JP2012037130A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2012037130A
JP2012037130A JP2010177212A JP2010177212A JP2012037130A JP 2012037130 A JP2012037130 A JP 2012037130A JP 2010177212 A JP2010177212 A JP 2010177212A JP 2010177212 A JP2010177212 A JP 2010177212A JP 2012037130 A JP2012037130 A JP 2012037130A
Authority
JP
Japan
Prior art keywords
compressor
heat exchanger
pipe
valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010177212A
Other languages
Japanese (ja)
Inventor
Koji Oka
浩二 岡
Kensho Yamamoto
憲昭 山本
Satoshi Tokura
聡 十倉
Hirokazu Kamota
廣和 加守田
Masahiro Baba
雅浩 馬場
Akihiko Shimizu
昭彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010177212A priority Critical patent/JP2012037130A/en
Publication of JP2012037130A publication Critical patent/JP2012037130A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration cycle device that can further improve the defrost performance during a defrosting operation while minimizing the return of a liquid phase refrigerant to a compressor so that the reliability of the compressor is ensured.SOLUTION: The refrigeration cycle device includes a defrosting bypass circuit and a heat storage bypass circuit. The refrigeration cycle device is configured to open a second electromagnetic valve 42 during a defrosting operation in a predetermined period after the opening of a first electromagnetic valve 30. This configuration can prevent a large amount of refrigerant accumulated in an indoor heat exchanger and an outdoor heat exchanger during the defrosting operation from returning to the compressor at once, and the reliability of the compressor from losing.

Description

本発明は、圧縮機と室内熱交換器と膨張弁と室外熱交換器が互いに冷媒配管で接続された冷凍サイクル装置に関し、特に圧縮機の信頼性を確保しながら除霜運転時の除霜性能を向上させることができる冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus in which a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are connected to each other by refrigerant piping, and in particular, defrosting performance during a defrosting operation while ensuring the reliability of the compressor. The present invention relates to a refrigeration cycle apparatus that can improve the efficiency.

従来、ヒートポンプ式空気調和機による暖房運転時に、室外熱交換器に霜が付着した場合には、暖房サイクルから冷房サイクルに四方弁を切り替えて除霜を行っている。この除霜方式では、室内ファンは停止するものの、室内機から冷気が徐々に放出されることから暖房感が失われるという欠点がある。   Conventionally, when frost adheres to an outdoor heat exchanger during heating operation by a heat pump air conditioner, defrosting is performed by switching a four-way valve from a heating cycle to a cooling cycle. In this defrosting method, although the indoor fan is stopped, there is a disadvantage that a feeling of heating is lost because cold air is gradually discharged from the indoor unit.

そこで、室外機に設けられた圧縮機に蓄熱材を収容した蓄熱槽を設け、暖房運転中に蓄熱材に蓄えられた圧縮機の廃熱を利用して除霜するようにしたものが提案されている(例えば、特許文献1参照)。   In view of this, it has been proposed that a compressor installed in the outdoor unit is provided with a heat storage tank that contains a heat storage material, and defrosts using the waste heat of the compressor stored in the heat storage material during heating operation. (For example, refer to Patent Document 1).

図7は、このような除霜方式を採用した冷凍サイクル装置の一例を示しており、室外機に設けられた圧縮機100と四方弁102と室外熱交換器104とキャピラリチューブ106と、室内機に設けられた室内熱交換器108とを冷媒配管で接続するとともに、キャピラリチューブ106をバイパスする第1バイパス回路110と、圧縮機100の吐出側から四方弁102を介して室内熱交換器108へ至る配管に一端を接続し他端をキャピラリチューブ106から室外熱交換器104へ至る配管に接続した第2バイパス回路112が設けられている。また、第1バイパス回路110には、二方弁114と逆止弁116と蓄熱熱交換器118が設けられ、第2バイパス回路112には、二方弁120と逆止弁122が設けられている。   FIG. 7 shows an example of a refrigeration cycle apparatus that employs such a defrosting method. The compressor 100, the four-way valve 102, the outdoor heat exchanger 104, the capillary tube 106, the indoor unit provided in the outdoor unit are shown. Is connected to the indoor heat exchanger 108 provided by the refrigerant pipe, the first bypass circuit 110 for bypassing the capillary tube 106, and the discharge side of the compressor 100 to the indoor heat exchanger 108 via the four-way valve 102. A second bypass circuit 112 is provided in which one end is connected to the connecting pipe and the other end is connected to the pipe extending from the capillary tube 106 to the outdoor heat exchanger 104. The first bypass circuit 110 is provided with a two-way valve 114, a check valve 116, and a heat storage heat exchanger 118, and the second bypass circuit 112 is provided with a two-way valve 120 and a check valve 122. Yes.

さらに、圧縮機100の周囲には蓄熱槽124が設けられており、蓄熱槽124の内部には、蓄熱熱交換器118と熱交換するための潜熱蓄熱材126が充填されている。   Furthermore, a heat storage tank 124 is provided around the compressor 100, and the heat storage tank 124 is filled with a latent heat storage material 126 for exchanging heat with the heat storage heat exchanger 118.

この冷凍サイクルにおいて、除霜運転時には、二つの二方弁114,120が開制御され、圧縮機100から吐出された冷媒の一部は第2バイパス回路112へと流れ、残りの冷媒は四方弁102と室内熱交換器108へと流れる。また、室内熱交換器108を流れた冷媒は暖房に利用された後、わずかの冷媒がキャピラリチューブ106を通って室外熱交換器104へと流れる一方、残りの大部分の冷媒は第1バイパス回路110へ流入し、二方弁114を通って蓄熱熱交換器118へと流れて蓄熱材126より熱を奪い、逆止弁116を通った後、キャピラリチューブ106を通過した冷媒と合流して室外熱交換器104へと流れる。その後、室外熱交換器104の入口で第2バイパス回路112を流れてきた冷媒と合流し、冷媒が持つ熱を利用して除霜を行い、さらに四方弁102を通過した後、圧縮機100に吸入される。   In this refrigeration cycle, during the defrosting operation, the two two-way valves 114 and 120 are controlled to open, a part of the refrigerant discharged from the compressor 100 flows to the second bypass circuit 112, and the remaining refrigerant is the four-way valve. 102 and the indoor heat exchanger 108. In addition, after the refrigerant flowing through the indoor heat exchanger 108 is used for heating, a small amount of refrigerant flows to the outdoor heat exchanger 104 through the capillary tube 106, while the remaining most of the refrigerant passes through the first bypass circuit. 110 flows into the heat storage heat exchanger 118 through the two-way valve 114, takes heat from the heat storage material 126, passes through the check valve 116, and then merges with the refrigerant that has passed through the capillary tube 106 to the outdoor. It flows to the heat exchanger 104. After that, it merges with the refrigerant flowing through the second bypass circuit 112 at the inlet of the outdoor heat exchanger 104, performs defrosting using the heat of the refrigerant, passes through the four-way valve 102, and then enters the compressor 100. Inhaled.

この冷凍サイクル装置においては、第2バイパス回路112を設けることで、除霜時に圧縮機100から吐出されたホットガスを室外熱交換器104に導くとともに、室外熱交換器104に流入する冷媒の圧力を高く保つことができるので、除霜能力を高めることができ、極めて短時間に除霜を完了することができる。   In this refrigeration cycle apparatus, by providing the second bypass circuit 112, the hot gas discharged from the compressor 100 during defrosting is guided to the outdoor heat exchanger 104 and the pressure of the refrigerant flowing into the outdoor heat exchanger 104 Therefore, the defrosting ability can be increased, and the defrosting can be completed in a very short time.

特開平2−143060号公報Japanese Patent Laid-Open No. 2-143060

しかしながら、前記従来の構成では、二方弁114,120の開動作のタイミングが明確ではなく、除霜運転時に蓄熱材に蓄えられた熱を有効に利用しつつ除霜性能をさらに高めることができなかった。すなわち、蓄熱槽を備えた冷凍サイクル装置において、弁の開動作タイミングに関して改善の余地があると言える。   However, in the conventional configuration, the timing of the opening operation of the two-way valves 114 and 120 is not clear, and the defrosting performance can be further enhanced while effectively using the heat stored in the heat storage material during the defrosting operation. There wasn't. That is, in the refrigeration cycle apparatus provided with the heat storage tank, it can be said that there is room for improvement with respect to the opening operation timing of the valve.

本発明は、前記従来の課題を解決するもので、圧縮機6の信頼性を確保しつつ除霜運転時の除霜性能をさらに高めることができる冷凍サイクル装置を提供するものである。   This invention solves the said conventional subject, and provides the refrigerating-cycle apparatus which can further improve the defrosting performance at the time of a defrosting operation, ensuring the reliability of the compressor 6. FIG.

前記従来の課題を解決するために、本発明の冷凍サイクル装置は、圧縮機で発生した熱を蓄熱する蓄熱材と、蓄熱材に蓄熱された熱とで熱交換を行う蓄熱熱交換器と、膨張弁と室外熱交換器との間、圧縮機の吐出口と前記四方弁との間を、第1電磁弁を介して接続する除霜バイパス回路と、室内熱交換器と膨張弁との間、四方弁と圧縮機の吸入口との間を、第2電磁弁及び蓄熱熱交換器を介して接続する蓄熱バイパス回路と、制御装置と、を備え、除霜運転中、第1電磁弁の開動作の所定時間後に、第2電磁弁が開くとしたものである。   In order to solve the conventional problem, the refrigeration cycle apparatus of the present invention includes a heat storage material that stores heat generated by a compressor, and a heat storage heat exchanger that performs heat exchange between heat stored in the heat storage material, Between the expansion valve and the outdoor heat exchanger, between the discharge port of the compressor and the four-way valve via the first solenoid valve, and between the indoor heat exchanger and the expansion valve A heat storage bypass circuit that connects the four-way valve and the compressor inlet via a second electromagnetic valve and a heat storage heat exchanger, and a controller, and during the defrosting operation, The second solenoid valve is opened after a predetermined time of the opening operation.

これによって、室内熱交換器と室外熱交換器に溜まった多量の冷媒が一気に圧縮機に戻り、圧縮機の信頼性が損なわれるのを防ぐことができる。あるいは冷媒が冷凍配管内を流れる音が騒音となるのを防ぐことができたりする。   As a result, it is possible to prevent a large amount of refrigerant accumulated in the indoor heat exchanger and the outdoor heat exchanger from returning to the compressor at once, and impairing the reliability of the compressor. Or it can prevent that the sound which a refrigerant | coolant flows through the inside of refrigeration piping becomes noise.

本発明によれば、第2電磁弁の開動作を第1電磁弁の開動作の後、一定時間後に実施するので、圧縮機の信頼性を確保しつつ除霜性能を上げることができ。また、冷凍配管内を冷媒が流れる音が騒音となるのを防ぐことができる。   According to the present invention, since the opening operation of the second electromagnetic valve is performed after a certain time after the opening operation of the first electromagnetic valve, the defrosting performance can be improved while ensuring the reliability of the compressor. Moreover, it is possible to prevent the sound of the refrigerant flowing in the refrigeration pipe from becoming noise.

本発明の実施の形態1に係る冷凍サイクル装置を備えた空気調和機の構成を示す図ならびに従来の冷凍サイクル装置の構成を示す図The figure which shows the structure of the air conditioner provided with the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention, and the figure which shows the structure of the conventional refrigeration cycle apparatus 図1の空気調和機の通常暖房時の動作及び冷媒の流れを示す模式図The schematic diagram which shows the operation | movement at the time of normal heating of the air conditioner of FIG. 1, and the flow of a refrigerant | coolant. 図1の空気調和機の除霜・暖房時の動作及び冷媒の流れを示す模式図The schematic diagram which shows the operation | movement at the time of defrosting and heating of the air conditioner of FIG. 1, and the flow of a refrigerant | coolant. 実施の形態1に係る冷凍サイクル装置を備えた空気調和機における第1電磁弁と第2電磁弁の開制御の動作タイミングを示す図The figure which shows the operation timing of the open control of the 1st solenoid valve and the 2nd solenoid valve in the air conditioner provided with the refrigerating cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置を備えた空気調和機における第1電磁弁と第2電磁弁の開制御の動作タイミングを示す別の図Another figure which shows the operation timing of the open control of the 1st solenoid valve and the 2nd solenoid valve in the air conditioner provided with the refrigerating cycle device concerning Embodiment 1. 本発明の実施の形態2に係る冷凍サイクル装置を備えた空気調和機の構成を示す図The figure which shows the structure of the air conditioner provided with the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. 従来の冷凍サイクル装置を示す図A diagram showing a conventional refrigeration cycle apparatus

第1の発明は、暖房運転時に、室内熱交換器、膨張弁、室外熱交換器、四方弁、圧縮機、前記四方弁の順に冷媒が流れるように接続した冷凍サイクルと、圧縮機の周囲に配置され、圧縮機で発生した熱を蓄熱する蓄熱材と、蓄熱材に蓄熱された熱とで熱交換を行う蓄熱熱交換器と、膨張弁と室外熱交換器との間、圧縮機の吐出口と前記四方弁との間を、第1電磁弁を介して接続する除霜バイパス回路と、室内熱交換器と膨張弁との間、四方弁と圧縮機の吸入口との間を、第2電磁弁及び蓄熱熱交換器を介して接続する蓄熱バイパス回路と、制御装置と、を備え、除霜運転中、第1電磁弁の開動作の所定時間後に、第2電磁
弁が開くとしたものである。
In the first aspect of the invention, during the heating operation, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, a four-way valve, a compressor, a refrigeration cycle connected so that refrigerant flows in the order of the four-way valve, and a compressor Between the expansion valve and the outdoor heat exchanger, the heat storage material that is disposed and stores heat generated by the compressor, the heat storage heat exchanger that exchanges heat with the heat stored in the heat storage material, and the discharge of the compressor A defrosting bypass circuit connecting the outlet and the four-way valve via the first solenoid valve, between the indoor heat exchanger and the expansion valve, and between the four-way valve and the suction port of the compressor, 2 A heat storage bypass circuit connected via a solenoid valve and a heat storage heat exchanger, and a control device, and the second solenoid valve is opened after a predetermined time of the opening operation of the first solenoid valve during the defrosting operation. Is.

この構成により、第1電磁弁と第2電磁弁を同時に開いて、室内熱交換器と室外熱交換器に溜まった多量の冷媒が一気に圧縮機に戻って、圧縮機の信頼性が損なわれることになるのを防ぐことができたり、冷媒が冷凍配管内を流れる音が騒音となるのを防ぐことができたりする。加えて、除霜運転が開始され第1電磁弁の開動作の後、冷凍サイクルの挙動が安定するまでの間は第2電磁弁の開動作を控えることで、蓄熱材に蓄えられた熱を温存しつつ、冷凍サイクルの挙動が安定した後第2電磁弁を開くことで、蓄熱材の熱量を最大限効果的に利用することが可能となり、結果として除霜運転時の除霜性能を高めることができる。   With this configuration, the first solenoid valve and the second solenoid valve are opened at the same time, and a large amount of refrigerant accumulated in the indoor heat exchanger and the outdoor heat exchanger returns to the compressor at once, and the reliability of the compressor is impaired. Or the noise of the refrigerant flowing through the refrigeration pipe can be prevented from becoming noise. In addition, after the defrosting operation is started and the first solenoid valve is opened, until the behavior of the refrigeration cycle is stabilized, the opening operation of the second solenoid valve is refrained, so that the heat stored in the heat storage material is reduced. Opening the second solenoid valve after the behavior of the refrigeration cycle is stabilized while preserving it, makes it possible to make the most effective use of the heat quantity of the heat storage material, and as a result, increase the defrosting performance during the defrosting operation. be able to.

第2の発明は、第1電磁弁の開動作の後、第2電磁弁を開くまでの所定時間は1秒以上60秒以下とするもので、蓄熱材に蓄えられた熱を効果的に除霜に利用できなるようにするとともに、室外熱交換器で霜を溶かすために冷やされた液相冷媒が多量に圧縮機に戻ってきて圧縮機の信頼性を損なわせるのを防ぐことができる。   In the second invention, after the opening operation of the first electromagnetic valve, the predetermined time until the opening of the second electromagnetic valve is 1 second or more and 60 seconds or less, and the heat stored in the heat storage material is effectively removed. While being able to utilize for frost, it can prevent that the liquid phase refrigerant | coolant cooled in order to melt frost with an outdoor heat exchanger returns to a compressor in large quantities and impairs the reliability of a compressor.

第3の発明は、第1電磁弁の開動作の前に、圧縮機の運転周波数を所定の周波数にするもので、暖房運転から除霜運転に切り替えた際に冷凍配管内のトータルの圧損が変化しても冷凍サイクルを安定して機能させることができる。   According to a third aspect of the present invention, the operating frequency of the compressor is set to a predetermined frequency before the opening operation of the first solenoid valve. When the heating operation is switched to the defrosting operation, the total pressure loss in the refrigeration pipe is reduced. Even if it changes, the refrigeration cycle can function stably.

第4の発明は、第1電磁弁の開制御の前に、膨張弁の開度を所定の開度にするもので、暖房運転から除霜運転に切り替えた際に冷凍配管内のトータルの圧損が変化しても冷凍サイクルを安定して機能させることができる。   According to a fourth aspect of the present invention, the opening degree of the expansion valve is set to a predetermined opening degree before the opening control of the first electromagnetic valve. When the heating operation is switched to the defrosting operation, the total pressure loss in the refrigeration pipe is reduced. Even if the temperature changes, the refrigeration cycle can function stably.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1に係る冷凍サイクル装置を備えた空気調和機の構成を示しており、空気調和機は、冷媒配管で互いに接続された室外機2と室内機4とで構成されている。また、図4、5は、実施の形態1に係る冷凍サイクル装置を備えた空気調和機における第1電磁弁と第2電磁弁の開制御の動作タイミングを示す図である。
(Embodiment 1)
FIG. 1 shows a configuration of an air conditioner including a refrigeration cycle apparatus according to Embodiment 1 of the present invention. The air conditioner includes an outdoor unit 2 and an indoor unit 4 that are connected to each other through refrigerant piping. It is configured. 4 and 5 are diagrams illustrating operation timings of the opening control of the first solenoid valve and the second solenoid valve in the air conditioner including the refrigeration cycle apparatus according to Embodiment 1. FIG.

図1に示されるように、室外機2の内部には、圧縮機6と四方弁8とストレーナ10と膨張弁12と室外熱交換器14とが設けられている。そして、室内機4の内部には、室内熱交換器16が設けられ、これらは冷媒配管を介して互いに接続されることで冷凍サイクルを構成している。   As shown in FIG. 1, a compressor 6, a four-way valve 8, a strainer 10, an expansion valve 12, and an outdoor heat exchanger 14 are provided inside the outdoor unit 2. And the indoor heat exchanger 16 is provided in the interior of the indoor unit 4, and these are mutually connected via refrigerant | coolant piping, and comprise the refrigerating cycle.

さらに詳述すると、圧縮機6と室内熱交換器16は、四方弁8が設けられた第1配管18を介して接続され、室内熱交換器16と膨張弁12は、ストレーナ10が設けられた第2配管20を介して接続されている。また、膨張弁12と室外熱交換器14は第3配管22を介して接続され、室外熱交換器14と圧縮機6は第4配管24を介して接続されている。   More specifically, the compressor 6 and the indoor heat exchanger 16 are connected via a first pipe 18 provided with a four-way valve 8, and the indoor heat exchanger 16 and the expansion valve 12 are provided with a strainer 10. The second pipe 20 is connected. The expansion valve 12 and the outdoor heat exchanger 14 are connected via a third pipe 22, and the outdoor heat exchanger 14 and the compressor 6 are connected via a fourth pipe 24.

第4配管24の中間部には四方弁8が配置されており、圧縮機6の冷媒吸入側における第4配管24には、液相冷媒と気相冷媒を分離するためのアキュームレータ26が設けられている。また、圧縮機6と第3配管22は、第5配管28を介して接続され、除霜バイパス回路を構成している。なお、第5配管28には第1電磁弁30が設けられている。   A four-way valve 8 is disposed in the middle of the fourth pipe 24, and an accumulator 26 for separating the liquid-phase refrigerant and the gas-phase refrigerant is provided in the fourth pipe 24 on the refrigerant suction side of the compressor 6. ing. Moreover, the compressor 6 and the 3rd piping 22 are connected through the 5th piping 28, and comprise the defrost bypass circuit. The fifth pipe 28 is provided with a first electromagnetic valve 30.

さらに、圧縮機6の周囲には圧縮機6を囲むように蓄熱槽32が接して設けられ、蓄熱
槽32の内部には、蓄熱熱交換器34が設けられるとともに、蓄熱熱交換器34と熱交換するための潜熱蓄熱材(例えば、エチレングリコール水溶液)36が充填されており、蓄熱槽32と蓄熱熱交換器34と蓄熱材36とで蓄熱装置を構成している。
Further, a heat storage tank 32 is provided around the compressor 6 so as to surround the compressor 6, and a heat storage heat exchanger 34 is provided inside the heat storage tank 32, and the heat storage heat exchanger 34 and the heat are also provided. A latent heat storage material (for example, ethylene glycol aqueous solution) 36 for replacement is filled, and the heat storage tank 32, the heat storage heat exchanger 34, and the heat storage material 36 constitute a heat storage device.

また、第2配管20と蓄熱熱交換器34は第6配管38を介して接続され、蓄熱熱交換器34と第4配管24は第7配管40を介して接続されており、蓄熱バイパス回路を構成している。第6配管38には第2電磁弁42が設けられている。   The second pipe 20 and the heat storage heat exchanger 34 are connected via a sixth pipe 38, and the heat storage heat exchanger 34 and the fourth pipe 24 are connected via a seventh pipe 40, and a heat storage bypass circuit is provided. It is composed. The sixth pipe 38 is provided with a second electromagnetic valve 42.

室内機4の内部には、室内熱交換器16に加えて、送風ファン(図示せず)と上下羽根(図示せず)と左右羽根(図示せず)とが設けられており、室内熱交換器16は、送風ファンにより室内機4の内部に吸込まれた室内空気と、室内熱交換器16の内部を流れる冷媒との熱交換を行い、暖房時には熱交換により暖められた空気を室内に吹き出す一方、冷房時には熱交換により冷却された空気を室内に吹き出す。上下羽根は、室内機4から吹き出される空気の方向を必要に応じて上下に変更し、左右羽根は、室内機4から吹き出される空気の方向を必要に応じて左右に変更する。   In addition to the indoor heat exchanger 16, an air blower fan (not shown), upper and lower blades (not shown), and left and right blades (not shown) are provided inside the indoor unit 4, and indoor heat exchange is performed. The unit 16 exchanges heat between the indoor air sucked into the interior of the indoor unit 4 by the blower fan and the refrigerant flowing through the interior of the indoor heat exchanger 16, and blows out the air warmed by heat exchange into the room during heating. On the other hand, air cooled by heat exchange is blown into the room during cooling. The upper and lower blades change the direction of air blown from the indoor unit 4 up and down as necessary, and the left and right blades change the direction of air blown from the indoor unit 4 to right and left as needed.

なお、圧縮機6、送風ファン、上下羽根、左右羽根、四方弁8、膨張弁12、電磁弁30,42等は制御装置(図示せず、例えばマイコン)に電気的に接続され、制御装置により制御される。   The compressor 6, the blower fan, the upper and lower blades, the left and right blades, the four-way valve 8, the expansion valve 12, the electromagnetic valves 30 and 42, etc. are electrically connected to a control device (not shown, for example, a microcomputer). Be controlled.

上記構成の本発明に係る冷凍サイクル装置において、各部品の相互の接続関係と機能を暖房運転時を例にとり冷媒の流れとともに説明する。   In the refrigeration cycle apparatus according to the present invention having the above-described configuration, the mutual connection relationship and function of each component will be described together with the flow of the refrigerant taking the heating operation as an example.

圧縮機6の吐出口から吐出された冷媒は、第1配管18を通って四方弁8から室内熱交換器16へと至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て第2配管20を通り、膨張弁12への異物侵入を防止するストレーナ10を通って、膨張弁12に至る。膨張弁12で減圧した冷媒は、第3配管22を通って室外熱交換器14に至り、室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、第4配管24と四方弁8とアキュームレータ26を通って圧縮機6の吸入口へと戻る。   The refrigerant discharged from the discharge port of the compressor 6 reaches the indoor heat exchanger 16 from the four-way valve 8 through the first pipe 18. The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 passes through the second pipe 20 through the indoor heat exchanger 16, expands through the strainer 10 that prevents foreign matter from entering the expansion valve 12. To valve 12. The refrigerant decompressed by the expansion valve 12 reaches the outdoor heat exchanger 14 through the third pipe 22, and the refrigerant evaporated by exchanging heat with the outdoor air in the outdoor heat exchanger 14 is the fourth pipe 24 and the four-way valve 8. And returns to the suction port of the compressor 6 through the accumulator 26.

また、第1配管18の圧縮機6吐出口と四方弁8の間から分岐した第5配管28は、第1電磁弁30を介して第3配管22の膨張弁12と室外熱交換器14の間に合流している。   The fifth pipe 28 branched from the compressor 6 discharge port of the first pipe 18 and the four-way valve 8 is connected to the expansion valve 12 of the third pipe 22 and the outdoor heat exchanger 14 via the first electromagnetic valve 30. I am joining in between.

さらに、内部に蓄熱材36と蓄熱熱交換器34を収納した蓄熱槽32は、圧縮機6に接して取り囲むように配置され、圧縮機6で発生した熱を蓄熱材36に蓄積し、第2配管20から室内熱交換器16とストレーナ10の間で分岐した第6配管38は、第2電磁弁42を経て蓄熱熱交換器34の入口へと至り、蓄熱熱交換器34の出口から出た第7配管40は、第4配管24における四方弁8とアキュームレータ26の間に合流する。   Furthermore, the heat storage tank 32 in which the heat storage material 36 and the heat storage heat exchanger 34 are housed is disposed so as to be in contact with and surround the compressor 6, and the heat generated in the compressor 6 is accumulated in the heat storage material 36, and the second The sixth pipe 38 branched from the pipe 20 between the indoor heat exchanger 16 and the strainer 10 reaches the inlet of the heat storage heat exchanger 34 via the second electromagnetic valve 42 and exits from the outlet of the heat storage heat exchanger 34. The seventh pipe 40 joins between the four-way valve 8 and the accumulator 26 in the fourth pipe 24.

なお、図1では、ストレーナ10を、第2配管20における第6配管38との分流部分と膨張弁12の間に配置したが、第2配管20における室内熱交換器16と第6配管38との分流部分の間に配置しても、膨張弁12への異物侵入を防止するという機能は保持することができる。   In FIG. 1, the strainer 10 is disposed between the diversion portion of the second pipe 20 and the sixth pipe 38 and the expansion valve 12, but the indoor heat exchanger 16 and the sixth pipe 38 in the second pipe 20 Even if it arrange | positions between these flow-dividing parts, the function of preventing the foreign material penetration | invasion to the expansion valve 12 can be hold | maintained.

ただし、ストレーナ10には圧力損失があり、前者の配置にした方が、第2配管20における第6配管38との分流部分において、冷媒が第6配管38側に流れやすくなり、第6配管38から蓄熱熱交換器34を通って第7配管40に至るバイパス配管系の循環量が増加する。その結果、蓄熱材36の温度が高く蓄熱熱交換器34の熱交換能力が非常に大きい場合においても、蓄熱熱交換器34の循環量が多いため、蓄熱熱交換器34の後半部
で過熱度が高くなって熱交換できなくなる現象が起こりにくくなり、蓄熱熱交換器34の熱交換量が十分発揮されて、除霜能力も十分に発揮されるという利点がある。
However, there is a pressure loss in the strainer 10, and the former arrangement makes it easier for the refrigerant to flow to the sixth pipe 38 side in the part where the second pipe 20 is separated from the sixth pipe 38, and the sixth pipe 38. , The circulation amount of the bypass piping system that reaches the seventh piping 40 through the heat storage heat exchanger 34 increases. As a result, even when the temperature of the heat storage material 36 is high and the heat exchange capacity of the heat storage heat exchanger 34 is very large, the circulation amount of the heat storage heat exchanger 34 is large. As a result, it becomes difficult to cause a phenomenon that heat exchange becomes impossible, and there is an advantage that the heat exchange amount of the heat storage heat exchanger 34 is sufficiently exhibited and the defrosting capability is sufficiently exhibited.

次に、図1に示される空気調和機の通常暖房時の動作及び冷媒の流れを模式的に示す図2を参照しながら通常暖房時の動作を説明する。   Next, the operation during normal heating will be described with reference to FIG. 2 schematically showing the operation during normal heating and the flow of the refrigerant of the air conditioner shown in FIG.

通常暖房運転時、第1電磁弁30と第2電磁弁42は閉制御されており、上述したように圧縮機6の吐出口から吐出された冷媒は、第1配管18を通って四方弁8から室内熱交換器16に至る。室内熱交換器16で室内空気と熱交換して凝縮した冷媒は、室内熱交換器16を出て、第2配管20を通り膨張弁12に至り、膨張弁12で減圧した冷媒は、第3配管22を通って室外熱交換器14に至る。室外熱交換器14で室外空気と熱交換して蒸発した冷媒は、第4配管24を通って四方弁8から圧縮機6の吸入口へと戻る。   During the normal heating operation, the first electromagnetic valve 30 and the second electromagnetic valve 42 are controlled to be closed, and the refrigerant discharged from the discharge port of the compressor 6 as described above passes through the first pipe 18 and the four-way valve 8. To the indoor heat exchanger 16. The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 16 exits the indoor heat exchanger 16, passes through the second pipe 20, reaches the expansion valve 12, and the refrigerant decompressed by the expansion valve 12 is the third refrigerant. It reaches the outdoor heat exchanger 14 through the pipe 22. The refrigerant evaporated by exchanging heat with outdoor air in the outdoor heat exchanger 14 returns from the four-way valve 8 to the suction port of the compressor 6 through the fourth pipe 24.

また、圧縮機6で発生した熱は、圧縮機6の外壁から蓄熱槽32の外壁を介して蓄熱槽32の内部に収容された蓄熱材36に蓄積される。   Further, the heat generated in the compressor 6 is accumulated in the heat storage material 36 housed in the heat storage tank 32 from the outer wall of the compressor 6 through the outer wall of the heat storage tank 32.

次に、図1に示される空気調和機の除霜・暖房時の動作及び冷媒の流れを示す模式的に示す図3を参照しながら除霜・暖房時の動作を説明する。図中、実線矢印は暖房に供する冷媒の流れを示しており、破線矢印は除霜に供する冷媒の流れを示している。   Next, the operation during defrosting / heating will be described with reference to FIG. 3 schematically showing the operation of the air conditioner shown in FIG. 1 during defrosting / heating and the flow of refrigerant. In the figure, the solid line arrows indicate the flow of the refrigerant used for heating, and the broken line arrows indicate the flow of the refrigerant used for defrosting.

上述した通常暖房運転中に室外熱交換器14に着霜し、着霜した霜が成長すると、室外熱交換器14の通風抵抗が増加して風量が減少し、室外熱交換器14内の蒸発温度が低下する。本発明に係る空気調和機には、図3に示されるように、室外熱交換器14の配管温度を検出する温度センサ44が設けられており、非着霜時に比べて、蒸発温度が低下したことを温度センサ44で検出すると、制御装置から通常暖房運転から除霜・暖房運転への指示が出力される。   When the outdoor heat exchanger 14 is frosted during the above-described normal heating operation and the frosted frost grows, the ventilation resistance of the outdoor heat exchanger 14 increases and the air flow decreases, and the evaporation in the outdoor heat exchanger 14 increases. The temperature drops. As shown in FIG. 3, the air conditioner according to the present invention is provided with a temperature sensor 44 that detects the piping temperature of the outdoor heat exchanger 14, and the evaporation temperature is lower than that during non-frosting. When this is detected by the temperature sensor 44, an instruction from the normal heating operation to the defrosting / heating operation is output from the control device.

通常暖房運転から除霜・暖房運転に移行すると、圧縮機6の周波数は所定の周波数に設定され、また膨張弁開度も所定の開度に設定された後、第1電磁弁30が開制御され、さらにその一定時間後に第2電磁弁42が開制御される。第1電磁弁30、第2電磁弁42が開制御されると、上述した通常暖房運転時の冷媒の流れに加え、圧縮機6の吐出口から出た気相冷媒の一部は第5配管28と第1電磁弁30を通り、第3配管22を通る冷媒に合流して、室外熱交換器14を加熱し、凝縮して液相化した後、第4配管24を通って四方弁8とアキュームレータ26を介して圧縮機6の吸入口へと戻る。   When the normal heating operation is shifted to the defrosting / heating operation, the frequency of the compressor 6 is set to a predetermined frequency, and the first solenoid valve 30 is controlled to open after the expansion valve opening is also set to the predetermined opening. Further, the second electromagnetic valve 42 is controlled to open after a certain time. When the first solenoid valve 30 and the second solenoid valve 42 are controlled to open, in addition to the refrigerant flow during the normal heating operation described above, a part of the gas-phase refrigerant exiting from the discharge port of the compressor 6 is the fifth pipe. 28 and the first electromagnetic valve 30, merged with the refrigerant passing through the third pipe 22, heats the outdoor heat exchanger 14, condenses into a liquid phase, and then passes through the fourth pipe 24 to the four-way valve 8. And return to the suction port of the compressor 6 through the accumulator 26.

また、第2配管20における室内熱交換器16とストレーナ10の間で分流した液相冷媒の一部は、第6配管38と第2電磁弁42を経て、蓄熱熱交換器34で蓄熱材36から吸熱し蒸発、気相化して、第7配管40を通って第4配管24を通る冷媒に合流し、アキュームレータ26から圧縮機6の吸入口へと戻る。   Further, a part of the liquid-phase refrigerant that is divided between the indoor heat exchanger 16 and the strainer 10 in the second pipe 20 passes through the sixth pipe 38 and the second electromagnetic valve 42, and then is stored in the heat storage material 36 in the heat storage heat exchanger 34. From the accumulator 26 and returns to the suction port of the compressor 6 through the seventh pipe 40 and the refrigerant that passes through the fourth pipe 24.

アキュームレータ26に戻る冷媒には、室外熱交換器14から戻ってくる液相冷媒が含まれているが、これに蓄熱熱交換器34から戻ってくる高温の気相冷媒を混合することで、液相冷媒の蒸発が促され、アキュームレータ26を通過して液相冷媒が圧縮機6に戻ることがなくなり、圧縮機6の信頼性の向上を図ることができる。なお、圧縮機6にアキュームレータ26が備えられているとしても、アキュームレータ26に戻される冷媒は、液相冷媒より気相冷媒を多く含んでいる方が圧縮機6の信頼性をより向上させることができて望ましい。   The refrigerant returning to the accumulator 26 includes the liquid phase refrigerant returning from the outdoor heat exchanger 14. By mixing this with the high-temperature gas phase refrigerant returning from the heat storage heat exchanger 34, The evaporation of the phase refrigerant is promoted, and the liquid phase refrigerant does not return to the compressor 6 through the accumulator 26, so that the reliability of the compressor 6 can be improved. Even if the accumulator 26 is provided in the compressor 6, the refrigerant returned to the accumulator 26 contains more gas phase refrigerant than liquid phase refrigerant, so that the reliability of the compressor 6 can be further improved. It is possible and desirable.

除霜・暖房開始時に霜の付着により氷点下となった室外熱交換器14の温度は、圧縮機6の吐出口から出た気相冷媒によって加熱されて、零度付近で霜が融解し、霜の融解が終
わると、室外熱交換器14の温度は再び上昇し始める。この室外熱交換器14の温度上昇を温度センサ44で検出すると、除霜が完了したと判断し、制御装置から除霜・暖房運転から通常暖房運転への指示が出力される。
The temperature of the outdoor heat exchanger 14 that has become below freezing due to the attachment of frost at the start of defrosting and heating is heated by the gas-phase refrigerant discharged from the discharge port of the compressor 6, and the frost is melted near zero, When melting is finished, the temperature of the outdoor heat exchanger 14 begins to rise again. When the temperature sensor 44 detects the temperature rise of the outdoor heat exchanger 14, it is determined that the defrosting has been completed, and the control device outputs an instruction from the defrosting / heating operation to the normal heating operation.

ここで、除霜・暖房運転に移行する際に第1電磁弁30と第2電磁弁42を同時に開制御すると冷凍配管内の管路圧損が大きく低下する。このため、圧縮機6からの冷媒吐出量が急激に増え、第5配管28を通って室外熱交換器14に至る冷媒が室外熱交換器14で冷やされて液相化されてアキュームレータ26に戻る。このとき同時に、通常暖房運転時に圧縮機6に比べて圧力が高い状態にある室内熱交換器16で凝縮された多量の液相冷媒が蓄熱熱交換器34で暖められはするものの液相化が十分に解消することなく第6配管38と第7配管40を通ってアキュームレータ26に戻るために、アキュームレータ26には液相冷媒が一気に多量に戻されることとなる。   Here, when the first electromagnetic valve 30 and the second electromagnetic valve 42 are simultaneously controlled to open during the defrosting / heating operation, the line pressure loss in the refrigeration pipe is greatly reduced. For this reason, the refrigerant discharge amount from the compressor 6 increases abruptly, and the refrigerant that reaches the outdoor heat exchanger 14 through the fifth pipe 28 is cooled in the outdoor heat exchanger 14, is converted into a liquid phase, and returns to the accumulator 26. . At the same time, a large amount of the liquid refrigerant condensed in the indoor heat exchanger 16 that is in a higher pressure than the compressor 6 during normal heating operation is heated in the heat storage heat exchanger 34, but the liquid phase is changed. In order to return to the accumulator 26 through the 6th piping 38 and the 7th piping 40, without fully canceling, a large amount of liquid phase refrigerant will be returned to the accumulator 26 at a stretch.

加えて、第1電磁弁30と第2電磁弁42を同時に開制御した場合には、冷凍配管内の管路圧損が大きく低下し圧縮機6からの冷媒吐出量が急激に増える。このとき、冷凍配管内を流れる冷媒の流速が急激に速くなるため、冷媒と配管の間の摩擦が大きくなることによって、あるいは配管内の流路圧損の高い部分での摩擦によって、冷媒が配管内を流れる音が大きくなる。   In addition, when the first solenoid valve 30 and the second solenoid valve 42 are simultaneously controlled to open, the pipe pressure loss in the refrigeration pipe is greatly reduced, and the refrigerant discharge amount from the compressor 6 is rapidly increased. At this time, the flow rate of the refrigerant flowing in the refrigeration pipe increases rapidly, so that the friction between the refrigerant and the pipe increases, or due to the friction in the portion of the pipe where the flow path pressure loss is high. The sound flowing through becomes louder.

そこで、図4のタイムチャートに示すように除霜・暖房運転に移行する際に、まず第1電磁弁30の開制御をする。その後、冷凍サイクルの挙動が安定するまでの間、特に室内熱交換器16と圧縮機6の吸入部との高低圧力差が一定程度まで落ち着くまでの間で、かつ圧縮機6から吐出され第5配管28、室外熱交換器14、第4配管24を通って液相化された冷媒が再び圧縮機6に戻ってくるまでの間、第2電磁弁42の開制御を控える。このことで蓄熱材に蓄えられた熱を温存しつつ、冷凍サイクルの挙動が安定した後第2電磁弁を開制御することで、蓄熱材の熱量を最大限効果的に利用することが可能となる。その結果として除霜運転時の除霜性能を高めることができる。また、第1電磁弁30だけ開制御した場合は、第1電磁弁30と第2電磁弁42の開制御を同時に行った場合に比べて配管内の圧損の低下は著しくなく、冷媒が配管を流れる際の音を無くすこともできる。   Therefore, when shifting to the defrosting / heating operation as shown in the time chart of FIG. 4, first, the opening control of the first electromagnetic valve 30 is performed. Thereafter, until the behavior of the refrigeration cycle is stabilized, in particular, until the difference in pressure between the indoor heat exchanger 16 and the suction portion of the compressor 6 is settled to a certain level, and is discharged from the compressor 6. Until the refrigerant that has been liquefied through the pipe 28, the outdoor heat exchanger 14, and the fourth pipe 24 returns to the compressor 6 again, the opening control of the second electromagnetic valve 42 is refrained. By preserving the heat stored in the heat storage material, the second solenoid valve is opened after the behavior of the refrigeration cycle is stabilized, and the heat quantity of the heat storage material can be used to the maximum extent possible. Become. As a result, the defrosting performance during the defrosting operation can be enhanced. In addition, when only the first solenoid valve 30 is controlled to open, the pressure loss in the pipe is not significantly reduced compared to the case where the first solenoid valve 30 and the second solenoid valve 42 are simultaneously controlled to open, and the refrigerant passes through the pipe. You can also eliminate the sound of flowing.

なお、第1電磁弁30を開いてから冷凍サイクルの挙動が安定するまでの時間は、室外気温、室内気温、圧縮機6周波数、膨張弁12開度によって大きく変化する。そして、この時間は最短でも1秒以上はかかる。また、圧縮機6から吐出された冷媒が第5配管28、室外熱交換器14、第4配管24を通って再び圧縮機6に戻ってくるまでの時間は同じく室内外気温や、圧縮機6の周波数、膨張弁12の開度にもよるが、最大で60秒である。従って、図5に示すように、第1電磁弁30を開いてから、第2電磁弁42を開くまでの一定時間は1秒以上60秒以下とすると良い。   The time from when the first solenoid valve 30 is opened until the behavior of the refrigeration cycle is stabilized varies greatly depending on the outdoor air temperature, the indoor air temperature, the compressor 6 frequency, and the expansion valve 12 opening. This time takes at least 1 second. Further, the time until the refrigerant discharged from the compressor 6 returns to the compressor 6 again through the fifth pipe 28, the outdoor heat exchanger 14, and the fourth pipe 24 is similarly the indoor / outdoor air temperature or the compressor 6. The maximum time is 60 seconds, depending on the frequency of the valve and the opening of the expansion valve 12. Therefore, as shown in FIG. 5, it is preferable that the fixed time from opening the first electromagnetic valve 30 to opening the second electromagnetic valve 42 is 1 second or more and 60 seconds or less.

また、除霜・暖房運転に移行する際に、第1電磁弁30や第2電磁弁42の開制御を行うことで冷凍配管内のトータルの圧損が低下する。このため、冷凍サイクルが予期せぬ挙動を示すことがないように運転切り替えの際に圧縮機6の周波数や膨張弁12の開度を所定の開度にする。ここで例えば、通常暖房運転終了時に、圧縮機6の周波数が高い状態でかつ膨張弁12の開度が絞られた状態から、除霜・暖房運転に移行して第1電磁弁30が開制御されると、上述の通り冷媒循環量が多くなりすぎて、圧縮機6を含め、冷凍サイクル内の各要素部品を破損させることにつながる。このため、冷凍サイクルが予期せぬ挙動を示すことがないように運転切り替えの際に冷圧縮機の周波数6や膨張弁12の開度が所定の開度に変更してから第1電磁弁30の開動作を行うようにする。   Moreover, when shifting to the defrosting / heating operation, the total pressure loss in the refrigeration pipe is reduced by performing the opening control of the first electromagnetic valve 30 and the second electromagnetic valve 42. For this reason, the frequency of the compressor 6 and the opening degree of the expansion valve 12 are set to a predetermined opening degree during operation switching so that the refrigeration cycle does not exhibit an unexpected behavior. Here, for example, at the end of the normal heating operation, the first electromagnetic valve 30 is controlled to open from the state where the frequency of the compressor 6 is high and the opening degree of the expansion valve 12 is reduced to the defrosting / heating operation. Then, as described above, the circulation amount of the refrigerant is excessively increased, leading to damage to each element part in the refrigeration cycle including the compressor 6. For this reason, the first solenoid valve 30 is changed after the frequency 6 of the cold compressor or the opening of the expansion valve 12 is changed to a predetermined opening at the time of operation switching so that the refrigeration cycle does not exhibit an unexpected behavior. The opening operation is performed.

なお、除霜・暖房運転終了時に第1電磁弁30と第2電磁弁42を閉制御する際は、どちらの電磁弁を先に閉じても、あるいは同時に閉じても構わない。   When the first solenoid valve 30 and the second solenoid valve 42 are controlled to be closed at the end of the defrosting / heating operation, either one of the solenoid valves may be closed first or simultaneously.

(実施の形態2)
図6は、第7配管40と第4配管24の合流部分がさらに別の形態となる冷凍サイクルを示している。実施の形態1と異なる部分についてのみ説明する。
(Embodiment 2)
FIG. 6 shows a refrigeration cycle in which the joining portion of the seventh pipe 40 and the fourth pipe 24 is still another form. Only parts different from the first embodiment will be described.

図3に示される第7配管40と第4配管24の合流部分は、四方弁8とアキュームレータ26の間であったのに対し、本実施の形態では、図6に示されるように、第7配管40と第4配管24の合流部分はアキュームレータ26と圧縮機6の間に位置している。   The joining portion of the seventh pipe 40 and the fourth pipe 24 shown in FIG. 3 is between the four-way valve 8 and the accumulator 26, whereas in the present embodiment, as shown in FIG. A joining portion of the pipe 40 and the fourth pipe 24 is located between the accumulator 26 and the compressor 6.

図3の構成では、蓄熱熱交換器34で蓄熱材36から吸熱して蒸発、気相化した冷媒は、第7配管40を通って四方弁8とアキュームレータ26の間で第4配管24を通る冷媒に合流して、アキュームレータ26から圧縮機6の吸入口へと戻っている。   In the configuration of FIG. 3, the refrigerant that has evaporated and vaporized by absorbing heat from the heat storage material 36 in the heat storage heat exchanger 34 passes through the seventh pipe 40 and the fourth pipe 24 between the four-way valve 8 and the accumulator 26. The refrigerant merges with the refrigerant and returns from the accumulator 26 to the suction port of the compressor 6.

しかしながら、除霜前に温度が低下したアキュームレータ26は大きい熱容量を持っており、除霜時に蓄熱熱交換器34から戻ってくる高温の気相冷媒が、アキュームレータ26で冷却されてしまい、除霜に熱を十分使用することができず、除霜時間が延びてしまうことがある。   However, the accumulator 26 whose temperature has decreased before the defrosting has a large heat capacity, and the high-temperature gas-phase refrigerant returned from the heat storage heat exchanger 34 during the defrosting is cooled by the accumulator 26, so that the defrosting is performed. Heat cannot be used sufficiently and the defrosting time may be extended.

これに対し、本実施の形態では、室外熱交換器14からの冷媒をアキュームレータ26を介することなく圧縮機6に戻すことで、高温の気相冷媒の熱を除霜に無駄なく使用することができ、除霜時間の短縮を図ることができる。   On the other hand, in the present embodiment, the refrigerant from the outdoor heat exchanger 14 is returned to the compressor 6 without going through the accumulator 26, so that the heat of the high-temperature gas-phase refrigerant can be used for defrosting without waste. This can shorten the defrosting time.

なお、この構成は、本実施の形態に限られるものではなく、上述した実施の形態1にも適用できるものである。   This configuration is not limited to the present embodiment, but can be applied to the above-described first embodiment.

本発明に係る冷凍サイクル装置は、液相冷媒の圧縮機への戻りを極力低減することにより圧縮機の信頼性を向上することができるので、空気調和機、冷蔵庫、給湯器、ヒートポンプ式洗濯機等に有用である。   Since the refrigeration cycle apparatus according to the present invention can improve the reliability of the compressor by reducing the return of the liquid phase refrigerant to the compressor as much as possible, the air conditioner, the refrigerator, the water heater, and the heat pump washing machine Etc. are useful.

2 室外機、 4 室内機、 6 圧縮機、 8 四方弁、 10 ストレーナ、 12
膨張弁、 14 室外熱交換器、 16 室内熱交換器、 18 第1配管、 20 第2配管、 22 第3配管、 24 第4配管、 26 アキュームレータ、 28 第5配管、 30 第1電磁弁、 32 蓄熱槽、 34 蓄熱熱交換器、 36 蓄熱材、 38 第6配管、 40 第7配管、 42 第2電磁弁、 44 温度センサ
2 outdoor units, 4 indoor units, 6 compressors, 8 four-way valves, 10 strainers, 12
Expansion valve, 14 outdoor heat exchanger, 16 indoor heat exchanger, 18 first piping, 20 second piping, 22 3rd piping, 24 4th piping, 26 accumulator, 28 5th piping, 30 1st solenoid valve, 32 Heat storage tank, 34 heat storage heat exchanger, 36 heat storage material, 38 sixth pipe, 40 seventh pipe, 42 second solenoid valve, 44 temperature sensor

Claims (4)

暖房運転時に、室内熱交換器、膨張弁、室外熱交換器、四方弁、圧縮機、前記四方弁の順に冷媒が流れるように接続した冷凍サイクルと、
前記圧縮機の周囲に配置され、前記圧縮機で発生した熱を蓄熱する蓄熱材と、
前記蓄熱材に蓄熱された熱とで熱交換を行う蓄熱熱交換器と、
前記膨張弁と前記室外熱交換器との間、前記圧縮機の吐出口と前記四方弁との間を、第1電磁弁を介して接続する除霜バイパス回路と、
前記室内熱交換器と前記膨張弁との間、前記四方弁と前記圧縮機の吸入口との間を、第2電磁弁及び前記蓄熱熱交換器を介して接続する蓄熱バイパス回路と、
制御装置と、を備え、
除霜運転中、前記第1電磁弁の開動作の所定時間後に、前記第2電磁弁が開くことを特徴とする冷凍サイクル装置。
During the heating operation, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, a four-way valve, a compressor, a refrigeration cycle connected so that refrigerant flows in the order of the four-way valve,
A heat storage material that is arranged around the compressor and stores heat generated by the compressor; and
A heat storage heat exchanger for exchanging heat with the heat stored in the heat storage material;
A defrost bypass circuit that connects the expansion valve and the outdoor heat exchanger, a discharge port of the compressor, and the four-way valve via a first electromagnetic valve;
A heat storage bypass circuit that connects between the indoor heat exchanger and the expansion valve, between the four-way valve and the suction port of the compressor via a second electromagnetic valve and the heat storage heat exchanger;
A control device,
During the defrosting operation, the second electromagnetic valve is opened after a predetermined time of the opening operation of the first electromagnetic valve.
前記所定時間は1秒以上60秒以下とする請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the predetermined time is 1 second or more and 60 seconds or less. 前記第1電磁弁の開動作前に、前記圧縮機の運転周波数を所定値とすることを特徴とする請求項1又は2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, wherein an operating frequency of the compressor is set to a predetermined value before the opening operation of the first electromagnetic valve. 前記第1電磁弁の開動作前に、前記膨張弁の開度を所定開度とすることを特徴とする請求項1〜3のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the opening degree of the expansion valve is set to a predetermined opening degree before the opening operation of the first electromagnetic valve.
JP2010177212A 2010-08-06 2010-08-06 Refrigeration cycle device Pending JP2012037130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010177212A JP2012037130A (en) 2010-08-06 2010-08-06 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010177212A JP2012037130A (en) 2010-08-06 2010-08-06 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2012037130A true JP2012037130A (en) 2012-02-23

Family

ID=45849323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010177212A Pending JP2012037130A (en) 2010-08-06 2010-08-06 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2012037130A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056078A1 (en) * 2014-10-08 2016-04-14 三菱電機株式会社 Air conditioner
CN106769563A (en) * 2016-12-12 2017-05-31 中国科学院武汉岩土力学研究所 The Triaxial tester and its method of soil body Frozen-thawed cycled dynamic load coupling
CN109341165A (en) * 2018-08-31 2019-02-15 上海交通大学 A kind of air source heat pump defrosting system based on heat of compressor phase-change accumulation energy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175976A (en) * 1984-02-21 1985-09-10 松下電器産業株式会社 Defroster for air conditioner
JP2007278536A (en) * 2006-04-03 2007-10-25 Matsushita Electric Ind Co Ltd Air conditioner
JP2008241175A (en) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2010071530A (en) * 2008-09-17 2010-04-02 Daikin Ind Ltd Air conditioner
JP2010164257A (en) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp Refrigerating cycle device and method of controlling the refrigerating cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175976A (en) * 1984-02-21 1985-09-10 松下電器産業株式会社 Defroster for air conditioner
JP2007278536A (en) * 2006-04-03 2007-10-25 Matsushita Electric Ind Co Ltd Air conditioner
JP2008241175A (en) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2010071530A (en) * 2008-09-17 2010-04-02 Daikin Ind Ltd Air conditioner
JP2010164257A (en) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp Refrigerating cycle device and method of controlling the refrigerating cycle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056078A1 (en) * 2014-10-08 2016-04-14 三菱電機株式会社 Air conditioner
JPWO2016056078A1 (en) * 2014-10-08 2017-05-25 三菱電機株式会社 Air conditioner
CN106769563A (en) * 2016-12-12 2017-05-31 中国科学院武汉岩土力学研究所 The Triaxial tester and its method of soil body Frozen-thawed cycled dynamic load coupling
CN109341165A (en) * 2018-08-31 2019-02-15 上海交通大学 A kind of air source heat pump defrosting system based on heat of compressor phase-change accumulation energy

Similar Documents

Publication Publication Date Title
JP5238001B2 (en) Refrigeration cycle equipment
JP5615561B2 (en) Refrigeration cycle equipment
JP5204189B2 (en) Refrigeration cycle equipment
CN103765133B (en) Refrigerating circulatory device and the air conditioner possessing this refrigerating circulatory device
JP5210364B2 (en) Air conditioner
WO2012042692A1 (en) Refrigeration cycle device
JP2013104623A (en) Refrigeration cycle device and air conditioner with the same
JP5445570B2 (en) Air conditioner
JP4666111B1 (en) Refrigeration cycle equipment
JP2012037130A (en) Refrigeration cycle device
JP5948606B2 (en) Refrigeration cycle equipment
JP5287820B2 (en) Air conditioner
JP2012077938A (en) Refrigerating cycle device
JP5287821B2 (en) Air conditioner
WO2011108019A1 (en) Refrigeration cycle device
JP5927500B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
WO2017094594A1 (en) Refrigeration device
JP5927502B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP2013104586A (en) Refrigerating cycle device and air conditioner with the same
JP2017101858A (en) Freezing device
JPH07107471B2 (en) Heat pump air conditioner
JP2017101856A (en) Freezing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204