JP5095295B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP5095295B2
JP5095295B2 JP2007202762A JP2007202762A JP5095295B2 JP 5095295 B2 JP5095295 B2 JP 5095295B2 JP 2007202762 A JP2007202762 A JP 2007202762A JP 2007202762 A JP2007202762 A JP 2007202762A JP 5095295 B2 JP5095295 B2 JP 5095295B2
Authority
JP
Japan
Prior art keywords
flow path
heat exchanger
water
hot water
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007202762A
Other languages
Japanese (ja)
Other versions
JP2009036485A (en
Inventor
尚希 今任
将人 堀
武 望月
靖二 大越
智明 田邉
吉照 山崎
陵太郎 舘山
大輔 久保井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2007202762A priority Critical patent/JP5095295B2/en
Publication of JP2009036485A publication Critical patent/JP2009036485A/en
Application granted granted Critical
Publication of JP5095295B2 publication Critical patent/JP5095295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

この発明は、複数の熱源機を備えた給湯装置に関する。   The present invention relates to a hot water supply apparatus including a plurality of heat source machines.

圧縮機の吐出冷媒を水熱交換器、減圧器、室外熱交換器に通して圧縮機に戻し水熱交換器を凝縮器として機能させるヒートポンプ式冷凍サイクルを備え、タンクの水をポンプにより水熱交換器に通して循環させることによりタンクに湯水を貯える給湯装置がある(例えば特許文献1)。   It has a heat pump refrigeration cycle that passes the refrigerant discharged from the compressor through the water heat exchanger, decompressor, and outdoor heat exchanger, returns it to the compressor, and makes the water heat exchanger function as a condenser. There is a hot water supply device that stores hot water in a tank by circulating through an exchanger (for example, Patent Document 1).

このような給湯装置では、湯の使用量が多い施設での使用が可能なように、上記水熱交換器を有するヒートポンプ式冷凍サイクルおよびその水熱交換器に水を循環させる水サイクルからなる熱源機を複数台設置し、これら熱源機の運転台数を制御できるようにしたものがある。
特開2005―308250号公報
In such a hot water supply device, a heat source comprising a heat pump refrigeration cycle having the water heat exchanger and a water cycle in which water is circulated through the water heat exchanger so that it can be used in facilities with a large amount of hot water used. Some machines have been installed so that the number of operating heat source machines can be controlled.
JP 2005-308250 A

複数台の熱源機を有する給湯装置の場合、運転中の熱源機から流出した温水の一部が停止中の熱源機に流入することが考えられる。この場合、せっかく作った温水およびその熱エネルギが無駄になってしまう。   In the case of a hot water supply apparatus having a plurality of heat source units, it is conceivable that a part of the hot water flowing out from the operating heat source unit flows into the stopped heat source unit. In this case, the warm water and the heat energy made with great care are wasted.

この発明は上記の事情を考慮したもので、その目的は、運転中の熱源機から流出した温水の一部が停止中の熱源機に流入する事態を未然に防ぐことができ、これにより運転中の熱源機で作られた温水およびその熱エネルギを無駄なく負荷へ供給することができる省エネルギ性および信頼性にすぐれた給湯装置を提供することである。   The present invention takes the above-mentioned circumstances into consideration, and its purpose is to prevent a situation in which a part of hot water flowing out from the operating heat source machine flows into the stopped heat source machine. It is an object of the present invention to provide a hot water supply device that is excellent in energy saving and reliability, and can supply hot water produced by the heat source machine and its heat energy to a load without waste.

請求項1に係る発明の給湯装置は、圧縮機の吐出冷媒を水熱交換器、減圧器、室外熱交換器に通して圧縮機に戻し水熱交換器を凝縮器として機能させるヒートポンプ式冷凍サイクル、および給水側主配管の水をポンプにより上記水熱交換器に送りその水熱交換器から流出する温水を給湯側主配管に導く水サイクルを有する複数の熱源機と、この各熱源機に設けられ、上記水サイクルと上記給水側主配管との間の水の流通を制御するための第1弁と、上記各熱源機に設けられ、上記水サイクルと上記給湯側主配管との間の温水の流通を制御するための第2弁と、を備える。そして、上記第1弁は、選択的な開閉が可能な第1流路および第2流路を有する第1三方弁である。上記第2弁は、選択的な開閉が可能な第3流路および第4流路を有する第2三方弁である。上記各熱源機の水サイクルは、上記給水側主配管から上記第1三方弁の第1流路の一端に接続された第1配管、上記第1三方弁の各流路の他端から上記ポンプを介して上記水熱交換器の水入口に接続された第2配管、上記水熱交換器の水出口から上記第2三方弁の各流路の一端に接続された第3配管、上記第2三方弁の第3流路の他端から上記第1三方弁の第2流路の一端に接続された第4配管、この第4配管の中途部から上記給湯側主配管に接続された第5配管、および上記第2三方弁の第4流路の他端から上記第1配管に接続された第6配管を有する。 The hot water supply apparatus of the invention according to claim 1 is a heat pump refrigeration cycle in which refrigerant discharged from the compressor is passed through a water heat exchanger, a decompressor, and an outdoor heat exchanger and returned to the compressor to function as a condenser. A plurality of heat source units having a water cycle that sends water from the water supply side main pipe to the water heat exchanger by a pump and guides hot water flowing out of the water heat exchanger to the hot water side main pipe, and each heat source unit is provided with A first valve for controlling the flow of water between the water cycle and the water supply side main pipe, and the hot water between the water cycle and the hot water side main pipe provided in each of the heat source units. And a second valve for controlling the flow of. The first valve is a first three-way valve having a first flow path and a second flow path that can be selectively opened and closed. The second valve is a second three-way valve having a third flow path and a fourth flow path that can be selectively opened and closed. The water cycle of each of the heat source units includes a first pipe connected from the water supply side main pipe to one end of the first flow path of the first three-way valve, and the pump from the other end of each flow path of the first three-way valve. A second pipe connected to the water inlet of the water heat exchanger via the third outlet, a third pipe connected to one end of each flow path of the second three-way valve from the water outlet of the water heat exchanger, the second A fourth pipe connected from the other end of the third flow path of the three-way valve to one end of the second flow path of the first three-way valve, and a fifth pipe connected from the middle part of the fourth pipe to the hot water supply side main pipe The pipe has a sixth pipe connected to the first pipe from the other end of the fourth flow path of the second three-way valve.

この発明の給湯装置によれば、運転中の熱源機から流出した温水の一部が停止中の熱源機に流入することがない。よって、運転中の熱源機で作られた温水およびその熱エネルギを無駄なく負荷へ供給することができて、省エネルギ性および信頼性の向上が図れる。   According to the hot water supply apparatus of the present invention, part of the hot water flowing out from the operating heat source unit does not flow into the stopped heat source unit. Therefore, it is possible to supply the hot water produced by the heat source machine in operation and its thermal energy to the load without waste, and energy saving and reliability can be improved.

[1]以下、この発明の第1の実施形態について図面を参照して説明する。
図1に示すように、複数台の熱源機1が給水側主配管2と給湯側主配管3との間に並列に接続されるとともに、その給水側主配管2および給湯側主配管3との間に密閉型タンク4が接続されている。給水側主配管2は、水源(図示しない)の水を密閉型タンク4および各熱源機1に供給するとともに、密閉型タンク4内の水(または温水)を各熱源機1に供給する。給湯側主配管3は、各熱源機1から流出する温水を密閉型タンク4に供給するとともに、密閉型タンク4内の温水を開放型タンク5に供給する。開放型タンク5は、給湯側主配管3から供給される温水を貯えて負荷側に供給する。
[1] A first embodiment of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, a plurality of heat source devices 1 are connected in parallel between a water supply side main pipe 2 and a hot water supply side main pipe 3, and the water supply side main pipe 2 and the hot water supply side main pipe 3 are connected to each other. A sealed tank 4 is connected between them. The water supply side main pipe 2 supplies water from a water source (not shown) to the sealed tank 4 and each heat source unit 1 and supplies water (or hot water) in the sealed tank 4 to each heat source unit 1. The hot water supply side main pipe 3 supplies hot water flowing out from each heat source unit 1 to the sealed tank 4 and supplies hot water in the sealed tank 4 to the open tank 5. The open-type tank 5 stores hot water supplied from the hot water supply side main pipe 3 and supplies it to the load side.

各熱源機1の具体的な構成を図2に示す。
すなわち、圧縮機11から吐出される冷媒が四方弁12を介して水熱交換器13に流れ、その水熱交換器13を経た冷媒が減圧器である膨張弁14、室外熱交換器15、および上記四方弁12を通って圧縮機11に吸込まれる。室外熱交換器15に外気を供給するための室外ファン16がその室外熱交換器15の近傍に設けられている。これら圧縮機11から室外ファン16までの機器により、ヒートポンプ式冷凍サイクルが構成されている。
上記給水側主配管2から第1三方弁22の第1流路の一端に第1配管21が接続され、その第1三方弁22の第1流路および第2流路のそれぞれ他端から上記水熱交換器13の水入口にポンプ24を介して第2配管23が接続されている。さらに、水熱交換器13の水出口から第2三方弁26の第3流路および第4流路のそれぞれ一端に第3配管25が接続され、その第3流路の他端から第1三方弁22の第2流路の一端に第4配管27が接続されている。また、第4配管27の中途部から給湯側主配管3に第5配管28が接続されるとともに、第2三方弁26の第4流路の他端から上記第1配管21に第6配管29が接続されている。これら第1配管21から第6配管29までの部品により、水サイクルが構成されている。
A specific configuration of each heat source unit 1 is shown in FIG.
That is, the refrigerant discharged from the compressor 11 flows to the water heat exchanger 13 via the four-way valve 12, and the refrigerant that has passed through the water heat exchanger 13 is the expansion valve 14, which is a decompressor, the outdoor heat exchanger 15, and The air is sucked into the compressor 11 through the four-way valve 12. An outdoor fan 16 for supplying outside air to the outdoor heat exchanger 15 is provided in the vicinity of the outdoor heat exchanger 15. The equipment from the compressor 11 to the outdoor fan 16 constitutes a heat pump refrigeration cycle.
A first pipe 21 is connected from the water supply side main pipe 2 to one end of the first flow path of the first three-way valve 22, and the first flow path and the second flow path of the first three-way valve 22 are respectively connected from the other ends. A second pipe 23 is connected to the water inlet of the water heat exchanger 13 via a pump 24. Further, a third pipe 25 is connected to one end of each of the third flow path and the fourth flow path of the second three-way valve 26 from the water outlet of the water heat exchanger 13, and the first three-way is connected to the other end of the third flow path. A fourth pipe 27 is connected to one end of the second flow path of the valve 22. The fifth pipe 28 is connected to the hot water supply main pipe 3 from the middle of the fourth pipe 27, and the sixth pipe 29 is connected to the first pipe 21 from the other end of the fourth flow path of the second three-way valve 26. Is connected. A water cycle is constituted by these parts from the first pipe 21 to the sixth pipe 29.

なお、第1三方弁22は選択的な開閉が可能な第1流路および第2流路を有し、第2三方弁26は選択的な開閉が可能な第3流路および第4流路を有している。   The first three-way valve 22 has a first flow path and a second flow path that can be selectively opened and closed, and the second three-way valve 26 is a third flow path and a fourth flow path that can be selectively opened and closed. have.

水熱交換器13に熱交換器温度センサ31が取付けられ、第2配管23における水熱交換器13の水入口近傍に流入側温度センサ32が取付けられ、第3配管25における水熱交換器13の水出口近傍に流出側温度センサ33が取付けられている。熱交換器温度センサ31は、水熱交換器13の温度(凝縮温度)Tc(℃)を検知する。流入側温度センサ32は、水熱交換器13に流入する水(または温水)の温度Twi(℃)を検知する。流出側温度センサ33は、水熱交換器13から流出する温水(または水)の温度Two(℃)を検知する。   A heat exchanger temperature sensor 31 is attached to the water heat exchanger 13, an inflow side temperature sensor 32 is attached in the vicinity of the water inlet of the water heat exchanger 13 in the second pipe 23, and the water heat exchanger 13 in the third pipe 25. An outflow temperature sensor 33 is attached in the vicinity of the water outlet. The heat exchanger temperature sensor 31 detects the temperature (condensation temperature) Tc (° C.) of the water heat exchanger 13. The inflow side temperature sensor 32 detects the temperature Twi (° C.) of water (or hot water) flowing into the water heat exchanger 13. The outflow side temperature sensor 33 detects the temperature Two (° C.) of the hot water (or water) flowing out from the water heat exchanger 13.

圧縮機11と四方弁12との間の高圧側冷媒配管に吐出冷媒温度センサ41および高圧スイッチ42が取付けられ、室外熱交換器15に熱交換器温度センサ43が取付けられている。吐出冷媒温度センサ41は、圧縮機11の吐出冷媒温度Tdを検知する。高圧スイッチ42は、圧縮機11の吐出冷媒圧力(高圧側圧力)Pdの異常上昇時に作動する。但し、他のセンサ等でPdの異常上昇判断する場合には高圧スイッチ42は省略可能である。   A discharge refrigerant temperature sensor 41 and a high-pressure switch 42 are attached to the high-pressure side refrigerant pipe between the compressor 11 and the four-way valve 12, and a heat exchanger temperature sensor 43 is attached to the outdoor heat exchanger 15. The discharge refrigerant temperature sensor 41 detects the discharge refrigerant temperature Td of the compressor 11. The high pressure switch 42 is activated when the discharge refrigerant pressure (high pressure side pressure) Pd of the compressor 11 is abnormally increased. However, the high voltage switch 42 can be omitted when an abnormal rise in Pd is determined by another sensor or the like.

熱交換器温度センサ43は、室外熱交換器15の温度(蒸発温度)Te(℃)を検知する。 The heat exchanger temperature sensor 43 detects the temperature (evaporation temperature) Te (° C.) of the outdoor heat exchanger 15.

そして、上記各熱源機1が制御部7に接続されている。制御部7には、さらに、外気温度To(℃)を検知する外気温度センサ8が接続されている。この制御部7は、主要な機能として、次の(1)〜(14)の手段を有する。
(1)熱源機1の運転開始に際し、ヒートポンプ式冷凍サイクルの運転およびポンプ24の運転を開始し、熱交換器温度センサ31の検知温度Tcまたは流入側温度センサ32の検知温度Twiが設定値に達するまで、第2三方弁26の第3流路を閉じて第4流路を開き、かつ第1三方弁22の第1流路を開いて第2流路を閉じることにより、ポンプ24、水熱交換器13、第3配管25、第2三方弁26の第4流路、第6配管29、第1配管21、第1三方弁22の第1流路を通して水が循環する初期循環回路を形成する第1制御手段。
Each of the heat source devices 1 is connected to the control unit 7. The controller 7 is further connected to an outside air temperature sensor 8 that detects an outside air temperature To (° C.). The control unit 7 includes the following means (1) to (14) as main functions.
(1) At the start of the operation of the heat source unit 1, the operation of the heat pump refrigeration cycle and the operation of the pump 24 are started, and the detected temperature Tc of the heat exchanger temperature sensor 31 or the detected temperature Twi of the inflow side temperature sensor 32 becomes a set value. Until the second three-way valve 26 is closed and the fourth flow path is opened, and the first three-way valve 22 is opened and the second flow path is closed. An initial circulation circuit in which water circulates through the heat exchanger 13, the third pipe 25, the fourth flow path of the second three-way valve 26, the sixth pipe 29, the first pipe 21, and the first flow path of the first three-way valve 22. 1st control means to form.

(2)上記第1制御手段による初期循環回路の形成後、熱交換器温度センサ31の検知温度Tcまたは流入側温度センサ32の検知温度Twiが設定値を超えると、第1三方弁22の第1流路を開いて第2流路を閉じ、かつ第2三方弁26の第3流路を開いて第4流路を閉じることにより、給水側主配管2の水を第1配管21、第1三方弁22の第1流路、第2配管23、ポンプ24を通して水熱交換器13に送り、その水熱交換器13から流出する温水を第3配管25、第2三方弁26の第3流路、第4配管27、第5配管28を通して給湯側主配管3に送る出湯回路を形成する第2制御手段。   (2) After the initial circuit is formed by the first control means, when the detected temperature Tc of the heat exchanger temperature sensor 31 or the detected temperature Twi of the inflow side temperature sensor 32 exceeds a set value, the first three-way valve 22 By opening one flow path and closing the second flow path, and opening the third flow path of the second three-way valve 26 and closing the fourth flow path, the water in the water supply side main pipe 2 is supplied to the first pipe 21 and the second flow path. The first flow path of the one-way valve 22, the second pipe 23, and the pump 24 are sent to the water heat exchanger 13, and the warm water flowing out of the water heat exchanger 13 is transferred to the third pipe 25 and the third of the second three-way valve 26. Second control means for forming a tapping circuit for sending to the hot water supply side main pipe 3 through the flow path, the fourth pipe 27 and the fifth pipe 28.

(3)ポンプ24の運転開始時の回転数を外気温度センサ8の検知温度Toに応じて設定する第3制御手段。   (3) Third control means for setting the rotational speed at the start of operation of the pump 24 in accordance with the detected temperature To of the outside air temperature sensor 8.

(4)上記第3制御手段により設定されるポンプ24の回転数を、流入側温度センサ32の検知温度Twiが所定値(=凝縮温度Tcに対する設定値Tcaに相等)未満の場合に圧縮機11の運転周波数F(Hz)、流出側温度センサ33の検知温度Two、熱交換器温度センサ31の検知温度Tc、および吐出冷媒温度センサ41の検知温度Tdに応じて増減補正するとともに、流入側温度センサ32の検知温度Twiが上記所定値以上の場合に熱交換器温度センサ31の検知温度Tcおよび吐出冷媒温度センサ41の検知温度Tdに応じて増減補正する第4制御手段。   (4) The rotational speed of the pump 24 set by the third control means is determined when the detected temperature Twi of the inflow side temperature sensor 32 is less than a predetermined value (= equivalent to the set value Tca with respect to the condensation temperature Tc). Increase / decrease correction according to the operating frequency F (Hz), the detected temperature Two of the outflow temperature sensor 33, the detected temperature Tc of the heat exchanger temperature sensor 31, and the detected temperature Td of the discharged refrigerant temperature sensor 41, and the inflow side temperature. Fourth control means for performing increase / decrease correction according to the detected temperature Tc of the heat exchanger temperature sensor 31 and the detected temperature Td of the discharged refrigerant temperature sensor 41 when the detected temperature Twi of the sensor 32 is equal to or higher than the predetermined value.

(5)上記第4制御手段による増加方向の補正に際してのポンプ24の回転数変化率を、熱交換器温度センサ31の検知温度Tcが設定値Tcb以上の場合にX(rpm/sec)に設定し、設定値Tcb未満の場合にY(rpm/sec)に設定する第5制御手段。なお、X>Yである。   (5) The rate of change in the rotational speed of the pump 24 when correcting the increasing direction by the fourth control means is set to X (rpm / sec) when the detected temperature Tc of the heat exchanger temperature sensor 31 is equal to or higher than the set value Tcb. And fifth control means for setting to Y (rpm / sec) when it is less than the set value Tcb. Note that X> Y.

(6)上記第1制御手段によるヒートポンプ式冷凍サイクルの運転開始を一定時間だけ遅らせる第6制御手段。   (6) Sixth control means for delaying the start of operation of the heat pump refrigeration cycle by the first control means by a fixed time.

(7)熱源機1の運転停止に際し、先ずヒートポンプ式冷凍サイクルの運転を停止し、流出側温度センサ33の検知温度Twoが一定値に低下するまで、ポンプ24の運転を継続しながら上記第2制御手段による出湯回路の形成を継続する第7制御手段。   (7) When the operation of the heat source unit 1 is stopped, the operation of the heat pump refrigeration cycle is first stopped, and the second operation is continued while the operation of the pump 24 is continued until the detected temperature Two of the outflow side temperature sensor 33 decreases to a constant value. Seventh control means for continuing the formation of the tapping circuit by the control means.

(8)上記第7制御手段によるヒートポンプ式冷凍サイクルの運転停止後、流出側温度センサ33の検知温度Twoが一定値を下回ると、ポンプ24の運転を停止するとともに、第2三方弁22の第3流路を閉じて第4流路を開き、かつ第1三方弁26の第1流路を開いて第2流路を閉じることにより、上記出湯回路の形成を解除(初期循環回路の形成を準備)しておく第8制御手段。   (8) After stopping the operation of the heat pump refrigeration cycle by the seventh control means, if the detected temperature Two of the outflow side temperature sensor 33 falls below a certain value, the operation of the pump 24 is stopped and the second three-way valve 22 By closing the 3 flow paths and opening the 4th flow path, and opening the 1st flow path of the 1st three-way valve 26 and closing the 2nd flow path, the formation of the tapping circuit is canceled (formation of the initial circulation circuit is performed). 8th control means to prepare.

(9)上記第2制御手段により出湯回路が形成される前に、上記第1制御手段による初期循環回路が形成されている状態でポンプ24の回転数を出湯用の回転数まで高めておく第9制御手段。   (9) Before the hot water circuit is formed by the second control means, the rotational speed of the pump 24 is increased to the hot water speed while the initial circulation circuit is formed by the first control means. 9 Control means.

(10)熱交換器温度センサ43の検知温度Teが設定値未満(例えば0℃)の状態を所定時間以上にわたり継続した場合に、室外熱交換器15が着霜していると判定する着霜判定手段。   (10) Frosting that determines that the outdoor heat exchanger 15 is frosted when the detected temperature Te of the heat exchanger temperature sensor 43 is kept below a set value (for example, 0 ° C.) for a predetermined time or longer. Judgment means.

(11)上記着霜判定手段の判定結果が着霜のとき、室外熱交換器15の除霜が必要であるとの判断の下に、圧縮機11の運転を停止するとともに、第2三方弁26の第3流路を開いて第4流路を閉じ、かつ第1三方弁22の第1流路を閉じて第2流路を開くことにより、温水が水熱交換器13、第3配管25、第2三方弁26の第3流路、第4配管27、第1三方弁22の第2流路、ポンプ24を通って循環する温水循環回路を形成する第10制御手段。   (11) When the determination result of the frost formation determination means is frost formation, the operation of the compressor 11 is stopped and the second three-way valve is determined based on the determination that the defrosting of the outdoor heat exchanger 15 is necessary. 26 opens the third flow path and closes the fourth flow path, and closes the first flow path of the first three-way valve 22 and opens the second flow path, so that the hot water is supplied to the water heat exchanger 13 and the third pipe. 25, tenth control means for forming a hot water circulation circuit that circulates through the third flow path of the second three-way valve 26, the fourth pipe 27, the second flow path of the first three-way valve 22, and the pump 24.

(12)上記第10制御手段による温水循環回路の形成後、圧縮機11の運転を再開して同圧縮機11の吐出冷媒が室外熱交換器15、膨張弁14、水熱交換器13を通って圧縮機11に戻る除霜サイクルを形成する第11制御手段。   (12) After the hot water circulation circuit is formed by the tenth control means, the operation of the compressor 11 is resumed and the refrigerant discharged from the compressor 11 passes through the outdoor heat exchanger 15, the expansion valve 14, and the water heat exchanger 13. And an eleventh control means for forming a defrost cycle returning to the compressor 11.

(13)上記第11制御手段による除霜サイクルの形成後、第1三方弁22の第1流路を閉じて第2流路を開き、かつ第2三方弁26の第3流路を閉じて第4流路を開くことにより、給湯側主配管3の温水が第5配管28、第4配管27、第1三方弁22の第2流路、ポンプ24を通って水熱交換器13に流れ、その水熱交換器13を経た水が第3配管25、第2三方弁26の第4流路、第6配管29、第1配管21を通って給水側主配管2に流れる温水利用除霜回路を形成する第12制御手段。   (13) After the defrost cycle is formed by the eleventh control means, the first flow path of the first three-way valve 22 is closed to open the second flow path, and the third flow path of the second three-way valve 26 is closed. By opening the fourth flow path, the hot water in the hot water supply side main pipe 3 flows to the water heat exchanger 13 through the fifth pipe 28, the fourth pipe 27, the second flow path of the first three-way valve 22, and the pump 24. The dewatered hot water defrost flows through the water heat exchanger 13 through the third pipe 25, the fourth flow path of the second three-way valve 26, the sixth pipe 29, and the first pipe 21 to the water supply side main pipe 2. 12th control means which forms a circuit.

(14)上記第12制御手段による温水利用除霜回路の形成後、図14の条件に従い、流出側温度センサ33の検知温度Twoが所定値(Twoa+ΔT)以上に上昇すると温水利用除霜回路から上記第10制御手段による温水循環回路の形成に切換え、流出側温度センサ33の検知温度Twoが所定値Twoa未満に下降すると温水循環回路から上記第12制御手段による温水利用除霜回路の形成に切換える第13制御手段。   (14) After the hot water defrosting circuit is formed by the twelfth control means, when the detected temperature Two of the outflow side temperature sensor 33 rises to a predetermined value (Twoa + ΔT) or more according to the conditions of FIG. Switching to the formation of the hot water circulation circuit by the tenth control means, and when the detected temperature Two of the outflow side temperature sensor 33 falls below the predetermined value Twoa, the hot water circulation circuit is switched to the formation of the hot water defrosting circuit by the twelfth control means. 13 control means.

つぎに、上記の構成の作用について説明する。
(a)初期循環回路および出湯回路
熱源機1の運転開始に際し、ヒートポンプ式冷凍サイクルの運転およびポンプ24の運転が開始され、図3に示す条件に基づき、熱交換器温度センサ31の検知温度Tcが設定値Tcsに達するまで、または流入側温度センサ32の検知温度Twiが設定値Twisに達するまで、第2三方弁26の第3流路が閉じられて第4流路が開かれ、かつ第1三方弁22の第1流路が開かれて第2流路が閉じられる。これにより、図2に矢印で示すように、ヒートポンプ式冷凍サイクルにおいて、圧縮機11の吐出冷媒が四方弁12、水熱交換器13、膨張弁14、室外熱交換器15、四方弁12を通って圧縮機11に吸込まれる流れが生じて水熱交換器が凝縮器として機能する。水サイクルでは、水がポンプ24、水熱交換器13、第3配管25、第2三方弁26の第4流路、第6配管29、第1配管21、第1三方弁22の第1流路を通って循環する初期循環回路が形成される。
Next, the operation of the above configuration will be described.
(A) Initial circulation circuit and tapping circuit
At the start of the operation of the heat source unit 1, the operation of the heat pump refrigeration cycle and the operation of the pump 24 are started until the detected temperature Tc of the heat exchanger temperature sensor 31 reaches the set value Tcs based on the conditions shown in FIG. Until the detection temperature Twi of the inflow side temperature sensor 32 reaches the set value Twis, the third flow path of the second three-way valve 26 is closed and the fourth flow path is opened, and the first flow path of the first three-way valve 22 is opened. Is opened and the second flow path is closed. As a result, as shown by arrows in FIG. 2, in the heat pump refrigeration cycle, the refrigerant discharged from the compressor 11 passes through the four-way valve 12, the water heat exchanger 13, the expansion valve 14, the outdoor heat exchanger 15, and the four-way valve 12. Thus, a flow sucked into the compressor 11 is generated, and the water heat exchanger functions as a condenser. In the water cycle, water flows through the pump 24, the water heat exchanger 13, the third pipe 25, the fourth flow path of the second three-way valve 26, the sixth pipe 29, the first pipe 21, and the first flow of the first three-way valve 22. An initial circulation circuit that circulates through the path is formed.

この初期循環回路の形成後、図3に示す条件に基づき、熱交換器温度センサ31の検知温度Tcが設定値Tcsを超えたとき、または流入側温度センサ32の検知温度Twiが設定値Twisを超えたとき、第1三方弁22の第1流路が開かれて第2流路が閉じられ、かつ第2三方弁26の第3流路が開かれて第4流路が閉じられる。これにより、図4に矢印で示すように、給水側主配管2の水が第1配管21、第1三方弁22の第1流路、第2配管23、ポンプ24を通って水熱交換器13に送られ、その水熱交換器13から流出する温水が第3配管25、第2三方弁26の第3流路、第4配管27、第5配管28を通って給湯側主配管3に送られる出湯回路が形成される。   After the initial circulation circuit is formed, based on the conditions shown in FIG. 3, when the detected temperature Tc of the heat exchanger temperature sensor 31 exceeds the set value Tcs, or the detected temperature Twi of the inflow side temperature sensor 32 becomes the set value Twis. When exceeded, the first flow path of the first three-way valve 22 is opened and the second flow path is closed, and the third flow path of the second three-way valve 26 is opened and the fourth flow path is closed. As a result, as shown by arrows in FIG. 4, the water in the water supply side main pipe 2 passes through the first pipe 21, the first flow path of the first three-way valve 22, the second pipe 23, and the pump 24, and the water heat exchanger. The hot water flowing out from the water heat exchanger 13 passes through the third pipe 25, the third flow path of the second three-way valve 26, the fourth pipe 27, and the fifth pipe 28 to the hot water supply side main pipe 3. A feeding hot water circuit is formed.

このように、運転開始時は、先ず初期循環回路を形成して水熱交換器13を温め、水熱交換器13が十分に温まってから給湯側主配管3への出湯を行うことにより、給湯側主配管3を流れる温水の不要な温度低下を回避することができて、十分に温度上昇した高温水が給湯側主配管3および密閉型タンク4に供給される。   Thus, at the start of operation, an initial circulation circuit is first formed to warm the water heat exchanger 13, and after the water heat exchanger 13 is sufficiently warmed, the hot water is discharged to the hot water supply side main pipe 3, thereby The unnecessary temperature drop of the hot water flowing through the side main pipe 3 can be avoided, and high-temperature water whose temperature has risen sufficiently is supplied to the hot water supply side main pipe 3 and the sealed tank 4.

とくに、複数台の熱源機1を備え、その各熱源機1の運転台数を変えることができるので、全体の給湯能力を増大できるとともに、その給湯能力を広範囲で調節することができ
(b)停止中の熱源機1への温水の流入阻止
停止中の熱源機1では、第2三方弁26の第3流路が閉じられて第4流路が開かれ、かつ第1三方弁22の第1流路が開かれて第2流路が閉じられ、給湯回路が解除されて図2の初期循環回路が準備される。これにより、運転中の熱源機1で作られた給湯側主配管3内の温水が停止中の熱源機1の水サイクルに流入することがなくなり、運転中の熱源機1で作られた温水およびその熱エネルギを無駄なく密閉型タンク4に供給して貯えることができ、省エネルギ性および信頼性の向上が図れる。
In particular, since a plurality of heat source units 1 are provided and the number of operating heat source units 1 can be changed, the overall hot water supply capacity can be increased and the hot water supply capacity can be adjusted in a wide range. (B) Stop Of inflow of hot water into the heat source unit 1
In the stopped heat source unit 1, the third flow path of the second three-way valve 26 is closed and the fourth flow path is opened, and the first flow path of the first three-way valve 22 is opened and the second flow path is opened. The hot water supply circuit is closed and the initial circulation circuit of FIG. 2 is prepared. As a result, the hot water in the hot water supply side main pipe 3 made by the operating heat source unit 1 does not flow into the water cycle of the stopped heat source unit 1, and the hot water made by the operating heat source unit 1 and The thermal energy can be supplied and stored in the sealed tank 4 without waste, and energy saving and reliability can be improved.

(c)ポンプ24の回転数
給水側主配管2と給湯側主配管3との間に接続される熱源機1の台数、給水側主配管2および給湯側主配管3の配管長や管径の違いにより、ポンプ24の回転数が一定でも熱源機1に流れる水流量は異なる。
(C) Speed of pump 24
The number of rotations of the pump 24 depends on the number of heat source devices 1 connected between the water supply side main pipe 2 and the hot water supply side main pipe 3, the pipe length and the pipe diameter of the water supply side main pipe 2 and the hot water supply side main pipe 3. Even if is constant, the flow rate of water flowing through the heat source unit 1 is different.

このため熱源機1に流れる流量を流出側温度センサ33の検知温度Twoが設定温度になることが可能である範囲でポンプ24の回転数を可変させる必要がある。ポンプ24の回転数は、運転開始時の初期回転数が外気温度センサ8の検知温度Toに応じて先ず設定され、その後、圧縮機11の運転周波数F(Hz)、流出側温度センサ33の検知温度Two、熱交換器温度センサ31の検知温度(凝縮温度)Tc、吐出冷媒温度センサ41の検知温度Tdなどに応じて増減制御される。   For this reason, it is necessary to vary the rotation speed of the pump 24 within a range in which the detection temperature Two of the outflow temperature sensor 33 can reach the set temperature with respect to the flow rate flowing to the heat source unit 1. As for the rotation speed of the pump 24, the initial rotation speed at the start of operation is first set according to the detection temperature To of the outside air temperature sensor 8, and then the operation frequency F (Hz) of the compressor 11 and the detection of the outflow side temperature sensor 33. Increase / decrease control is performed according to the temperature Two, the detected temperature (condensation temperature) Tc of the heat exchanger temperature sensor 31, the detected temperature Td of the discharged refrigerant temperature sensor 41, and the like.

この増減制御には2通りがあり、流入側温度センサ32の検知温度Twiが所定値未満の条件では図5〜図8に示す増減制御が実行され、同検知温度Twiが所定値以上の条件では 図9〜図11に示す増加制御が実行される。   There are two types of increase / decrease control. When the detected temperature Twi of the inflow side temperature sensor 32 is less than a predetermined value, the increase / decrease control shown in FIG. 5 to FIG. 8 is executed. Increase control shown in FIGS. 9 to 11 is executed.

すなわち、流入側温度センサ32の検知温度Twiが所定値未満の条件では、図5に示すように圧縮機11の運転周波数F(Hz)がF1未満、図6に示すように流出側温度センサ33の検知温度TwoがTwo1以上、図7に示すように熱交換器温度センサ31の検知温度TcがTc3以上、図8に示すように吐出冷媒温度センサ41の検知温度TdがTd1以上という各々の条件が予め定められている数秒間にわたり継続した場合に、熱源機1に流れる水流量が少ないため、熱交換器温度センサ31が高く、高圧圧力が高いと判断し、ポンプ24の回転数を増加方向に補正し熱交換器温度を低下させる。この時、流出温度センサ33の温度と圧縮機11の運転周波数の条件を入れることで、流量増加による流出側温度低下を防止する。また、圧縮機11の運転周波数F(Hz)がF1以上、流出側温度センサ33の検知温度TwoがTwo2未満、熱交換器温度センサ31の検知温度TcがTc2未満・Tc1以上、吐出冷媒温度センサ41の検知温度TdがTd3未満という各々の条件が予め定められている数秒間にわたり継続した場合に、熱源機1に流れる水流量が多く流出温度が設定温度に到達しないと判断し、ポンプ24の回転数が減少方向に補正される。   That is, under the condition that the detected temperature Twi of the inflow side temperature sensor 32 is less than a predetermined value, the operating frequency F (Hz) of the compressor 11 is less than F1, as shown in FIG. 5, and the outflow side temperature sensor 33, as shown in FIG. The detected temperature Two is equal to or higher than Two1, the detected temperature Tc of the heat exchanger temperature sensor 31 is higher than Tc3 as shown in FIG. 7, and the detected temperature Td of the discharged refrigerant temperature sensor 41 is higher than Td1 as shown in FIG. Since the flow rate of water flowing through the heat source unit 1 is small when the temperature continues for a predetermined number of seconds, it is determined that the heat exchanger temperature sensor 31 is high and the high pressure is high, and the rotational speed of the pump 24 is increased. To reduce the heat exchanger temperature. At this time, by introducing the conditions of the temperature of the outflow temperature sensor 33 and the operating frequency of the compressor 11, a decrease in the outflow side temperature due to an increase in flow rate is prevented. Further, the operating frequency F (Hz) of the compressor 11 is F1 or more, the detection temperature Two of the outflow side temperature sensor 33 is less than Two2, the detection temperature Tc of the heat exchanger temperature sensor 31 is less than Tc2, Tc1 or more, the discharge refrigerant temperature sensor When each of the conditions that the detected temperature Td of 41 is less than Td3 continues for a predetermined number of seconds, it is determined that the flow rate of water flowing through the heat source unit 1 is large and the outflow temperature does not reach the set temperature. The rotational speed is corrected in the decreasing direction.

流入側温度センサ32の検知温度Twiが所定値以上の条件では、図9に示すように流出側温度センサ33の検知温度TcがTca以上、図10に示すように吐出冷媒温度センサ41の検知温度TdがTdb以上という状態が予め定められている数秒間にわたり継続した場合に、ポンプ24の回転数が増加方向に補正される。   Under the condition that the detected temperature Twi of the inflow side temperature sensor 32 is equal to or higher than a predetermined value, the detected temperature Tc of the outflow side temperature sensor 33 is equal to or higher than Tca as shown in FIG. 9, and the detected temperature of the discharged refrigerant temperature sensor 41 as shown in FIG. When the state where Td is equal to or greater than Tdb continues for a predetermined number of seconds, the rotational speed of the pump 24 is corrected in the increasing direction.

なお、ポンプ24の回転数の増加方向の補正に際し、ポンプ24の回転数変化率が図11に示す条件に従って切換えられる。すなわち、熱交換器温度センサ31の検知温度Tcが設定値Tcb以上であれば、回転数変化幅が大きめのX(rpm/sec)に設定することで圧力を早く低下させる。検知温度Tcが設定値Tcb未満であれば、回転数変化率がXより小さいY(rpm/sec)に設定される。   In the correction of the increasing direction of the rotational speed of the pump 24, the rotational speed change rate of the pump 24 is switched according to the conditions shown in FIG. That is, if the detected temperature Tc of the heat exchanger temperature sensor 31 is equal to or higher than the set value Tcb, the pressure is quickly reduced by setting the rotation speed change width to a larger X (rpm / sec). If the detected temperature Tc is less than the set value Tcb, the rotational speed change rate is set to Y (rpm / sec) smaller than X.

(d)初期循環回路でのヒートポンプ式冷凍サイクルの運転
熱源機1の運転開始に際し、ヒートポンプ式冷凍サイクルの運転開始(圧縮機11の運転開始)が一定時間だけ遅延される。これは、水熱交換器13に外気温と平衡するなどした中高温の温水が存在したまま運転が開始されると、水サイクルの初期循環回路がすぐに終了となって出湯回路に切換わり、十分に温まっていない温水が出湯されてしまうという不具合に対処している。すなわち、ヒートポンプ式冷凍サイクルの運転開始が一定時間たとえば数秒間だけ遅延されることにより、水熱交換器13に存する温水が初期循環回路によって水熱交換器13から一旦吐き出され、水サイクルの水温が均一化される。この後、ヒートポンプ式冷凍サイクルの運転(圧縮機11の運転)が開始される。これにより、温度の低い温水が出湯される不具合を解消することができる。
(D) Operation of heat pump refrigeration cycle in initial circulation circuit
When the operation of the heat source unit 1 is started, the operation start of the heat pump refrigeration cycle (operation start of the compressor 11) is delayed by a certain time. This is because when the water heat exchanger 13 starts operation with medium-high temperature hot water that is in equilibrium with the outside air temperature, the initial circulation circuit of the water cycle is immediately terminated and switched to the hot water circuit. Addresses a problem that hot water that is not warm enough is discharged. That is, when the operation start of the heat pump refrigeration cycle is delayed for a certain time, for example, several seconds, the hot water existing in the water heat exchanger 13 is once discharged from the water heat exchanger 13 by the initial circulation circuit, and the water temperature of the water cycle is reduced. It is made uniform. Thereafter, operation of the heat pump refrigeration cycle (operation of the compressor 11) is started. Thereby, the malfunction that warm water with low temperature is discharged can be eliminated.

(e)ヒートポンプ式冷凍サイクルの運転停止
熱源機1の運転停止に際し、先ずヒートポンプ式冷凍サイクルの運転(圧縮機11の運転)が停止され、流出側温度センサ33の検知温度Twoが一定値に低下するまで、ポンプ24の運転および出湯回路の形成が継続される。これは、ヒートポンプ式冷凍サイクルの運転停止(圧縮機11の停止)直後は水熱交換器13の内部にそれまで沸き上げていた高温水が残っており、その高温水を無駄なく出湯させるためである。こうして、運転停止後の予熱を十分に使い切ることができて、次回の運転開始に際して水熱交換器13に中高温の温水が残り難い状況となり、上記した運転開始を遅らせるための一定時間をできるだけ短縮することができる。この短縮は、出湯までの立ち上がり時間の短縮につながる。
(E) Stop operation of heat pump refrigeration cycle
When the operation of the heat source unit 1 is stopped, first, the operation of the heat pump refrigeration cycle (the operation of the compressor 11) is stopped, and the operation of the pump 24 and the hot water circuit until the detected temperature Two of the outflow temperature sensor 33 decreases to a constant value. The formation of is continued. This is because immediately after the operation stop of the heat pump refrigeration cycle (stop of the compressor 11), the high-temperature water that has been boiled up to that time remains in the water heat exchanger 13, and the high-temperature water is discharged without waste. is there. In this way, the preheating after the stop of operation can be used up sufficiently, and it becomes difficult for hot water of medium to high temperature to remain in the water heat exchanger 13 at the start of the next operation, and the fixed time for delaying the start of operation is shortened as much as possible. can do. This shortening leads to shortening of the rise time until the hot water.

ヒートポンプ式冷凍サイクルの運転停止後、流出側温度センサ33の検知温度Twoが一定値を下回ると、ポンプ24の運転が停止されるとともに、第2三方弁22の第3流路が閉じられて第4流路が開かれ、かつ第1三方弁26の第1流路が開かれて第2流路が閉じられる。これにより、出湯回路が解除されて初期循環回路が準備され、次回のスムーズな運転開始に備えることができる。上記(b)で述べたように、運転中の熱源機1で作られた給湯側主配管3内の温水が停止中の熱源機1の水サイクルに流入することもない。   When the detected temperature Two of the outflow temperature sensor 33 falls below a certain value after the operation of the heat pump refrigeration cycle is stopped, the operation of the pump 24 is stopped and the third flow path of the second three-way valve 22 is closed and The four flow paths are opened, the first flow path of the first three-way valve 26 is opened, and the second flow path is closed. Thereby, the hot water circuit is released and the initial circulation circuit is prepared, so that the next smooth start of operation can be prepared. As described in (b) above, the hot water in the hot water supply side main pipe 3 made by the operating heat source unit 1 does not flow into the water cycle of the stopped heat source unit 1.

(f)初期循環回路から出湯回路へ切換える前のポンプ24の回転数上昇
図12のタイムチャートに示すように、出湯回路が形成される前に、初期循環回路が形成されている状態で、ポンプ24の回転数が出湯用の回転数まで高められる。
(F) Increase in the rotational speed of the pump 24 before switching from the initial circulation circuit to the tapping circuit
As shown in the time chart of FIG. 12, before the hot water circuit is formed, the rotational speed of the pump 24 is increased to the rotational speed for hot water with the initial circulation circuit formed.

初期循環回路が形成されているとき、水サイクルの圧力は給湯側主配管3の圧力よりも低い状態にある。この状態で出湯回路が形成されると、給湯側主配管3内の温水が水サイクルに逆流する心配がある。   When the initial circulation circuit is formed, the pressure of the water cycle is lower than the pressure of the hot water supply side main pipe 3. If the hot water circuit is formed in this state, there is a concern that the hot water in the hot water supply side main pipe 3 flows back into the water cycle.

そこで、出湯回路が形成される前に、予め、ポンプ24の回転数を出湯用の回転数まで高めるようにしている。これにより、給湯側主配管3内の温水が水サイクルに逆流する不具合を未然に防止することができる。   Therefore, before the hot water circuit is formed, the rotational speed of the pump 24 is increased to the rotational speed for hot water in advance. Thereby, the malfunction that the warm water in the hot water supply side main piping 3 flows backward to a water cycle can be prevented beforehand.

(g)除霜
熱源機1の運転中、蒸発器として機能する室外熱交換器15の表面に徐々に霜が付着する。そこで、運転中、熱交換器温度センサ43の検知温度Teが監視され、その検知温度Teが設定値未満(例えば0℃)の状態を所定時間以上にわたり継続すると、室外熱交換器15が着霜していると判定される。
(G) Defrosting
During operation of the heat source apparatus 1, frost gradually adheres to the surface of the outdoor heat exchanger 15 that functions as an evaporator. Therefore, during operation, the detected temperature Te of the heat exchanger temperature sensor 43 is monitored, and if the detected temperature Te continues below a set value (for example, 0 ° C.) for a predetermined time or longer, the outdoor heat exchanger 15 is frosted. It is determined that

この着霜判定時、室外熱交換器15の除霜が必要であるとの判断の下に、除霜運転が実行される。   At the time of this frost determination, the defrosting operation is performed based on the determination that the outdoor heat exchanger 15 needs to be defrosted.

この除霜運転では、初めの数秒間だけ圧縮機11の運転が停止され、水サイクルにおいて、図13に示すように、第2三方弁26の第3流路が開かれて第4流路が閉じられ、かつ第1三方弁22の第1流路が閉じられて第2流路が開かれ、温水が水熱交換器13、第3配管25、第2三方弁26の第3流路、第4配管27、第1三方弁22の第2流路、ポンプ24を通って循環する温水循環回路が形成される。この温水循環回路の形成により、水熱交換器13の冷媒流路領域を含む全体が温水の予熱を受けて高温の均一状態となる。   In this defrosting operation, the operation of the compressor 11 is stopped for the first few seconds, and in the water cycle, as shown in FIG. 13, the third flow path of the second three-way valve 26 is opened and the fourth flow path is opened. The first flow path of the first three-way valve 22 is closed and the second flow path is opened, and the hot water is supplied from the water heat exchanger 13, the third pipe 25, the third flow path of the second three-way valve 26, A hot water circulation circuit that circulates through the fourth pipe 27, the second flow path of the first three-way valve 22, and the pump 24 is formed. By forming this hot water circulation circuit, the whole including the refrigerant flow path region of the water heat exchanger 13 is preheated with hot water and becomes a high temperature uniform state.

初めの数秒間が経過した後、温水循環回路を維持したまま、圧縮機11の運転が再開されるとともに四方弁12が切換えられ、図13に示すように、圧縮機11の吐出冷媒が四方弁12、室外熱交換器15、膨張弁14、水熱交換器13を通って圧縮機11に戻る除霜サイクルが形成される。この温水循環回路および除霜サイクルにより、水サイクルの温水の余熱が室外熱交換器15に対する除霜熱として有効に利用される。   After the first few seconds, the operation of the compressor 11 is restarted while the hot water circulation circuit is maintained, and the four-way valve 12 is switched. As shown in FIG. 13, the refrigerant discharged from the compressor 11 is discharged to the four-way valve. 12, the defrost cycle which returns to the compressor 11 through the outdoor heat exchanger 15, the expansion valve 14, and the water heat exchanger 13 is formed. By this hot water circulation circuit and the defrost cycle, the remaining heat of the hot water in the water cycle is effectively used as the defrost heat for the outdoor heat exchanger 15.

こうして、温水の予熱を利用した除霜が行われているとき、流出側温度センサ33の検知温度Twoが所定値Twoa未満に下降すると、予熱による除霜が限界となったとの判断の下に、またそのままでは水熱交換器13が凍結に至る心配があることから、第1三方弁22の第1流路が閉じられて第2流路が開かれ、かつ第2三方弁26の第3流路が閉じられて第4流路が開かれる。これにより、図15に示すように、給湯側主配管3の温水が第5配管28、第4配管27、第1三方弁22の第2流路、ポンプ24を通って水熱交換器13に流れ、その水熱交換器13を経た水が第3配管25、第2三方弁26の第4流路、第6配管29、第1配管21を通って給水側主配管2に流れる温水利用除霜回路が形成される。この温水利用除霜回路により、給湯側主配管3の高温水の熱が室外熱交換器15の除霜に利用される。   Thus, when defrosting using preheating of hot water is performed, if the detection temperature Two of the outflow temperature sensor 33 falls below a predetermined value Twoa, under the determination that defrosting by preheating has reached its limit, Further, since there is a concern that the water heat exchanger 13 may be frozen as it is, the first flow path of the first three-way valve 22 is closed and the second flow path is opened, and the third flow of the second three-way valve 26 is opened. The path is closed and the fourth flow path is opened. Accordingly, as shown in FIG. 15, the hot water in the hot water supply side main pipe 3 passes through the fifth pipe 28, the fourth pipe 27, the second flow path of the first three-way valve 22, and the pump 24 to the water heat exchanger 13. The use of hot water that flows through the water heat exchanger 13 and flows through the third pipe 25, the fourth flow path of the second three-way valve 26, the sixth pipe 29, and the first pipe 21 to the water supply side main pipe 2 A frost circuit is formed. With this hot water utilization defrosting circuit, the heat of the hot water in the hot water supply side main pipe 3 is used for defrosting the outdoor heat exchanger 15.

なお、温水利用除霜回路では、水熱交換器13を経た水が第3配管25、第2三方弁26の第4流路、第6配管29、第1配管21を通って給水側主配管2に流れるため、水熱交換器13での除霜側への熱移動量が少なくて水熱交換器13から流出する水の温度低下が少ないと、温度の高い水が給水側主配管2に流れ込んで他の熱源機1の水サイクルに流入するという事態を生じる。この場合、温度の高い水が流入した他の熱源機1では、冷凍サイクルの高圧側圧力が異常上昇して高圧スイッチ42が作動し、高圧保護制御が働いて不要に運転が停止してしまうことがある。   In the hot water defrosting circuit, the water that has passed through the water heat exchanger 13 passes through the third pipe 25, the fourth flow path of the second three-way valve 26, the sixth pipe 29, and the first pipe 21, and the water supply side main pipe 2, if the amount of heat transferred to the defrosting side in the water heat exchanger 13 is small and the temperature drop of the water flowing out from the water heat exchanger 13 is small, high temperature water is supplied to the water supply side main pipe 2. The situation of flowing in and flowing into the water cycle of another heat source machine 1 occurs. In this case, in the other heat source unit 1 into which high-temperature water has flowed in, the high-pressure side pressure of the refrigeration cycle rises abnormally, the high-pressure switch 42 is activated, and the high-pressure protection control is activated to stop the operation unnecessarily. There is.

このような高圧保護制御による不要な運転停止を避けるため、図14の条件に従い、流出側温度センサ33の検知温度Twoが所定値(Twoa+ΔT)以上に上昇したとき、温水利用除霜回路から温水循環回路に切換えられる。   In order to avoid such an unnecessary operation stop due to the high pressure protection control, when the detected temperature Two of the outflow temperature sensor 33 rises to a predetermined value (Twoa + ΔT) or more according to the conditions of FIG. Switch to circuit.

流出側温度センサ33の検知温度Twoが所定値Twoa未満に下降した場合には、十分な除霜熱を得るため、温水循環回路から温水利用除霜回路に切換えられる。   When the detected temperature Two of the outflow side temperature sensor 33 falls below a predetermined value Twoa, the hot water circulation circuit is switched to the hot water defrost circuit in order to obtain sufficient defrost heat.

[2]この発明の第2の実施形態について説明する。
図16に示すように、各熱源機1のヒートポンプ式冷凍サイクルの冷媒流路において、水熱交換器13に対しバイパス51が並列に接続され、そのバイパス51に二方弁52が設けられている。さらに、ヒートポンプ式冷凍サイクルの水熱交換器13と膨張弁14との間の冷媒流路における上記バイパス51の接続位置よりも水熱交換器13側に、流量調整弁53が設けられている。
[2] A second embodiment of the present invention will be described.
As shown in FIG. 16, in the refrigerant flow path of the heat pump refrigeration cycle of each heat source apparatus 1, a bypass 51 is connected in parallel to the water heat exchanger 13, and a two-way valve 52 is provided in the bypass 51. . Furthermore, a flow rate adjusting valve 53 is provided on the side of the water heat exchanger 13 from the connection position of the bypass 51 in the refrigerant flow path between the water heat exchanger 13 and the expansion valve 14 of the heat pump refrigeration cycle.

バイパス51は、除霜サイクルの形成時に水熱交換器13側に流れる冷媒の一部をバイパスするためのものである。二方弁52は、バイパス51を開閉するためのものである。流量調整弁53は、開度変化が自在で、除霜サイクルの形成時に水熱交換器13に流入する冷媒の量を調節するためのものである。   The bypass 51 is for bypassing a part of the refrigerant that flows to the water heat exchanger 13 side when the defrost cycle is formed. The two-way valve 52 is for opening and closing the bypass 51. The flow rate adjusting valve 53 can freely change the opening degree and adjusts the amount of refrigerant flowing into the water heat exchanger 13 when the defrost cycle is formed.

そして、制御部7は、主要な機能として、第1の実施形態の(1)〜(14)の手段に加え、次の(15)(16)の手段を有している。
(15)上記第12制御手段による温水利用除霜回路の形成時、図17の切換条件に基づき、熱交換器温度センサ31の検知温度Tcが所定値Tcc以上であれば二方弁52を閉じて通常除霜を実行し、同検知温度Tcが所定値Tcc未満になると二方弁52を開いてバイパス51の導通によるいわゆる並行除霜を実行する第14制御手段。なお、熱交換器温度センサ31の検知温度Tcを用いたが、流入側温度センサ32の検知温度Twiあるいは流出側温度センサ33の検知温度Twoを用いてもよい。
And the control part 7 has the following means (15) (16) in addition to the means (1)-(14) of 1st Embodiment as main functions.
(15) When forming the defrosting circuit using hot water by the twelfth control means, the two-way valve 52 is closed if the detected temperature Tc of the heat exchanger temperature sensor 31 is equal to or higher than a predetermined value Tcc based on the switching conditions of FIG. 14th control means which performs normal defrosting, opens the two-way valve 52, and performs what is called parallel defrosting by conduction of bypass 51, when the detection temperature Tc becomes less than predetermined value Tcc. Although the detection temperature Tc of the heat exchanger temperature sensor 31 is used, the detection temperature Twi of the inflow side temperature sensor 32 or the detection temperature Two of the outflow side temperature sensor 33 may be used.

(16)上記第14制御手段により二方弁52が開いているとき(並行除霜時)、流量調整弁53の開度を流出側温度センサ33の検知温度Twoが低いほど絞る方向に制御する第15制御手段。なお、流出側温度センサ33の検知温度Twoを用いたが、流入側温度センサ32の検知温度Twoを用いてもよい。   (16) When the two-way valve 52 is opened by the fourteenth control means (at the time of parallel defrosting), the opening degree of the flow rate adjustment valve 53 is controlled to be narrowed as the detected temperature Two of the outflow temperature sensor 33 is lower. 15th control means. Although the detection temperature Two of the outflow side temperature sensor 33 is used, the detection temperature Two of the inflow side temperature sensor 32 may be used.

作用を説明する。
図16に示すように、温水利用除霜回路が形成され、給湯側主配管3の温水が水熱交換器13に流入しているとき、給湯側主配管3から水熱交換器13に流入する温水の温度が何らかの原因で低下したり、あるいは水熱交換器13に流れる温水の循環量が何らかの原因で減少すると、蒸発器として機能している水熱交換器13が凍結に至る可能性がある。
The operation will be described.
As shown in FIG. 16, when the hot water defrosting circuit is formed and the hot water in the hot water supply side main pipe 3 flows into the water heat exchanger 13, the hot water use main pipe 3 flows into the water heat exchanger 13. If the temperature of the hot water decreases for some reason, or if the circulation rate of the hot water flowing through the water heat exchanger 13 decreases for some reason, the water heat exchanger 13 functioning as an evaporator may be frozen. .

そこで、熱交換器温度センサ31の検知温度Tcが監視され、その検知温度Tcと図17に示す切換条件との対照により、通常除霜と並行除霜が選択的に実行される。   Therefore, the detected temperature Tc of the heat exchanger temperature sensor 31 is monitored, and normal defrosting and parallel defrosting are selectively performed based on a comparison between the detected temperature Tc and the switching condition shown in FIG.

まず、検知温度Tcが所定値Tcc以上の状態にあれば、水熱交換器13の凍結の心配はないとの判断の下に、二方弁52が閉じられてバイパス51が遮断され、室外熱交換器15を経た冷媒がそのまま水熱交換器13に流れる通常除霜が実行される。   First, if the detected temperature Tc is equal to or higher than the predetermined value Tcc, the two-way valve 52 is closed and the bypass 51 is shut off by determining that there is no risk of freezing of the water heat exchanger 13, and the outdoor heat is Normal defrosting is performed in which the refrigerant that has passed through the exchanger 15 flows to the water heat exchanger 13 as it is.

ただし、検知温度Tcが所定値Tcc未満に低下すると、水熱交換器13の凍結の心配があるとの判断の下に、二方弁52が開かれてバイパス51が導通する。このバイパス51の導通により、室外熱交換器15を経た冷媒の一部がバイパス51に流れ、その分だけ水熱交換器13に流入する冷媒の量が少なくなる。この冷媒流量の減少により、水熱交換器13の凍結が防止される。   However, when the detected temperature Tc falls below the predetermined value Tcc, the two-way valve 52 is opened and the bypass 51 is conducted under the judgment that the water heat exchanger 13 may be frozen. Due to the conduction of the bypass 51, a part of the refrigerant that has passed through the outdoor heat exchanger 15 flows into the bypass 51, and the amount of the refrigerant flowing into the water heat exchanger 13 decreases accordingly. Due to the decrease in the refrigerant flow rate, freezing of the water heat exchanger 13 is prevented.

そして、この凍結防止制御では、流出側温度センサ33の検知温度Twoが監視され、その検知温度Twoが低いほど流量調整弁53の開度が絞られて水熱交換器13への流入冷媒量が削減される。   In this anti-freezing control, the detected temperature Two of the outflow side temperature sensor 33 is monitored, and the lower the detected temperature Two, the smaller the opening degree of the flow rate adjustment valve 53 and the amount of refrigerant flowing into the water heat exchanger 13 becomes. Reduced.

この凍結防止制御の実行にもかかわらず、流出側温度センサ33の検知温度Twoが低下が続いた場合には、最終的な凍結防止策として流量調整弁53が全閉され、図18に示すように水熱交換器13への冷媒の流入が遮断される。この場合、圧縮機11の吐出冷媒の熱のみで室外熱交換器15を除霜することになる。   If the detected temperature Two of the outflow temperature sensor 33 continues to decrease despite the execution of the freeze prevention control, the flow rate adjustment valve 53 is fully closed as a final freeze prevention measure, as shown in FIG. In addition, the inflow of the refrigerant to the water heat exchanger 13 is blocked. In this case, the outdoor heat exchanger 15 is defrosted only with the heat of the refrigerant discharged from the compressor 11.

他の構成、作用、効果は第1の実施形態と同じである。よって、その説明は省略する。   Other configurations, operations, and effects are the same as those in the first embodiment. Therefore, the description is omitted.

[3]変形例
第2の実施形態において、通常除霜と並行除霜の切換条件としては、検知温度Tcに基づく図17の切換条件に限らず、検知温度Tc,Twoに基づく図19の切換条件、あるいは検知温度Tc,Twoに基づくきめ細かい図20の切換条件を用いてもよい。
[3] Modification
In the second embodiment, the switching condition between normal defrosting and parallel defrosting is not limited to the switching condition of FIG. 17 based on the detected temperature Tc, but the switching condition of FIG. 19 based on the detected temperatures Tc and Two, or the detected temperature. The detailed switching conditions of FIG. 20 based on Tc and Two may be used.

その他、この発明は上記実施形態に限定されるものではなく、要旨を変えない範囲で種々変形実施可能である。   In addition, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention.

各実施形態の構成を示す図。The figure which shows the structure of each embodiment. 第1の実施形態における熱源機の具体的な構成および初期循環回路を示す図The figure which shows the specific structure and initial stage circulation circuit of the heat-source equipment in 1st Embodiment. 第1の実施形態における初期循環回路と出湯回路との切換条件を示す図。The figure which shows the switching conditions of the initial stage circulation circuit and tapping circuit in 1st Embodiment. 第1の実施形態における熱源機の出湯回路を示す図。The figure which shows the tapping circuit of the heat-source machine in 1st Embodiment. 各実施形態における運転周波数に応じたポンプ回転数の制御条件を示す図。The figure which shows the control conditions of the pump rotation speed according to the operating frequency in each embodiment. 各実施形態における流出側温度センサの検知温度に応じたポンプ回転数の制御条件を示す図。The figure which shows the control conditions of the pump rotation speed according to the detection temperature of the outflow side temperature sensor in each embodiment. 各実施形態における凝縮温度に応じたポンプ回転数の制御条件を示す図。The figure which shows the control conditions of the pump rotation speed according to the condensation temperature in each embodiment. 各実施形態における吐出冷媒温度に応じたポンプ回転数の制御条件を示す図。The figure which shows the control conditions of the pump rotation speed according to the discharge refrigerant | coolant temperature in each embodiment. 各実施形態における特定の条件での凝縮温度に応じたポンプ回転数の制御条件を示す図。The figure which shows the control conditions of the pump rotation speed according to the condensation temperature on the specific conditions in each embodiment. 各実施形態における特定の条件での吐出冷媒温度に応じたポンプ回転数の制御条件を示す図。The figure which shows the control conditions of the pump rotation speed according to the discharge refrigerant | coolant temperature on the specific conditions in each embodiment. 各実施形態におけるポンプの回転数変化率の制御条件を示す図。The figure which shows the control conditions of the rotation speed change rate of the pump in each embodiment. 各実施形態におけるポンプ回転数のアップタイミングを説明するためのタイムチャート。The time chart for demonstrating the up timing of the pump rotation speed in each embodiment. 各実施形態における除霜サイクルおよび温水循環サイクルを示す図。The figure which shows the defrost cycle and warm water circulation cycle in each embodiment. 各実施形態における除霜サイクルと温水循環サイクルの切換条件を示す図。The figure which shows the switching conditions of the defrost cycle and warm water circulation cycle in each embodiment. 各実施形態における除霜サイクルおよび温水利用除霜サイクルを示す図。The figure which shows the defrost cycle and warm water utilization defrost cycle in each embodiment. 第2の実施形態における熱源機の構成および平衡除霜時の冷媒の流れを示す図。The figure which shows the structure of the heat-source equipment in 2nd Embodiment, and the flow of the refrigerant | coolant at the time of equilibrium defrost. 第2の実施形態における通常除霜と並行除霜の切換条件を示す図。The figure which shows the switching conditions of the normal defrost and parallel defrost in 2nd Embodiment. 第2の実施形態におけるバイパス遮断時の冷媒の流れを示す図。The figure which shows the flow of the refrigerant | coolant at the time of bypass interruption | blocking in 2nd Embodiment. 第2の実施形態における通常除霜と並行除霜の切換条件の変形例を示す図。The figure which shows the modification of the switching conditions of the normal defrost and parallel defrost in 2nd Embodiment. 第2の実施形態における通常除霜と並行除霜の切換条件の別の変形例を示す図。The figure which shows another modification of the switching conditions of normal defrost and parallel defrost in 2nd Embodiment.

符号の説明Explanation of symbols

1…熱源機、2…給水側主配管、3…給湯側主配管、4…密閉型タンク、5…開放型タンク、7…制御部、11…圧縮機、13…水熱交換器、14…膨張弁(減圧器)、15…室外熱交換器、21…第1配管、22…第1三方弁、23…第2配管、24…ポンプ、25…第3配管、26…第2三方弁、27…第4配管、28…第5配管、29…第6配管、31…熱交換器温度センサ、32…流入側温度センサ、33…流出側温度センサ、41…吐出冷媒温度センサ、42…高圧スイッチ、51…バイパス、52…二方弁、53…流量調整弁   DESCRIPTION OF SYMBOLS 1 ... Heat source machine, 2 ... Water supply side main piping, 3 ... Hot water supply side main piping, 4 ... Sealed tank, 5 ... Open type tank, 7 ... Control part, 11 ... Compressor, 13 ... Water heat exchanger, 14 ... Expansion valve (pressure reducer), 15 ... outdoor heat exchanger, 21 ... first piping, 22 ... first three-way valve, 23 ... second piping, 24 ... pump, 25 ... third piping, 26 ... second three-way valve, 27 ... 4th piping, 28 ... 5th piping, 29 ... 6th piping, 31 ... heat exchanger temperature sensor, 32 ... inflow side temperature sensor, 33 ... outflow side temperature sensor, 41 ... discharge refrigerant temperature sensor, 42 ... high pressure Switch, 51 ... Bypass, 52 ... Two-way valve, 53 ... Flow control valve

Claims (10)

圧縮機の吐出冷媒を水熱交換器、減圧器、室外熱交換器に通して圧縮機に戻し水熱交換器を凝縮器として機能させるヒートポンプ式冷凍サイクル、および給水側主配管の水をポンプにより前記水熱交換器に送りその水熱交換器から流出する温水を給湯側主配管に導く水サイクルを有する複数の熱源機と、
前記各熱源機に設けられ、前記水サイクルと前記給水側主配管との間の水の流通を制御するための第1弁と、
前記各熱源機に設けられ、前記水サイクルと前記給湯側主配管との間の温水の流通を制御するための第2弁と、
を備え
前記第1弁は、選択的な開閉が可能な第1流路および第2流路を有する第1三方弁であり、
前記第2弁は、選択的な開閉が可能な第3流路および第4流路を有する第2三方弁であり、
前記各熱源機の水サイクルは、前記給水側主配管から前記第1三方弁の第1流路の一端に接続された第1配管、前記第1三方弁の各流路の他端から前記ポンプを介して前記水熱交換器の水入口に接続された第2配管、前記水熱交換器の水出口から前記第2三方弁の各流路の一端に接続された第3配管、前記第2三方弁の第3流路の他端から前記第1三方弁の第2流路の一端に接続された第4配管、この第4配管の中途部から前記給湯側主配管に接続された第5配管、および前記第2三方弁の第4流路の他端から前記第1配管に接続された第6配管を有する、
ことを特徴とする給湯装置。
The refrigerant discharged from the compressor is passed through the water heat exchanger, decompressor, and outdoor heat exchanger, returned to the compressor, a heat pump refrigeration cycle that allows the water heat exchanger to function as a condenser, and water in the water supply side main pipe is pumped A plurality of heat source units having a water cycle that leads the hot water flowing to the water heat exchanger and flowing out of the water heat exchanger to the hot water supply side main pipe;
A first valve for controlling the flow of water between the water cycle and the water supply-side main pipe;
A second valve for controlling the circulation of hot water between the water cycle and the hot water supply side main pipe;
Equipped with a,
The first valve is a first three-way valve having a first flow path and a second flow path that can be selectively opened and closed,
The second valve is a second three-way valve having a third flow path and a fourth flow path that can be selectively opened and closed,
The water cycle of each of the heat source units is the first pipe connected from the water supply side main pipe to one end of the first flow path of the first three-way valve, and the pump from the other end of each flow path of the first three-way valve. A second pipe connected to the water inlet of the water heat exchanger via a third outlet, a third pipe connected to one end of each flow path of the second three-way valve from the water outlet of the water heat exchanger, the second A fourth pipe connected from the other end of the third flow path of the three-way valve to one end of the second flow path of the first three-way valve, and a fifth pipe connected from the middle part of the fourth pipe to the hot water supply side main pipe A pipe and a sixth pipe connected to the first pipe from the other end of the fourth flow path of the second three-way valve;
A water heater characterized by that.
前記水熱交換器の温度を検知する熱交換器温度センサと、
前記水熱交換器に流入する水の温度を検知する流入側温度センサと、
前記熱源機の運転開始に際し、前記ヒートポンプ式冷凍サイクルの運転および前記ポンプの運転を開始し、前記各温度センサのいずれかの検知温度が設定値に達するまで、前記第2三方弁の第3流路を閉じて第4流路を開き、かつ前記第1三方弁の第1流路を開いて第2流路を閉じ、水が前記ポンプ、前記水熱交換器、前記第3配管、前記第2三方弁の第4流路、前記第6配管、前記第1配管、前記第1三方弁の第1流路を通って循環する初期循環回路を形成する第1制御手段と、
前記第1制御手段による初期循環回路の形成後、前記各温度センサのいずれかの検知温度が設定値を超えると、前記第1三方弁の第1流路を開いて第2流路を閉じ、かつ前記第2三方弁の第3流路を開いて第4流路を閉じることにより、前記給水側主配管の水を前記第1配管、前記第1三方弁の第1流路、前記第2配管、前記ポンプを通して前記水熱交換器に送り、その水熱交換器から流出する温水を前記第3配管、前記第2三方弁の第3流路、前記第4配管、前記第5配管を通して前記給湯側主配管に送る出湯回路を形成する第2制御手段と、
をさらに備えることを特徴とする請求項1に記載の給湯装置。
A heat exchanger temperature sensor for detecting the temperature of the water heat exchanger;
An inflow side temperature sensor for detecting the temperature of water flowing into the water heat exchanger;
When starting the operation of the heat source unit, the operation of the heat pump refrigeration cycle and the operation of the pump are started, and the third flow of the second three-way valve is continued until the detected temperature of each of the temperature sensors reaches a set value. The channel is closed and the fourth channel is opened, and the first channel of the first three-way valve is opened and the second channel is closed, and water is supplied to the pump, the water heat exchanger, the third pipe, A first control means for forming an initial circulation circuit that circulates through the fourth flow path of the two-way valve, the sixth pipe, the first pipe, and the first flow path of the first three-way valve;
After the initial circulation circuit is formed by the first control means, when the detected temperature of each of the temperature sensors exceeds a set value, the first flow path of the first three-way valve is opened and the second flow path is closed, And, by opening the third flow path of the second three-way valve and closing the fourth flow path, the water of the water supply side main pipe is supplied to the first pipe, the first flow path of the first three-way valve, the second Piping, sent to the water heat exchanger through the pump, and warm water flowing out from the water heat exchanger through the third pipe, the third flow path of the second three-way valve, the fourth pipe, and the fifth pipe Second control means for forming a hot water supply circuit to be sent to the hot water supply side main pipe;
The hot water supply apparatus according to claim 1 , further comprising:
外気温度を検知する外気温度センサと、
前記水熱交換器から流出する水の温度を検知する流出側温度センサと、
前記圧縮機の吐出冷媒の温度を検知する吐出冷媒温度センサと、
前記ポンプの運転開始時の回転数を前記外気温度センサの検知温度に応じて設定する第3制御手段と、
前記第3制御手段により設定される前記ポンプの回転数を、前記流入側温度センサの検知温度が所定値未満の場合は前記圧縮機の運転周波数、前記流出側温度センサの検知温度、前記熱交換器温度センサの検知温度、および前記吐出冷媒温度センサの検知温度に応じて増減補正し、前記流入側温度センサの検知温度が所定値以上の場合は前記熱交換器温度センサの検知温度および前記吐出冷媒温度センサの検知温度に応じて増減補正する第4制御手段と、
前記第4制御手段による増加方向の補正に際し、前記ポンプの回転数変化率を、前記熱交換器温度センサの検知温度に応じて切換える第5制御手段と、
をさらに備えることを特徴とする請求項2に記載の給湯装置。
An outside temperature sensor for detecting the outside temperature;
An outflow temperature sensor for detecting the temperature of water flowing out of the water heat exchanger;
A discharge refrigerant temperature sensor for detecting the temperature of the discharge refrigerant of the compressor;
Third control means for setting the rotational speed at the start of operation of the pump according to the detected temperature of the outside air temperature sensor;
The number of rotations of the pump set by the third control means is set such that when the detected temperature of the inflow side temperature sensor is less than a predetermined value, the operating frequency of the compressor, the detected temperature of the outflow side temperature sensor, the heat exchange When the detected temperature of the inflow side temperature sensor is equal to or higher than a predetermined value, the detected temperature of the heat exchanger temperature sensor and the discharge temperature are corrected. Fourth control means for correcting increase / decrease according to the detected temperature of the refrigerant temperature sensor;
Fifth control means for switching the rate of change of the rotation speed of the pump in accordance with the detected temperature of the heat exchanger temperature sensor when the increase direction is corrected by the fourth control means;
The hot water supply apparatus according to claim 2 , further comprising:
前記第1制御手段による前記ヒートポンプ式冷凍サイクルの運転開始を一定時間だけ遅らせる第6制御手段、
をさらに備えることを特徴とする請求項2に記載の給湯装置。
Sixth control means for delaying the start of operation of the heat pump refrigeration cycle by the first control means by a fixed time;
The hot water supply apparatus according to claim 2 , further comprising:
前記水熱交換器から流出する水の温度を検知する流出側温度センサと、
前記熱源機の運転停止に際し、先ず前記ヒートポンプ式冷凍サイクルの運転を停止し、前記流出側温度センサの検知温度が一定値に低下するまで、前記ポンプの運転を継続しながら前記第2制御手段による出湯回路の形成を継続する第7制御手段と、
前記第7制御手段によるヒートポンプ式冷凍サイクルの運転停止後、前記流出側温度センサの検知温度が一定値を下回ると、前記ポンプの運転を停止するとともに、前記第2三方弁の第3流路を閉じて第4流路を開き、かつ前記第1三方弁の第1流路を開いて第2流路を閉じることにより、前記出湯回路の形成を解除しておく第8制御手段と、
をさらに備えることを特徴とする請求項2に記載の給湯装置。
An outflow temperature sensor for detecting the temperature of water flowing out of the water heat exchanger;
When stopping the operation of the heat source unit, first, the operation of the heat pump refrigeration cycle is stopped, and the second control unit continues the operation of the pump until the temperature detected by the outflow side temperature sensor decreases to a constant value. A seventh control means for continuing the formation of the tapping circuit;
After stopping the operation of the heat pump refrigeration cycle by the seventh control means, when the detected temperature of the outflow side temperature sensor falls below a certain value, the operation of the pump is stopped and the third flow path of the second three-way valve is stopped. An eighth control means for releasing the formation of the tapping circuit by closing and opening the fourth flow path, and opening the first flow path of the first three-way valve and closing the second flow path;
The hot water supply apparatus according to claim 2 , further comprising:
前記第2制御手段により出湯回路が形成される前に、前記第1制御手段による初期循環回路が形成されている状態で前記ポンプの回転数を出湯用の回転数まで高めておく第9制御手段、
をさらに備えることを特徴とする請求項2に記載の給湯装置。
Ninth control means for increasing the number of revolutions of the pump to the number of revolutions for pouring hot water in a state in which the initial circulation circuit is formed by the first control means before the tapping circuit is formed by the second control means. ,
The hot water supply apparatus according to claim 2 , further comprising:
前記室外熱交換器の除霜に際し、前記圧縮機の運転を一旦停止した状態で、前記第2三方弁の第3流路を開いて第4流路を閉じ、かつ前記第1三方弁の第1流路を閉じて第2流路を開くことにより、温水が前記水熱交換器、前記第3配管、前記第2三方弁の第3流路、前記第4配管、前記第1三方弁の第2流路、前記ポンプを通って循環する温水循環回路を形成する第10制御手段と、
前記第10制御手段による温水循環回路の形成後、前記圧縮機の運転を再開して同圧縮機の吐出冷媒が室外熱交換器、減圧器、水熱交換器を通って圧縮機に戻る除霜サイクルを形成する第11制御手段と、
第11制御手段による除霜サイクルの形成後、前記第1三方弁の第1流路を閉じて第2流路を開き、かつ前記第2三方弁の第3流路を閉じて第4流路を開くことにより、前記給湯側主配管の温水が前記第5配管、前記第4配管、前記第1三方弁の第2流路、前記ポンプを通って前記水熱交換器に流れ、その水熱交換器を経た水が前記第3配管、前記第2三方弁の第4流路、前記第6配管、前記第1配管を通って前記給水側主配管に流れる温水利用除霜回路を形成する第12制御手段と、
をさらに備えることを特徴とする請求項2に記載の給湯装置。
Upon defrosting the outdoor heat exchanger, the operation of the compressor is temporarily stopped, the third flow path of the second three-way valve is opened, the fourth flow path is closed, and the first three-way valve By closing one flow path and opening the second flow path, the hot water flows into the hydrothermal exchanger, the third pipe, the third flow path of the second three-way valve, the fourth pipe, and the first three-way valve. A tenth control means for forming a second flow path, a hot water circulation circuit circulating through the pump;
After the hot water circulation circuit is formed by the tenth control means, the operation of the compressor is resumed and the refrigerant discharged from the compressor returns to the compressor through the outdoor heat exchanger, the decompressor, and the water heat exchanger. Eleventh control means for forming a cycle;
After the defrost cycle is formed by the eleventh control means, the first flow path of the first three-way valve is closed to open the second flow path, and the third flow path of the second three-way valve is closed to close the fourth flow path. The hot water in the hot water supply side main pipe flows to the water heat exchanger through the fifth pipe, the fourth pipe, the second flow path of the first three-way valve, the pump, and the water heat The water that has passed through the exchanger forms a hot water defrosting circuit that flows through the third pipe, the fourth flow path of the second three-way valve, the sixth pipe, and the first pipe to the water supply side main pipe. 12 control means;
The hot water supply apparatus according to claim 2 , further comprising:
前記水熱交換器から流出する水の温度を検知する流出側温度センサと、
前記第12制御手段による温水利用除霜回路の形成後、前記流出側温度センサの検知温度が所定値以上に上昇すると温水利用除霜回路から前記第10制御手段による温水循環回路の形成に切換え、前記流出側温度センサの検知温度が所定値未満に下降すると温水循環回路から前記第12制御手段による温水利用除霜回路の形成に切換える第13制御手段、
をさらに備えることを特徴とする請求項7に記載の給湯装置。
An outflow temperature sensor for detecting the temperature of water flowing out of the water heat exchanger;
After the formation of the hot water defrosting circuit by the twelfth control means, when the detected temperature of the outflow side temperature sensor rises above a predetermined value, the hot water defrosting circuit is switched to the formation of the hot water circulation circuit by the tenth control means, A thirteenth control means for switching from the hot water circulation circuit to the formation of a hot water defrosting circuit by the twelfth control means when the temperature detected by the outflow side temperature sensor falls below a predetermined value;
The hot water supply apparatus according to claim 7 , further comprising:
前記水熱交換器から流出する水の温度を検知する流出側温度センサと、
前記ヒートポンプ式冷凍サイクルの冷媒流路において前記水熱交換器に対し並列に接続されたバイパスと、
前記バイパスに設けられた二方弁と、
前記第12制御手段による温水利用除霜回路の形成時、前記各温度センサのいずれかの検知温度が所定値以上になると前記二方弁を閉じ、同検知温度が所定値未満になると前記二方弁を開く第14制御手段と、
をさらに備えることを特徴とする請求項7に記載の給湯装置。
An outflow temperature sensor for detecting the temperature of water flowing out of the water heat exchanger;
A bypass connected in parallel to the water heat exchanger in the refrigerant flow path of the heat pump refrigeration cycle;
A two-way valve provided in the bypass;
When forming the defrosting circuit using hot water by the twelfth control means, the two-way valve is closed when the detected temperature of any one of the temperature sensors becomes equal to or higher than a predetermined value, and the two-way when the detected temperature becomes lower than the predetermined value. 14th control means for opening the valve;
The hot water supply apparatus according to claim 7 , further comprising:
前記ヒートポンプ式冷凍サイクルの水熱交換器と減圧器との間の冷媒流路における前記バイパスの接続位置よりも水熱交換器側に設けられた流量調整弁と、
前記第14制御手段により前記二方弁が開いているとき、前記流量調整弁の開度を前記各温度センサのいずれかの検知温度が低いほど絞る方向に制御する第15制御手段と、
をさらに備えることを特徴とする請求項9に記載の給湯装置。
A flow rate adjustment valve provided on the water heat exchanger side of the bypass connection position in the refrigerant flow path between the water heat exchanger and the decompressor of the heat pump refrigeration cycle;
Fifteenth control means for controlling the opening degree of the flow rate adjusting valve in a direction to be narrowed as the detected temperature of each of the temperature sensors is lower when the two-way valve is opened by the fourteenth control means;
The hot water supply apparatus according to claim 9 , further comprising:
JP2007202762A 2007-08-03 2007-08-03 Water heater Active JP5095295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007202762A JP5095295B2 (en) 2007-08-03 2007-08-03 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007202762A JP5095295B2 (en) 2007-08-03 2007-08-03 Water heater

Publications (2)

Publication Number Publication Date
JP2009036485A JP2009036485A (en) 2009-02-19
JP5095295B2 true JP5095295B2 (en) 2012-12-12

Family

ID=40438552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007202762A Active JP5095295B2 (en) 2007-08-03 2007-08-03 Water heater

Country Status (1)

Country Link
JP (1) JP5095295B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266135A (en) * 2009-05-15 2010-11-25 Panasonic Corp Heat pump type water heater
BR112013008728B1 (en) 2010-10-15 2020-10-27 Toshiba Carrier Corporation heat source appliance
JP5707881B2 (en) * 2010-11-11 2015-04-30 三浦工業株式会社 Water supply system
JP5573740B2 (en) * 2011-03-18 2014-08-20 三菱電機株式会社 Heat pump water heater
JP5841921B2 (en) * 2012-09-06 2016-01-13 ヤンマー株式会社 Engine driven heat pump chiller
JP5978099B2 (en) * 2012-10-29 2016-08-24 東芝キヤリア株式会社 Water heater
WO2014091548A1 (en) 2012-12-11 2014-06-19 三菱電機株式会社 Air conditioning hot water supply composite system
WO2014137968A2 (en) 2013-03-04 2014-09-12 Johnson Controls Technology Company A modular liquid based heating and cooling system
JP5977885B2 (en) * 2013-04-26 2016-08-24 東芝キヤリア株式会社 Water heater
JP6318021B2 (en) * 2014-06-24 2018-04-25 ヤンマー株式会社 Heat pump chiller
JP6342727B2 (en) * 2014-06-24 2018-06-13 ヤンマー株式会社 Heat pump chiller
CN115289611B (en) * 2022-07-08 2024-10-18 青岛海尔空调电子有限公司 Method and device for preventing air source heat pump unit from freezing, air source heat pump unit and storage medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3737357B2 (en) * 2000-11-24 2006-01-18 株式会社デンソー Water heater
JP2003166750A (en) * 2001-11-30 2003-06-13 Denso Corp Heat-pump type hot water supply device
JP3801170B2 (en) * 2003-11-19 2006-07-26 松下電器産業株式会社 Heat pump type water heater
JP4375095B2 (en) * 2004-04-19 2009-12-02 パナソニック株式会社 Heat pump water heater
JP2006292281A (en) * 2005-04-11 2006-10-26 Denso Corp Heat pump type water heater

Also Published As

Publication number Publication date
JP2009036485A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP5095295B2 (en) Water heater
JP5113447B2 (en) Control method for heat pump water heater
JP5575192B2 (en) Dual refrigeration equipment
EP2936008B1 (en) Method for defrosting of an evaporator in connection with an air handling unit
EP2420767B1 (en) Heat-pump hot water supply and air conditioning apparatus
RU2672995C1 (en) System and method of autonomous and uninterrupted defrosting
US7228695B2 (en) Heat pump type hot water supply device
JP5573757B2 (en) Hot water heater
JP6545252B2 (en) Refrigeration cycle device
JP5308220B2 (en) Heat pump type hot water supply / air conditioner
JP2013104606A (en) Refrigeration cycle apparatus and hot water producing apparatus
JP2014119122A (en) Refrigeration cycle device
JP5816422B2 (en) Waste heat utilization system of refrigeration equipment
JP2008116156A (en) Air conditioner
JP2013119954A (en) Heat pump hot water heater
JP2012077942A (en) Air conditioner
JP7135493B2 (en) heat pump water heater
JP5404761B2 (en) Refrigeration equipment
JP5068599B2 (en) Water heater
JP2010032063A (en) Outdoor unit and heat pump device
JP5440466B2 (en) Air conditioner
JP2006003077A (en) Heat pump type hot water supply apparatus
JP6105270B2 (en) Air conditioner
JP5218510B2 (en) Air conditioner
JP5287821B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

R150 Certificate of patent or registration of utility model

Ref document number: 5095295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250