JPWO2016056078A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JPWO2016056078A1
JPWO2016056078A1 JP2016552746A JP2016552746A JPWO2016056078A1 JP WO2016056078 A1 JPWO2016056078 A1 JP WO2016056078A1 JP 2016552746 A JP2016552746 A JP 2016552746A JP 2016552746 A JP2016552746 A JP 2016552746A JP WO2016056078 A1 JPWO2016056078 A1 JP WO2016056078A1
Authority
JP
Japan
Prior art keywords
heat exchanger
side heat
heating mode
refrigerant
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016552746A
Other languages
Japanese (ja)
Other versions
JP6336102B2 (en
Inventor
直道 田村
直道 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016056078A1 publication Critical patent/JPWO2016056078A1/en
Application granted granted Critical
Publication of JP6336102B2 publication Critical patent/JP6336102B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Abstract

圧縮機1から吐出された冷媒を利用側熱交換器6に流入させて暖房運転を行う第一暖房モードと、圧縮機1から吐出された冷媒を利用側熱交換器6と熱源側熱交換器3とに流入させて暖房運転および霜取運転を同時に行う第二暖房モードと、を少なくとも備えた空気調和機であって、第二暖房モード中において蓄熱用熱交換器25の容積に相当する冷媒量を利用側熱交換器6に貯留することができるように、第二暖房モード中の第一絞り装置5の開度が第一暖房モード中の第一絞り装置5の開度より小さくなるように制御されるものである。A first heating mode in which the refrigerant discharged from the compressor 1 flows into the use side heat exchanger 6 to perform a heating operation, and the refrigerant discharged from the compressor 1 is used on the use side heat exchanger 6 and the heat source side heat exchanger. And a second heating mode in which the heating operation and the defrosting operation are performed simultaneously, and a refrigerant corresponding to the volume of the heat storage heat exchanger 25 in the second heating mode. The opening of the first expansion device 5 during the second heating mode is smaller than the opening of the first expansion device 5 during the first heating mode so that the amount can be stored in the use-side heat exchanger 6. Are controlled by

Description

本発明は、蓄熱槽を備え、暖房運転および霜取運転を同時に行うことができる空気調和機に関するものである。   The present invention relates to an air conditioner that includes a heat storage tank and can perform heating operation and defrosting operation simultaneously.

空冷式の空気調和機では、室外温度が低く湿度が高い場合、暖房運転時に熱源側熱交換器(室外機)に霜が付着するため、定期的に霜取運転を行う必要がある。従来の霜取運転では、暖房運転時では利用側熱交換器(室内機)側に流れていた圧縮機の吐出冷媒の流路を、熱源側熱交換器側に流れるように四方弁を切り換えて行うため、暖房運転および霜取運転を同時に行うことができなかった。   In an air-cooled air conditioner, when the outdoor temperature is low and the humidity is high, frost adheres to the heat source side heat exchanger (outdoor unit) during heating operation, so it is necessary to perform defrosting operation periodically. In the conventional defrosting operation, the four-way valve is switched so that the flow path of the refrigerant discharged from the compressor that flows to the use side heat exchanger (indoor unit) side during the heating operation flows to the heat source side heat exchanger side. Therefore, heating operation and defrosting operation could not be performed at the same time.

そこで、暖房運転および霜取運転を同時に行うことを可能とした空気調和機が提案されている(たとえば、特許文献1参照)。
特許文献1では、圧縮機の吐出冷媒を、利用側熱交換器側と熱源側熱交換器側とに分配して、利用側熱交換器において室内空気を加熱して暖房を行うと同時に、熱源側熱交換器の外表面に付着している霜を融解して霜取りを行っている。そして、利用側熱交換器で凝縮された液冷媒と熱源側熱交換器で凝縮された液冷媒とは、途中で合流した後、蓄熱槽において温熱を蓄積している蓄熱材によって蒸発されてガス冷媒となり、再び圧縮機に吸入される。
Then, the air conditioner which enabled it to perform heating operation and defrosting operation simultaneously is proposed (for example, refer patent document 1).
In Patent Document 1, the refrigerant discharged from the compressor is distributed to the use side heat exchanger side and the heat source side heat exchanger side, and the indoor air is heated and heated in the use side heat exchanger, and at the same time, the heat source Defrosting is performed by melting frost adhering to the outer surface of the side heat exchanger. Then, the liquid refrigerant condensed in the use side heat exchanger and the liquid refrigerant condensed in the heat source side heat exchanger are merged on the way, and then evaporated by the heat storage material that accumulates the heat in the heat storage tank to form a gas It becomes a refrigerant and is sucked into the compressor again.

特許第4367237号公報(たとえば、[0061]〜[0067]、図1、図2参照)Japanese Patent No. 4367237 (see, for example, [0061] to [0067], FIG. 1 and FIG. 2)

特許文献1のように蓄熱槽を備えた空気調和機では、蓄熱槽内における熱交換器分の冷媒量を追加充填する必要があるが、蓄熱槽内における熱交換器を蒸発器として用いる運転では、追加充填分の冷媒が余剰冷媒となり、圧縮機へ液バックしてしまう課題があった。   In an air conditioner equipped with a heat storage tank as in Patent Document 1, it is necessary to additionally fill the amount of refrigerant for the heat exchanger in the heat storage tank, but in an operation using the heat exchanger in the heat storage tank as an evaporator. In addition, there is a problem that the refrigerant for the additional charge becomes surplus refrigerant and liquids back to the compressor.

本発明は、以上のような課題を解決するためになされたもので、蓄熱槽を備え、暖房運転および霜取運転を同時に行うことを可能とした空気調和機において、圧縮機への液バックを抑制することを目的としている。   The present invention has been made in order to solve the above-described problems. In an air conditioner that includes a heat storage tank and can perform heating operation and defrosting operation simultaneously, a liquid back to the compressor is provided. The purpose is to suppress.

本発明に係る空気調和機は、圧縮機、第一流路切換装置、熱源側熱交換器、第一切換弁、第一絞り装置、利用側熱交換器、および第二流路切換装置が順次配管で接続され、前記圧縮機と前記第一流路切換装置とを接続している配管から分岐し、前記熱源側熱交換器と前記第一切換弁とを接続する配管に合流するように接続された配管に、第二切換弁が設けられており、前記第一切換弁と前記第一絞り装置とを接続している配管から分岐し、前記第二流路切換装置に合流するように接続された配管に、第二絞り装置、および蓄熱材と蓄熱用熱交換器とを備えた蓄熱槽が直列に設けられており、前記蓄熱槽は前記第二絞り装置より前記第二流路切換装置側に設けられており、前記第一流路切換装置、前記第二流路切換装置、前記第一絞り装置、前記第二絞り装置、前記第一切換弁、および前記第二切換弁を制御する制御装置を備え、前記圧縮機から吐出された冷媒を前記利用側熱交換器に流入させて暖房運転を行う第一暖房モードと、前記圧縮機から吐出された冷媒を前記利用側熱交換器と前記熱源側熱交換器とに流入させて暖房運転および霜取運転を同時に行う第二暖房モードと、を少なくとも備えた空気調和機であって、前記第二暖房モード中において前記蓄熱用熱交換器の容積に相当する冷媒量を前記利用側熱交換器に貯留することができるように、前記第二暖房モード中の前記第一絞り装置の開度が前記第一暖房モード中の前記第一絞り装置の開度より小さくなるように制御されるものである。   In the air conditioner according to the present invention, a compressor, a first flow path switching device, a heat source side heat exchanger, a first switching valve, a first expansion device, a use side heat exchanger, and a second flow path switching device are sequentially piped. Connected to the pipe branching from the pipe connecting the compressor and the first flow path switching device and connected to the pipe connecting the heat source side heat exchanger and the first switching valve. The pipe is provided with a second switching valve, branched from the pipe connecting the first switching valve and the first throttle device, and connected to join the second flow path switching device The piping is provided with a second expansion device, and a heat storage tank provided with a heat storage material and a heat storage heat exchanger in series, and the heat storage tank is closer to the second flow path switching device than the second expansion device. The first flow path switching device, the second flow path switching device, the first throttling device, the front A first throttle device, a first switching valve, and a control device for controlling the second switching valve, wherein the refrigerant discharged from the compressor flows into the use side heat exchanger to perform a heating operation. And at least a heating mode and a second heating mode in which the refrigerant discharged from the compressor is caused to flow into the use side heat exchanger and the heat source side heat exchanger to simultaneously perform the heating operation and the defrosting operation. An air conditioner, wherein the refrigerant amount corresponding to the volume of the heat storage heat exchanger can be stored in the use side heat exchanger during the second heating mode. The opening of the first expansion device is controlled to be smaller than the opening of the first expansion device during the first heating mode.

本発明に係る空気調和機によれば、第二暖房モード中の第一絞り装置の開度を前記第一暖房モード中の第一絞り装置の開度より小さくなるように制御することにより、第二暖房モード中において利用側熱交換器に貯留される冷媒量を増やすことで、蓄熱用熱交換器の容積に相当する冷媒量を利用側熱交換器に貯留することができるため、圧縮機1への液バックを抑制することができる。   According to the air conditioner of the present invention, by controlling the opening of the first expansion device during the second heating mode to be smaller than the opening of the first expansion device during the first heating mode, Since the amount of refrigerant corresponding to the volume of the heat storage heat exchanger can be stored in the use side heat exchanger by increasing the amount of refrigerant stored in the use side heat exchanger during the two heating mode, the compressor 1 Liquid back to the surface can be suppressed.

本発明の実施の形態に係る空気調和機の冷媒回路図である。It is a refrigerant circuit figure of the air conditioner concerning an embodiment of the invention. 本発明の実施の形態に係る空気調和機における利用側熱交換器の出口側のサブクールおよび第一絞り装置の開度と利用側熱交換器に貯留される冷媒量との関係を示す図である。It is a figure which shows the relationship between the subcool | coolant by the side of the exit of the utilization side heat exchanger in the air conditioner which concerns on embodiment of this invention, the opening degree of a 1st expansion device, and the refrigerant | coolant amount stored in a utilization side heat exchanger. . 本発明の実施の形態に係る空気調和機の制御フローである。It is a control flow of the air conditioner which concerns on embodiment of this invention.

以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings, the relationship of the size of each component may be different from the actual one.

実施の形態.
(空気調和機の冷媒回路の構成)
図1は、本発明の実施の形態に係る空気調和機の冷媒回路図である。
本実施の形態に係る空気調和機の冷媒回路は、圧縮機1、第一四方弁2、熱源側熱交換器3、第一切換弁4、第一絞り装置5a〜5c、利用側熱交換器6a〜6c、第二四方弁21、アキュムレータ7が順次配管で直列に接続されている。また、圧縮機1と第一四方弁2とを接続している配管から分岐し、熱源側熱交換器3と第一切換弁4とを接続する配管に合流するように接続された配管に、第二切換弁8が設けられている。また、第一切換弁4と第一絞り装置5a〜5cとを接続している配管から分岐し、第二四方弁21に合流するように接続された配管に、第二絞り装置23および蓄熱槽22が直列に設けられている。その蓄熱槽22は第二絞り装置23より第二四方弁21側に設けられており、また、蓄熱材24と蓄熱用熱交換器25とを備えている。
Embodiment.
(Configuration of refrigerant circuit of air conditioner)
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.
The refrigerant circuit of the air conditioner according to the present embodiment includes the compressor 1, the first four-way valve 2, the heat source side heat exchanger 3, the first switching valve 4, the first expansion devices 5a to 5c, and the use side heat exchange. The containers 6a to 6c, the second four-way valve 21, and the accumulator 7 are sequentially connected in series by piping. Further, the pipe branched from the pipe connecting the compressor 1 and the first four-way valve 2 and connected to the pipe connecting the heat source side heat exchanger 3 and the first switching valve 4 to the pipe connected to the pipe A second switching valve 8 is provided. Further, the second throttle device 23 and the heat storage are connected to the pipe branched from the pipe connecting the first switching valve 4 and the first throttle devices 5 a to 5 c and joined to the second four-way valve 21. A tank 22 is provided in series. The heat storage tank 22 is provided closer to the second four-way valve 21 than the second expansion device 23, and includes a heat storage material 24 and a heat storage heat exchanger 25.

(圧縮機)
圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものである。 なお、圧縮機1は、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して構成することができる。
(第一四方弁、第二四方弁)
第一四方弁2および第二四方弁21は、第一から第四までのポートを有し、冷媒の流れの方向を切り換えるための流路切換装置である。
なお、流路切換装置として、四方弁に代えて二方弁や三方弁を組み合わせて用いてもよい。
また、第一四方弁2は本発明の「第一流路切換装置」に相当し、第二四方弁21は本発明の「第二流路切換装置」に相当する。
(Compressor)
The compressor 1 sucks refrigerant and compresses the refrigerant to a high temperature and high pressure state. The compressor 1 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state. For example, various types such as reciprocating, rotary, scroll, or screw can be used.
(First four-way valve, second four-way valve)
The first four-way valve 2 and the second four-way valve 21 are flow path switching devices that have first to fourth ports and switch the direction of refrigerant flow.
Note that a two-way valve or a three-way valve may be used in combination as the flow path switching device instead of the four-way valve.
The first four-way valve 2 corresponds to the “first flow path switching device” of the present invention, and the second four-way valve 21 corresponds to the “second flow path switching device” of the present invention.

(熱源側熱交換器)
熱源側熱交換器3は、蒸発器や放熱器(凝縮器)として機能し、図示省略のファンから供給される空気と冷媒との間で熱交換を行い、冷媒を蒸発ガス化または凝縮液化するものである。
なお、熱源側熱交換器3は、ファンから供給される空気と冷媒との間で熱交換を行い、冷媒を蒸発ガス化または凝縮液化できるものであればよく、特にタイプを限定するものではない。たとえば、クロスフィンチューブタイプやクロスフロータイプなどの各種タイプを利用して構成することができる。
(Heat source side heat exchanger)
The heat source side heat exchanger 3 functions as an evaporator or a radiator (condenser), performs heat exchange between air supplied from a fan (not shown) and the refrigerant, and evaporates or condenses the refrigerant. Is.
The heat source side heat exchanger 3 is not particularly limited as long as it can exchange heat between the air supplied from the fan and the refrigerant, and can evaporate or liquefy the refrigerant. . For example, various types such as a cross fin tube type and a cross flow type can be used.

(切換弁)
第一切換弁4および第二切換弁8は、それらの中から択一的に開閉制御することにより、運転モードに応じて冷媒の流れを制御するものである。
(第一絞り装置、第二絞り装置)
第一絞り装置5a〜5cおよび第二絞り装置23は、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。第一絞り装置5a〜5cおよび第二絞り装置23は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管などの安価な冷媒流量調節手段などで構成するとよい。
以下、第一絞り装置5a〜5cの総称として、第一絞り装置5と称することがある。
(Switching valve)
The 1st switching valve 4 and the 2nd switching valve 8 control the flow of a refrigerant | coolant according to an operation mode by performing opening / closing control alternatively from them.
(First diaphragm device, second diaphragm device)
The first expansion devices 5a to 5c and the second expansion device 23 have a function as a pressure reducing valve or an expansion valve, and expand the refrigerant by reducing the pressure. The first throttling devices 5a to 5c and the second throttling device 23 are configured by those whose opening degree can be variably controlled, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, and the like. Good.
Hereinafter, the first diaphragm device 5a to 5c may be referred to as the first diaphragm device 5 as a general term.

(利用側熱交換器)
利用側熱交換器6a〜6cは、放熱器(凝縮器)や蒸発器として機能し、図示省略のファンから供給される空気と冷媒との間で熱交換を行い、冷媒を凝縮液化または蒸発ガス化するものである。
なお、利用側熱交換器6a〜6cは、ファンから供給される空気と冷媒との間で熱交換を行い、冷媒を蒸発ガス化または凝縮液化できるものであればよく、特にタイプを限定するものではない。たとえば、クロスフィンチューブタイプやクロスフロータイプなどの各種タイプを利用して構成することができる。
また、本実施の形態では、利用側熱交換器を3つ備えた構成としたが、それに限定されず、少なくとも2つ以上備えていればよく、負荷に応じて増減させてもよい。
以下、利用側熱交換器6a〜6cの総称として、利用側熱交換器6と称することがある。
(アキュムレータ)
アキュムレータ7は、圧縮機1の吸入側に配置され、過剰な冷媒を貯留するものである。なお、アキュムレータ7は、過剰な冷媒を貯留することができる容器であればよい。
(Use side heat exchanger)
The use-side heat exchangers 6a to 6c function as radiators (condensers) and evaporators, exchange heat between air supplied from a fan (not shown) and the refrigerant, and condense the liquid into liquefied or evaporated gas. It is to become.
The usage-side heat exchangers 6a to 6c are not particularly limited as long as they can exchange heat between the air supplied from the fan and the refrigerant and can evaporate or liquefy the refrigerant. is not. For example, various types such as a cross fin tube type and a cross flow type can be used.
Moreover, in this Embodiment, although it was set as the structure provided with three utilization side heat exchangers, it is not limited to it, At least 2 or more should just be provided, and you may increase / decrease according to load.
Hereinafter, the usage-side heat exchangers 6a to 6c may be collectively referred to as the usage-side heat exchanger 6.
(accumulator)
The accumulator 7 is disposed on the suction side of the compressor 1 and stores excess refrigerant. In addition, the accumulator 7 should just be a container which can store an excessive refrigerant | coolant.

(蓄積槽)
蓄熱槽22は、蓄熱材24が充填された内部に蓄熱用熱交換器25が収納されており、蓄熱材24に蓄熱した熱と、蓄熱用熱交換器25を流れる冷媒との間で熱交換を行うものである。
蓄熱材24は、熱を蓄えることができるものであり、たとえば、ポリエチレングリコール、トレイトール、パラフィン、酢酸ナトリウム3水和物、硫酸ナトリウム10水和物などである。
蓄熱用熱交換器25は、蓄熱槽22の内部に充填されている蓄熱材24と冷媒との間で熱交換をさせるための熱交換器である。なお、本実施の形態では、蓄熱用熱交換器25は蒸発器として用いられている。
(Accumulation tank)
In the heat storage tank 22, a heat storage heat exchanger 25 is accommodated inside the heat storage material 24, and heat exchange is performed between the heat stored in the heat storage material 24 and the refrigerant flowing through the heat storage heat exchanger 25. Is to do.
The heat storage material 24 can store heat, such as polyethylene glycol, threitol, paraffin, sodium acetate trihydrate, sodium sulfate decahydrate, and the like.
The heat storage heat exchanger 25 is a heat exchanger for exchanging heat between the heat storage material 24 filled in the heat storage tank 22 and the refrigerant. In the present embodiment, the heat storage heat exchanger 25 is used as an evaporator.

本実施の形態に係る空気調和機には、空気調和機の動作を統括制御する制御装置50、および各種情報を記憶する記憶装置51が設けられている。
また、高圧圧力センサー201、第一温度センサー202a〜202c、および第二温度センサー203も設けられている。
高圧圧力センサー201は、圧縮機1と第一四方弁2とを接続する配管に設けられており、第一温度センサー202a〜202cは、第一絞り装置5a〜5cと利用側熱交換器6a〜6cとを接続する配管に設けられており、第二温度センサー203は、熱源側熱交換器3に設けられている。
The air conditioner according to the present embodiment is provided with a control device 50 that performs overall control of the operation of the air conditioner and a storage device 51 that stores various types of information.
A high pressure sensor 201, first temperature sensors 202a to 202c, and a second temperature sensor 203 are also provided.
The high pressure sensor 201 is provided in a pipe connecting the compressor 1 and the first four-way valve 2, and the first temperature sensors 202a to 202c are the first expansion devices 5a to 5c and the use side heat exchanger 6a. To 6c, and the second temperature sensor 203 is provided in the heat source side heat exchanger 3.

(高圧圧力センサー)
高圧圧力センサー201は、圧縮機1から吐出された高圧冷媒の圧力を検出する。高圧圧力センサー201で検出された圧力情報は、空気調和機の動作を統括制御する制御装置50に送られ、空気調和機を構成している各アクチュエーターの制御に利用されることになる。
(温度センサー)
第一温度センサー202a〜202cは、設けられた配管を流れる冷媒の温度をそれぞれ検出する。また、第二温度センサー203は、熱源側熱交換器3の温度を検出する。第一温度センサー202a〜202cおよび第二温度センサー203で検出された温度情報は、空気調和機の動作を統括制御する制御装置50に送られ、空気調和機を構成している各アクチュエーターの制御に利用されることになる。
(High pressure sensor)
The high pressure sensor 201 detects the pressure of the high pressure refrigerant discharged from the compressor 1. The pressure information detected by the high pressure sensor 201 is sent to the control device 50 that performs overall control of the operation of the air conditioner, and is used for control of each actuator constituting the air conditioner.
(Temperature sensor)
The 1st temperature sensors 202a-202c each detect the temperature of the refrigerant | coolant which flows through the provided piping. The second temperature sensor 203 detects the temperature of the heat source side heat exchanger 3. The temperature information detected by the first temperature sensors 202a to 202c and the second temperature sensor 203 is sent to the control device 50 that performs overall control of the operation of the air conditioner, and is used to control each actuator constituting the air conditioner. Will be used.

(制御装置)
制御装置50は、圧縮機1の駆動周波数、ファンの回転数、第一四方弁2および第二四方弁21の切り換え、第一絞り装置5a〜5cおよび第二絞り装置23の開度、第一切換弁4および第二切換弁8の開閉などを制御する。つまり、制御装置50はマイコンなどで構成されており、各種検出装置での検出情報およびリモコンからの指示に基づいて、各アクチュエーター(空気調和機を構成している駆動部品)を制御し、空気調和機の運転を実行する。
また、制御装置50は、高圧圧力センサー201で検出した高圧冷媒の圧力から飽和温度(凝縮温度)を演算し、その演算した飽和温度と第一温度センサー202a〜202cで検出した温度情報とから、利用側熱交換器6a〜6cの出口側(液側)のサブクールを計算する演算部を備えている。
(記憶装置)
記憶装置51は、メモリなどで構成されて各種情報を記憶するものである。図1では、制御装置50と別体として図示しているが、それに限定されず、制御装置50と一体でもよいし別体でもよい。
記憶装置51には、蓄熱用熱交換器25の容積に相当する冷媒量や、冷媒毎の圧力と飽和温度との関係などに関する情報が予め記憶されている。
(Control device)
The control device 50 includes a drive frequency of the compressor 1, a rotation speed of the fan, switching of the first four-way valve 2 and the second four-way valve 21, opening degrees of the first throttle devices 5a to 5c and the second throttle device 23, The opening and closing of the first switching valve 4 and the second switching valve 8 are controlled. That is, the control device 50 is configured by a microcomputer or the like, and controls each actuator (driving component constituting the air conditioner) on the basis of detection information from various detection devices and instructions from the remote controller, and air conditioning. Run the machine.
The control device 50 calculates a saturation temperature (condensation temperature) from the pressure of the high-pressure refrigerant detected by the high-pressure sensor 201, and from the calculated saturation temperature and the temperature information detected by the first temperature sensors 202a to 202c, An arithmetic unit that calculates the subcooling on the outlet side (liquid side) of the use side heat exchangers 6a to 6c is provided.
(Storage device)
The storage device 51 is configured by a memory or the like and stores various information. In FIG. 1, the control device 50 is illustrated as a separate body, but is not limited thereto, and may be integrated with the control device 50 or a separate body.
The storage device 51 stores in advance information related to the amount of refrigerant corresponding to the volume of the heat storage heat exchanger 25 and the relationship between the pressure and saturation temperature for each refrigerant.

また、サブクール(SC)は次式で計算することができる。   The subcool (SC) can be calculated by the following equation.

[式1]
利用側熱交換器6aの出口側のサブクール=飽和温度−第一温度センサー202aで検出した温度
[Formula 1]
Subcool on the outlet side of the use side heat exchanger 6a = saturation temperature−temperature detected by the first temperature sensor 202a

なお、利用側熱交換器6bおよび利用側熱交換器6cの出口側のサブクールは、上記式で第一温度センサー202aを、それぞれ第一温度センサー202b、第一温度センサー202cとすることにより計算することができる。   The sub-cooling on the outlet side of the use side heat exchanger 6b and the use side heat exchanger 6c is calculated by setting the first temperature sensor 202a to the first temperature sensor 202b and the first temperature sensor 202c, respectively, in the above formula. be able to.

第一絞り装置5a〜5cは、利用側熱交換器6aの出口側のサブクールが予め決められた目標値となるように開度が制御される。   The opening degree of the first expansion devices 5a to 5c is controlled so that the subcool on the outlet side of the use side heat exchanger 6a becomes a predetermined target value.

図2は、本発明の実施の形態に係る空気調和機における利用側熱交換器6a〜6cの出口側のサブクールおよび第一絞り装置5a〜5cの開度と利用側熱交換器6a〜6cに貯留される冷媒量との関係を示す図である。
図2に示すように、第一絞り装置5a〜5cの開度が小さくなるほど利用側熱交換器6a〜6cの出口側のサブクールが大きくなり、利用側熱交換器6a〜6cに貯留される冷媒量は多くなる。つまり、利用側熱交換器6a〜6cの出口側のサブクールと利用側熱交換器6a〜6cに貯留される冷媒量とは比例関係にあり、利用側熱交換器6a〜6cの出口側のサブクールと第一絞り装置5a〜5cの開度とは反比例関係にある。そして、この特性は予め記憶装置51に記憶しておく。
FIG. 2 shows the sub-cooling on the outlet side of the use side heat exchangers 6a to 6c and the opening degree of the first expansion devices 5a to 5c and the use side heat exchangers 6a to 6c in the air conditioner according to the embodiment of the present invention. It is a figure which shows the relationship with the refrigerant | coolant amount stored.
As shown in FIG. 2, the subcooling on the outlet side of the use side heat exchangers 6a to 6c increases as the opening degree of the first expansion devices 5a to 5c decreases, and the refrigerant stored in the use side heat exchangers 6a to 6c. The amount increases. That is, the subcool on the outlet side of the use side heat exchangers 6a to 6c and the refrigerant amount stored in the use side heat exchangers 6a to 6c are in a proportional relationship, and the subcool on the outlet side of the use side heat exchangers 6a to 6c. And the opening degree of the first expansion devices 5a to 5c are in an inversely proportional relationship. This characteristic is stored in the storage device 51 in advance.

本実施の形態に係る空気調和機は複数の運転モードを備えており、少なくとも第一暖房モードと第二暖房モードとを備えているものとする。
(第一暖房モード)
第一暖房モードでは、第一四方弁2を切り換えて圧縮機1の吐出側が利用側熱交換器6a〜6c側と連通し、第二四方弁21を切り換えて蓄熱槽22と閉路とが連通した状態となっている。また、第一切換弁4は開、第二切換弁8は閉、第一絞り装置5a〜5cは所定開度に開、第二絞り装置23は全閉とし、流路が形成されている。そのため、第一暖房モードは蓄熱槽22に冷媒が流れないようになっている。
The air conditioner according to the present embodiment includes a plurality of operation modes, and includes at least a first heating mode and a second heating mode.
(First heating mode)
In the first heating mode, the first four-way valve 2 is switched so that the discharge side of the compressor 1 communicates with the use side heat exchangers 6a to 6c, and the second four-way valve 21 is switched to connect the heat storage tank 22 and the closed circuit. It is in a state of communication. Further, the first switching valve 4 is opened, the second switching valve 8 is closed, the first throttle devices 5a to 5c are opened to a predetermined opening degree, and the second throttle device 23 is fully closed to form a flow path. Therefore, in the first heating mode, the refrigerant does not flow into the heat storage tank 22.

まず、圧縮機1で圧縮された高温高圧のガス冷媒は吐出された後、第一四方弁2を経由して利用側熱交換器6a〜6cに流入する。利用側熱交換器6a〜6cに流入した冷媒はそこで放熱し、凝縮され高圧の二相冷媒となり、第一絞り装置5a〜5cにより膨張され低圧の二相冷媒となる。そして、第一切換弁4を経由して熱源側熱交換器3に流入した冷媒はそこで吸熱し、蒸発されたガス冷媒となった後、第一四方弁2、アキュムレータ7を経由して圧縮機1へ戻る。
つまり、第一暖房モードは、圧縮機1から吐出された冷媒を利用側熱交換器6に流入させて、暖房運転(のみ)を行うモードである。
First, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged and then flows into the use side heat exchangers 6 a to 6 c via the first four-way valve 2. The refrigerant flowing into the use-side heat exchangers 6a to 6c dissipates heat and is condensed to become a high-pressure two-phase refrigerant, and is expanded by the first expansion devices 5a to 5c to become a low-pressure two-phase refrigerant. The refrigerant that has flowed into the heat source side heat exchanger 3 via the first switching valve 4 absorbs heat and becomes evaporated gas refrigerant, and then is compressed via the first four-way valve 2 and the accumulator 7. Return to Machine 1.
That is, the first heating mode is a mode in which the refrigerant discharged from the compressor 1 is caused to flow into the use side heat exchanger 6 and the heating operation (only) is performed.

(第二暖房モード)
第二暖房モードでは、第一四方弁2を切り換えて圧縮機1の吐出側が熱源側熱交換器3と連通し、第二四方弁21を切り換えて蓄熱槽22とアキュムレータ7とが連通した状態となっている。また、第一切換弁4は閉、第二切換弁8は開、第一絞り装置5a〜5cは所定開度に開、第二絞り装置23は所定開度に開とし、流路が形成されている。そのため、第二暖房モードは蓄熱槽22に冷媒が流れるようになっている。
(Second heating mode)
In the second heating mode, the first four-way valve 2 is switched and the discharge side of the compressor 1 communicates with the heat source side heat exchanger 3, and the second four-way valve 21 is switched and the heat storage tank 22 and the accumulator 7 communicate with each other. It is in a state. Further, the first switching valve 4 is closed, the second switching valve 8 is opened, the first throttle devices 5a to 5c are opened to a predetermined opening degree, the second throttle device 23 is opened to a predetermined opening degree, and a flow path is formed. ing. Therefore, in the second heating mode, the refrigerant flows through the heat storage tank 22.

まず、圧縮機1で圧縮された高温高圧のガス冷媒は吐出された後、第一四方弁2側と第二切換弁8側とに分流される。
第一四方弁2側に分流された冷媒は、第一四方弁2を経由して利用側熱交換器6a〜6cに流入する。利用側熱交換器6a〜6cに流入した冷媒はそこで放熱し、凝縮され高圧の二相冷媒となり、第一絞り装置5a〜5cにより膨張され低圧の二相冷媒となる。その後、第二絞り装置23を経由して蓄熱槽22の蓄熱用熱交換器25に流入する。蓄熱用熱交換器25に流入した冷媒はそこで蓄熱材24から吸熱し、蒸発されたガス冷媒となった後、第二四方弁21へ向かって流れる。
First, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged and then divided into the first four-way valve 2 side and the second switching valve 8 side.
The refrigerant branched to the first four-way valve 2 side flows into the use side heat exchangers 6 a to 6 c via the first four-way valve 2. The refrigerant flowing into the use-side heat exchangers 6a to 6c dissipates heat and is condensed to become a high-pressure two-phase refrigerant, and is expanded by the first expansion devices 5a to 5c to become a low-pressure two-phase refrigerant. Thereafter, the heat flows into the heat storage heat exchanger 25 of the heat storage tank 22 via the second expansion device 23. The refrigerant that has flowed into the heat storage heat exchanger 25 absorbs heat from the heat storage material 24 to become evaporated gas refrigerant, and then flows toward the second four-way valve 21.

一方、第二切換弁8側に分流された冷媒は、第二切換弁8で減圧され低温高圧のガス冷媒となり、熱源側熱交換器3に流入する。熱源側熱交換器3に流入した冷媒はそこで放熱し、熱源側熱交換器3に付着した霜を融解するとともに凝縮され、第一四方弁2を経由した後、第二四方弁21を経由した冷媒と合流する。
そして合流した冷媒は、アキュムレータ7を経由して圧縮機1へ戻る。
つまり、第二暖房モードは、圧縮機1から吐出された冷媒を利用側熱交換器6と熱源側熱交換器3とに流入させて、暖房運転および霜取運転を同時に行うモードである。
On the other hand, the refrigerant branched to the second switching valve 8 side is depressurized by the second switching valve 8 to become a low-temperature and high-pressure gas refrigerant and flows into the heat source side heat exchanger 3. The refrigerant flowing into the heat source side heat exchanger 3 dissipates heat there, melts and condenses frost adhering to the heat source side heat exchanger 3, passes through the first four-way valve 2, and then passes through the second four-way valve 21. It merges with the refrigerant passed through.
The merged refrigerant returns to the compressor 1 via the accumulator 7.
That is, the second heating mode is a mode in which the refrigerant discharged from the compressor 1 is caused to flow into the use side heat exchanger 6 and the heat source side heat exchanger 3 to simultaneously perform the heating operation and the defrosting operation.

(空気調和機の制御フロー)
図3は、本発明の実施の形態に係る空気調和機の制御フローである。
以下、図3に基づいて本実施の形態に係る空気調和機の制御フローについて説明する。
まず、第一暖房モードで運転を開始し(S1)、利用側熱交換器6の出口側(液側)のサブクール(以下、SC1と称する)が、予め決められた目標のサブクール(以下、T_SC1と称する)となるように第一絞り装置5a〜5cの開度を制御する(S2)。そして、その制御後の利用側熱交換器6a〜6cのSC1をそれぞれ記憶装置51に記憶しておく(S3)。なお、SC1は第一絞り装置5a〜5cの開度に比例する。
(Air conditioner control flow)
FIG. 3 is a control flow of the air conditioner according to the embodiment of the present invention.
Hereinafter, the control flow of the air conditioner according to the present embodiment will be described with reference to FIG.
First, the operation is started in the first heating mode (S1), and the outlet side (liquid side) subcool (hereinafter referred to as SC1) of the use side heat exchanger 6 is set to a predetermined target subcool (hereinafter referred to as T_SC1). The opening degree of the first expansion devices 5a to 5c is controlled (S2). And SC1 of the use side heat exchangers 6a-6c after the control is each memorize | stored in the memory | storage device 51 (S3). SC1 is proportional to the opening degree of the first expansion devices 5a to 5c.

次に、第一暖房モード中に第二温度センサー203で検出した熱源側熱交換器3の温度を予め決められた第一温度と比較する(S4)。
ここで、第一温度とは、熱源側熱交換器3の外表面に霜が付着し、霜取りが必要となる温度である。
そして、熱源側熱交換器3の温度が第一温度より大きい場合は(S4のNo)、S2へ戻る。一方、熱源側熱交換器3の温度が第一温度以下の場合は(S4のYes)、目標のサブクール(以下、T_SC2と称する)を演算する(S5)。
ここで、T_SC2は、以下のようにして求められる。
Next, the temperature of the heat source side heat exchanger 3 detected by the second temperature sensor 203 during the first heating mode is compared with a predetermined first temperature (S4).
Here, the first temperature is a temperature at which frost adheres to the outer surface of the heat source side heat exchanger 3 and defrosting is required.
When the temperature of the heat source side heat exchanger 3 is higher than the first temperature (No in S4), the process returns to S2. On the other hand, when the temperature of the heat source side heat exchanger 3 is equal to or lower than the first temperature (Yes in S4), a target subcool (hereinafter referred to as T_SC2) is calculated (S5).
Here, T_SC2 is obtained as follows.

まず、S2で記憶した利用側熱交換器6a〜6cのSC1のうち、最小値を選択する。
そして、図2より、選択したSC1の最小値と、予め記憶した蓄熱用熱交換器25の容積に相当する冷媒量とからサブクールの差分ΔSCを求め、次式で計算する。
First, the minimum value is selected from SC1 of the use side heat exchangers 6a to 6c stored in S2.
Then, from FIG. 2, the subcool difference ΔSC is obtained from the minimum value of the selected SC1 and the refrigerant amount corresponding to the volume of the heat storage heat exchanger 25 stored in advance, and is calculated by the following equation.

[式2]
T_SC2=SC1+ΔSC
なお、T_SC2>SC1である。
[Formula 2]
T_SC2 = SC1 + ΔSC
Note that T_SC2> SC1.

以上のように、SC1とΔSCとからT_SC2を求められる。言い換えると、第一暖房モード中の第一絞り装置5a〜5cの開度と蓄熱用熱交換器25の容積に相当する冷媒量とから、第二暖房モード中の第一絞り装置5a〜5cの目標開度を求められる。   As described above, T_SC2 can be obtained from SC1 and ΔSC. In other words, from the opening degree of the first expansion devices 5a to 5c in the first heating mode and the refrigerant amount corresponding to the volume of the heat storage heat exchanger 25, the first expansion devices 5a to 5c in the second heating mode. The target opening is obtained.

そして、T_SC2を演算したら第二暖房モードに移行して運転を開始し(S6)、SC1が最小値である利用側熱交換器6の出口側(液側)のサブクール(以下、SC2と称する)が、T_SC2となるように第一絞り装置5の開度を制御する(S7)。その後、第二暖房モード中に第二温度センサー203で検出した熱源側熱交換器3の温度を予め決められた第二温度と比較する(S8)。
ここで、第二温度とは、熱源側熱交換器3の霜取りが不要となる温度である。
そして、熱源側熱交換器3の温度が第二温度より小さい場合は(S8のNo)、S7へ戻る。一方、熱源側熱交換器3の温度が第二温度以上の場合は(S8のYes)、S1へ戻り、第一暖房モードに移行して運転を開始する。
Then, after calculating T_SC2, the operation is shifted to the second heating mode (S6), and the subcooling on the outlet side (liquid side) of the use side heat exchanger 6 where SC1 is the minimum value (hereinafter referred to as SC2). However, the opening degree of the 1st expansion device 5 is controlled so that it may become T_SC2 (S7). Thereafter, the temperature of the heat source side heat exchanger 3 detected by the second temperature sensor 203 during the second heating mode is compared with a predetermined second temperature (S8).
Here, the second temperature is a temperature at which defrosting of the heat source side heat exchanger 3 becomes unnecessary.
When the temperature of the heat source side heat exchanger 3 is lower than the second temperature (No in S8), the process returns to S7. On the other hand, when the temperature of the heat source side heat exchanger 3 is equal to or higher than the second temperature (Yes in S8), the process returns to S1 to shift to the first heating mode and start operation.

なお、SC1のうち最小値を選択し、SC1が最小値である利用側熱交換器6の第一絞り装置5の開度を制御するのは、貯留されている冷媒量が最も少ない利用側熱交換器6を選択し、制御するためである。つまり、利用側熱交換器6a〜6cの容積がいずれも同じである場合、貯留することができる冷媒量に最も余裕がある利用側熱交換器6を選択し、制御することで、蓄熱用熱交換器25の容積に相当する冷媒量を貯留しきれないという事態を回避するためである。   Note that the minimum value of SC1 is selected and the opening degree of the first expansion device 5 of the use side heat exchanger 6 where SC1 is the minimum value is controlled by the use side heat with the least amount of stored refrigerant. This is because the exchanger 6 is selected and controlled. That is, when the volumes of the usage-side heat exchangers 6a to 6c are the same, the usage-side heat exchanger 6 having the largest margin in the amount of refrigerant that can be stored is selected and controlled, so that the heat for heat storage. This is to avoid a situation in which the refrigerant amount corresponding to the volume of the exchanger 25 cannot be stored.

また、SC1は本発明の「第一サブクール」に相当し、SC2は本発明の「第二サブクール」に相当する。
また、T_SC1は本発明の「第一目標サブクール」に相当し、T_SC2は本発明の「第二目標サブクール」に相当する。
SC1 corresponds to the “first subcool” of the present invention, and SC2 corresponds to the “second subcool” of the present invention.
T_SC1 corresponds to the “first target subcool” of the present invention, and T_SC2 corresponds to the “second target subcool” of the present invention.

以上のように、蓄熱槽22を備えた本実施の形態に係る空気調和機によれば、第一暖房モード中にT_SC1となるように第一絞り装置5a〜5cの開度を制御し、利用側熱交換器6a〜6cの出口側(液側)のSC1をそれぞれ記憶装置51に記憶しておく。そして、SC1の中で最小値の利用側熱交換器6を選択し、SC1の最小値と蓄熱用熱交換器25の容積に相当する冷媒量とから、T_SC2を演算する。その後、選択した利用側熱交換器6の出口側(液側)のSC2が、T_SC2となるように第一絞り装置5の開度を制御する。そうすることで、蓄熱槽22内における蓄熱用熱交換器25を蒸発器として用いる第二暖房モードにおいて、蓄熱用熱交換器25の容積に相当する冷媒量を、選択した利用側熱交換器6に貯留することができるため、圧縮機1への液バックを抑制することができる。   As mentioned above, according to the air conditioner concerning this Embodiment provided with the thermal storage tank 22, the opening degree of 1st expansion device 5a-5c is controlled so that it may become T_SC1 during 1st heating mode, and utilization. The SC1 on the outlet side (liquid side) of the side heat exchangers 6a to 6c is stored in the storage device 51, respectively. Then, the use side heat exchanger 6 having the minimum value in SC1 is selected, and T_SC2 is calculated from the minimum value of SC1 and the refrigerant amount corresponding to the volume of the heat storage heat exchanger 25. Thereafter, the opening degree of the first expansion device 5 is controlled so that SC2 on the outlet side (liquid side) of the selected use side heat exchanger 6 becomes T_SC2. By doing so, in the second heating mode in which the heat storage heat exchanger 25 in the heat storage tank 22 is used as an evaporator, the amount of refrigerant corresponding to the volume of the heat storage heat exchanger 25 is selected as the use side heat exchanger 6. Therefore, liquid back to the compressor 1 can be suppressed.

つまり、第二暖房モード中の第一絞り装置5の開度を第一暖房モード中の第一絞り装置5の開度より小さくなるように制御することにより、第二暖房モード中において利用側熱交換器6に貯留される冷媒量を増やすことで、蓄熱用熱交換器25の容積に相当する冷媒量を利用側熱交換器6に貯留することができるため、圧縮機1への液バックを抑制することができる。   That is, by controlling the opening of the first expansion device 5 during the second heating mode to be smaller than the opening of the first expansion device 5 during the first heating mode, By increasing the amount of refrigerant stored in the exchanger 6, the amount of refrigerant corresponding to the volume of the heat storage heat exchanger 25 can be stored in the use-side heat exchanger 6, so that the liquid back to the compressor 1 can be reduced. Can be suppressed.

1 圧縮機、2 第一四方弁、3 熱源側熱交換器、4 第一切換弁、5 第一絞り装置、5a 第一絞り装置、5b 第一絞り装置、5c 第一絞り装置、6 利用側熱交換器、6a 利用側熱交換器、6b 利用側熱交換器、6c 利用側熱交換器、7 アキュムレータ、8 第二切換弁、21 第二四方弁、22 蓄熱槽、23 第二絞り装置、24 蓄熱材、25 蓄熱用熱交換器、50 制御装置、51 記憶装置、201 高圧圧力センサー、202a 第一温度センサー、202b 第一温度センサー、202c 第一温度センサー、203 第二温度センサー。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 1st four-way valve, 3 Heat source side heat exchanger, 4 1st switching valve, 5 1st expansion device, 5a 1st expansion device, 5b 1st expansion device, 5c 1st expansion device, 6 utilization Side heat exchanger, 6a Utilization side heat exchanger, 6b Utilization side heat exchanger, 6c Utilization side heat exchanger, 7 Accumulator, 8 Second switching valve, 21 Second four-way valve, 22 Heat storage tank, 23 Second throttle Device, 24 heat storage material, 25 heat storage heat exchanger, 50 control device, 51 storage device, 201 high pressure sensor, 202a first temperature sensor, 202b first temperature sensor, 202c first temperature sensor, 203 second temperature sensor.

本発明に係る空気調和機は、圧縮機、第一流路切換装置、熱源側熱交換器、第一切換弁、第一絞り装置、および、利用側熱交換器順次配管で接続され、前記圧縮機と前記第一流路切換装置とを接続している配管から分岐し、前記熱源側熱交換器と前記第一切換弁とを接続する配管に合流するように接続された配管に、第二切換弁が設けられており、前記第一切換弁と前記第一絞り装置とを接続している配管から分岐し、第二流路切換装置を介して前記圧縮機の吸入側または閉路に選択的に接続される配管に、第二絞り装置、および蓄熱材と蓄熱用熱交換器とを備えた蓄熱槽が直列に設けられており、前記蓄熱槽は前記第二絞り装置より前記第二流路切換装置側に設けられており、前記第一流路切換装置、前記第二流路切換装置、前記第一絞り装置、前記第二絞り装置、前記第一切換弁、および前記第二切換弁を制御する制御装置を備え、前記圧縮機から吐出された冷媒を前記利用側熱交換器に流入させて暖房運転を行う第一暖房モードと、前記圧縮機から吐出された冷媒を前記利用側熱交換器と前記熱源側熱交換器とに流入させて暖房運転および霜取運転を同時に行う第二暖房モードと、を少なくとも備えた空気調和機であって、前記制御装置は、前記第二暖房モード中において前記蓄熱用熱交換器の容積に相当する冷媒量を前記利用側熱交換器に貯留するうに、前記第二暖房モード中の前記第一絞り装置の開度前記第一暖房モード中の前記第一絞り装置の開度より小さくなるように制御するものである。 In the air conditioner according to the present invention, a compressor, a first flow path switching device, a heat source side heat exchanger, a first switching valve, a first expansion device, and a use side heat exchanger are sequentially connected by piping, and the compression Branching from the pipe connecting the machine and the first flow path switching device, the second switching to the pipe connected to join the pipe connecting the heat source side heat exchanger and the first switching valve A valve is provided, branches from a pipe connecting the first switching valve and the first throttle device, and selectively passes to a suction side or a closed circuit of the compressor via a second flow path switching device. The pipe connected is provided with a second expansion device and a heat storage tank provided with a heat storage material and a heat exchanger for heat storage in series, and the heat storage tank is switched to the second flow path from the second expansion device. Provided on the apparatus side, the first flow path switching device, the second flow path switching device, the first throttle Apparatus, the second throttle device, the first switching valve, and a control device for controlling the second switching valve, and the refrigerant discharged from the compressor is allowed to flow into the use side heat exchanger for heating operation. A first heating mode to be performed, and a second heating mode in which the refrigerant discharged from the compressor is caused to flow into the use side heat exchanger and the heat source side heat exchanger to simultaneously perform the heating operation and the defrosting operation. and at least includes an air conditioner, the control device, the second by the refrigerant quantity corresponding to the volume of the heat storage heat exchanger during the heating mode is stored in the utilization-side heat exchanger urchin, the first and controls two opening degree of the first throttle device in the heating mode to be smaller than the opening degree of the first throttle apparatus in the first heating mode.

Claims (7)

圧縮機、第一流路切換装置、熱源側熱交換器、第一切換弁、第一絞り装置、利用側熱交換器、および第二流路切換装置が順次配管で接続され、
前記圧縮機と前記第一流路切換装置とを接続している配管から分岐し、前記熱源側熱交換器と前記第一切換弁とを接続する配管に合流するように接続された配管に、第二切換弁が設けられており、
前記第一切換弁と前記第一絞り装置とを接続している配管から分岐し、前記第二流路切換装置に合流するように接続された配管に、第二絞り装置、および蓄熱材と蓄熱用熱交換器とを備えた蓄熱槽が直列に設けられており、
前記蓄熱槽は前記第二絞り装置より前記第二流路切換装置側に設けられており、
前記第一流路切換装置、前記第二流路切換装置、前記第一絞り装置、前記第二絞り装置、前記第一切換弁、および前記第二切換弁を制御する制御装置を備え、
前記圧縮機から吐出された冷媒を前記利用側熱交換器に流入させて暖房運転を行う第一暖房モードと、前記圧縮機から吐出された冷媒を前記利用側熱交換器と前記熱源側熱交換器とに流入させて暖房運転および霜取運転を同時に行う第二暖房モードと、を少なくとも備えた空気調和機であって、
前記第二暖房モード中において前記蓄熱用熱交換器の容積に相当する冷媒量を前記利用側熱交換器に貯留することができるように、前記第二暖房モード中の前記第一絞り装置の開度が前記第一暖房モード中の前記第一絞り装置の開度より小さくなるように制御される
ことを特徴とする空気調和機。
The compressor, the first flow path switching device, the heat source side heat exchanger, the first switching valve, the first expansion device, the use side heat exchanger, and the second flow path switching device are sequentially connected by piping,
A pipe branched from a pipe connecting the compressor and the first flow path switching device, and connected to a pipe connecting the heat source side heat exchanger and the first switching valve, Two switching valves are provided,
The second throttle device, the heat storage material, and the heat storage are connected to the pipe branched from the pipe connecting the first switching valve and the first throttle device and joined to the second flow path switching device. A heat storage tank with a heat exchanger for use is provided in series,
The heat storage tank is provided on the second flow path switching device side from the second expansion device,
A controller for controlling the first flow path switching device, the second flow path switching device, the first throttle device, the second throttle device, the first switching valve, and the second switching valve;
A first heating mode in which the refrigerant discharged from the compressor flows into the use side heat exchanger to perform a heating operation; and the refrigerant discharged from the compressor exchanges heat with the use side heat exchanger A second heating mode in which the heating operation and the defrosting operation are performed at the same time by flowing into the air conditioner,
During the second heating mode, the first expansion device is opened during the second heating mode so that an amount of refrigerant corresponding to the volume of the heat storage heat exchanger can be stored in the use side heat exchanger. The air conditioner is controlled so that the degree is smaller than the opening of the first expansion device during the first heating mode.
前記第一絞り装置および前記利用側熱交換器は複数並列に接続されており、
各種情報を記憶する記憶装置を備え、
前記第一暖房モード中では、
複数の前記利用側熱交換器の第一サブクールが予め決められた第一目標サブクールとなるように複数の前記第一絞り装置の開度を制御した後に、前記記憶装置に記憶された複数の前記利用側熱交換器における前記第一サブクールのうちの最小値と、前記蓄熱用熱交換器の容積に相当する冷媒量とから、前記第一目標サブクールよりも大きい第二目標サブクールが演算される
ことを特徴とする請求項1に記載の空気調和機。
A plurality of the first expansion device and the use side heat exchanger are connected in parallel,
A storage device for storing various information;
During the first heating mode,
After controlling the opening degree of the plurality of first expansion devices so that the first subcools of the plurality of usage-side heat exchangers are predetermined first target subcools, A second target subcool that is larger than the first target subcool is calculated from the minimum value of the first subcool in the use side heat exchanger and the refrigerant amount corresponding to the volume of the heat storage heat exchanger. The air conditioner according to claim 1.
前記第二暖房モード中では、
前記第一サブクールが最小値である前記利用側熱交換器におけるサブクールが、前記第二目標サブクールとなるように前記第一絞り装置の開度が制御される
ことを特徴とする請求項2に記載の空気調和機。
During the second heating mode,
The opening degree of the first expansion device is controlled so that a subcool in the use side heat exchanger having the minimum value of the first subcool becomes the second target subcool. Air conditioner.
前記蓄熱用熱交換器の容積に相当する冷媒量を貯留する前記利用側熱交換器は、前記第一サブクールが最小値である
ことを特徴とする請求項2または3に記載の空気調和機。
4. The air conditioner according to claim 2, wherein the use-side heat exchanger that stores a refrigerant amount corresponding to the volume of the heat storage heat exchanger has a minimum value of the first subcool. 5.
前記第一暖房モードで運転開始後、前記熱源側熱交換器の温度が予め決められた第一温度以下となったら、前記第二暖房モードに移行する
ことを特徴とする請求項1〜4のいずれか一項に記載の空気調和機。
After the operation is started in the first heating mode, when the temperature of the heat source side heat exchanger becomes equal to or lower than a predetermined first temperature, the mode is shifted to the second heating mode. The air conditioner as described in any one of Claims.
前記熱源側熱交換器の温度が予め決められた第二温度以上となったら、前記第一暖房モードに移行する
ことを特徴とする請求項5に記載の空気調和機。
The air conditioner according to claim 5, wherein when the temperature of the heat source side heat exchanger becomes equal to or higher than a predetermined second temperature, the first heating mode is entered.
複数の前記利用側熱交換器は容積がいずれも同じである
ことを特徴とする請求項1〜6のいずれか一項に記載の空気調和機。
The air conditioner according to any one of claims 1 to 6, wherein the plurality of use side heat exchangers have the same volume.
JP2016552746A 2014-10-08 2014-10-08 Air conditioner Expired - Fee Related JP6336102B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076919 WO2016056078A1 (en) 2014-10-08 2014-10-08 Air conditioner

Publications (2)

Publication Number Publication Date
JPWO2016056078A1 true JPWO2016056078A1 (en) 2017-05-25
JP6336102B2 JP6336102B2 (en) 2018-06-06

Family

ID=55652738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016552746A Expired - Fee Related JP6336102B2 (en) 2014-10-08 2014-10-08 Air conditioner

Country Status (2)

Country Link
JP (1) JP6336102B2 (en)
WO (1) WO2016056078A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106123170B (en) * 2016-06-24 2019-02-05 珠海格力电器股份有限公司 A kind of air-conditioning system and its control method
CN109579385A (en) * 2018-11-28 2019-04-05 山东大学 A kind of air-conditioning is from defroster and control method
CN114413406B (en) * 2022-02-21 2023-09-05 清华大学 Air conditioner with heat storage device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133635A (en) * 1991-09-18 1993-05-28 Hitachi Ltd Cold accumulation type air conditioning apparatus
JPH09126599A (en) * 1995-10-30 1997-05-16 Hitachi Ltd Freezing cycle
JP2005003290A (en) * 2003-06-12 2005-01-06 Advanced Kucho Kaihatsu Center Kk Air conditioner
JP2005003251A (en) * 2003-06-11 2005-01-06 Toshiba Kyaria Kk Air conditioner
JP2007010288A (en) * 2005-07-04 2007-01-18 Jfe Engineering Kk Cooling and heating capacity enhancement method of existing heat pump type air conditioner, thermal storage unit device and heat pump type air conditioner using the device
JP2009115340A (en) * 2007-11-02 2009-05-28 Hitachi Appliances Inc Air conditioner
JP2012037130A (en) * 2010-08-06 2012-02-23 Panasonic Corp Refrigeration cycle device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133635A (en) * 1991-09-18 1993-05-28 Hitachi Ltd Cold accumulation type air conditioning apparatus
JPH09126599A (en) * 1995-10-30 1997-05-16 Hitachi Ltd Freezing cycle
JP2005003251A (en) * 2003-06-11 2005-01-06 Toshiba Kyaria Kk Air conditioner
JP2005003290A (en) * 2003-06-12 2005-01-06 Advanced Kucho Kaihatsu Center Kk Air conditioner
JP2007010288A (en) * 2005-07-04 2007-01-18 Jfe Engineering Kk Cooling and heating capacity enhancement method of existing heat pump type air conditioner, thermal storage unit device and heat pump type air conditioner using the device
JP2009115340A (en) * 2007-11-02 2009-05-28 Hitachi Appliances Inc Air conditioner
JP2012037130A (en) * 2010-08-06 2012-02-23 Panasonic Corp Refrigeration cycle device

Also Published As

Publication number Publication date
WO2016056078A1 (en) 2016-04-14
JP6336102B2 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
JP5968534B2 (en) Air conditioner
JP5855129B2 (en) Outdoor unit and air conditioner
KR101096851B1 (en) Heat source unit and refrigeration device
JP6150514B2 (en) Air conditioner
JP6715929B2 (en) Refrigeration cycle device and air conditioner including the same
JP6390688B2 (en) Refrigeration equipment
WO2016208042A1 (en) Air-conditioning device
JP6246394B2 (en) Air conditioner
JP6336102B2 (en) Air conditioner
JP6017048B2 (en) Air conditioner
WO2016046927A1 (en) Refrigeration cycle device and air-conditioning device
JP4869320B2 (en) Refrigeration cycle apparatus and water heater equipped with the same
JP2006090683A (en) Multiple room type air conditioner
JP6017049B2 (en) Air conditioner
JP6021943B2 (en) Air conditioner
JP6662753B2 (en) Refrigeration equipment
JP2009293887A (en) Refrigerating device
JP6042037B2 (en) Refrigeration cycle equipment
JP2009115336A (en) Refrigeration system
JP7448848B2 (en) air conditioner
JP2009162407A (en) Refrigerating device
JP2017101856A (en) Freezing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180501

R150 Certificate of patent or registration of utility model

Ref document number: 6336102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees