while continuing the hot water supply operation. Thus, it is possible to greatly improve the installation property. Also, by utilizing a part of the whole refrigerant for the defrosting during the refrigerant cycle, an extremely large amount of refrigerant does not flow to the refrigerant heating device, so that the refrigerant heating device can be made compact and rationalized. Can do.

第2の発明は、第1の発明のヒートポンプ給湯機において、前記空気−冷媒熱交換器の除霜を行う際には、前記圧縮機の回転数を可変しつつ、前記第1バイパス回路の第1二方弁を開放して前記空気−冷媒熱交換器に冷媒を通過させる第1バイパス回路運転運転を行い、その後、任意の時間後に、前記第2バイパス回路の二方弁を開放して、前記冷媒加熱装置で加熱された冷媒を前記圧縮機の吸入側に流す第2バイパス回路運転を行う運転をすることを特徴とするものである。   According to a second invention, in the heat pump water heater of the first invention, when the air-refrigerant heat exchanger is defrosted, the number of rotations of the compressor is changed, and the first bypass circuit of the first bypass circuit is changed. 1 open the two-way valve to perform the first bypass circuit operation operation of passing the refrigerant through the air-refrigerant heat exchanger, and then open the two-way valve of the second bypass circuit after an arbitrary time, An operation is performed to perform a second bypass circuit operation in which the refrigerant heated by the refrigerant heating device flows to the suction side of the compressor.

この構成により、第1のバイパス回路と第2のバイパス回路の二方弁を開放にすると圧縮機の吸入側の圧力が急上昇して、冷媒循環量が増し、圧縮機のオイルが多く吐出してしまうこのときに、第2バイパス回路の二方弁を開放にする運転を一定時間遅らせて、動作させることで、圧縮機の吸入側の低圧上昇を抑え、オイル吐出を最小限にすることで圧縮機の信頼性を高くすることもでき、耐久性に優れたヒートポンプ給湯機とすることもできる。   With this configuration, when the two-way valve of the first bypass circuit and the second bypass circuit is opened, the pressure on the suction side of the compressor rises rapidly, the refrigerant circulation amount increases, and a lot of compressor oil is discharged. At this time, the operation to open the two-way valve of the second bypass circuit is delayed for a certain period of time to operate, thereby suppressing the increase in the low pressure on the suction side of the compressor and compressing the oil by minimizing oil discharge. The reliability of the machine can also be increased, and a heat pump water heater excellent in durability can be obtained.

第3の発明は、第1あるいは第2の発明のヒートポンプ給湯機において、冷媒加熱装置は、電熱線を用いたヒータとしたことを特徴とするものであり、配管構成を簡素化でき、耐久性に優れたヒートポンプ給湯機とすることができる。   A third invention is characterized in that, in the heat pump water heater of the first or second invention, the refrigerant heating device is a heater using a heating wire, the piping configuration can be simplified, and the durability is improved. It can be set as the heat pump water heater excellent in.

第4の発明は、第1〜第3の発明のヒートポンプ給湯機において、前記水−冷媒熱交換器で加熱された温水は、貯湯タンクに貯湯されると共に、前記貯湯タンクを介さずに給湯端末へ直接通水できるようにも構成したことを特徴とするものである。   According to a fourth aspect of the present invention, in the heat pump water heater of the first to third aspects, the hot water heated by the water-refrigerant heat exchanger is stored in a hot water storage tank, and without passing through the hot water storage tank. It is also characterized by being configured to allow direct water flow.

この構成により、水−冷媒熱交換器で暖められた水道水は、貯湯タンクに給湯することができるとともに、一方で貯湯タンクを介さずに蛇口やシャワー等の給湯端末へ直接通水されるので、速湯性に優れ、使い勝手が良く、湯切れの心配もないヒートポンプ給湯機を提供することができる。   With this configuration, the tap water heated by the water-refrigerant heat exchanger can supply hot water to the hot water storage tank and, on the other hand, directly passes through the hot water supply terminal such as a faucet or shower without passing through the hot water storage tank. Therefore, it is possible to provide a heat pump water heater that has excellent quick hot water properties, is easy to use, and does not worry about running out of hot water.

また、運転立ち上がり当初は貯湯タンクから給湯し、圧縮機が最適運転周波数になった後には、ダイレクトに給湯するという瞬間湯沸かし型のヒートポンプ給湯機とすることが可能となり、使用性に優れたヒートポンプ給湯機とすることができる。そして、その際に、給湯運転しながら除霜運転ができることにより、たとえ貯湯タンクの残湯量が減じたときでも、連続で給湯運転が可能となり、使用性を大幅に向上させることができる。   In addition, it is possible to provide an instantaneous water pump type heat pump water heater in which hot water is supplied from a hot water storage tank at the beginning of operation and the compressor reaches the optimal operating frequency, and the hot water supply is excellent in usability. Can be a machine. At that time, by performing the defrosting operation while performing the hot water supply operation, even when the amount of remaining hot water in the hot water storage tank is reduced, the hot water supply operation can be continuously performed, and usability can be greatly improved.

第5の発明は、第1〜第4の発明のヒートポンプ給湯機において、前記ヒートポンプ式冷媒サイクルと、水−冷媒熱交換器と接続され、前記水−冷媒熱交換器で加熱された温水を貯湯する貯湯タンクと、水道水を供給する入水管と、加熱された温水を給湯端末へ通水するように接続した給湯管を備えた給湯サイクルを一体の筐体としたことを特徴とするものである。   According to a fifth invention, in the heat pump water heater of the first to fourth inventions, hot water stored in the water-refrigerant heat exchanger connected to the heat pump refrigerant cycle and the water-refrigerant heat exchanger is stored as hot water. A hot water storage tank, a water supply pipe for supplying tap water, and a hot water supply cycle having a hot water supply pipe connected so as to pass heated hot water to a hot water supply terminal. is there.

この構成により、前記冷媒加熱部と貯湯タンクを近接させることができ、熱損失を減じたままで、効率よく蓄熱体に蓄熱させることが可能となり、省エネ性の向上を図ることができる。   With this configuration, the refrigerant heating unit and the hot water storage tank can be brought close to each other, heat can be efficiently stored in the heat storage body while reducing heat loss, and energy saving can be improved.

第6の発明は、第1〜第5のいずれかの発明のヒートポンプ給湯機において、冷媒として炭酸ガスを用いて構成したものあり、この構成により、高温給湯の際の熱効率を高めるとともに、冷媒が外部に漏れても、地球温暖化に及ぼす影響を、一般的エアコンに用いられているR−410Aの冷媒に比して大幅に低減することができ、環境に優しく、リサイクル性にも優れたヒートポンプ給湯機とすることができる。   According to a sixth aspect of the present invention, in the heat pump water heater of any one of the first to fifth aspects of the present invention, carbon dioxide gas is used as a refrigerant. With this configuration, the thermal efficiency during high-temperature hot water supply is increased, and the refrigerant Even if it leaks to the outside, the effect on global warming can be greatly reduced compared to the R-410A refrigerant used in general air conditioners, and it is environmentally friendly and heat recyclable. It can be a water heater.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の実施の形態における回路構成図を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.
(Embodiment 1)
FIG. 1 is a circuit configuration diagram according to an embodiment of the present invention.

図1に示すように、本実施の形態のヒートポンプ給湯機は、一体の筐体であるヒートポンプ給湯機本体ユニット1内に冷媒サイクル2および貯湯タンク17を含む給湯サイクル3を収納している。   As shown in FIG. 1, the heat pump water heater of the present embodiment accommodates a hot water supply cycle 3 including a refrigerant cycle 2 and a hot water storage tank 17 in a heat pump water heater main body unit 1 that is an integral housing.

冷媒サイクル2には、ヒートポンプ給湯機本体ユニット1内部に配設された圧縮機4と、放熱器5と、例えば電動膨張弁から成る減圧手段6と、冷媒蒸発器である空気−冷媒熱交換器7とが冷媒配管8で環状に接続されて構成されている。   The refrigerant cycle 2 includes a compressor 4 disposed in the heat pump water heater main body unit 1, a radiator 5, a decompression means 6 including, for example, an electric expansion valve, and an air-refrigerant heat exchanger as a refrigerant evaporator. 7 is connected in a ring shape with a refrigerant pipe 8.

また、空気−冷媒熱交換器7に風を当て、蒸発能力を高めるための送風ファン9が設けられている。そして、圧縮機4と放熱器5との間の配管8aと、減圧手段6と空気−冷媒熱交換器7の配管8bを連結する第1バイパス回路11が配されている。そして、この第1バイパス回路11の中途には、第1二方弁12が設けられている。また、圧縮機4と空気−冷媒熱交換器7の間の配管8cと、放熱器5と減圧手段6の間の配管8dを連結する第2バイパス回路13が設けられており、この第2バイパス回路13の中途には、圧縮機4に近い方に冷媒加熱装置14と、第2二方弁15が設けられている。そして、冷媒加熱装置14は、第2バイパス回路13の配管13aを螺旋状にした13bを設け、その螺旋状13bの外周を覆うようなアルミ鋳物を設け、螺旋状13bの近傍部にヒータ14aを配した構成となっている。   In addition, a blower fan 9 is provided to apply air to the air-refrigerant heat exchanger 7 to increase the evaporation capability. And the 1st bypass circuit 11 which connects the piping 8a between the compressor 4 and the heat radiator 5, the decompression means 6, and the piping 8b of the air-refrigerant heat exchanger 7 is arranged. A first two-way valve 12 is provided in the middle of the first bypass circuit 11. Further, a second bypass circuit 13 is provided for connecting the pipe 8c between the compressor 4 and the air-refrigerant heat exchanger 7 and the pipe 8d between the radiator 5 and the decompression means 6, and this second bypass is provided. In the middle of the circuit 13, a refrigerant heating device 14 and a second two-way valve 15 are provided closer to the compressor 4. And the refrigerant | coolant heating apparatus 14 provides 13b which made the piping 13a of the 2nd bypass circuit 13 spiral, provided the aluminum casting which covers the outer periphery of the spiral 13b, and installed the heater 14a in the vicinity of the spiral 13b. The arrangement is arranged.

一方、給湯サイクル3は、放熱器5と熱交換を行って水道水などを温水に変える水−冷媒熱交換器16(例えば、放熱器5と一体形状となっている二重管構造の熱交換器)と、水−冷媒熱交換器16にて得た温水を貯める貯湯タンク17と、貯湯タンク17や水−冷媒熱交換器16に水道水を入水する入水管18と、貯湯タンク17や水−冷媒熱交換器16から温水を蛇口19aやシャワー19bの給湯端末に給湯する給湯管20と、貯湯タンク17内の低温の水を送水する給湯循環水ポンプ21から構成されている。タンク入水管22は、入水管18から水道水を貯湯タンク17に送る配管である。水道水供給管23は、入水管18から放熱器5(水−冷媒熱交換器16)に水道水を直接供給する配管である。   On the other hand, the hot water supply cycle 3 is a water-refrigerant heat exchanger 16 that exchanges heat with the radiator 5 to change tap water or the like into hot water (for example, heat exchange with a double tube structure integrated with the radiator 5). ), A hot water storage tank 17 for storing hot water obtained by the water-refrigerant heat exchanger 16, a water inlet pipe 18 for introducing tap water into the hot water storage tank 17 and the water-refrigerant heat exchanger 16, and a hot water storage tank 17 and water. A hot water supply pipe 20 that supplies hot water from the refrigerant heat exchanger 16 to the hot water supply terminals of the faucet 19a and the shower 19b and a hot water supply circulating water pump 21 that supplies low-temperature water in the hot water storage tank 17 are configured. The tank inlet pipe 22 is a pipe that sends tap water from the inlet pipe 18 to the hot water storage tank 17. The tap water supply pipe 23 is a pipe that directly supplies tap water from the inlet pipe 18 to the radiator 5 (water-refrigerant heat exchanger 16).

熱交給水管24は、貯湯タンク17から水−冷媒熱交換器16に、給湯循環水ポンプ21の運転により、貯湯タンク17内の下方に貯まった低温水を送る配管であり、貯湯管25は、水−冷媒熱交換器16で暖めた水道水を、貯湯タンク17や、元混合弁26に送る配管であり、貯湯タンク側配管25aの途中には貯湯三方弁27が設けられている。   The heat exchange water supply pipe 24 is a pipe that sends low temperature water stored in the hot water storage tank 17 downward by the operation of the hot water supply circulating water pump 21 from the hot water storage tank 17 to the water-refrigerant heat exchanger 16. The hot water is stored in the hot water storage tank 17 and the original mixing valve 26, and a hot water storage three-way valve 27 is provided in the hot water storage tank side pipe 25a.

また、タンク給湯管28は貯湯タンク17から高温水(通常は60℃〜90℃)を元混合弁26へ給湯する配管であり、元混合弁26は、貯湯管25(元混合弁側配管25b)とタンク給湯管28とから来る温水や水を混合させる弁である。また、給湯混合弁29は、元混合弁26を通過した温水と、入水管18から供給される水道水とを混合し、適切な給湯温度を得、蛇口19aやシャワー19bに供給する弁である。   The tank hot water supply pipe 28 is a pipe for supplying hot water (usually 60 ° C. to 90 ° C.) from the hot water storage tank 17 to the original mixing valve 26. The original mixing valve 26 is connected to the hot water storage pipe 25 (original mixing valve side pipe 25b). ) And the tank hot water pipe 28 are mixed with warm water or water. The hot water mixing valve 29 is a valve that mixes the hot water that has passed through the original mixing valve 26 and the tap water supplied from the inlet pipe 18 to obtain an appropriate hot water supply temperature and supplies it to the faucet 19a and the shower 19b. .

そして、給湯混合弁29にて最適温度となった温水が、給湯管20を介して、蛇口19aやシャワー19bに給湯されるのである。   Then, the hot water that has reached the optimum temperature in the hot water supply mixing valve 29 is supplied to the faucet 19a and the shower 19b through the hot water supply pipe 20.

同じく元混合弁26を通過した温水と、入水管18から供給される水道水は、風呂注湯混合弁30で混合され、適切な給湯温度を得、風呂31に注湯する弁である。風呂注湯混合弁30にて最適温度となった温水が、風呂注湯管32を介し、逆流防止弁32aを通過して、風呂31に注湯され、風呂に湯をはることになる。   Similarly, the hot water that has passed through the original mixing valve 26 and the tap water supplied from the water inlet pipe 18 are mixed by the bath pouring mixing valve 30 to obtain an appropriate hot water supply temperature and pouring into the bath 31. The hot water that has reached the optimum temperature in the bath pouring mixing valve 30 passes through the bath pouring pipe 32, passes through the backflow prevention valve 32 a, is poured into the bath 31, and hot water is poured into the bath.

風呂注湯混合弁30から風呂31へと湯が向かう際には風呂熱交換器33を通過することになる。風呂熱交換器33は、風呂31内の湯を追炊きする際に用いる熱交換器であり、風呂31から、浴槽出湯管34aを介して、風呂循環水ポンプ35で風呂から湯を引き込み、その湯と、貯湯タンク17から追炊きポンプ36で引き込んだ貯湯タンク17内の高温水とを熱交換して、浴槽入湯管34bで風呂へ戻すことにより、風呂31の温度を一定に保つ保温運転や、風呂31の湯量を足さなくても湯温を上昇させる追炊き運転を行う。つまり、風呂熱交換器33は、水−水熱交換器となっているわけである。   When hot water flows from the bath pouring hot water mixing valve 30 to the bath 31, it passes through the bath heat exchanger 33. The bath heat exchanger 33 is a heat exchanger that is used when the hot water in the bath 31 is additionally prepared. The hot water is drawn from the bath by the bath circulating water pump 35 from the bath 31 through the bathtub outlet pipe 34a. Heat exchange between the hot water and hot water in the hot water storage tank 17 drawn from the hot water storage tank 17 by the additional pump 36 and returning to the bath through the bathtub hot water pipe 34b allows the temperature of the bath 31 to be kept constant. Even if the amount of hot water in the bath 31 is not increased, the additional cooking operation for raising the hot water temperature is performed. That is, the bath heat exchanger 33 is a water-water heat exchanger.

また、入水流量計37は、入水流量を測定する計器であり、給湯流量計38は給湯流量を測定する計器である。排出弁39は、寒冷地等にて長期間使用しない場合に、凍結防止等でタンク内の水を抜くために用いる弁であり、40aは貯湯タンク17の圧力逃がし弁、40bは貯湯タンク17の缶体保護弁である。   The incoming water flow meter 37 is an instrument that measures the incoming water flow rate, and the hot water supply flow meter 38 is an instrument that measures the hot water flow rate. The discharge valve 39 is a valve used for draining water in the tank to prevent freezing or the like when it is not used for a long time in a cold region or the like, 40a is a pressure relief valve for the hot water storage tank 17, and 40b is a hot water storage tank 17. It is a can body protection valve.

以下、図面に基づいて、上記ヒートポンプ給湯機の動作を説明する。   Hereinafter, the operation of the heat pump water heater will be described based on the drawings.

通常の運転を開始する際には、第1バイパス回路11の第1二方弁12と、第2バイパス回路13の第2二方弁15は閉じている。圧縮機4が起動し、高圧まで圧縮されて吐出された冷媒は、放熱器5(水−冷媒熱交換器16)に送られ、水道水供給管23を通ってきた水道水と熱交換して放熱する。これにより、貯湯管25、元混合弁26に流れる水道水は高温に加熱される。   When starting normal operation, the first two-way valve 12 of the first bypass circuit 11 and the second two-way valve 15 of the second bypass circuit 13 are closed. The compressor 4 is activated and the refrigerant compressed and discharged to a high pressure is sent to the radiator 5 (water-refrigerant heat exchanger 16) to exchange heat with tap water that has passed through the tap water supply pipe 23. Dissipate heat. Thereby, the tap water flowing through the hot water storage pipe 25 and the original mixing valve 26 is heated to a high temperature.

放熱器5(水−冷媒熱交換器16)から流出する冷媒は、減圧手段6にて減圧膨張され、空気−冷媒熱交換器7に送られ、送風ファン9にて送られた空気と熱交換して、空気−冷媒熱交換器7を通過する間に、蒸発してガス化する。このガス化した冷媒は、再度圧縮機4に吸入され、再度圧縮される過程を繰り返し、徐々に加熱された水道水は、元混合弁側配管25b、元混合弁26を通り、蛇口19a、シャワー19bに給湯したり、風呂31に注湯されたりする。   The refrigerant flowing out of the radiator 5 (water-refrigerant heat exchanger 16) is decompressed and expanded by the decompression means 6, sent to the air-refrigerant heat exchanger 7, and exchanges heat with the air sent by the blower fan 9. Then, it evaporates and gasifies while passing through the air-refrigerant heat exchanger 7. The gasified refrigerant is again sucked into the compressor 4 and is repeatedly compressed. The gradually heated tap water passes through the original mixing valve side pipe 25b and the original mixing valve 26, and is connected to the faucet 19a and the shower. Hot water is supplied to 19b or poured into the bath 31.

その際に、冷媒サイクル2は立ち上がりが遅く、速湯性に劣っているため、貯湯タンク17によってその立ち上がりの悪さを補っている。すなわち、冷媒サイクル2が立上って、所定の給湯温度となるまでの間は、高温に保たれた貯湯タンク17からタンク給湯管25を通過してきた温水と、まだ立ち上がっていない水−冷媒熱交換器16を通過してきた水(徐々に温度が上がり高温となる水)とを、元混合弁26で混合し、さらに給湯混合弁29、風呂注湯混合弁30で入水管18を通ってきた水道水と混合して、所定の温度の給湯あるいは注湯を行う。   At that time, the rising of the refrigerant cycle 2 is slow and inferior in the hot water property, so the hot water storage tank 17 compensates for the poor rising. That is, until the refrigerant cycle 2 starts up and reaches a predetermined hot water supply temperature, the hot water that has passed through the tank hot water supply pipe 25 from the hot water storage tank 17 kept at a high temperature and the water-refrigerant heat that has not yet started up. Water that has passed through the exchanger 16 (water that gradually rises in temperature and becomes hot) was mixed by the original mixing valve 26 and further passed through the water inlet pipe 18 by the hot water supply mixing valve 29 and the bath pouring mixing valve 30. Mixing with tap water, hot water supply or pouring is performed at a predetermined temperature.

次に冷媒サイクルが立ち上がってくると、元混合弁26の開度を調整し、貯湯タンク17からの高温の温水と、水−冷媒熱交換器16からの温水を適温に混合し、給湯混合弁29や、風呂注湯混合弁30に送り、給湯混合弁29や風呂注湯混合弁30で入水管18を通ってきた水道水と混合して給湯する。   Next, when the refrigerant cycle starts, the opening degree of the original mixing valve 26 is adjusted, hot hot water from the hot water storage tank 17 and hot water from the water-refrigerant heat exchanger 16 are mixed at an appropriate temperature, and a hot water supply mixing valve 29 and the bath pouring mixing valve 30, and the hot water mixing valve 29 and the bath pouring mixing valve 30 are mixed with tap water that has passed through the inlet pipe 18 to supply hot water.

最終的には、元混合弁26の開度を調整して、タンク給湯管25側を閉じて、貯湯タンク17からタンク給湯管25を通過してきた温水は用いず、入水管18、水道水供給管23を通ってきた水道水を冷媒サイクル2の水−冷媒熱交換器16で加熱して得た温水を、元混合弁26を介して、給湯混合弁29、風呂注湯混合弁30へ送り、入水管18を通ってきた水道水と、混合し、所定の温度を得て、蛇口19a、シャワー19bへの給湯や、風呂31への注湯を行う。   Finally, the opening of the original mixing valve 26 is adjusted, the tank hot water supply pipe 25 side is closed, and the hot water passing through the tank hot water supply pipe 25 from the hot water storage tank 17 is not used. Hot water obtained by heating the tap water passing through the pipe 23 with the water-refrigerant heat exchanger 16 of the refrigerant cycle 2 is sent to the hot water supply mixing valve 29 and the bath pouring mixing valve 30 through the original mixing valve 26. Then, it is mixed with tap water that has passed through the water inlet pipe 18 to obtain a predetermined temperature, and hot water is supplied to the faucet 19a and the shower 19b and poured into the bath 31.

即ち、冷媒サイクル2の制御装置41、給湯サイクルの制御装置42によって、冷媒サイクル2の立ち上がり状態を把握し、元混合弁26や給湯混合弁29、風呂注湯混合弁30の開度を調整し、所定温度の温水を給湯端末に供給する制御が行われる。   That is, the controller 41 of the refrigerant cycle 2 and the controller 42 of the hot water supply cycle grasp the rising state of the refrigerant cycle 2 and adjust the opening degree of the original mixing valve 26, the hot water mixing valve 29, and the bath pouring mixing valve 30. Control for supplying hot water at a predetermined temperature to the hot water supply terminal is performed.

また、使用者が、蛇口19a、シャワー19bを閉じるか、あるいは風呂31に適量の湯が溜まって給湯する必要がなくなると、給湯循環水ポンプ21を駆動させ、貯湯三方弁27を開き、次回の給湯運転のために、貯湯タンク17に高温の温水を貯湯する貯湯運転が行われる。   Further, when the user closes the faucet 19a and the shower 19b, or when it is not necessary to supply hot water because an appropriate amount of hot water is accumulated in the bath 31, the hot water circulating water pump 21 is driven and the hot water storage three-way valve 27 is opened. For the hot water supply operation, a hot water storage operation in which hot water is stored in the hot water storage tank 17 is performed.

このように冷媒サイクル2の立ち上がり状態に応じて、貯湯タンク17に貯めた温水を用いて給湯端末(蛇口19a、シャワー19b、風呂31)へ給湯、注湯したり、貯湯タンク17を介さずに水−冷媒熱交換器16で加熱して得た温水を給湯端末へ直接給湯したりすることができる構成としている。   In this way, depending on the rising state of the refrigerant cycle 2, hot water stored in the hot water storage tank 17 is used to supply hot water to the hot water supply terminal (faucet 19 a, shower 19 b, bath 31), without using the hot water storage tank 17. The hot water obtained by heating with the water-refrigerant heat exchanger 16 can be directly supplied to the hot water supply terminal.

これにより本実施の形態では、リアルタイム給湯を可能とし、使用者が給湯したいときに給湯ができる速湯性能を確保することができ、使い勝手の良いヒートポンプ給湯機を提供することができる。換言すれば、この速湯性能の確保によって、貯湯タンク17の容量を貯湯式のヒートポンプ給湯機のそれよりも小さいものとすることができ、それはひいては、本体ユニット1のコンパクト化につながり、設置性の大幅な向上、コストダウン、使用性の向上を実現できることにもなる。   Thereby, in this Embodiment, real-time hot water supply is enabled, the hot water hot water performance which can supply hot water when a user wants to supply hot water can be ensured, and a heat pump water heater which is easy to use can be provided. In other words, by ensuring this quick hot water performance, the capacity of the hot water storage tank 17 can be made smaller than that of the hot water storage type heat pump water heater, which in turn leads to the compactness of the main unit 1 and installation characteristics. It is possible to realize a significant improvement in cost, cost reduction, and improvement in usability.

また、貯湯タンクの残湯量が減じた場合にも、貯湯タンク17を介さないで、水−冷媒熱交換器16で加熱した温水をそのまま、給湯端末へ直接給湯することとなる。ところが、その時に、空気−冷媒熱交換器7が着霜している場合には、熱交換されないために、温水が供給されないこととなる。そこで、その際には図2に示したような、タイムチャート図に則って、第1二方弁、第2二方弁、冷媒加熱装置などの運転が行われる。   Further, even when the amount of remaining hot water in the hot water storage tank is reduced, the hot water heated by the water-refrigerant heat exchanger 16 is directly supplied to the hot water supply terminal without passing through the hot water storage tank 17. However, at that time, when the air-refrigerant heat exchanger 7 is frosted, heat is not exchanged, so that hot water is not supplied. Therefore, in this case, the operation of the first two-way valve, the second two-way valve, the refrigerant heating device, etc. is performed according to the time chart as shown in FIG.

空気−冷媒熱交換器7につながった配管7aに配された、温度センサー7c、7dと、制御装置41による除霜開始判断手段で、除霜開始という判断がなされると、ステップ1にて、第1バイパス回路11にある、第1二方弁12に通電され、第1ニ方弁12が開かれる。それに合わせて、電動膨張弁から成る減圧手段6が閉塞状態または、ほぼ閉塞状態まで閉じられ、さらに圧縮機4の回転数が徐々に下げられる。   When it is determined that defrosting is started by the defrosting start determining means by the temperature sensors 7c and 7d and the control device 41 disposed in the pipe 7a connected to the air-refrigerant heat exchanger 7, in step 1, The first two-way valve 12 in the first bypass circuit 11 is energized, and the first two-way valve 12 is opened. In accordance with this, the decompression means 6 composed of the electric expansion valve is closed to the closed state or almost closed, and the rotation speed of the compressor 4 is gradually decreased.

次にステップ2で、圧縮機4の回転数が所定の回転数まで下がると、第2バイパス回路13の第2二方弁15が開かれ、冷媒加熱装置14のヒータ14aに通電される。それと共に、さらに送風ファン9が停止される。圧縮機4の回転数を下げてから、冷媒加熱装置14のヒータ14aに通電させるのは、冷媒加熱装置14により電流容量が高くなり、ブレーカーが落ちることを防ぐためであり、あるいはそれを見越して電流容量を高めに設定する必要をなくすためである。   Next, when the rotational speed of the compressor 4 is lowered to a predetermined rotational speed in Step 2, the second two-way valve 15 of the second bypass circuit 13 is opened and the heater 14a of the refrigerant heating device 14 is energized. At the same time, the blower fan 9 is further stopped. The reason why the heater 14a of the refrigerant heating device 14 is energized after the rotation speed of the compressor 4 is lowered is to prevent the current capacity from being increased by the refrigerant heating device 14 and the breaker from falling, or in anticipation thereof. This is to eliminate the need to set the current capacity higher.

ステップ3で、冷媒加熱運転に移行し、それと同時に除霜運転も行う。冷媒加熱運転は、冷媒加熱装置14のヒータ14aで加熱された冷媒が、配管8cを介し、圧縮機4に送られ、圧縮機4は冷媒搬送運転を行う。それにより、冷媒加熱装置で加熱された冷媒は、放熱器5に送られ、第2二方弁15を介して、冷媒加熱装置14に送られ再び、加熱される。   In Step 3, the refrigerant heating operation is performed, and at the same time, the defrosting operation is performed. In the refrigerant heating operation, the refrigerant heated by the heater 14a of the refrigerant heating device 14 is sent to the compressor 4 via the pipe 8c, and the compressor 4 performs the refrigerant conveyance operation. Thereby, the refrigerant heated by the refrigerant heating device is sent to the radiator 5, sent to the refrigerant heating device 14 via the second two-way valve 15, and heated again.

放熱器5では、入水管18を通ってきた水道水を冷媒サイクル2の水−冷媒熱交換器16で加熱して得た温水を、元混合弁26を介して、給湯混合弁29、風呂注湯混合弁30へ送り、入水管18を通ってきた水道水と、混合し、所定の温度を得て、蛇口19a、シャワー19bへの給湯や、風呂31への注湯を行う。   In the radiator 5, hot water obtained by heating the tap water that has passed through the inlet pipe 18 with the water-refrigerant heat exchanger 16 of the refrigerant cycle 2 is supplied via the original mixing valve 26 to the hot water supply mixing valve 29 and the bath injection. It is sent to the hot water mixing valve 30 and mixed with the tap water that has passed through the water inlet pipe 18 to obtain a predetermined temperature, and hot water is supplied to the faucet 19a and the shower 19b, and hot water is poured into the bath 31.

ただし、冷媒加熱装置14はヒータ14aで冷媒を加熱し、それを放熱器5で熱交換するために、注湯される温度は若干低下する傾向があるが、停止してしまうよりは十分に使用性に優れた使い方ができることとなる。また、除霜運転は、圧縮機4から送られた高温の冷媒は、配管8aを介し、第1バイパス回路11を通り、第1二方弁12を通過して、配管8bを通り、空気−冷媒熱交換器7に送られ、空気−冷媒熱交換器7の除霜が行われる。配管8bには第1バイパス回路11と空気−冷媒熱交換器7の間には、絞り配管8eがあり、減圧装置である電動膨張弁6の作動性を安定化させている。   However, since the refrigerant heating device 14 heats the refrigerant with the heater 14a and exchanges heat with the radiator 5, the temperature at which the molten metal is poured tends to decrease slightly, but it is used more sufficiently than it stops. It will be possible to use it with excellent properties. In the defrosting operation, the high-temperature refrigerant sent from the compressor 4 passes through the first bypass circuit 11 through the pipe 8a, passes through the first two-way valve 12, passes through the pipe 8b, and air- It is sent to the refrigerant heat exchanger 7 and the air-refrigerant heat exchanger 7 is defrosted. In the pipe 8b, there is a throttle pipe 8e between the first bypass circuit 11 and the air-refrigerant heat exchanger 7, which stabilizes the operability of the electric expansion valve 6 that is a pressure reducing device.

ステップ4で、除霜終了と共に、冷媒加熱装置14はヒータ14aの通電がOFFとなり、第2二方弁15も閉じられ、圧縮機4は所定の回転数まで徐々に戻され、減圧装置である電動膨張弁6は所定の開度まで徐々に開かれ、送風ファン9も所定の回転数で回転がされる。   In step 4, as soon as the defrosting is completed, the heater 14a is turned off in the refrigerant heating device 14, the second two-way valve 15 is also closed, and the compressor 4 is gradually returned to a predetermined rotational speed, which is a pressure reducing device. The electric expansion valve 6 is gradually opened to a predetermined opening, and the blower fan 9 is also rotated at a predetermined rotational speed.

ステップ5で、第1二方弁12が閉じられ、除霜する前の状態に戻り、通常のヒートポンプ運転となり、貯湯が行われることとなる。   In step 5, the first two-way valve 12 is closed and the state before the defrosting is restored, the normal heat pump operation is performed, and hot water is stored.

このように、貯湯タンク17の残湯量がかなり減じている場合にも、給湯運転を継続しながら、除霜運転を実施できることにより、使用性の大幅な向上を図ることができる。   Thus, even when the amount of remaining hot water in the hot water storage tank 17 is considerably reduced, the defrosting operation can be performed while continuing the hot water supply operation, so that the usability can be greatly improved.

また、貯湯タンク17を使用する機会が減ずるために、貯湯タンク17をコンパクトにすることが出き、ひいては筐体をコンパクトにすることも可能となり、設置性の大幅な向上を図ったヒートポンプ給湯機とすることができる。   Moreover, since the opportunity to use the hot water storage tank 17 is reduced, it is possible to make the hot water storage tank 17 compact and, in turn, to make the housing compact, and a heat pump water heater that greatly improves installation characteristics. It can be.

また、図2のタイムチャートで示したように空気−冷媒熱交換器7の除霜を行う際には、圧縮機4の回転数を可変しつつ、第1バイパス回路11の第1二方弁12を開放して空気−冷媒熱交換器7に冷媒を通過させる第1バイパス回路運転運転を行い、その後、任意の時間後に、第2バイパス回路13の第2二方弁15を開放して、冷媒加熱装置14で加熱された冷媒を圧縮機4の吸入側に流す第2バイパス回路運転を行う運転をすることにより、第1バイパス回路11と第2バイパス回路13の二方弁を同時に開放にすると圧縮機4の吸入側の圧力が急上昇して、冷媒循環量が増し、圧縮機4のオイルが多く吐出してしまうが、第2バイパス回路13の二方弁を開放にする運転を一定時間遅らせて、動作させることで、圧縮機4の吸入側の低圧上昇を抑え、オイル吐出を最小限にすることで圧縮機の信頼性を高くすることもでき、耐久性に優れたヒートポンプ給湯機とすることもできる。   Further, as shown in the time chart of FIG. 2, when defrosting the air-refrigerant heat exchanger 7, the first two-way valve of the first bypass circuit 11 is made while changing the rotation speed of the compressor 4. 12 is opened, the first bypass circuit operation operation is performed to allow the refrigerant to pass through the air-refrigerant heat exchanger 7, and then, after an arbitrary time, the second two-way valve 15 of the second bypass circuit 13 is opened, The two-way valve of the first bypass circuit 11 and the second bypass circuit 13 is simultaneously opened by performing the second bypass circuit operation in which the refrigerant heated by the refrigerant heating device 14 flows to the suction side of the compressor 4. Then, the pressure on the suction side of the compressor 4 suddenly increases, the refrigerant circulation amount increases, and a large amount of oil is discharged from the compressor 4, but the operation of opening the two-way valve of the second bypass circuit 13 is performed for a certain period of time. By delaying and operating, the suction side of the compressor 4 Suppressing the pressure rise, the oil discharge can also increase the reliability of the compressor by minimizing, can also be a good heat pump water heater durability.

さらに、冷媒加熱装置14は、電熱線を用いたヒータ14aとしているので、ON-OFF通電が容易であり、配管構成を簡素化でき、耐久性に優れたヒートポンプ給湯機とすることができる。   Furthermore, since the refrigerant heating device 14 is a heater 14a using a heating wire, ON-OFF energization is easy, the piping configuration can be simplified, and a heat pump water heater excellent in durability can be obtained.

図3は、本体ユニット1の斜視内観図を示したものであり、冷媒加熱装置14は、放熱器5(水−冷媒熱交換器16)に隣接した本体ユニット1の下方に配されている。これは、冷媒加熱装置14が配管13aを螺旋状にした13bの外周を覆うようなアルミ鋳物を設けており、質量が大きいために、下方に配しているわけである。   FIG. 3 is a perspective internal view of the main unit 1, and the refrigerant heating device 14 is arranged below the main unit 1 adjacent to the radiator 5 (water-refrigerant heat exchanger 16). This is because the coolant heating device 14 is provided with an aluminum casting that covers the outer periphery of 13b in which the pipe 13a is formed in a spiral shape.

また、このヒートポンプ給湯機では、冷媒として炭酸ガスを用いているので、万一冷媒が外部に漏れたとしても、地球温暖化に及ぼす影響を、一般的エアコンに用いられているR−410Aの冷媒に比して大幅に低減することができ、環境に優しいヒートポンプ給湯機とすることができる。   Further, in this heat pump water heater, since carbon dioxide is used as a refrigerant, even if the refrigerant leaks to the outside, the influence on global warming is affected by the refrigerant of R-410A used in general air conditioners. As compared with the above, it can be greatly reduced, and an environment-friendly heat pump water heater can be obtained.

以上のように、本発明のヒートポンプ給湯機は、圧縮機4、放熱器5、減圧手段6および空気−冷媒熱交換器7を順次接続して閉回路を構成し、冷媒を循環させるヒートポンプ式冷媒サイクルと、放熱器5と熱交換を行う水−冷媒熱交換器16と、圧縮機4と放熱器5の間と、減圧手段6と空気−冷媒熱交換器7の間を連結する第1バイパス回路11と、減圧手段6と放熱器5の間と、圧縮機4と空気−冷媒熱交換器7の間を連結する第2バイパス回路13を設け、それらを一体の筐体1に配し、第1バイパス回路には第1二方弁12を設け、第2バイパス回路には第2二方弁15と、ヒータ14aにより加熱する冷媒加熱装置14を直列に設け、空気−冷媒熱交換器7の除霜を行う際には、第1バイパス回路11の第1二方弁12を開放して空気−冷媒熱交換器7に冷媒を通過させる第1バイパス回路運転運転させ、その後に、第2バイパス回路13の第2二方弁15を開放して、冷媒加熱装置14で加熱された冷媒を圧縮機4の吸入側に流す第2バイパス回路運転を行うことを特徴とするものであり、給湯運転をしつつ、除霜運転ができることにより、使用性に優れ、さらに貯湯タンクを小型化を図ることも可能となり、コンパクト性にも優れたヒートポンプ給湯機とすることができる。   As described above, in the heat pump water heater of the present invention, the compressor 4, the radiator 5, the decompression means 6, and the air-refrigerant heat exchanger 7 are sequentially connected to form a closed circuit and circulate the refrigerant. 1st bypass which connects between a cycle, the water-refrigerant heat exchanger 16 which heat-exchanges with the heat radiator 5, the compressor 4 and the heat radiator 5, and the decompression means 6 and the air-refrigerant heat exchanger 7 A circuit 11, a second bypass circuit 13 that connects between the decompression means 6 and the radiator 5, and between the compressor 4 and the air-refrigerant heat exchanger 7, and arranges them in an integral housing 1, The first bypass circuit is provided with a first two-way valve 12, and the second bypass circuit is provided with a second two-way valve 15 and a refrigerant heating device 14 heated by a heater 14a in series, and the air-refrigerant heat exchanger 7 is provided. When the defrosting is performed, the first two-way valve 12 of the first bypass circuit 11 is opened. The air-refrigerant heat exchanger 7 is made to operate in a first bypass circuit that allows the refrigerant to pass through. Then, the second two-way valve 15 of the second bypass circuit 13 is opened, and the refrigerant heated by the refrigerant heating device 14 is removed. The second bypass circuit operation that flows to the suction side of the compressor 4 is performed, and the defrosting operation can be performed while the hot water supply operation is performed, so that the usability is excellent and the hot water storage tank is further downsized. It becomes possible, and it can be set as the heat pump water heater excellent also in compactness.

以上のように、本発明は、ヒートポンプサイクルで温水を生成して給湯するヒートポンプ給湯機に適用され、例えば、家庭用の瞬間湯沸し器や、業務用の給湯装置などに適している。   As described above, the present invention is applied to a heat pump water heater that generates hot water in a heat pump cycle and supplies hot water, and is suitable for, for example, a domestic instantaneous water heater or a commercial hot water supply device.

本発明の第1の実施の形態におけるヒートポンプ給湯機の回路構成図The circuit block diagram of the heat pump water heater in the 1st Embodiment of this invention 同ヒートポンプ給湯機のタイムチャートTime chart of the heat pump water heater 同ヒートポンプ給湯機の斜視内観図A perspective view of the heat pump water heater 従来のヒートポンプ給湯機の回路構成図Circuit diagram of a conventional heat pump water heater 従来のヒートポンプ給湯機の他の回路構成図Other circuit configuration diagram of conventional heat pump water heater

符号の説明Explanation of symbols

1 本体ユニット(筐体)
2 冷媒サイクル
3 給湯サイクル
4 圧縮機
5 放熱器
6 減圧手段(電動膨張弁)
7 空気−冷媒熱交換器
9 送風ファン
11 第1バイパス回路
12 第1二方弁
13 第2バイパス回路
14 冷媒加熱装置
14a ヒータ
15 第2二方弁
16 水−冷媒熱交換器
17 貯湯タンク
18 入水管
19a 蛇口(給湯端末)
19b シャワー(給湯端末)
1 Main unit (housing)
2 Refrigerant cycle 3 Hot water supply cycle 4 Compressor 5 Radiator 6 Pressure reducing means (electric expansion valve)
7 Air-refrigerant heat exchanger 9 Blower fan 11 First bypass circuit 12 First two-way valve 13 Second bypass circuit 14 Refrigerant heating device 14a Heater 15 Second two-way valve 16 Water-refrigerant heat exchanger 17 Hot water storage tank 18 Water pipe 19a faucet (hot water supply terminal)
19b Shower (hot water supply terminal)

Claims (6)

圧縮機、放熱器、減圧手段および空気−冷媒熱交換器を順次接続して閉回路を構成し、冷媒を循環させるヒートポンプ式冷媒サイクルと、前記放熱器と熱交換を行う水−冷媒熱交換器と、前記圧縮機と前記放熱器の間と、前記減圧手段と前記空気−冷媒熱交換器の間を連結する第1バイパス回路と、前記減圧手段と前記放熱器の間と、前記圧縮機と前記空気−冷媒熱交換器の間を連結する第2バイパス回路を設け、前記第1バイパス回路には第1二方弁を設け、前記第2バイパス回路には、第2二方弁と冷媒加熱装置を直列に設けたことを特徴とするヒートポンプ給湯機。 A compressor, a radiator, a decompression means, and an air-refrigerant heat exchanger are connected in sequence to form a closed circuit, and a heat-pump refrigerant cycle that circulates the refrigerant, and a water-refrigerant heat exchanger that exchanges heat with the radiator A first bypass circuit connecting between the compressor and the radiator, between the decompression means and the air-refrigerant heat exchanger, between the decompression means and the radiator, and the compressor A second bypass circuit connecting between the air-refrigerant heat exchanger is provided, the first bypass circuit is provided with a first two-way valve, and the second bypass circuit is provided with a second two-way valve and refrigerant heating. A heat pump water heater characterized in that devices are provided in series. 前記空気−冷媒熱交換器の除霜を行う際には、前記圧縮機の回転数を可変しつつ、前記第1バイパス回路の第1二方弁を開放して前記空気−冷媒熱交換器に冷媒を通過させる第1バイパス回路運転を行い、その後、任意の時間後に、前記第2バイパス回路の二方弁を開放して、前記冷媒加熱装置で加熱された冷媒を前記圧縮機の吸入側に流す第2バイパス回路運転を行うことを特徴とする請求項1記載のヒートポンプ給湯機。 When performing defrosting of the air-refrigerant heat exchanger, the first two-way valve of the first bypass circuit is opened and the air-refrigerant heat exchanger is changed while changing the rotation speed of the compressor. The first bypass circuit operation for allowing the refrigerant to pass is performed, and then, after an arbitrary time, the two-way valve of the second bypass circuit is opened, and the refrigerant heated by the refrigerant heating device is brought to the suction side of the compressor. 2. The heat pump water heater according to claim 1, wherein the second bypass circuit operation is performed. 前記冷媒加熱装置としてヒータを用いた請求項1または2記載のヒートポンプ給湯機。 The heat pump water heater according to claim 1 or 2, wherein a heater is used as the refrigerant heating device. 前記水−冷媒熱交換器で加熱された温水は、貯湯タンクに貯湯されると共に、前記貯湯タンクを介さずに給湯端末へ直接通水できる構成も具備したことを特徴とする請求項1〜3のいずれか1項に記載のヒートポンプ給湯機。 The hot water heated by the water-refrigerant heat exchanger is stored in a hot water storage tank, and also has a configuration capable of directly passing water to a hot water supply terminal without going through the hot water storage tank. The heat pump water heater according to any one of the above. 前記ヒートポンプ式冷媒サイクルと、前記水−冷媒熱交換器と接続され、前記水−冷媒熱交換器で加熱された温水を貯湯する前記貯湯タンクと、水道水を供給する入水管と、加熱された温水を給湯端末へ通水するように接続した給湯管を備えた給湯サイクルを一体の筐体に納めた請求項1〜4のいずれか1項に記載のヒートポンプ給湯機。 The heat pump refrigerant cycle, the water-refrigerant heat exchanger connected to the hot water storage tank for storing hot water heated by the water-refrigerant heat exchanger, a water inlet pipe for supplying tap water, and heated The heat pump water heater according to any one of claims 1 to 4, wherein a hot water supply cycle including a hot water supply pipe connected so as to pass hot water to a hot water supply terminal is housed in an integrated housing. 前記冷媒として炭酸ガスを用いたことを特徴とする請求項1〜5のいずれか1項に記載のヒートポンプ給湯機。 The heat pump water heater according to any one of claims 1 to 5, wherein carbon dioxide gas is used as the refrigerant.
JP2007059434A 2007-03-09 2007-03-09 Heat pump water heater Expired - Fee Related JP5034569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059434A JP5034569B2 (en) 2007-03-09 2007-03-09 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059434A JP5034569B2 (en) 2007-03-09 2007-03-09 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2008224070A true JP2008224070A (en) 2008-09-25
JP5034569B2 JP5034569B2 (en) 2012-09-26

Family

ID=39842909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059434A Expired - Fee Related JP5034569B2 (en) 2007-03-09 2007-03-09 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP5034569B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143373A1 (en) * 2009-06-11 2010-12-16 パナソニック株式会社 Heat pump system
JP2012077942A (en) * 2010-09-30 2012-04-19 Panasonic Corp Air conditioner
JP2012077941A (en) * 2010-09-30 2012-04-19 Panasonic Corp Air conditioner
JP2013002746A (en) * 2011-06-17 2013-01-07 Panasonic Corp Air conditioner
CN112943998A (en) * 2021-01-28 2021-06-11 郝永俊 Device for preventing water pipe from leaking water and automatically closing water

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125654A (en) * 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd Heat pump hot water heater
JP2007051820A (en) * 2005-08-18 2007-03-01 Matsushita Electric Ind Co Ltd Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125654A (en) * 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd Heat pump hot water heater
JP2007051820A (en) * 2005-08-18 2007-03-01 Matsushita Electric Ind Co Ltd Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143373A1 (en) * 2009-06-11 2010-12-16 パナソニック株式会社 Heat pump system
JP2012077942A (en) * 2010-09-30 2012-04-19 Panasonic Corp Air conditioner
JP2012077941A (en) * 2010-09-30 2012-04-19 Panasonic Corp Air conditioner
JP2013002746A (en) * 2011-06-17 2013-01-07 Panasonic Corp Air conditioner
CN112943998A (en) * 2021-01-28 2021-06-11 郝永俊 Device for preventing water pipe from leaking water and automatically closing water

Also Published As

Publication number Publication date
JP5034569B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5082536B2 (en) Heat pump water heater
JP4215735B2 (en) Heat pump water heater
JP4958460B2 (en) Heat pump water heater
JP4378900B2 (en) Heat pump type water heater
EP2980504B1 (en) Hot-water supply device
JP5034569B2 (en) Heat pump water heater
JP2006084115A (en) Heat pump water heater
JP4231863B2 (en) Heat pump water heater bathroom heating dryer
JP4726573B2 (en) Heat pump hot water floor heater
JP5958411B2 (en) HEAT PUMP SYSTEM AND ITS CONTROL DEVICE
JP2009063246A (en) Heat pump water heater
JP2006090689A (en) Solar hot water supply system with heat pump heat source unit
JP2007322065A (en) Heat pump type water heater
JP5176474B2 (en) Heat pump water heater
JP2005016757A (en) Heat pump water heater
JP2005315480A (en) Heat pump type water heater
JP3284905B2 (en) Heat pump system
JP2005207622A (en) Hybrid heat source machine and hot water supply device
JP2010054145A (en) Heat pump water heater
JP2004286261A (en) Water heater
JP2001330313A (en) Compound water-heater
JP3890322B2 (en) Heat pump water heater
JP2009281629A (en) Heat pump water heater
JP3692813B2 (en) Heat pump water heater
JP2005308249A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090617

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees