JP2007010288A - Cooling and heating capacity enhancement method of existing heat pump type air conditioner, thermal storage unit device and heat pump type air conditioner using the device - Google Patents

Cooling and heating capacity enhancement method of existing heat pump type air conditioner, thermal storage unit device and heat pump type air conditioner using the device Download PDF

Info

Publication number
JP2007010288A
JP2007010288A JP2005194620A JP2005194620A JP2007010288A JP 2007010288 A JP2007010288 A JP 2007010288A JP 2005194620 A JP2005194620 A JP 2005194620A JP 2005194620 A JP2005194620 A JP 2005194620A JP 2007010288 A JP2007010288 A JP 2007010288A
Authority
JP
Japan
Prior art keywords
heat storage
heat
refrigerant
air conditioner
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005194620A
Other languages
Japanese (ja)
Inventor
Kanetoshi Hayashi
謙年 林
Hitoshi Ishizuka
仁司 石塚
Shigenori Matsumoto
繁則 松本
Hiroshi Kishimoto
啓 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2005194620A priority Critical patent/JP2007010288A/en
Publication of JP2007010288A publication Critical patent/JP2007010288A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold storage unit device capable of enhancing cooling and heating capacity which can be mounted on an existing building-multi type air conditioning facility and a heat pump type air conditioner mounted with the cold storage unit device. <P>SOLUTION: The method is to enhance cooling and heating capacity of the existing heat pump type air conditioner structured by connecting an outdoor unit and an indoor unit with two existing refrigerant pipes. The thermal storage unit device 3 is equipped with a thermal storage tank 23 for storing thermal storage medium, the thermal storage medium 25, stored in the thermal storage tank 23, having a melting point Tm which is higher than an evaporation temperature Te of the refrigerant and lower than a condensation temperature Tc in the heat pump type air conditioner which has been already installed and a heat exchanger 27 for conducting heat exchange between the thermal storage medium and refrigerant of a refrigerating cycle. The thermal storage unit device 3 is installed between the outdoor unit 1 and the indoor unit 5 in the existing heat pump type air conditioner. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、既設ヒートポンプ式空調装置の冷暖房能力増強方法、既設のヒートポンプ式空調装置に取り付けてヒートポンプ式空調装置の冷暖房能力を増強する蓄熱ユニット装置および該装置を用いたヒートポンプ式空調装置に関するものである。   The present invention relates to a method for increasing the cooling / heating capacity of an existing heat pump type air conditioner, a heat storage unit device that is attached to an existing heat pump type air conditioner to enhance the cooling / heating capacity of the heat pump type air conditioner, and a heat pump type air conditioner using the apparatus. is there.

蓄熱槽を内蔵する蓄冷熱ユニットを冷凍サイクルに取り付けることにより、ランニングコストの低下や夏場のピークカットの対応及び運転効率の高い省エネルギー運転を行わせることを目的として以下の提案がなされている。
圧縮機、四方切換弁、室内熱交換器、減圧機構、室外側熱交換器等からなる冷凍サイクルを具備し、蓄冷熱運転及び蓄冷熱運転によって蓄冷熱されたエネルギーを前記冷凍サイクル内に回収する蓄冷熱回収運転を行う蓄熱槽と、前記各運転を制御する第1、第2、第3、第4の電磁弁とによって蓄冷熱ユニットを設け、この蓄冷熱ユニットを前記冷凍サイクルへ着脱可能に取り付けるようにした蓄熱式空気調和機(特許文献1参照)。
特開昭58−19665号公報(特許請求の範囲、第2図)
The following proposals have been made for the purpose of carrying out energy-saving operation with high running efficiency and reduced running costs and peak cuts in summer by attaching a cold storage unit with a built-in heat storage tank to the refrigeration cycle.
It has a refrigeration cycle consisting of a compressor, a four-way switching valve, an indoor heat exchanger, a pressure reducing mechanism, an outdoor heat exchanger, and the like, and collects the energy stored in the cold storage heat operation and the cold storage heat operation in the refrigeration cycle. A cold storage heat unit is provided by a heat storage tank that performs a cold storage heat recovery operation and first, second, third, and fourth solenoid valves that control each operation, and the cold storage heat unit can be attached to and detached from the refrigeration cycle. A regenerative air conditioner to be attached (see Patent Document 1).
JP 58-19665 (Claims, Fig. 2)

特許文献1に記載の蓄熱式空気調和装置は減圧機構を室外機側に設けている。減圧機構より下流側では冷媒はガス冷媒であり体積流量が液冷媒に比べて大幅に増大するため配管通過時の圧力損失が大きくなる。そのため減圧機構を室外機側に設けると室外機と室内機の距離が長い場合には性能低下することから、特許文献1が対象としている空気調和装置は室外機と室内機とが近接して設置される空気調和装置であると考えられる。
したがって、本発明が対象とする室外機と複数の室内機とが長い冷媒配管で接続されるいわゆるビルマルチ型空調装置とはその対象が異なっている。
また、蓄冷熱ユニット内に減圧機構を有していないことから蓄熱利用の暖房運転及び霜取り運転を行うこともできない。
The regenerative air conditioner described in Patent Document 1 includes a pressure reducing mechanism on the outdoor unit side. Since the refrigerant is a gas refrigerant on the downstream side of the decompression mechanism and the volume flow rate is significantly increased as compared with the liquid refrigerant, the pressure loss when passing through the pipe increases. Therefore, if the pressure reducing mechanism is provided on the outdoor unit side, the performance deteriorates when the distance between the outdoor unit and the indoor unit is long. Therefore, the air conditioner targeted by Patent Document 1 is installed close to the outdoor unit and the indoor unit. It is thought that it is an air conditioner.
Therefore, the object is different from what is called a building multi-type air conditioner in which an outdoor unit and a plurality of indoor units are connected by a long refrigerant pipe.
In addition, since there is no decompression mechanism in the cold storage heat unit, the heating operation using the heat storage and the defrosting operation cannot be performed.

また、特許文献1の蓄熱槽に貯留する蓄熱材については何らの記載もない。仮に、氷で蓄熱する場合であるとすると、氷の凝固点以下まで冷却が必要となる。ところが、一般の既設ヒートポンプ式空調装置で使用する冷媒の蒸発温度は5〜10℃であり、蒸発温度を0℃以下まで下げて製氷することができない。したがって、一般の空調用ヒートポンプでは製氷運転ができないか、もし仮に可能であったとしてもヒートポンプの効率が非常に低いものとなってしまう。氷を蓄熱材として使用する場合、効率よく蓄冷(製氷)するためには、蒸発温度が0℃以下まで対応可能となるように特別に設計された専用の熱源装置が必要となる。
したがって、特許文献1のものでは、既設のヒートポンプ式空調装置にそのまま蓄冷熱ユニットを追加して氷蓄熱により冷暖房能力を増強することは困難である。
また、将来氷蓄熱槽を後付けすることを想定して、ヒートポンプの仕様を蒸発温度が0℃以下まで対応可能としておく事も可能であるが、蓄冷熱ユニットの冷熱を利用しない通常冷房運転時(冷媒の蒸発温度5〜10℃)では、蒸発温度5〜10℃用に設計されたヒートポンプに比較して低効率となってしまう。
Moreover, there is no description about the heat storage material stored in the heat storage tank of Patent Document 1. If it is a case of storing heat with ice, cooling is required to below the freezing point of ice. However, the evaporating temperature of the refrigerant used in a general existing heat pump air conditioner is 5 to 10 ° C., and ice cannot be made by lowering the evaporating temperature to 0 ° C. or lower. Therefore, an ice-making operation cannot be performed with a general air conditioning heat pump, or the efficiency of the heat pump is very low even if it is possible. When ice is used as a heat storage material, in order to efficiently store cold (ice making), a dedicated heat source device specially designed so as to be able to cope with an evaporation temperature of 0 ° C. or lower is required.
Therefore, in the thing of patent document 1, it is difficult to add the cold storage heat unit as it is to the existing heat pump type air conditioner and to enhance the cooling / heating capacity by ice heat storage.
Also, assuming that the ice storage tank will be retrofitted in the future, it is possible to make the specification of the heat pump compatible with an evaporation temperature of 0 ° C. or less, but during normal cooling operation that does not use the cold heat of the cold storage heat unit ( The refrigerant evaporating temperature 5 to 10 ° C. is less efficient than a heat pump designed for an evaporating temperature 5 to 10 ° C.

本発明はかかる問題点を解決するためになされたものであり、既設のビルマルチ空調設備に取り付けることができ、冷暖房能力を向上させることができる蓄熱ユニット装置、該蓄熱ユニット装置を取り付けたヒートポンプ式空調装置を得ることを目的としている。
また、既設のヒートポンプ式空調装置の冷暖房能力増強方法を得ることを目的としている。
The present invention has been made to solve such a problem, and can be attached to an existing building multi-air-conditioning equipment, and a heat storage unit device capable of improving the cooling and heating capacity, and a heat pump type attached with the heat storage unit device. The purpose is to obtain an air conditioner.
Another object of the present invention is to obtain a method for enhancing the cooling / heating capacity of an existing heat pump air conditioner.

(1)本発明に係るヒートポンプ式空調装置の冷暖房能力増強方法は、室外機と室内機を2本の冷媒配管で接続してなる既設のヒートポンプ式空調装置の冷暖房能力を増強する方法であって、蓄熱材を貯留する蓄熱槽と、該蓄熱槽に貯留されて前記既設のヒートポンプ式空調装置における冷媒の蒸発温度Teより高く凝縮温度Tcより低い融点Tmを有する蓄熱材と、該蓄熱材と前記冷媒とを熱交換させる蓄熱用熱交換器とを有する蓄熱ユニット装置を、既設のヒートポンプ式空調装置における室外機と室内機との間に設置し、冷房のオフピーク時に蓄熱槽内の蓄熱材に冷熱を蓄熱する蓄冷運転を行い、ピーク時に蓄熱材に蓄熱した冷熱を利用して冷房運転をする蓄冷利用冷房運転を行い、暖房のオフピーク時に蓄熱槽内の蓄熱材に温熱を蓄熱する温熱蓄熱運転を行い、ピーク時に蓄熱材に蓄熱した温熱を利用した暖房運転をする蓄熱利用暖房運転を行うことを特徴とするものである。 (1) The method for enhancing the cooling / heating capacity of a heat pump air conditioner according to the present invention is a method for enhancing the cooling / heating capacity of an existing heat pump air conditioner in which an outdoor unit and an indoor unit are connected by two refrigerant pipes. A heat storage tank that stores the heat storage material, a heat storage material that is stored in the heat storage tank and has a melting point Tm that is higher than the evaporation temperature Te of the refrigerant and lower than the condensation temperature Tc in the existing heat pump air conditioner, and the heat storage material and the heat storage material A heat storage unit device having a heat storage heat exchanger for exchanging heat with the refrigerant is installed between the outdoor unit and the indoor unit in the existing heat pump type air conditioner, and cools the heat storage material in the heat storage tank during the cooling off-peak. The temperature at which heat is stored in the heat storage material in the heat storage tank during off-peak hours of heating is performed. It performs thermal storage operation, and is characterized in performing the heat storage utilization heating operation of the heating operation using the heat that is accumulated in the heat storage material at peak.

(2)また、本発明に係る蓄熱ユニット装置は、室外機と室内機を液冷媒配管とガス冷媒配管の2本の冷媒配管で接続してなる既設のヒートポンプ式空調装置に取り付けられる蓄熱ユニット装置であって、前記液冷媒配管途中に挿入接続可能で、かつ第1、第2開閉弁を有する第1配管と、前記ガス冷媒配管途中に挿入接続可能で、かつ第3開閉弁を有する第2配管と、蓄熱材を貯留する蓄熱槽と、該蓄熱槽に貯留されて前記既設のヒートポンプ式空調装置における冷媒の蒸発温度Teより高く凝縮温度Tcより低い融点Tmを有する蓄熱材と、該蓄熱材と前記冷媒とを熱交換させる蓄熱用熱交換器とを有し、該蓄熱用熱交換器の一端側を膨張弁、第4開閉弁を介して前記第1配管における第1、第2開閉弁の間に配管接続し、前記蓄熱用熱交換器の他端側を第5開閉弁を介して前記第2配管における前記第3開閉弁よりも室外機側となる位置に配管接続し、前記蓄熱用熱交換器の他端側を第6開閉弁を介して前記第1配管における第1、2開閉弁設置部よりも室内機側となる位置に配管接続したことを特徴とするものである。 (2) Moreover, the heat storage unit apparatus which concerns on this invention is a heat storage unit apparatus attached to the existing heat pump type air conditioner which connects an outdoor unit and an indoor unit with two refrigerant | coolant piping of liquid refrigerant piping and gas refrigerant piping. A second pipe that can be inserted and connected in the middle of the liquid refrigerant pipe and has first and second on-off valves; and a second pipe that can be inserted and connected in the middle of the gas refrigerant pipe and has a third on-off valve. Piping, a heat storage tank that stores the heat storage material, a heat storage material that is stored in the heat storage tank and has a melting point Tm that is higher than the evaporation temperature Te of the refrigerant and lower than the condensation temperature Tc in the existing heat pump air conditioner, and the heat storage material And a heat storage heat exchanger for exchanging heat with the refrigerant, one end of the heat storage heat exchanger being connected to an expansion valve and a fourth on-off valve, the first and second on-off valves in the first pipe Between the pipes and the heat storage heat exchanger An end side is connected via a fifth on-off valve to a position closer to the outdoor unit side than the third on-off valve in the second pipe, and the other end side of the heat storage heat exchanger is connected via a sixth on-off valve. The pipe is connected to a position closer to the indoor unit than the first and second on-off valve installation parts in the first pipe.

(3)また、上記(2)に記載のものにおいて、蓄熱用熱交換器の他端側を第7開閉弁を介して前記第1配管における第1、2開閉弁設置部よりも室外機側となる位置に配管接続したことを特徴とするものである。 (3) Moreover, in the thing as described in said (2), the other end side of the heat exchanger for heat storage is an outdoor unit side rather than the 1st, 2 on-off valve installation part in said 1st piping via a 7th on-off valve. It is characterized in that a pipe connection is made at a position.

(4)また、上記(2)または(3)に記載のものにおいて蓄熱材の融点Tmは、Te<Tm<Te+10℃であることを特徴とするものである。 (4) Further, in the above (2) or (3), the heat storage material has a melting point Tm of Te <Tm <Te + 10 ° C.

(5)また、本発明に係るヒートポンプ式空調装置は、上記(2)〜(4)のいずれかに記載の蓄熱ユニット装置を室外機と室内機を有するヒートポンプ式空調装置に取り付けたことを特徴とするものである。 (5) Moreover, the heat pump type air conditioner which concerns on this invention attached the heat storage unit apparatus in any one of said (2)-(4) to the heat pump type air conditioner which has an outdoor unit and an indoor unit. It is what.

本発明においては、既設ヒートポンプ式空調装置における冷媒の蒸発温度Teより高く凝縮温度Tcより低い融点Tmを有する蓄熱材を用いたことにより、既設のヒートポンプ式空調装置に対して、蓄熱ユニット装置を2本の冷媒配管途中に挿入設置するだけで、既設の室外機(熱源装置)をそのまま使用して冷房能力を増強することか可能となる。   In the present invention, by using a heat storage material having a melting point Tm higher than the evaporation temperature Te of the refrigerant and lower than the condensation temperature Tc in the existing heat pump type air conditioner, two heat storage unit devices are provided for the existing heat pump type air conditioner. It is possible to enhance the cooling capacity by using the existing outdoor unit (heat source device) as it is simply by inserting it in the middle of the refrigerant piping of the book.

図1は本発明の一実施の形態に係る蓄熱ユニット装置を組み込んだヒートポンプ式空調装置の構成を説明する説明図である。この例のヒートポンプ式空調装置は、既設のヒートポンプ式空調装置として室外機1と室内機5を2本の冷媒配管で接続していたものに、新たに蓄熱ユニット装置3を後から組み込んだものであり、室外機1と、蓄熱ユニット装置3と、複数の室内機5とから構成される。
室外機1と蓄熱ユニット装置3とは2本の冷媒配管7、9で接続され、蓄熱ユニット装置3と室内機5とは同様に2本の冷媒配管11、13で接続されている。既設のヒートポンプ式空調装置において、冷媒配管7および冷媒配管11は主として液冷媒が流れる液冷媒配管、冷媒配管9および冷媒配管13は主としてガス冷媒が流れるガス冷媒配管である。
FIG. 1 is an explanatory view illustrating the configuration of a heat pump air conditioner incorporating a heat storage unit device according to an embodiment of the present invention. The heat pump type air conditioner of this example is the one in which the outdoor unit 1 and the indoor unit 5 are connected by two refrigerant pipes as an existing heat pump type air conditioner, and the heat storage unit device 3 is newly incorporated later. Yes, and includes an outdoor unit 1, a heat storage unit device 3, and a plurality of indoor units 5.
The outdoor unit 1 and the heat storage unit device 3 are connected by two refrigerant pipes 7 and 9, and the heat storage unit device 3 and the indoor unit 5 are similarly connected by two refrigerant pipes 11 and 13. In the existing heat pump air conditioner, the refrigerant pipe 7 and the refrigerant pipe 11 are liquid refrigerant pipes through which liquid refrigerant mainly flows, and the refrigerant pipe 9 and the refrigerant pipe 13 are gas refrigerant pipes through which mainly gas refrigerant flows.

室外機1は、ガス冷媒を所定の圧力に昇圧する圧縮機15、冷媒と外気との間で熱交換を行う室外側熱交換器17、運転モードによって冷媒の流れを切り替える4方弁19、膨張弁21を備えている。4方弁19の4つの接続口は、それぞれ圧縮機15の吐出側および吸込み側、室外側熱交換器17の一端側、冷媒配管9に配管を介して連結されている。また、室外側熱交換器17における4方弁19に連結されている側と反対側は膨張弁21を介して冷媒配管7に接続されている。   The outdoor unit 1 includes a compressor 15 that boosts the gas refrigerant to a predetermined pressure, an outdoor heat exchanger 17 that performs heat exchange between the refrigerant and the outside air, a four-way valve 19 that switches a refrigerant flow according to an operation mode, an expansion A valve 21 is provided. The four connection ports of the four-way valve 19 are connected to the discharge side and suction side of the compressor 15, one end side of the outdoor heat exchanger 17, and the refrigerant pipe 9 via pipes, respectively. The side opposite to the side connected to the four-way valve 19 in the outdoor heat exchanger 17 is connected to the refrigerant pipe 7 via the expansion valve 21.

蓄熱ユニット装置3は、蓄熱材25を貯留する蓄熱槽23、蓄熱槽内の蓄熱材25と冷媒とを熱交換させる蓄熱用熱交換器27を備えている。
蓄熱材25は、既設ヒートポンプ式空調装置における冷媒の蒸発温度Teより高く凝縮温度Tcより低い融点Tmを有するものを用いる。なお、蒸発温度Te、凝縮温度Tcとは、既設ヒートポンプ式空調装置の設計蒸発温度および設計凝縮温度のことをいう。
融点Tmがこの範囲の蓄熱材を用いることによって、既設のヒートポンプ式空調装置の蒸発温度と凝縮温度での運転条件をそのまま用いた高効率な運転状態を保ったまま、蓄熱材が液体から固体に相変化するときの凝固融解潜熱を利用して多量の熱量を蓄冷および蓄温熱することが可能となる。
このように、融点Tmがこの範囲の蓄熱材を用いることによって、蓄熱ユニット装置3を既設ヒートポンプ式空調装置にそのまま取り付けて冷暖房能力を増強させることができる。
なお、蓄熱材の融点Tmは、Te<Tm<Te+10℃(<Tc)とするのがより望ましい。TmがTe+10℃より低いと、後述する蓄冷利用運転時に冷媒の過冷却度が十分に得られるようになり、蓄冷した冷熱を有効に利用することができるからである。
既設ヒートポンプ式空調装置における冷媒の蒸発温度は5〜10℃程度のものが多いので、蓄熱材の融点Tmは、5〜20℃のものがより望ましい。
このような蓄熱材の具体例としては水和物蓄熱材があり、融点が12℃の臭化テトラnブチルアンモニウム水和物や、融点が9℃の臭化トリnブチルnペンチルアンモニウム水和物、融点が6.5℃のテトラブチル硝酸アンモニウム水和物などが挙げられる。
また、パラフィン系では融点5〜6℃のテトラデカンなどが挙げられる。
The heat storage unit device 3 includes a heat storage tank 23 that stores the heat storage material 25, and a heat storage heat exchanger 27 that exchanges heat between the heat storage material 25 in the heat storage tank and the refrigerant.
As the heat storage material 25, a material having a melting point Tm higher than the refrigerant evaporation temperature Te and lower than the condensation temperature Tc in the existing heat pump air conditioner is used. The evaporation temperature Te and the condensation temperature Tc refer to the design evaporation temperature and the design condensation temperature of the existing heat pump air conditioner.
By using a heat storage material with a melting point Tm in this range, the heat storage material is changed from a liquid to a solid while maintaining a highly efficient operation state using the operation conditions at the evaporation temperature and condensation temperature of the existing heat pump air conditioner as they are. A large amount of heat can be stored and stored using the latent heat of solidification and melting at the time of phase change.
Thus, by using the heat storage material having the melting point Tm in this range, the heat storage unit device 3 can be directly attached to the existing heat pump air conditioner to enhance the cooling / heating capacity.
The melting point Tm of the heat storage material is more preferably set to Te <Tm <Te + 10 ° C. (<Tc). This is because when Tm is lower than Te + 10 ° C., the degree of supercooling of the refrigerant can be sufficiently obtained during the cold storage use operation described later, and the cold stored cold energy can be used effectively.
Since the evaporating temperature of the refrigerant in the existing heat pump type air conditioner is often about 5 to 10 ° C., the melting point Tm of the heat storage material is more preferably 5 to 20 ° C.
Specific examples of such a heat storage material include a hydrate heat storage material, tetra-n-butylammonium bromide hydrate having a melting point of 12 ° C, and tri-n-butyl-n-pentylammonium bromide hydrate having a melting point of 9 ° C. And tetrabutyl ammonium nitrate hydrate having a melting point of 6.5 ° C.
In the case of paraffin, tetradecane having a melting point of 5 to 6 ° C. is exemplified.

再び図1に戻って装置構成を説明する。
一端側が冷媒配管7に接続され他端側が冷媒配管11に接続される配管29(本発明の第1配管に相当)、一端側が冷媒配管9に接続され他端側が冷媒配管13に接続される配管31(本発明の第2配管に相当)を備えている。そして、配管29には冷媒配管7に近い方から順に開閉弁33(本発明の第1開閉弁に相当)、開閉弁35(本発明の第2開閉弁に相当)が設けられている。また、配管31には開閉弁37(本発明の第3開閉弁に相当)が設けられている。
Returning to FIG. 1 again, the apparatus configuration will be described.
A pipe 29 having one end connected to the refrigerant pipe 7 and the other end connected to the refrigerant pipe 11 (corresponding to the first pipe of the present invention), a pipe having one end connected to the refrigerant pipe 9 and the other end connected to the refrigerant pipe 13 31 (corresponding to the second pipe of the present invention). The pipe 29 is provided with an on-off valve 33 (corresponding to the first on-off valve of the present invention) and an on-off valve 35 (corresponding to the second on-off valve of the present invention) in order from the side closer to the refrigerant pipe 7. The pipe 31 is provided with an on-off valve 37 (corresponding to the third on-off valve of the present invention).

蓄熱用熱交換器27の一端側は配管39を介して配管29における開閉弁33、35の間に接続されている。そして配管39には蓄熱用熱交換器27に近い方から順に膨張弁41、アキュムレータ43、開閉弁45(本発明の第4開閉弁に相当)が設けられている。
また、蓄熱用熱交換器27の他端側は3つの配管47、49、51を介して、配管31および配管29に接続されている。すなわち、配管47を介して配管31における開閉弁37よりも冷媒配管9に近い位置に接続され、配管49を介して配管29における開閉弁33よりも冷媒配管7に近い位置に接続され、配管51を介して配管29における開閉弁35よりも冷媒配管11に近い側に接続されている。そして、配管47には開閉弁53(本発明の第5開閉弁に相当)が、配管49には開閉弁55(本発明の第7開閉弁に相当)が、配管51には開閉弁57(本発明の第6開閉弁に相当)が設けられている。
One end side of the heat storage heat exchanger 27 is connected between the on-off valves 33 and 35 in the pipe 29 via the pipe 39. The piping 39 is provided with an expansion valve 41, an accumulator 43, and an on-off valve 45 (corresponding to the fourth on-off valve of the present invention) in order from the side closer to the heat storage heat exchanger 27.
The other end of the heat storage heat exchanger 27 is connected to the pipe 31 and the pipe 29 via three pipes 47, 49, 51. That is, the pipe 47 is connected to a position closer to the refrigerant pipe 9 than the opening / closing valve 37 in the pipe 31, and is connected to the position closer to the refrigerant pipe 7 than the opening / closing valve 33 in the pipe 29 via the pipe 49. Is connected to the side closer to the refrigerant pipe 11 than the on-off valve 35 in the pipe 29. The pipe 47 has an on-off valve 53 (corresponding to the fifth on-off valve of the present invention), the pipe 49 has an on-off valve 55 (corresponding to the seventh on-off valve of the present invention), and the pipe 51 has an on-off valve 57 (corresponding to the fifth on-off valve). Equivalent to the sixth on-off valve of the present invention).

室内機5には室内空気と冷媒との熱交換を行う室内側熱交換器59が設けられている。室内側熱交換器59の一端側は冷媒配管11に、他端側は冷媒配管13に、それぞれ配管を介して接続されている。室内側熱交換器59と冷媒配管11とを連結する経路には膨張弁61が設けられている。
なお図1において、室外機1、室内機5は主要な構成機器のみを図示した代表的な構成を示しており、必要に応じてアキュムレータや制御弁などが接続されたり、構成機器が複数組設置されてもよい。すなわち、室外機と室内機が2本の冷媒配管で接続されているヒートポンプ式空調装置であれば、室外機および室内機における機器構成は問わない。
The indoor unit 5 is provided with an indoor heat exchanger 59 that performs heat exchange between the indoor air and the refrigerant. One end of the indoor heat exchanger 59 is connected to the refrigerant pipe 11 and the other end is connected to the refrigerant pipe 13 via the pipe. An expansion valve 61 is provided in a path connecting the indoor heat exchanger 59 and the refrigerant pipe 11.
In FIG. 1, the outdoor unit 1 and the indoor unit 5 show a representative configuration in which only main components are illustrated, and an accumulator, a control valve, and the like are connected as necessary, or a plurality of components are installed. May be. That is, the equipment configuration of the outdoor unit and the indoor unit is not limited as long as the outdoor unit and the indoor unit are connected to each other by two refrigerant pipes.

上記のように構成されたヒートポンプ式空調装置においては、蓄熱ユニット装置3を機能させないで冷房運転を行う通常冷房運転、蓄熱槽23内の蓄熱材25に冷熱を蓄冷する蓄冷運転、蓄熱材25に蓄冷した冷熱を利用した冷房運転を行う蓄冷利用冷房運転、蓄熱ユニット装置3を機能させないで暖房運転を行う通常暖房運転、蓄熱槽23内の蓄熱材25に温熱を蓄熱する温熱蓄熱運転、蓄熱材25に蓄熱した温熱を利用した暖房運転をする蓄熱利用暖房運転の各運転モードが可能である。   In the heat pump type air conditioner configured as described above, the normal cooling operation for performing the cooling operation without causing the heat storage unit device 3 to function, the cold storage operation for storing cold in the heat storage material 25 in the heat storage tank 23, and the heat storage material 25 Cold storage-use cooling operation in which cooling operation is performed using the stored cold energy, normal heating operation in which heating operation is performed without causing the heat storage unit device 3 to function, thermal heat storage operation in which heat is stored in the heat storage material 25 in the heat storage tank 23, heat storage material Each operation mode of the heat storage use heating operation which performs the heating operation using the heat stored in 25 is possible.

図2〜図7はこれら各運転モードにおける冷媒の流れを説明する説明図であり、図2が通常冷房運転、図3が蓄冷運転、図4が蓄冷利用冷房運転、図5が通常暖房運転、図6が温熱蓄熱運転、図7が蓄熱利用暖房運転をそれぞれ示している。なお、図2〜図7においては冷媒が通過する配管を実線で示し、冷媒が通過しない配管は破線で示してある。また、各開閉弁については開状態を白抜きで示し、閉状態を黒塗りで示してある。
また、図8は冷房関係の運転モードにおけるモリエル線図、図9は暖房関係の運転モードにおけるモリエル線図である。
以下、図2〜図9に基づいて各運転モードの説明をする。
2-7 is explanatory drawing explaining the flow of the refrigerant | coolant in each of these operation modes, FIG. 2 is normal cooling operation, FIG. 3 is cold storage operation, FIG. 4 is cool storage utilization cooling operation, FIG. 5 is normal heating operation, FIG. 6 shows a heat storage operation, and FIG. 7 shows a heat storage utilization heating operation. 2-7, the piping through which the refrigerant passes is indicated by a solid line, and the piping through which the refrigerant does not pass is indicated by a broken line. Each open / close valve has an open state shown in white and a closed state shown in black.
FIG. 8 is a Mollier diagram in the cooling-related operation mode, and FIG. 9 is a Mollier diagram in the heating-related operation mode.
Hereinafter, each operation mode will be described with reference to FIGS.

(1)通常冷房運転
通常冷房運転時には、図2に示すように、蓄熱ユニット装置3の開閉弁33、35、37が開となり、開閉弁45、53、55、57は閉となる。したがって、冷媒は蓄熱ユニット3の配管29、31を通過するだけであり、蓄熱ユニット3における蓄熱機能および蓄熱利用機能は機能しない。以下、ヒートポンプ式空調装置全体の動作を説明する。
(1) Normal cooling operation During normal cooling operation, as shown in FIG. 2, the on-off valves 33, 35, and 37 of the heat storage unit device 3 are opened, and the on-off valves 45, 53, 55, and 57 are closed. Therefore, the refrigerant only passes through the pipes 29 and 31 of the heat storage unit 3, and the heat storage function and the heat storage use function in the heat storage unit 3 do not function. Hereinafter, the operation of the entire heat pump air conditioner will be described.

圧縮機15から吐出された高温高圧冷媒は、四方弁19を経由して室外側熱交換器17にて外気と熱交換して凝縮する。凝縮した液冷媒の温度は45℃程度である。液冷媒は全開の膨張弁21(全開の膨張弁は膨張弁として機能しない)を通り、冷媒配管7を通過して蓄熱ユニット装置3の配管29、冷媒配管11を通り室内機5に送られる。
冷房運転を行っている室内機5に送られた高圧の液冷媒は、膨張弁61で減圧され、室内側熱交換器59で蒸発し、室内空気と熱交換して冷房を行う。冷房を行った冷媒蒸気は冷媒配管13、蓄熱ユニット装置3の配管31、冷媒配管9を通って室外機1に戻り、4方弁19を経由して圧縮機15に吸入される。
この冷凍サイクルは図8における太実線で描かれた逆台形の冷凍サイクルA→B→C→D→Aを構成する。
The high-temperature and high-pressure refrigerant discharged from the compressor 15 is condensed by exchanging heat with the outside air in the outdoor heat exchanger 17 via the four-way valve 19. The temperature of the condensed liquid refrigerant is about 45 ° C. The liquid refrigerant passes through the fully-opened expansion valve 21 (the fully-opened expansion valve does not function as an expansion valve), passes through the refrigerant pipe 7, and is sent to the indoor unit 5 through the pipe 29 and the refrigerant pipe 11 of the heat storage unit device 3.
The high-pressure liquid refrigerant sent to the indoor unit 5 that is performing the cooling operation is depressurized by the expansion valve 61, evaporated by the indoor heat exchanger 59, and is cooled by exchanging heat with indoor air. The refrigerant vapor that has been cooled returns to the outdoor unit 1 through the refrigerant pipe 13, the pipe 31 of the heat storage unit device 3, and the refrigerant pipe 9, and is sucked into the compressor 15 through the four-way valve 19.
This refrigeration cycle constitutes an inverted trapezoidal refrigeration cycle A → B → C → D → A drawn by a thick solid line in FIG.

(2)蓄冷運転
蓄冷運転はオフピーク時である夏場の夜間などに行われる運転モードであり、この運転モードでは、図3に示すように、蓄熱ユニット装置3の開閉弁33、45、53が開となり、開閉弁35、37、55、57が閉となる。したがって、冷媒は室外機1と蓄熱ユニット装置3の間で循環して室内機5側には行かない。具体的には以下のような動作となる。
圧縮機15で圧縮された冷媒が冷媒配管7を通って蓄熱ユニット装置3に送られるまでは上述した通常冷房運転と同様である。蓄熱ユニット装置3に送られた高圧の液冷媒は開閉弁33、45およびアキュムレータ43を通り、膨張弁41で減圧され、蓄熱用熱交換器27で蒸発し、蓄熱材25と熱交換し蓄熱材25に冷熱を蓄冷する。このとき、蓄熱材25の融点が冷媒の蒸発温度よりも高いので凝固潜熱として蓄冷される。したがって、多量の熱量が蓄冷される。
蓄熱用熱交換器27で蒸発した冷媒蒸気は開閉弁53を通って冷媒配管9を通って室外機1に戻り、4方弁19を経由して圧縮機15に吸入される。
このときの冷凍サイクルは、上記通常冷房運転と同様に図8における太実線で描かれた冷凍サイクルA→B→C→D→Aとなる。
(2) Cold storage operation The cold storage operation is an operation mode that is performed at night in the summer, which is off-peak, and in this operation mode, as shown in FIG. 3, the on-off valves 33, 45, and 53 of the heat storage unit device 3 are opened. Thus, the on-off valves 35, 37, 55, and 57 are closed. Therefore, the refrigerant circulates between the outdoor unit 1 and the heat storage unit device 3 and does not go to the indoor unit 5 side. Specifically, the operation is as follows.
Until the refrigerant compressed by the compressor 15 is sent to the heat storage unit device 3 through the refrigerant pipe 7, it is the same as the normal cooling operation described above. The high-pressure liquid refrigerant sent to the heat storage unit device 3 passes through the on-off valves 33 and 45 and the accumulator 43, is depressurized by the expansion valve 41, evaporates in the heat storage heat exchanger 27, and exchanges heat with the heat storage material 25 to store the heat storage material. The cold energy is stored in 25. At this time, since the melting point of the heat storage material 25 is higher than the evaporation temperature of the refrigerant, it is stored as solidification latent heat. Therefore, a large amount of heat is stored cold.
The refrigerant vapor evaporated in the heat storage heat exchanger 27 passes through the opening / closing valve 53, passes through the refrigerant pipe 9, returns to the outdoor unit 1, and is sucked into the compressor 15 through the four-way valve 19.
The refrigeration cycle at this time is the refrigeration cycle A → B → C → D → A drawn by the thick solid line in FIG. 8 as in the normal cooling operation.

(3)蓄冷利用冷房運転
蓄冷利用冷房運転は昼間のピーク時などに行われる運転モードであり、この運転モードでは、図4に示すように、蓄熱ユニット装置3の開閉弁33、37、45、57が開となり、開閉弁35、53、55は閉となる。したがって、冷媒は室外機1から蓄熱ユニット装置3の蓄熱用熱交換器27を経由して室内機5側に送られ、再び室外機1に戻って循環する。具体的には以下のような動作となる。
圧縮機15で圧縮された冷媒が冷媒配管7を通って蓄熱ユニット装置3に送られるまでは上述した通常冷房運転、蓄冷運転と同様である。蓄熱ユニット装置3に送られた高圧の液冷媒(温度は45℃程度)は開閉弁33、45およびアキュムレータ43、全開の膨張弁41を通り、蓄熱用熱交換器27に流れる。蓄熱用熱交換器27では蓄熱槽23の蓄熱材25と熱交換することで蓄熱した冷熱を取出し液冷媒を過冷却状態にする。特に、本実施の形態の蓄熱材25は融点が冷媒の蒸発温度Teより高くTe+10℃よりも低いので、蓄熱材25の融点Tmは高々20℃程度であるので、液冷媒を蓄熱ユニット装置3の入口温度(45℃)から十分に冷却し、液冷媒の過冷却度を大きくすることができる。
(3) Cooling and cooling use cooling operation Cooling and cooling use cooling operation is an operation mode performed during peak hours in the daytime, and in this operation mode, as shown in FIG. 4, on-off valves 33, 37, 45, 57 is opened, and the on-off valves 35, 53, and 55 are closed. Therefore, the refrigerant is sent from the outdoor unit 1 to the indoor unit 5 side via the heat storage heat exchanger 27 of the heat storage unit device 3, and returns to the outdoor unit 1 and circulates again. Specifically, the operation is as follows.
Until the refrigerant compressed by the compressor 15 is sent to the heat storage unit device 3 through the refrigerant pipe 7, it is the same as the normal cooling operation and the cold storage operation described above. The high-pressure liquid refrigerant (temperature is about 45 ° C.) sent to the heat storage unit device 3 passes through the on-off valves 33 and 45, the accumulator 43, and the fully-opened expansion valve 41 and flows to the heat storage heat exchanger 27. In the heat storage heat exchanger 27, the heat stored in the heat storage tank 23 is exchanged with the heat storage material 25, and the stored cold is taken out and the liquid refrigerant is brought into a supercooled state. In particular, since the heat storage material 25 of the present embodiment has a melting point higher than the refrigerant evaporation temperature Te and lower than Te + 10 ° C., the heat storage material 25 has a melting point Tm of about 20 ° C. at most. Cooling sufficiently from the inlet temperature (45 ° C.), the degree of supercooling of the liquid refrigerant can be increased.

過冷却された液冷媒は配管51、開閉弁57、冷媒配管11を通り、室内機5に送られる。冷房運転を行っている室内機5に送られた過冷却状態の高圧の液冷媒は、膨張弁61で減圧され、室内側熱交換器59で蒸発し、室内空気と熱交換して冷房を行う。このとき、液冷媒は過冷却されているので、単位冷媒量あたりの冷房能力を大きくすることができる。単位冷媒量あたりの冷房能力を大きくすることができることから、要求される冷房能力(冷房需要)が同じであればその分だけ冷媒循環量、すなわち圧縮機の回転数を低減することができ電力消費量を低減できる。もしくは、通常運転と同じ圧縮機回転数とすることにより、電力消費量を増大させることなく冷房能力を増大させることができる。
冷房を行った冷媒蒸気は冷媒配管13、蓄熱ユニット装置3の配管31、冷媒配管9を通って室外機1に戻り、4方弁19を経由して圧縮機15に吸入される。
この冷凍サイクルは図8における太実線および破線で描かれたA→B→c→d→Aの冷凍サイクルを構成する。冷凍サイクルにおけるC→cが過冷却度を示している。また、冷凍サイクルにおけるD→A(P1)は通常冷房運転時の冷房能力を示し、d→A(P2)は蓄冷利用冷房運転時の冷房能力を示しているが、D→A(P1)よりもd→A(P2)の比エンタルピ差が大きいことから冷房能力が増強されていることが分かる。
The supercooled liquid refrigerant is sent to the indoor unit 5 through the pipe 51, the on-off valve 57 and the refrigerant pipe 11. The supercooled high-pressure liquid refrigerant sent to the indoor unit 5 performing the cooling operation is depressurized by the expansion valve 61, evaporated by the indoor heat exchanger 59, and is cooled by exchanging heat with room air. . At this time, since the liquid refrigerant is supercooled, the cooling capacity per unit refrigerant amount can be increased. Since the cooling capacity per unit refrigerant volume can be increased, if the required cooling capacity (cooling demand) is the same, the amount of refrigerant circulation, that is, the number of revolutions of the compressor can be reduced accordingly. The amount can be reduced. Alternatively, the cooling capacity can be increased without increasing the power consumption by setting the same rotational speed of the compressor as in the normal operation.
The refrigerant vapor that has been cooled returns to the outdoor unit 1 through the refrigerant pipe 13, the pipe 31 of the heat storage unit device 3, and the refrigerant pipe 9, and is sucked into the compressor 15 through the four-way valve 19.
This refrigeration cycle constitutes a refrigeration cycle of A → B → c → d → A drawn by a thick solid line and a broken line in FIG. C → c in the refrigeration cycle indicates the degree of supercooling. In the refrigeration cycle, D → A (P1) indicates the cooling capacity during normal cooling operation, and d → A (P2) indicates the cooling capacity during cooling operation using the cold storage. From D → A (P1) Since the specific enthalpy difference of d → A (P2) is large, it can be seen that the cooling capacity is enhanced.

(4)通常暖房運転
通常暖房運転では4方弁19を切り替え、圧縮機15の吐出側が冷媒配管9に連通するようにする。また、蓄熱ユニット装置3においては、図5に示すように、開閉弁33、35、37が開となり、開閉弁45、53、55、57は閉となるようにする。このようにすることで、冷媒は通常冷房運転と同様に蓄熱ユニット3の配管29、31を通過するだけであり、蓄熱ユニット3における蓄熱機能および蓄熱利用機能は機能しない。
ヒートポンプ式空調装置の動作は以下のようになる。
(4) Normal heating operation In the normal heating operation, the four-way valve 19 is switched so that the discharge side of the compressor 15 communicates with the refrigerant pipe 9. Moreover, in the heat storage unit apparatus 3, as shown in FIG. 5, the on-off valves 33, 35, and 37 are opened, and the on-off valves 45, 53, 55, and 57 are closed. In this way, the refrigerant only passes through the pipes 29 and 31 of the heat storage unit 3 as in the normal cooling operation, and the heat storage function and the heat storage use function in the heat storage unit 3 do not function.
The operation of the heat pump air conditioner is as follows.

圧縮機15から吐出された高温高圧のガス冷媒は、四方弁19を経由して冷媒配管9、蓄熱ユニット装置3の配管31、冷媒配管13を通って室内機5の室内機側熱交換器59に送られる。室内側熱交換器59では室内空気と熱交換することで室内空気は加熱され暖房が行われ、冷媒は冷却され凝縮する。室内側熱交換器59を出た液冷媒は全開の膨張弁61を通過し、冷媒配管11、蓄熱ユニット装置3の配管29、冷媒配管7を通って室外機1に送られる。室外機1に送られた高圧の液冷媒は膨張弁21で減圧され、室外側熱交換器17で外気と熱交換して蒸発し、4方弁19を経由して圧縮機15に吸入される。
このときの冷凍サイクルは、図9における太実線で描かれた冷凍サイクルA→B→C→D→Aとなる。このときの暖房能力はP1である。
The high-temperature and high-pressure gas refrigerant discharged from the compressor 15 passes through the four-way valve 19, passes through the refrigerant pipe 9, the pipe 31 of the heat storage unit device 3, the refrigerant pipe 13, and the indoor unit side heat exchanger 59 of the indoor unit 5. Sent to. In the indoor heat exchanger 59, the indoor air is heated and heated by exchanging heat with the indoor air, and the refrigerant is cooled and condensed. The liquid refrigerant that has exited the indoor heat exchanger 59 passes through the fully opened expansion valve 61, and is sent to the outdoor unit 1 through the refrigerant pipe 11, the pipe 29 of the heat storage unit device 3, and the refrigerant pipe 7. The high-pressure liquid refrigerant sent to the outdoor unit 1 is decompressed by the expansion valve 21, exchanges heat with the outside air by the outdoor heat exchanger 17, evaporates, and is sucked into the compressor 15 via the four-way valve 19. .
The refrigeration cycle at this time is refrigeration cycle A → B → C → D → A drawn by a thick solid line in FIG. 9. The heating capacity at this time is P1.

(5)温熱蓄熱運転
温熱蓄熱運転は冬場のオフピーク時の夜間などに行われる運転モードであり、この運転モードでは、図6に示すように、蓄熱ユニット装置3の開閉弁33、45、53が開となり、開閉弁35、37、55、57は閉となる。したがって、冷媒は蓄冷運転時と同様に室外機1と蓄熱ユニット装置3の間で循環して室内機5側には行かない。具体的には以下のような動作となる。
圧縮機15から吐出された高温高圧のガス冷媒は、四方弁19を経由して冷媒配管9、蓄熱ユニット装置3の配管31、47、開閉弁53を通って蓄熱用熱交換器27に送られる。蓄熱用熱交換器27では蓄熱槽内の蓄熱材25と熱交換し
蓄熱材25を加熱して蓄熱材25は顕熱として温熱を蓄熱する。蓄熱用熱交換器27で冷媒は蓄熱材25に熱を与えることにより凝縮し、高圧の液冷媒は全開の膨張弁41、アキュムレータ43、開閉弁45、33、冷媒配管7を通って室外機1に送られる。室外機1に送られた高圧の液冷媒は膨張弁21で減圧され、室外側熱交換器17で外気と熱交換して蒸発し、4方弁19を経由して圧縮機15に吸入される。
このときの冷凍サイクルは、通常暖房運転と同様に図9における太実線で描かれた冷凍サイクルA→B→C→D→Aとなる。また、このときの蓄熱能力はP1である。
(5) Thermal storage operation The thermal storage operation is an operation mode that is performed at night during off-peak hours in winter. In this operation mode, as shown in FIG. 6, the on-off valves 33, 45, and 53 of the heat storage unit device 3 are opened. The opening / closing valves 35, 37, 55, and 57 are closed. Therefore, the refrigerant circulates between the outdoor unit 1 and the heat storage unit device 3 as in the cold storage operation and does not go to the indoor unit 5 side. Specifically, the operation is as follows.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 15 is sent to the heat storage heat exchanger 27 through the four-way valve 19, the refrigerant pipe 9, the pipes 31 and 47 of the heat storage unit device 3, and the on-off valve 53. . In the heat storage heat exchanger 27, heat is exchanged with the heat storage material 25 in the heat storage tank to heat the heat storage material 25, and the heat storage material 25 stores heat as sensible heat. In the heat storage heat exchanger 27, the refrigerant condenses by applying heat to the heat storage material 25, and the high-pressure liquid refrigerant passes through the fully opened expansion valve 41, accumulator 43, opening / closing valves 45 and 33, and refrigerant pipe 7, and the outdoor unit 1. Sent to. The high-pressure liquid refrigerant sent to the outdoor unit 1 is decompressed by the expansion valve 21, exchanges heat with the outside air by the outdoor heat exchanger 17, evaporates, and is sucked into the compressor 15 via the four-way valve 19. .
The refrigeration cycle at this time is refrigeration cycle A → B → C → D → A drawn by a thick solid line in FIG. 9 as in the normal heating operation. In addition, the heat storage capacity at this time is P1.

(6)蓄熱利用暖房運転
蓄熱利用暖房運転には通常の蓄熱利用暖房運転と、通常の暖房運転において室外側熱交換器17に着霜した場合に、霜を除きながら暖房運転を行う暖房・除霜同時運転の2つの運転モードがある。以下、個別に説明する。
(i) 通常の蓄熱利用暖房運転
通常の蓄熱利用暖房運転は冬場のピーク時などに行われる運転モードであり、この運転モードでは、図7に示すように、蓄熱ユニット装置3の開閉弁35、37、45、55が開となり、開閉弁33、53、57が閉となる。したがって、冷媒は室外機1から室内機5に送られて暖房を行った後、蓄熱ユニット装置3の蓄熱用熱交換器27を通り、再び室外機1に戻るという流れとなる。また、この運転では蓄熱用熱交換器27を蒸発器として機能させることになるが、蓄熱材25に蓄熱されている温熱を蒸発熱源として利用できるので、蒸発圧力を通常暖房運転時に室外側熱交換器17で蒸発させる場合に比べて高めに設定できる。そのため、膨張弁41の開度を大きめにしてある。
具体的には以下のような動作となる。
(6) Regenerative Heating Operation Heating Regenerative Heating Operation includes a normal regenerative heating operation and a heating / removal operation that removes frost when the outdoor heat exchanger 17 is frosted during normal heating operation. There are two operation modes of simultaneous frost operation. Hereinafter, it demonstrates individually.
(i) Normal heat storage use heating operation Normal heat storage use heating operation is an operation mode performed at the peak of winter, etc. In this operation mode, as shown in FIG. 37, 45, and 55 are opened, and the on-off valves 33, 53, and 57 are closed. Accordingly, the refrigerant flows from the outdoor unit 1 to the indoor unit 5 to perform heating, and then flows through the heat storage heat exchanger 27 of the heat storage unit device 3 and returns to the outdoor unit 1 again. In this operation, the heat storage heat exchanger 27 functions as an evaporator. However, since the heat stored in the heat storage material 25 can be used as an evaporation heat source, the evaporation pressure is exchanged with the outdoor heat during normal heating operation. It can be set higher than the case of evaporating with the vessel 17. Therefore, the opening degree of the expansion valve 41 is increased.
Specifically, the operation is as follows.

圧縮機15から吐出された高温高圧のガス冷媒は、四方弁19を経由して冷媒配管9、蓄熱ユニット装置3の配管31、冷媒配管13を通って室内機5の室内機側熱交換器59に送られる。室内側熱交換器59では室内空気と熱交換することで暖房が行われ、冷媒は凝縮する。室内側熱交換器59を出た液冷媒は全開の膨張弁61を通過し、冷媒配管11、蓄熱ユニット装置3の配管29、開閉弁35、45、アキュムレータ43を通過して、開度を大きめに設定してある膨張弁41で減圧されて蓄熱用熱交換器27で蓄熱材25と熱交換して加熱され蒸発する。この蒸発した冷媒は配管49、開閉弁55、冷媒配管7を経由して室外機1に送られる。   The high-temperature and high-pressure gas refrigerant discharged from the compressor 15 passes through the four-way valve 19, passes through the refrigerant pipe 9, the pipe 31 of the heat storage unit device 3, the refrigerant pipe 13, and the indoor unit side heat exchanger 59 of the indoor unit 5. Sent to. In the indoor heat exchanger 59, heating is performed by exchanging heat with indoor air, and the refrigerant condenses. The liquid refrigerant that has exited the indoor heat exchanger 59 passes through the fully opened expansion valve 61, passes through the refrigerant pipe 11, the pipe 29 of the heat storage unit device 3, the on-off valves 35 and 45, and the accumulator 43 to increase the opening degree. The pressure is reduced by the expansion valve 41 set to, and the heat storage heat exchanger 27 exchanges heat with the heat storage material 25 to heat and evaporate. The evaporated refrigerant is sent to the outdoor unit 1 via the pipe 49, the on-off valve 55, and the refrigerant pipe 7.

室外機1に送られた冷媒は全開の膨張弁21、室外側熱交換器17、4方弁19を経由して圧縮機15に吸入される。このとき、蓄熱材25の温熱を蒸発熱源として利用できるので、圧縮機15の吸い込み圧力・温度が通常暖房運転時より高くなる。そのため、圧縮機15の出口ガス冷媒の圧力・温度が増大し、室内側熱交換器59における室内空気吹き出し温度が高くでき、暖房機能を向上できる。
暖房機能を向上することができることから、同じ暖房能力であればその分だけ冷媒循環量、すなわち圧縮機の回転数を低減することができ電力消費量を低減できる。もしくは、通常運転と同じ圧縮機回転数とすることにより、電力消費量を増大させることなく暖房能力を増大させることができる。
この冷凍サイクルは図9における太破線で描かれたa1→b1→c→d→a1の冷凍サイクルを構成する。また、このときの暖房能力はP2である。
The refrigerant sent to the outdoor unit 1 is sucked into the compressor 15 via the fully opened expansion valve 21, the outdoor heat exchanger 17, and the four-way valve 19. At this time, since the heat of the heat storage material 25 can be used as an evaporation heat source, the suction pressure / temperature of the compressor 15 becomes higher than that during normal heating operation. Therefore, the pressure / temperature of the outlet gas refrigerant of the compressor 15 increases, the indoor air blowing temperature in the indoor heat exchanger 59 can be increased, and the heating function can be improved.
Since the heating function can be improved, if the heating capacity is the same, the refrigerant circulation amount, that is, the rotation speed of the compressor can be reduced accordingly, and the power consumption can be reduced. Alternatively, the heating capacity can be increased without increasing the power consumption by setting the same compressor speed as that in the normal operation.
This refrigeration cycle constitutes a refrigeration cycle a1 → b1 → c → d → a1 drawn by a thick broken line in FIG. Moreover, the heating capability at this time is P2.

(ii)暖房・除霜同時運転
この運転モードは図5で示した室外側熱交換器1を蒸発器として機能させる通常暖房運転を行っているときに室外側熱交換器1に着霜してきたときに行うものである。
この場合の蓄熱ユニット装置の開閉弁は図7に示す上述の通常の蓄熱利用暖房運転と同様である。
他方、蓄熱ユニット装置3における膨張弁41は絞り気味にして蒸発圧力を上述した「通常の蓄熱利用暖房運転」より低くし、過熱度を大きめに付けておくようにする。「通常暖房運転」における室外機1の膨張弁21の膨張圧力と同程度まで絞っておいてもよい。こうすることにより、蓄熱用熱交換器27出口の蒸発冷媒に過熱度を大きめに持たせることができ、室外側熱交換器17における過剰な凝縮を抑制できるからである。具体的な運転は以下のように行う。
(ii) Simultaneous heating / defrosting operation In this operation mode, the outdoor heat exchanger 1 has been frosted during normal heating operation in which the outdoor heat exchanger 1 shown in FIG. 5 functions as an evaporator. What is sometimes done.
The on-off valve of the heat storage unit device in this case is the same as the above-described normal heat storage heating operation shown in FIG.
On the other hand, the expansion valve 41 in the heat storage unit device 3 is made to be squeezed so that the evaporation pressure is lower than that of the “normal heat storage use heating operation” described above, and the degree of superheat is increased. You may restrict | squeeze to the same extent as the expansion pressure of the expansion valve 21 of the outdoor unit 1 in "normal heating operation". By doing so, the evaporative refrigerant at the outlet of the heat storage heat exchanger 27 can be given a higher degree of superheat, and excessive condensation in the outdoor heat exchanger 17 can be suppressed. The specific operation is performed as follows.

通常暖房運転を行っているときに室外側熱交換器1に着霜してきたら、蓄熱ユニット装置3の開閉弁の開閉状態を図7に示すようにする。
圧縮機15から吐出された高温高圧のガス冷媒が室内機5で暖房を行い蓄熱ユニット装置3のアキュムレータ43に至るまでは前述した通常の蓄熱利用暖房運転と同様である。
アキュムレータ43を通過した高圧の液冷媒は膨張弁41で減圧されて蓄熱用熱交換器27で蓄熱材25と熱交換して加熱され蒸発する。このとき、膨張弁41の開度は、上述の通常の蓄熱利用暖房運転の場合よりも絞り気味にしてあるので、蓄熱用熱交換器27出口の蒸発圧力を低くして蒸発冷媒に過熱度を大きめに持たせることができる。
If the outdoor heat exchanger 1 is frosted during normal heating operation, the open / close state of the on-off valve of the heat storage unit device 3 is as shown in FIG.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 15 is heated in the indoor unit 5 and reaches the accumulator 43 of the heat storage unit device 3 in the same manner as the normal heat storage use heating operation described above.
The high-pressure liquid refrigerant that has passed through the accumulator 43 is depressurized by the expansion valve 41, exchanges heat with the heat storage material 25 by the heat storage heat exchanger 27, and is heated and evaporated. At this time, since the opening degree of the expansion valve 41 is more constricted than in the case of the normal heat storage utilization heating operation described above, the evaporation pressure at the outlet of the heat storage heat exchanger 27 is lowered to increase the degree of superheat to the evaporated refrigerant. Can be held large.

蓄熱用熱交換器27を出た蒸発冷媒は配管49、開閉弁55、冷媒配管7を経由して室外機1に送られる。
室外機1に送られた冷媒は全開の膨張弁21を通り室外側熱交換器17に送られる。室外側熱交換器17では加熱度が大きく付けられた冷媒によって室外側熱交換器17が温められ、室外側熱交換器17に付着した霜を取り除くことができる。室外側熱交換器17を通過した冷媒は過熱度を減少させ4方弁19を経由して圧縮機15に吸入される。
このような運転を行うことで暖房能力を低下させることなく除霜しながら暖房運転を行うことが可能となる。一旦除霜ができたあとは再び通常暖房運転に切り替えればよい。
一般に、ヒートポンプ式空調装置において暖房運転中に除霜運転を行うには、暖房運転を一旦中断する必要がある。室外機が1台のみの場合には暖房が中断されることになり、また室外機もしくは室外熱交換器が複数台ある場合にも暖房能力が著しく低下することになる。本発明では、蓄熱ユニット装置を既存のヒートポンプ式空調装置に追加することにより、冷暖房能力の向上に加えて暖房能力を保ったまま除霜運転が可能とすることができる。
The evaporative refrigerant that has exited the heat storage heat exchanger 27 is sent to the outdoor unit 1 via the pipe 49, the on-off valve 55, and the refrigerant pipe 7.
The refrigerant sent to the outdoor unit 1 passes through the fully opened expansion valve 21 and is sent to the outdoor heat exchanger 17. In the outdoor heat exchanger 17, the outdoor heat exchanger 17 is warmed by the refrigerant having a high degree of heating, and frost attached to the outdoor heat exchanger 17 can be removed. The refrigerant that has passed through the outdoor heat exchanger 17 decreases the degree of superheat and is sucked into the compressor 15 via the four-way valve 19.
By performing such an operation, the heating operation can be performed while defrosting without reducing the heating capacity. Once defrosting is complete, it may be switched to normal heating operation again.
Generally, in order to perform a defrosting operation during a heating operation in a heat pump air conditioner, it is necessary to temporarily interrupt the heating operation. When there is only one outdoor unit, heating is interrupted, and when there are a plurality of outdoor units or outdoor heat exchangers, the heating capacity is significantly reduced. In the present invention, by adding the heat storage unit device to the existing heat pump air conditioner, the defrosting operation can be performed while maintaining the heating capability in addition to the improvement of the cooling / heating capability.

この冷凍サイクルは図9における太実線および細破線で描かれたa3→b2→C→D→A→a2→a3の冷凍サイクルを構成する。冷凍サイクルにおけるA→a2が過熱度を示している。また、冷凍サイクルにおけるa2→a3は過熱度を付けられた冷媒蒸気が室外側熱交換器17に付着した霜を除くときに冷却されている状態を示している。この図からも分かるように過熱度A→a2を大きくとることによって除霜のときに蒸気冷媒が熱を奪われても室外側熱交換器17にて過剰に凝縮するのを防止できる。このときの暖房能力はP3である。
なお、上記のように室外側熱交換器17における冷媒の過剰な凝縮を抑制しているのは、圧縮機15への液戻りを防止するためである。既存のヒートポンプ式空調装置の室外機1の圧縮機用アキュムレータ(図示せず)が除霜時の凝縮冷媒を貯めておくに十分な容量を有しているのであれば、蓄熱ユニット装置3の膨張弁41の開度を「通常の蓄熱利用暖房運転」と同等まで大きくし、室外熱交換器17に入るガス冷媒の過熱度を小さくしても圧縮機15への液戻りを防止できる。
This refrigeration cycle constitutes a refrigeration cycle of a3 → b2 → C → D → A → a2 → a3 drawn by thick solid lines and thin broken lines in FIG. A → a2 in the refrigeration cycle indicates the degree of superheat. Further, a2 → a3 in the refrigeration cycle indicates a state in which the refrigerant vapor with the superheat degree is cooled when the frost attached to the outdoor heat exchanger 17 is removed. As can be seen from this figure, by increasing the degree of superheat A → a2, it is possible to prevent excessive condensation in the outdoor heat exchanger 17 even if the vapor refrigerant is deprived of heat during defrosting. The heating capacity at this time is P3.
In addition, as described above, the excessive condensation of the refrigerant in the outdoor heat exchanger 17 is suppressed in order to prevent the liquid from returning to the compressor 15. If the accumulator (not shown) for the compressor of the outdoor unit 1 of the existing heat pump air conditioner has a sufficient capacity to store the condensed refrigerant at the time of defrosting, the expansion of the heat storage unit device 3 Even if the opening degree of the valve 41 is increased to the same level as that of the “normal heat storage use heating operation” and the degree of superheat of the gas refrigerant entering the outdoor heat exchanger 17 is reduced, liquid return to the compressor 15 can be prevented.

以上のように、本実施の形態においては、融点が冷媒の蒸発温度より高温でかつ冷媒の凝縮温度よりも低温である蓄熱材を用いた蓄熱ユニット装置3を既設のヒートポンプ式空調装置に取り付けたことにより、潜熱を利用した冷房能力および暖房能力の大幅な増強が可能となる。さらには、暖房運転時において暖房能力を低下させることなく除霜運転を併用できる。
また、蓄熱ユニット装置3のように装置がユニット化されているので、あたかも室内機を追加するのと同様の感覚で蓄熱ユニット装置を追加することができる。
As described above, in the present embodiment, the heat storage unit device 3 using the heat storage material whose melting point is higher than the evaporation temperature of the refrigerant and lower than the condensation temperature of the refrigerant is attached to the existing heat pump air conditioner. As a result, the cooling capacity and the heating capacity using latent heat can be greatly increased. Furthermore, the defrosting operation can be used together without reducing the heating capacity during the heating operation.
Moreover, since the apparatus is unitized like the heat storage unit device 3, the heat storage unit device can be added as if adding an indoor unit.

上記の実施の形態では蓄熱用熱交換器は蓄熱槽の内部に設置してあるが、蓄熱用熱交換器を蓄熱槽と分離して蓄熱槽外部に設置しても良い。この場合、蓄熱槽と蓄熱用熱交換器の間を熱搬送媒体を循環させることになる。なお、蓄熱材自体が凝固後も流動性を有する場合には蓄熱材自体を熱搬送媒体として用いても良い。さらに、蓄熱槽と蓄熱用熱交換器を分離した場合には、蓄熱槽のみを蓄熱ユニット装置から離れた場所に設置することも可能となる。
また、上記の実施の形態では膨張弁により高圧の液冷媒を減圧しているが、流量調節弁を用い、開度を絞ることによって膨張弁として機能させても良い。さらに、減圧度の調整はできないが、キャピラリチューブを用いて減圧してもよい。
In the above embodiment, the heat storage heat exchanger is installed inside the heat storage tank, but the heat storage heat exchanger may be separated from the heat storage tank and installed outside the heat storage tank. In this case, the heat transfer medium is circulated between the heat storage tank and the heat storage heat exchanger. In addition, when the heat storage material itself has fluidity even after solidification, the heat storage material itself may be used as a heat transfer medium. Further, when the heat storage tank and the heat storage heat exchanger are separated, it is possible to install only the heat storage tank in a place away from the heat storage unit device.
In the above-described embodiment, the high-pressure liquid refrigerant is decompressed by the expansion valve. However, the expansion valve may be used to function as an expansion valve by reducing the opening degree. Furthermore, although the degree of pressure reduction cannot be adjusted, the pressure may be reduced using a capillary tube.

また、上記の実施の形態で用いられている開閉弁を流量調節弁で代替し、流量調節ができるようにして各運転モードを同時に組み合わせて運転できるようにしても良い。例えば開閉弁45、53、35、37を流量調節弁とし、それぞれ適宜中間開度に調節することにより、冷媒の流れを分岐、合流させて、「通常冷房・蓄冷同時運転」や、「通常暖房・蓄熱同時運転」が可能となる。
特に、本発明では蓄熱材の融点をTe<Tm<Te+10℃としているので、室内側熱交換器での蒸発温度(蒸発圧力)と蓄熱用熱交換器での蒸発温度(蒸発圧力)が同程度でよいため、2本の冷媒配管のみを有する既存のヒートポンプ式空調システムにおいても「通常冷房・蓄冷同時運転」が容易に可能となる。
これに対して氷により蓄冷する場合には、蓄熱用熱交換器での蒸発温度は0℃以下であり、室内側熱交換器での蒸発温度は10℃程度であるので、蓄熱用熱交換器での蒸発圧力が室内側熱交換器での蒸発圧力より低圧となり、冷媒配管に合流させて流すためには圧力調整が必要となるか、圧力レベルに合わせて3本の冷媒配管が室外機と蓄熱ユニット装置間で必要となる。
なお、開閉弁35と開閉弁45、開閉弁37と開閉弁53をそれぞれ三方弁として流量調節を行っても良い。
また上記において、開閉弁35、開閉弁45を中間開度とし、開閉弁37を全開、開閉弁53を全閉とすることにより、通常冷房・蓄冷利用冷房同時運転も可能である。この場合、蓄冷利用割合、すなわち室内機5入口における液冷媒の過冷却度を調整することが可能となる。
Further, the on-off valve used in the above embodiment may be replaced with a flow rate control valve so that the flow rate can be adjusted so that the operation modes can be combined and operated simultaneously. For example, the on-off valves 45, 53, 35, and 37 are used as flow rate control valves, and the refrigerant flows are branched and merged by appropriately adjusting the flow rate to an intermediate opening degree, respectively, and “normal cooling / cold storage simultaneous operation” or “normal heating”・ Simultaneous heat storage operation "is possible.
In particular, since the melting point of the heat storage material is Te <Tm <Te + 10 ° C. in the present invention, the evaporation temperature (evaporation pressure) in the indoor heat exchanger and the evaporation temperature (evaporation pressure) in the heat storage heat exchanger are Since the same degree is sufficient, even in the existing heat pump type air conditioning system having only two refrigerant pipes, the “normal cooling / cold storage simultaneous operation” can be easily performed.
On the other hand, when storing cold with ice, the evaporation temperature in the heat storage heat exchanger is 0 ° C. or less, and the evaporation temperature in the indoor heat exchanger is about 10 ° C. Therefore, the heat storage heat exchanger The evaporating pressure in the chamber becomes lower than the evaporating pressure in the indoor heat exchanger, and it is necessary to adjust the pressure in order to join the refrigerant pipe and flow, or three refrigerant pipes are connected to the outdoor unit according to the pressure level. Necessary between heat storage unit devices.
The flow rate may be adjusted by using the on-off valve 35 and on-off valve 45, and the on-off valve 37 and on-off valve 53 as three-way valves.
Further, in the above, the on-off valve 35 and the on-off valve 45 are set to an intermediate opening, the on-off valve 37 is fully opened, and the on-off valve 53 is fully closed, so that normal cooling and regenerative cooling simultaneous operation is also possible. In this case, it becomes possible to adjust the cool storage utilization ratio, that is, the degree of supercooling of the liquid refrigerant at the inlet of the indoor unit 5.

本発明の一実施の形態に係る蓄熱ユニット装置を組み込んだヒートポンプ式空調装置の構成を説明する説明図である。It is explanatory drawing explaining the structure of the heat pump type air conditioner incorporating the heat storage unit apparatus which concerns on one embodiment of this invention. 図1に示したヒートポンプ式空調装置における通常冷房運転時の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of the normal cooling operation in the heat pump type air conditioner shown in FIG. 図1に示したヒートポンプ式空調装置における蓄冷運転時の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of the cool storage driving | operation in the heat pump type air conditioner shown in FIG. 図1に示したヒートポンプ式空調装置における蓄冷利用冷房運転時の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of the cool storage utilization cooling operation in the heat pump type air conditioner shown in FIG. 図1に示したヒートポンプ式空調装置における通常暖房運転時の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of the normal heating operation in the heat pump type air conditioner shown in FIG. 図1に示したヒートポンプ式空調装置における温熱蓄熱運転時の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of the thermal heat storage driving | operation in the heat pump type air conditioner shown in FIG. 図1に示したヒートポンプ式空調装置における蓄熱利用暖房運転時の冷媒の流れを示す説明図である。It is explanatory drawing which shows the flow of the refrigerant | coolant at the time of the heat storage utilization heating operation in the heat pump type air conditioner shown in FIG. 冷房関係の運転モードにおけるモリエル線図である。It is a Mollier diagram in a cooling-related operation mode. 暖房関係の運転モードにおけるモリエル線図である。It is a Mollier diagram in the heating-related operation mode.

符号の説明Explanation of symbols

1 室外機、3 蓄熱ユニット装置、5 室内機、7、9、11、13 冷媒配管、15 圧縮機、17 室外側熱交換器、19 4方弁、21 膨張弁、23 蓄熱槽、25 蓄熱材、27 蓄熱用熱交換器、29、31、39、47、49、51 配管、33、35、37、45、53、55、57 開閉弁、41 膨張弁、59 室内側熱交換器、61 膨張弁。     DESCRIPTION OF SYMBOLS 1 Outdoor unit, 3 Thermal storage unit apparatus, 5 Indoor unit, 7, 9, 11, 13 Refrigerant piping, 15 Compressor, 17 Outdoor heat exchanger, 19 Four-way valve, 21 Expansion valve, 23 Thermal storage tank, 25 Thermal storage material , 27 Heat storage heat exchanger, 29, 31, 39, 47, 49, 51 Piping, 33, 35, 37, 45, 53, 55, 57 On-off valve, 41 Expansion valve, 59 Indoor heat exchanger, 61 Expansion valve.

Claims (5)

室外機と室内機を2本の冷媒配管で接続してなる既設のヒートポンプ式空調装置の冷暖房能力を増強する方法であって、
蓄熱材を貯留する蓄熱槽と、該蓄熱槽に貯留されて前記既設のヒートポンプ式空調装置における冷媒の蒸発温度Teより高く凝縮温度Tcより低い融点Tmを有する蓄熱材と、該蓄熱材と前記冷媒とを熱交換させる蓄熱用熱交換器とを有する蓄熱ユニット装置を、既設のヒートポンプ式空調装置における室外機と室内機との間に設置し、
冷房のオフピーク時に蓄熱槽内の蓄熱材に冷熱を蓄熱する蓄冷運転を行い、ピーク時に蓄熱材に蓄熱した冷熱を利用して冷房運転をする蓄冷利用冷房運転を行い、暖房のオフピーク時に蓄熱槽内の蓄熱材に温熱を蓄熱する温熱蓄熱運転を行い、ピーク時に蓄熱材に蓄熱した温熱を利用した暖房運転をする蓄熱利用暖房運転を行うことを特徴とするヒートポンプ式空調装置の冷暖房能力増強方法。
A method for enhancing the cooling / heating capacity of an existing heat pump air conditioner in which an outdoor unit and an indoor unit are connected by two refrigerant pipes,
A heat storage tank that stores the heat storage material, a heat storage material that is stored in the heat storage tank and has a melting point Tm that is higher than the evaporation temperature Te of the refrigerant in the existing heat pump air conditioner and lower than the condensation temperature Tc, and the heat storage material and the refrigerant A heat storage unit device having a heat storage heat exchanger for exchanging heat between the outdoor unit and the indoor unit in the existing heat pump air conditioner,
During the off-peak period of the cooling, the cold storage operation is performed to store the cold energy in the heat storage material in the heat storage tank. A method for enhancing the cooling / heating capacity of a heat pump air conditioner, wherein a heat storage operation is performed in which a heat storage operation is performed in which heat is stored in the heat storage material, and a heating operation is performed using the heat stored in the heat storage material at a peak.
室外機と室内機を液冷媒配管とガス冷媒配管の2本の冷媒配管で接続してなる既設のヒートポンプ式空調装置に取り付けられる蓄熱ユニット装置であって、
前記液冷媒配管途中に挿入接続可能で、かつ第1、第2開閉弁を有する第1配管と、
前記ガス冷媒配管途中に挿入接続可能で、かつ第3開閉弁を有する第2配管と、
蓄熱材を貯留する蓄熱槽と、該蓄熱槽に貯留されて前記既設のヒートポンプ式空調装置における冷媒の蒸発温度Teより高く凝縮温度Tcより低い融点Tmを有する蓄熱材と、該蓄熱材と前記冷媒とを熱交換させる蓄熱用熱交換器とを有し、該蓄熱用熱交換器の一端側を膨張弁、第4開閉弁を介して前記第1配管における第1、第2開閉弁の間に配管接続し、前記蓄熱用熱交換器の他端側を第5開閉弁を介して前記第2配管における前記第3開閉弁よりも室外機側となる位置に配管接続し、前記蓄熱用熱交換器の他端側を第6開閉弁を介して前記第1配管における第1、2開閉弁設置部よりも室内機側となる位置に配管接続したことを特徴とする蓄熱ユニット装置。
A heat storage unit device attached to an existing heat pump air conditioner in which an outdoor unit and an indoor unit are connected by two refrigerant pipes, a liquid refrigerant pipe and a gas refrigerant pipe,
A first pipe that can be inserted and connected in the middle of the liquid refrigerant pipe and has first and second on-off valves;
A second pipe that can be inserted and connected in the middle of the gas refrigerant pipe and has a third on-off valve;
A heat storage tank that stores the heat storage material, a heat storage material that is stored in the heat storage tank and has a melting point Tm that is higher than the evaporation temperature Te of the refrigerant in the existing heat pump air conditioner and lower than the condensation temperature Tc, and the heat storage material and the refrigerant Between the first and second on-off valves in the first pipe through an expansion valve and a fourth on-off valve on one end side of the heat storage heat exchanger. Connect the pipe, connect the other end of the heat storage heat exchanger via the fifth on-off valve to a position on the outdoor unit side of the second on-off valve in the second pipe, and perform the heat storage heat exchange The heat storage unit device characterized in that the other end side of the chamber is connected by piping to a position closer to the indoor unit side than the first and second opening / closing valve installation portions in the first piping via a sixth opening / closing valve.
蓄熱用熱交換器の他端側を第7開閉弁を介して前記第1配管における第1、2開閉弁設置部よりも室外機側となる位置に配管接続したことを特徴とする請求項2に記載の蓄熱ユニット装置。 3. The other end side of the heat storage heat exchanger is connected to a pipe via a seventh on-off valve at a position closer to the outdoor unit side than the first and second on-off valve installation parts in the first pipe. The heat storage unit device described in 1. 蓄熱材の融点Tmは、Te<Tm<Te+10℃であることを特徴とする請求項2又は3に記載の蓄熱ユニット装置。 4. The heat storage unit device according to claim 2, wherein a melting point Tm of the heat storage material is Te <Tm <Te + 10 ° C. 5. 請求項2〜4の何れか一項に記載の蓄熱ユニット装置を室外機と室内機を有するヒートポンプ式空調装置に取り付けたことを特徴とするヒートポンプ式空調装置。 A heat pump air conditioner, wherein the heat storage unit device according to any one of claims 2 to 4 is attached to a heat pump air conditioner having an outdoor unit and an indoor unit.
JP2005194620A 2005-07-04 2005-07-04 Cooling and heating capacity enhancement method of existing heat pump type air conditioner, thermal storage unit device and heat pump type air conditioner using the device Pending JP2007010288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005194620A JP2007010288A (en) 2005-07-04 2005-07-04 Cooling and heating capacity enhancement method of existing heat pump type air conditioner, thermal storage unit device and heat pump type air conditioner using the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005194620A JP2007010288A (en) 2005-07-04 2005-07-04 Cooling and heating capacity enhancement method of existing heat pump type air conditioner, thermal storage unit device and heat pump type air conditioner using the device

Publications (1)

Publication Number Publication Date
JP2007010288A true JP2007010288A (en) 2007-01-18

Family

ID=37749029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005194620A Pending JP2007010288A (en) 2005-07-04 2005-07-04 Cooling and heating capacity enhancement method of existing heat pump type air conditioner, thermal storage unit device and heat pump type air conditioner using the device

Country Status (1)

Country Link
JP (1) JP2007010288A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040387A1 (en) * 2009-09-29 2011-04-07 三菱電機株式会社 Heat storage water-heating and air-conditioning machine
WO2014061134A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
WO2014061132A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
JP5829761B2 (en) * 2012-10-18 2015-12-09 ダイキン工業株式会社 Air conditioner
WO2016056078A1 (en) * 2014-10-08 2016-04-14 三菱電機株式会社 Air conditioner
WO2016103684A1 (en) * 2014-12-26 2016-06-30 ダイキン工業株式会社 Regenerative air conditioner
WO2016103690A1 (en) * 2014-12-26 2016-06-30 ダイキン工業株式会社 Regenerative air conditioner
CN105910360A (en) * 2016-06-01 2016-08-31 广东美的制冷设备有限公司 Air-conditioning system and condensation prevention control method thereof
CN108638785A (en) * 2018-04-16 2018-10-12 中国科学院广州能源研究所 Novel electric vehicle heat pump air conditioning system based on phase-change energy storage defrosting and its control method
CN111486568A (en) * 2020-04-29 2020-08-04 广东美的暖通设备有限公司 Air conditioning system and control method thereof
WO2020240852A1 (en) 2019-05-31 2020-12-03 三菱電機株式会社 Air conditioning device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819665A (en) * 1981-07-27 1983-02-04 松下電器産業株式会社 Heat accumulation type air conditioner
JPS62153658A (en) * 1985-09-17 1987-07-08 中部電力株式会社 Method of operating heat energy utilizer
JPH06185762A (en) * 1992-12-14 1994-07-08 Shinko Kogyo Co Ltd Cooling or heating method
JP2001324238A (en) * 2000-05-19 2001-11-22 Hitachi Ltd Air conditioner
JP2002147823A (en) * 2000-11-13 2002-05-22 Daikin Ind Ltd Air conditioner
JP2003211947A (en) * 2002-01-18 2003-07-30 Denso Corp Air conditioner for vehicle
JP2003262418A (en) * 2002-03-06 2003-09-19 Mitsubishi Electric Corp Refrigerating air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819665A (en) * 1981-07-27 1983-02-04 松下電器産業株式会社 Heat accumulation type air conditioner
JPS62153658A (en) * 1985-09-17 1987-07-08 中部電力株式会社 Method of operating heat energy utilizer
JPH06185762A (en) * 1992-12-14 1994-07-08 Shinko Kogyo Co Ltd Cooling or heating method
JP2001324238A (en) * 2000-05-19 2001-11-22 Hitachi Ltd Air conditioner
JP2002147823A (en) * 2000-11-13 2002-05-22 Daikin Ind Ltd Air conditioner
JP2003211947A (en) * 2002-01-18 2003-07-30 Denso Corp Air conditioner for vehicle
JP2003262418A (en) * 2002-03-06 2003-09-19 Mitsubishi Electric Corp Refrigerating air conditioner

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040387A1 (en) * 2009-09-29 2011-04-07 三菱電機株式会社 Heat storage water-heating and air-conditioning machine
EP2469195A1 (en) * 2009-09-29 2012-06-27 Mitsubishi Electric Corporation Heat storage water-heating and air-conditioning machine
JP5253582B2 (en) * 2009-09-29 2013-07-31 三菱電機株式会社 Thermal storage hot water supply air conditioner
US9765977B2 (en) 2009-09-29 2017-09-19 Mitsubishi Electric Corporation Heat-accumulating hot-water-supplying air conditioner
EP2469195A4 (en) * 2009-09-29 2016-09-07 Mitsubishi Electric Corp Heat storage water-heating and air-conditioning machine
CN104736948A (en) * 2012-10-18 2015-06-24 大金工业株式会社 Air conditioner
WO2014061134A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
JP5829762B2 (en) * 2012-10-18 2015-12-09 ダイキン工業株式会社 Air conditioner
JP5955401B2 (en) * 2012-10-18 2016-07-20 ダイキン工業株式会社 Air conditioner
JP5829761B2 (en) * 2012-10-18 2015-12-09 ダイキン工業株式会社 Air conditioner
WO2014061132A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
WO2016056078A1 (en) * 2014-10-08 2016-04-14 三菱電機株式会社 Air conditioner
JPWO2016056078A1 (en) * 2014-10-08 2017-05-25 三菱電機株式会社 Air conditioner
WO2016103684A1 (en) * 2014-12-26 2016-06-30 ダイキン工業株式会社 Regenerative air conditioner
WO2016103690A1 (en) * 2014-12-26 2016-06-30 ダイキン工業株式会社 Regenerative air conditioner
JP2016125736A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Storage air conditioner
JP2016125721A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Heat storage type air conditioner
CN105910360A (en) * 2016-06-01 2016-08-31 广东美的制冷设备有限公司 Air-conditioning system and condensation prevention control method thereof
CN108638785A (en) * 2018-04-16 2018-10-12 中国科学院广州能源研究所 Novel electric vehicle heat pump air conditioning system based on phase-change energy storage defrosting and its control method
WO2020240852A1 (en) 2019-05-31 2020-12-03 三菱電機株式会社 Air conditioning device
US11971202B2 (en) 2019-05-31 2024-04-30 Mitsubishi Electric Corporation Air-conditioning apparatus
CN111486568A (en) * 2020-04-29 2020-08-04 广东美的暖通设备有限公司 Air conditioning system and control method thereof

Similar Documents

Publication Publication Date Title
JP5327308B2 (en) Hot water supply air conditioning system
JP2007010288A (en) Cooling and heating capacity enhancement method of existing heat pump type air conditioner, thermal storage unit device and heat pump type air conditioner using the device
JP5829762B2 (en) Air conditioner
CN105299797A (en) Heat accumulating type air conditioning plant and control method thereof
WO2007112671A1 (en) A supercooled ice cold-storage unit, an air conditioning system using the same and a control method thereof
JP5829761B2 (en) Air conditioner
JP2007163013A (en) Refrigerating cycle device
JP5904628B2 (en) Refrigeration cycle with refrigerant pipe for defrost operation
JP2013083439A (en) Hot water supply air conditioning system
JP2013083439A5 (en)
JP2003279079A (en) Ice thermal accumulating system and heating method of ice thermal accumulating system
JP4651452B2 (en) Refrigeration air conditioner
JP2001296068A (en) Regenerative refrigerating device
JP2018080899A (en) Refrigeration unit
JP2014016057A (en) Air conditioner
JP4217547B2 (en) Air conditioner
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
WO2013046723A1 (en) Hot-water-supplying, air-conditioning system
JP2001304619A (en) Ice storage type air conditioner
KR100727124B1 (en) Thermal storage airconditioner
KR101493783B1 (en) Refrigerant supercooling type air conditioner
CN109959180B (en) Air conditioning system and defrosting method thereof
KR100727126B1 (en) Thermal storage airconditioner
KR20070019275A (en) Thermal storage airconditioner
JP2001235189A (en) Regenerative refrigerating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622