JP2014016057A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2014016057A
JP2014016057A JP2012151998A JP2012151998A JP2014016057A JP 2014016057 A JP2014016057 A JP 2014016057A JP 2012151998 A JP2012151998 A JP 2012151998A JP 2012151998 A JP2012151998 A JP 2012151998A JP 2014016057 A JP2014016057 A JP 2014016057A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
supercooling
air conditioner
main circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012151998A
Other languages
Japanese (ja)
Inventor
Ryoichi Takato
亮一 高藤
Yoshinori Iizuka
義典 飯塚
Yoshiaki Notoya
義明 能登谷
koichiro Hirono
幸一郎 廣野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012151998A priority Critical patent/JP2014016057A/en
Publication of JP2014016057A publication Critical patent/JP2014016057A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner which reduces power consumption from high load time, such as operation start time, to low load time, such as stable operation time, during cooling operation using a simpler system.SOLUTION: An air conditioner 1 includes: a main circuit 12 where a compressor 2, an outdoor heat exchanger 4, an over-cooling heat exchanger 9, an expansion valve 5, and an indoor heat exchanger 6 are sequentially connected by a coolant pipeline and a coolant circulates therein; and a bypass circuit 13 which is branched from the main circuit 12 between the outdoor heat exchanger 4 and the over-cooling heat exchanger 9 and connects with the main circuit 12 between the indoor heat exchanger 6 and the compressor 2 through an over-cooling expansion valve 8 and the over-cooling heat exchanger 9. The over-cooling heat exchanger 9 includes a heat storage tank 10 for conducting heat exchange with the coolant of the main circuit 12 and the bypass circuit 13 which flows in the over-cooling heat exchanger 9.

Description

本発明は、冷媒を過冷却する過冷却用熱交換器を備えた空気調和機に関する。   The present invention relates to an air conditioner including a supercooling heat exchanger that supercools a refrigerant.

近年、地球温暖化の観点から空気調和機に対する省エネ運転が求められている。又、電力需要の増加に伴う電力使用ピーク時の供給不足が問題となっており、夏季の酷暑日などの使用ピーク時間帯における空気調和機の消費電力の削減、すなわち高負荷時における冷凍サイクルの高効率化が求められている。   In recent years, energy-saving operation for air conditioners has been demanded from the viewpoint of global warming. In addition, there is a problem of shortage of supply at peak power usage due to increase in power demand, reducing air conditioner power consumption during peak usage hours such as hot summer days in summer, that is, refrigeration cycle at high load. High efficiency is required.

冷凍サイクルの効率向上を図る従来の手段として、特許文献1は、凝縮した冷媒を過冷却する過冷却用熱交換器を備えた冷凍サイクルを開示する。具体的には、特許文献1は、圧縮機からの冷媒を、凝縮器、二重管式の過冷却器、主膨張機構、蒸発器、四路切換弁およびアキュムレータの順に流す主回路と、凝縮器と過冷却器との間で主回路から分岐し、バイパス膨張機構と過冷却器を経て四路切換弁とアキュムレータとの間の主回路に合流するバイパス回路と、を有する冷媒回路を開示する。圧縮機から吐出された冷媒は、室外空気に放熱する凝縮器によって凝縮された後、主回路とバイパス回路とに分岐される。バイパス回路を流れるバイパス流冷媒は、バイパス膨張機構にて減圧された後、過冷却器に流れ、主回路を流れる主流冷媒は、過冷却器に流れると共に、バイパス流冷媒と熱交換されて過冷却される。過冷却器は、伝熱管と、この伝熱管の外側に同心円状に設けられた外管とを有する二重管状に形成されており、外管と伝熱管の間に主流冷媒を流すと共に、伝熱管内にバイパス流冷媒を流す。また、過冷却器は、対向流型熱交換器からなり、主流冷媒とバイパス流冷媒を、伝熱性を持つ伝熱管の管壁を挟んで互いに反対方向に流すように設定される。尚、冷媒を過冷却する手段として、氷に蓄えられた冷熱を用いる方法も記載されている。   As a conventional means for improving the efficiency of a refrigeration cycle, Patent Literature 1 discloses a refrigeration cycle including a supercooling heat exchanger that supercools condensed refrigerant. Specifically, Patent Document 1 discloses a main circuit for flowing refrigerant from a compressor in the order of a condenser, a double-tube supercooler, a main expansion mechanism, an evaporator, a four-way switching valve, and an accumulator, Disclosed is a refrigerant circuit having a bypass circuit that branches from the main circuit between the condenser and the subcooler, and merges with the main circuit between the four-way switching valve and the accumulator via the bypass expansion mechanism and the supercooler. . The refrigerant discharged from the compressor is condensed by a condenser that radiates heat to outdoor air, and then branched into a main circuit and a bypass circuit. The bypass flow refrigerant flowing in the bypass circuit is decompressed by the bypass expansion mechanism and then flows to the subcooler, and the main flow refrigerant flowing in the main circuit flows to the subcooler and is heat-exchanged with the bypass flow refrigerant to be supercooled. Is done. The supercooler is formed in a double tube shape having a heat transfer tube and an outer tube provided concentrically on the outside of the heat transfer tube. Flow bypass refrigerant through the heat pipe. The supercooler is composed of a counter-flow heat exchanger, and is set so that the main-flow refrigerant and the bypass-flow refrigerant flow in opposite directions with respect to the heat transfer pipe wall. In addition, a method of using cold energy stored in ice is also described as means for supercooling the refrigerant.

一方、特許文献2は、冷熱を蓄えた蓄熱槽の蓄熱媒体により冷媒の過冷却を行う蓄熱式空気調和機を開示する。具体的には、特許文献2は、圧縮機、室外熱交換器、過冷却用熱交換器、第1自動膨張弁、室内熱交換器、アキュムレータで構成された主冷凍回路に冷媒が循環し、冷凍回路の過冷却用熱交換器には、ポンプを介して蓄熱槽が接続され、蓄熱媒体が過冷却用熱交換器で冷媒と熱交換するとともに、配管により循環する空気調和機を開示する。また、主冷凍回路の室外熱交換器−過冷却用熱交換器間の液管と吸入管との間にはバイパス管が設けられ、バイパス管には、第2自動膨張弁、蓄熱用コイルが設けられる。蓄熱用コイルは蓄熱槽に設けられ、冷媒−蓄熱媒体で熱交換される。主冷凍回路を流れる冷媒の過冷却作用は、蓄熱用コイルで冷却された蓄熱媒体を介して行われる。   On the other hand, Patent Literature 2 discloses a regenerative air conditioner that supercools a refrigerant by a heat storage medium of a heat storage tank that stores cold heat. Specifically, Patent Document 2 discloses that a refrigerant circulates in a main refrigeration circuit including a compressor, an outdoor heat exchanger, a supercooling heat exchanger, a first automatic expansion valve, an indoor heat exchanger, and an accumulator. An air conditioner is disclosed in which a heat storage tank is connected to a supercooling heat exchanger of a refrigeration circuit, a heat storage medium exchanges heat with a refrigerant in the supercooling heat exchanger, and circulates through a pipe. In addition, a bypass pipe is provided between the liquid pipe and the suction pipe between the outdoor heat exchanger and the supercooling heat exchanger of the main refrigeration circuit, and the second automatic expansion valve and the heat storage coil are provided in the bypass pipe. Provided. The heat storage coil is provided in the heat storage tank, and heat is exchanged between the refrigerant and the heat storage medium. The supercooling action of the refrigerant flowing through the main refrigeration circuit is performed via the heat storage medium cooled by the heat storage coil.

特開平10−054616号公報Japanese Patent Laid-Open No. 10-054616 特開平1−10063号公報Japanese Patent Laid-Open No. 1-10063

しかしながら特許文献1では、主流冷媒が過冷却器でバイパス流冷媒により冷却されることでエンタルピを低下させるが、冷却された主流冷媒は室外空気よりも温度が低いため、外側の空気と接している外管表面より空気の熱量を吸熱してしまい、所望のエンタルピまで低下せず、性能の向上率が低下してしまう。また、特許文献1のような過冷却サイクルでは、冷媒循環量が多く蒸発側の圧力損失が大きいほど過冷却サイクルをしない場合に対する効率向上効果が大きいが、循環量が少なく蒸発側圧力損失が小さい冷房能力が小さく領域では効果が小さい。すなわち、負荷が大きい始動時などで効果が大きいものの、安定運転時などでは効果が小さくなってしまう。   However, in Patent Document 1, the enthalpy is reduced by cooling the mainstream refrigerant with the bypass refrigerant in the subcooler, but the cooled mainstream refrigerant is in contact with the outside air because the temperature is lower than the outdoor air. The heat quantity of the air is absorbed from the outer tube surface, and the desired enthalpy is not lowered, and the performance improvement rate is lowered. Further, in the supercooling cycle as in Patent Document 1, the larger the refrigerant circulation amount and the larger the pressure loss on the evaporation side, the greater the effect of improving the efficiency when the supercooling cycle is not performed, but the circulation amount is small and the evaporation side pressure loss is small. The effect is small in the region where the cooling capacity is small. That is, although the effect is large at the time of starting with a heavy load, the effect is small at the time of stable operation.

また、特許文献2では蓄熱媒体を介して熱の授受が行われるため、媒体を循環させるためのポンプなどの動力源が必要となり、構成部品が増加し、構造が複雑になるだけでなく、システム全体の消費電力低減とならない。   Further, in Patent Document 2, since heat is transferred via a heat storage medium, a power source such as a pump for circulating the medium is required, and not only the number of components increases and the structure becomes complicated, but also the system The overall power consumption is not reduced.

本発明は、冷房運転時において、より簡易なシステムで、運転始動時等の高負荷時から安定運転時等の低負荷時まで消費電力を低減することができる空気調和機を提供することを課題とする。   It is an object of the present invention to provide an air conditioner that can reduce power consumption from a high load at the start of operation to a low load at the time of stable operation with a simpler system during cooling operation. And

本発明の空気調和機は、圧縮機、室外熱交換器、過冷却用熱交換器、膨張弁、及び室内熱交換器が冷媒配管により順次接続して冷媒を循環させる主回路と、室外熱交換器と過冷却用熱交換器との間の主回路から分岐して、過冷却用膨張弁及び過冷却用熱交換器を介して、室内熱交換器と圧縮機との間の主回路に接続するバイパス回路と、を備え、過冷却用熱交換器は、過冷却用熱交換器内を流れる主回路及びバイパス回路の冷媒と熱交換する蓄熱槽を備える。   The air conditioner of the present invention includes a compressor, an outdoor heat exchanger, a supercooling heat exchanger, an expansion valve, and a main circuit in which an indoor heat exchanger is sequentially connected by a refrigerant pipe to circulate the refrigerant, and an outdoor heat exchange Branch from the main circuit between the heat exchanger and the supercooling heat exchanger, and connect to the main circuit between the indoor heat exchanger and the compressor via the supercooling expansion valve and the supercooling heat exchanger The supercooling heat exchanger includes a heat storage tank for exchanging heat with the main circuit flowing in the supercooling heat exchanger and the refrigerant of the bypass circuit.

本発明によれば、冷房運転時において、より簡易なシステムで、運転始動時等の高負荷時から安定運転時等の低負荷時まで空気調和機の消費電力を低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, the power consumption of an air conditioner can be reduced with the simpler system at the time of air_conditionaing | cooling operation from the time of high load, such as operation start, to the time of low load, such as the time of stable operation.

空気調和機の冷媒回路構成図Air conditioner refrigerant circuit configuration diagram 過冷却用熱交換器の構成図Configuration diagram of heat exchanger for supercooling 空気調和機の運転モード毎の要素機器動作テーブルElement device operation table for each operation mode of the air conditioner 通常の冷凍サイクルと過冷却サイクルを示したモリエル線図Mollier diagram showing normal refrigeration cycle and supercooling cycle 空気調和機の運転モード選択フローチャートAir conditioner operation mode selection flowchart 冷房運転における室内温度、蓄熱材温度、圧縮機回転数の時間変化を示した図The figure which showed time change of room temperature, heat storage material temperature, compressor rotation speed in cooling operation

以下、本発明の実施形態について図面を参照して説明する。本実施例の空気調和機は、圧縮機、室外熱交換器、過冷却用熱交換器、膨張弁、及び室内熱交換器が冷媒配管により順次接続して冷媒を循環させる主回路と、室外熱交換器と過冷却用熱交換器との間の主回路から分岐して、過冷却用膨張弁及び過冷却用熱交換器を介して、室内熱交換器と圧縮機との間の主回路に接続するバイパス回路と、を備え、過冷却用熱交換器は、過冷却用熱交換器内を流れる主回路及びバイパス回路の冷媒と熱交換する蓄熱槽を備える。過冷却用熱交換器が備える蓄熱槽と主回路及びバイパス回路の冷媒とが熱交換するので、バイパス回路の運転に応じて、高負荷時にはバイパス回路の冷媒により主回路の冷媒を過冷却するとともに蓄熱槽に冷熱を蓄冷して、低負荷時には蓄冷された冷熱を主回路の冷媒に付与することができるので、冷房運転時において、運転始動時などの高負荷時から安定運転時の低負荷時まで、空気調和機の消費電力を低減することができる。   Embodiments of the present invention will be described below with reference to the drawings. The air conditioner of this embodiment includes a compressor, an outdoor heat exchanger, a supercooling heat exchanger, an expansion valve, and an indoor heat exchanger that are sequentially connected by a refrigerant pipe to circulate the refrigerant, and an outdoor heat Branches from the main circuit between the exchanger and the supercooling heat exchanger, and enters the main circuit between the indoor heat exchanger and the compressor via the supercooling expansion valve and the supercooling heat exchanger. And a bypass circuit to be connected, and the supercooling heat exchanger includes a heat storage tank for exchanging heat with the main circuit flowing in the supercooling heat exchanger and the refrigerant of the bypass circuit. Since the heat storage tank provided in the supercooling heat exchanger and the refrigerant in the main circuit and the bypass circuit exchange heat, according to the operation of the bypass circuit, the refrigerant in the main circuit is supercooled by the refrigerant in the bypass circuit at high load. Cold heat is stored in the heat storage tank, and the stored cold heat can be applied to the refrigerant in the main circuit at low load, so during cooling operation, from high load such as when starting operation to low load during stable operation Until then, the power consumption of the air conditioner can be reduced.

図1は空気調和機の冷媒回路構成図であり、空気調和機1を構成する各構成要素とそれらの接続関係を表す基本構成図である。空気調和機1は、圧縮機2、流路切換弁(例えば四方弁)3、室外熱交換器4、過冷却用熱交換器(例えば二重管熱交換器)10および膨張弁5、室内熱交換器6、サクションタンク7を環状に接続した主回路12と、室外熱交換器4と過冷却用熱交換器9との間の分岐点13aで分岐し、過冷却用膨張弁8、過冷却用熱交換器9を通り、サクションタンク7と流路切換弁3との間の合流点13b(室外熱交換器4と圧縮機2との間の合流点13b)で主回路12と合流するバイパス回路13で構成される。過冷却用熱交換器9は周囲が蓄熱槽10で覆われており、蓄熱槽10内は蓄熱材11が充填される。   FIG. 1 is a configuration diagram of a refrigerant circuit of an air conditioner, and is a basic configuration diagram showing each component constituting the air conditioner 1 and their connection relationship. The air conditioner 1 includes a compressor 2, a flow path switching valve (for example, a four-way valve) 3, an outdoor heat exchanger 4, a supercooling heat exchanger (for example, a double pipe heat exchanger) 10, an expansion valve 5, and indoor heat. Branched at a branch circuit 13a between the main circuit 12 in which the exchanger 6 and the suction tank 7 are connected in an annular shape, and the outdoor heat exchanger 4 and the supercooling heat exchanger 9, and the supercooling expansion valve 8 and the supercooling Bypass which joins the main circuit 12 at a junction 13b between the suction tank 7 and the flow path switching valve 3 (a junction 13b between the outdoor heat exchanger 4 and the compressor 2) through the heat exchanger 9 The circuit 13 is configured. The supercooling heat exchanger 9 is covered with a heat storage tank 10, and the heat storage tank 10 is filled with a heat storage material 11.

図2は過冷却用熱交換器の構成図であり、蓄熱槽10と過冷却用熱交換器9の構成例の詳細図を示す。過冷却用熱交換器9は二重管であり内管9aと外管9bで構成される。蓄熱槽10は二重管全体を覆うように構成され、内部に蓄熱材11が充填される。内管9aおよび外管9bは熱伝導性のよい銅などの金属で作られており、冷媒の熱伝達率向上のため内管の内面あるいは外面に流体攪拌と伝熱面積拡大のための螺旋溝などを設けてもよい。さらに、内管と外管の流路方向は過冷却利用時に対向流となるよう構成することが望ましい。これにより、内外を流れる冷媒の温度差を大きくとることができ効率よく熱交換できる。   FIG. 2 is a configuration diagram of the supercooling heat exchanger, and shows a detailed diagram of a configuration example of the heat storage tank 10 and the supercooling heat exchanger 9. The supercooling heat exchanger 9 is a double pipe and is composed of an inner pipe 9a and an outer pipe 9b. The heat storage tank 10 is configured to cover the entire double pipe, and the heat storage material 11 is filled therein. The inner tube 9a and the outer tube 9b are made of a metal such as copper having good thermal conductivity, and a spiral groove for expanding the heat transfer area and fluid agitation on the inner or outer surface of the inner tube to improve the heat transfer coefficient of the refrigerant. Etc. may be provided. Furthermore, it is desirable to configure the flow direction of the inner pipe and the outer pipe to be opposite flows when using supercooling. Thereby, the temperature difference of the refrigerant | coolant which flows inside and outside can be taken large, and heat exchange can be performed efficiently.

蓄熱材11は、蓄熱時に相変化しない水やエチレングリコールなど液体状の顕熱蓄熱材やブチレンゴムなどの固体状の顕熱蓄熱材、蓄熱時に相変化するパラフィンなどの潜熱蓄熱材を用いることができる。尚、本実施例で用いられる蓄熱材の蓄熱時の温度は15〜20℃程度であるため、この温度帯で相変化(液体〜固体)するパラフィンなどの潜熱蓄熱材を用いることで、蓄熱材の単位体積あたりの熱容量を増大させることができる。   The heat storage material 11 can be a liquid sensible heat storage material such as water or ethylene glycol that does not change phase when storing heat, a solid sensible heat storage material such as butylene rubber, or a latent heat storage material such as paraffin that changes phase when storing heat. . In addition, since the temperature at the time of heat storage of the heat storage material used in the present embodiment is about 15 to 20 ° C., the heat storage material can be obtained by using a latent heat storage material such as paraffin that changes phase (liquid to solid) in this temperature range. The heat capacity per unit volume can be increased.

外気への放熱損失低減のため、蓄熱槽10は汎用プラスチックなどの比較的熱伝導性の低いものが望ましい。さらに蓄熱槽10にウレタンフォームなどの断熱材で覆ってもよい。   In order to reduce heat dissipation loss to the outside air, it is desirable that the heat storage tank 10 has a relatively low thermal conductivity such as general-purpose plastic. Further, the heat storage tank 10 may be covered with a heat insulating material such as urethane foam.

空気調和機1の動作について説明する。図3は空気調和機の運転モード毎の要素機器動作テーブルであり、運転モードおよび各モードにおける主な要素の動作テーブルを示す。冷房運転は、室内外の負荷が大きい場合に冷房過冷却蓄熱運転104を行い、負荷が小さい場合に冷房蓄熱利用運転105に切換える。暖房運転時は、過冷却用膨張弁9を閉じる動作以外は一般的なサイクルと同様のため、説明を省略する。   The operation of the air conditioner 1 will be described. FIG. 3 is an element device operation table for each operation mode of the air conditioner, and shows an operation mode and an operation table of main elements in each mode. In the cooling operation, the cooling supercooling heat storage operation 104 is performed when the indoor / outdoor load is large, and the operation is switched to the cooling heat storage use operation 105 when the load is small. During the heating operation, the operation is the same as a general cycle except for the operation of closing the supercooling expansion valve 9, and the description thereof is omitted.

次に、冷房過冷却蓄熱運転104及び冷房蓄熱利用運転105におけるサイクル各要素の動作について、図1、図3、図4を用いて説明する。   Next, the operation of each cycle element in the cooling supercooling heat storage operation 104 and the cooling heat storage utilization operation 105 will be described with reference to FIGS. 1, 3, and 4.

まず、図3に示すとおり、冷房過冷却蓄熱運転104では、流路切換弁3は冷房方向すなわち実線矢印方向に流れるように切り換えられ、膨張弁5は空調負荷に応じた適度な開度に調整され、過冷却用膨張弁8は適度な開度に調整される。図1の空気調和機1において、冷媒(例えば、R22やR410Aを用いることができる。)は図1の実線矢印方向(図1の反時計廻り方向)に、圧縮機2、流路切換弁3(圧縮機2吐出と室外熱交換器4を結ぶ経路)、凝縮器として働く室外熱交換器4、過冷却用熱交換器9の内管、膨張弁5、蒸発器として働く室内熱交換器6、流路切換弁3(室内熱交換器6とサクションタンク7を結ぶ経路)、サクションタンク7の順に主回路12を流れる。   First, as shown in FIG. 3, in the cooling supercooling heat storage operation 104, the flow path switching valve 3 is switched so as to flow in the cooling direction, that is, in the direction of the solid arrow, and the expansion valve 5 is adjusted to an appropriate opening degree according to the air conditioning load. The subcooling expansion valve 8 is adjusted to an appropriate opening degree. In the air conditioner 1 of FIG. 1, the refrigerant (for example, R22 or R410A can be used) in the direction of the solid line arrow in FIG. 1 (counterclockwise direction in FIG. 1), the compressor 2 and the flow path switching valve 3. (Path connecting compressor 2 discharge and outdoor heat exchanger 4), outdoor heat exchanger 4 working as a condenser, inner pipe of heat exchanger 9 for supercooling, expansion valve 5, indoor heat exchanger 6 working as an evaporator The flow path switching valve 3 (path connecting the indoor heat exchanger 6 and the suction tank 7) and the suction tank 7 flow in the main circuit 12 in this order.

また、室外熱交換器4を通過後の冷媒の一部は分岐点15bで、破線で示すバイパス回路13に分岐する。分岐した冷媒は、過冷却用膨張弁8、過冷却用熱交換器9の外管の順に、バイパス回路13を流れ、サクションタンク7上流の合流点13bで主回路12と合流する。   Moreover, a part of refrigerant | coolant after passing the outdoor heat exchanger 4 branches to the bypass circuit 13 shown with a broken line at the branch point 15b. The branched refrigerant flows through the bypass circuit 13 in the order of the supercooling expansion valve 8 and the outer pipe of the supercooling heat exchanger 9, and joins the main circuit 12 at the junction 13 b upstream of the suction tank 7.

さらに、蓄熱槽10内の蓄熱材11はバイパス回路を流れる冷媒と熱交換する。   Furthermore, the heat storage material 11 in the heat storage tank 10 exchanges heat with the refrigerant flowing in the bypass circuit.

図4は通常の冷凍サイクルと過冷却サイクルを示したモリエル線図である。冷房過冷却蓄熱運転104における空気調和機1のサイクルの効果について図4に示すモリエル線図で説明する。図4では、通常(一般)の冷凍サイクルを符号A1〜A4を付した破線で示し、空気調和機1の冷房過冷却蓄熱運転時の過冷却サイクルは符号C1〜C4を付した実線で示す。   FIG. 4 is a Mollier diagram showing a normal refrigeration cycle and a supercooling cycle. The effect of the cycle of the air conditioner 1 in the cooling supercooling heat storage operation 104 will be described with reference to the Mollier diagram shown in FIG. In FIG. 4, a normal (general) refrigeration cycle is indicated by a broken line with reference signs A1 to A4, and a supercooling cycle at the time of the cooling supercooling heat storage operation of the air conditioner 1 is indicated by a solid line with reference signs C1 to C4.

過冷却サイクル(図3の実線)では、C1からC20で凝縮器である室外熱交換器4でガス冷媒を液冷媒に凝縮する。室外熱交換器4で十分に凝縮して液化した冷媒は、主回路12とバイパス回路13に分岐点13aで分岐する。すなわち、バイパス回路13へ流入した液冷媒は、過冷却用膨張弁8で減圧(C22)され、過冷却用熱交換器9の外管で、内管を流れる主回路12の冷媒と熱交換(C23)し、ガス化する。その後、合流点13bで主回路12の冷媒と合流する。一方、主回路12へ流入する液冷媒は、過冷却用熱交換器9の内管で、外管を流れるバイパス回路13の冷媒と熱交換(C20〜C21)し、液冷媒の温度が低下する。その後、膨張弁5で減圧膨張(C21〜C3)して、蒸発器である室内熱交換器6でガス化して合流点13bでバイパス回路13の冷媒と合流し、サクションタンク7へ流入、圧縮機2へ戻る。これにより、凝縮出口の比エンタルピがh1からh2へ減少し、それに伴って、蒸発側の比エンタルピ差が大きく(h3−h2>h3−h1)なって、室内熱交換器6における単位質量あたりの冷却能力が増加する。   In the supercooling cycle (solid line in FIG. 3), gas refrigerant is condensed into liquid refrigerant in the outdoor heat exchanger 4 which is a condenser from C1 to C20. The refrigerant sufficiently condensed and liquefied by the outdoor heat exchanger 4 branches into the main circuit 12 and the bypass circuit 13 at the branch point 13a. That is, the liquid refrigerant that has flowed into the bypass circuit 13 is depressurized (C22) by the supercooling expansion valve 8, and is exchanged with the refrigerant of the main circuit 12 flowing through the inner pipe by the outer pipe of the supercooling heat exchanger 9 ( C23) and gasify. Thereafter, the refrigerant merges with the refrigerant in the main circuit 12 at the junction 13b. On the other hand, the liquid refrigerant flowing into the main circuit 12 exchanges heat (C20 to C21) with the refrigerant in the bypass circuit 13 that flows through the outer pipe in the inner pipe of the supercooling heat exchanger 9, and the temperature of the liquid refrigerant decreases. . Thereafter, decompression expansion (C21 to C3) is performed by the expansion valve 5, gasification is performed by the indoor heat exchanger 6 that is an evaporator, and the refrigerant is merged with the refrigerant in the bypass circuit 13 at the junction 13b, and flows into the suction tank 7, and the compressor Return to 2. Thereby, the specific enthalpy of the condensation outlet decreases from h1 to h2, and accordingly, the specific enthalpy difference on the evaporation side becomes large (h3-h2> h3-h1), and the unit mass in the indoor heat exchanger 6 per unit mass is increased. Increases cooling capacity.

このとき、バイパス回路13に分岐される冷媒の量は過冷却用膨張弁8の開度により全冷媒流量の10〜20%に調整される。したがって、蒸発器である室内熱交換器6への冷媒流量が10〜20%減少し、冷媒の圧力損失が低減する。このことにより、圧縮機1の吸込み圧力がp1からp2へ上昇し、圧力比が減少する。この結果、通常の冷凍サイクルと比較して、空気調和機1の圧縮機2の動力が低減でき、効率が向上する。一般にこのような過冷却サイクルでは、冷媒循環量が多く、蒸発側の圧力損失が大きい冷房能力の大きい場合ほど過冷却サイクルでない場合に対する効率向上効果が大きい。   At this time, the amount of the refrigerant branched into the bypass circuit 13 is adjusted to 10 to 20% of the total refrigerant flow rate by the opening degree of the supercooling expansion valve 8. Therefore, the refrigerant flow rate to the indoor heat exchanger 6 as an evaporator is reduced by 10 to 20%, and the pressure loss of the refrigerant is reduced. As a result, the suction pressure of the compressor 1 increases from p1 to p2, and the pressure ratio decreases. As a result, compared with a normal refrigeration cycle, the power of the compressor 2 of the air conditioner 1 can be reduced, and the efficiency is improved. In general, in such a supercooling cycle, as the cooling capacity is large as the refrigerant circulation amount is large and the pressure loss on the evaporation side is large, the efficiency improvement effect for the case where it is not the supercooling cycle is great.

このとき、蓄熱槽10内の蓄熱材11は前述の過冷却用膨張弁8で減圧(C22)された外管を流れる二相冷媒と熱交換し、冷却される。   At this time, the heat storage material 11 in the heat storage tank 10 is cooled by exchanging heat with the two-phase refrigerant flowing in the outer pipe reduced in pressure (C22) by the above-described supercooling expansion valve 8.

次に、図3に示すとおり、冷房蓄熱利用運転105では、流路切換弁3は冷房方向すなわち実線矢印方向に流れるように切り換えられ、膨張弁5は空調負荷に応じた適度な開度に調整され、過冷却用膨張弁8は冷媒が流れないよう閉止される。図1の空気調和機1において、冷媒は図1の実線矢印方向(図1の反時計廻り方向)に、圧縮機2、流路切換弁3(圧縮機2吐出と室外熱交換器4を結ぶ経路)、凝縮器として働く室外熱交換器4、過冷却用熱交換器9の内管、膨張弁5、蒸発器として働く室内熱交換器6、流路切換弁3(室内熱交換器6とサクションタンク7を結ぶ経路)、サクションタンク7の順に主回路12を流れる。過冷却用膨張弁8が閉止されているため、バイパス回路13内に冷媒は流れない。   Next, as shown in FIG. 3, in the cooling heat storage utilization operation 105, the flow path switching valve 3 is switched so as to flow in the cooling direction, that is, in the direction of the solid arrow, and the expansion valve 5 is adjusted to an appropriate opening degree according to the air conditioning load. Then, the supercooling expansion valve 8 is closed so that the refrigerant does not flow. In the air conditioner 1 of FIG. 1, the refrigerant connects the compressor 2 and the flow path switching valve 3 (discharge of the compressor 2 and the outdoor heat exchanger 4) in the direction of the solid line arrow in FIG. 1 (counterclockwise direction in FIG. 1). Path), an outdoor heat exchanger 4 that functions as a condenser, an inner pipe of a supercooling heat exchanger 9, an expansion valve 5, an indoor heat exchanger 6 that functions as an evaporator, and a flow path switching valve 3 (with an indoor heat exchanger 6) The main circuit 12 flows in the order of the path connecting the suction tank 7) and the suction tank 7. Since the subcooling expansion valve 8 is closed, the refrigerant does not flow into the bypass circuit 13.

さらに、蓄熱槽10内の蓄熱材11はバイパス回路13内の冷媒を介して主回路12を流れる冷媒と熱交換する。冷房蓄熱利用運転105では後述するとおり、前述の冷房過冷却蓄熱運転104後に行われるため、運転開始時、蓄熱材11は冷却されている。   Furthermore, the heat storage material 11 in the heat storage tank 10 exchanges heat with the refrigerant flowing through the main circuit 12 via the refrigerant in the bypass circuit 13. As will be described later, the cooling heat storage operation 105 is performed after the above-described cooling supercooling heat storage operation 104, so that the heat storage material 11 is cooled at the start of the operation.

運転開始後、圧縮機2を出た高温のガス冷媒は、凝縮器である室外熱交換器4で凝縮し、液冷媒となった後、過冷却用熱交換器9の内管内でバイパス回路13内の冷媒を介して蓄熱材11と熱交換して温度が低下する。その後冷媒は、膨張弁5で減圧膨張し、蒸発器である室内熱交換器6で蒸発して、ガス冷媒になった後、圧縮機2へ戻る。   After the operation is started, the high-temperature gas refrigerant exiting the compressor 2 is condensed in the outdoor heat exchanger 4 which is a condenser to become a liquid refrigerant, and then the bypass circuit 13 in the inner pipe of the supercooling heat exchanger 9. The heat is exchanged with the heat storage material 11 via the refrigerant inside, and the temperature decreases. Thereafter, the refrigerant is decompressed and expanded by the expansion valve 5, evaporated by the indoor heat exchanger 6, which is an evaporator, becomes a gas refrigerant, and then returns to the compressor 2.

蓄熱槽10内の蓄熱材11は主回路12内の冷媒と熱交換することで、冷媒と同じ温度になるまで温度が上昇する。   The heat storage material 11 in the heat storage tank 10 is heat-exchanged with the refrigerant in the main circuit 12 so that the temperature rises until it reaches the same temperature as the refrigerant.

ここで、凝縮出口で蓄熱材によって冷却されることで、凝縮出口の比エンタルピが減少し、それに伴って、蒸発側の比エンタルピ差が大きくなって、室内熱交換器6における単位質量あたりの冷却能力が増加する。この効果は蓄熱材の熱容量分だけ持続する。効果が持続している間、同じ圧縮機動力で冷却能力が増加するため効率が向上する。すなわち、蓄熱材の量が多く、冷媒との伝熱面が大きいほど効果は持続するが、実装体積は限られているため、冷房能力の小さい領域で用いることで大きな効果を期待できる。   Here, by cooling with the heat storage material at the condensation outlet, the specific enthalpy at the condensation outlet is reduced, and accordingly, the specific enthalpy difference on the evaporation side is increased, and cooling per unit mass in the indoor heat exchanger 6 is performed. Ability increases. This effect lasts for the heat capacity of the heat storage material. While the effect continues, the efficiency is improved because the cooling capacity increases with the same compressor power. That is, the larger the amount of heat storage material and the larger the heat transfer surface with the refrigerant, the longer the effect, but since the mounting volume is limited, a large effect can be expected when used in a region with a small cooling capacity.

以上、説明した運転方式の具体的な切換方法について、図5及び図6を用いて説明する。図5は空気調和機の運転モード選択フローチャートである。図6は冷房運転における室内温度、蓄熱材温度、圧縮機回転数の時間変化を示した図であり、冷房運転における室内温度Tin、蓄熱材温度Tm、圧縮機回転数Rの時間変化を示している。   The specific switching method of the operation method described above will be described with reference to FIGS. FIG. 5 is an operation mode selection flowchart of the air conditioner. FIG. 6 is a diagram showing temporal changes in the room temperature, the heat storage material temperature, and the compressor rotational speed in the cooling operation, and shows the temporal changes in the indoor temperature Tin, the thermal storage material temperature Tm, and the compressor rotational speed R in the cooling operation. Yes.

運転開始100後、室内外負荷およびユーザの好みに応じて、運転モードが選択される(101)。例えば、冷房運転102が選択されると図示しない判定手段、例えば設定室内温度Tsetと現在室内温度Tinの差dTに応じて(例えばdT>7℃)、指令圧縮機回転数Rが決められ(例えばR=6000min−1)、運転が開始される。このときの指令圧縮機回転数Rが、あらかじめ定められた圧縮機回転数Rc(例えばR=3000min−1)以上(103)であれば、過冷却サイクルでの効率向上が大きいため運転モードは冷房過冷却蓄冷運転104が選択される。冷房過冷却蓄冷運転104は、過冷却サイクルを用いない場合に比べ高い効率で運転するとともに、低温のバイパス冷媒により蓄熱材は冷却される(例えばTm=20℃)。   After starting operation 100, an operation mode is selected according to the indoor / outdoor load and the user's preference (101). For example, when the cooling operation 102 is selected, a command compressor rotation speed R is determined according to a determination unit (not shown), for example, a difference dT between the set room temperature Tset and the current room temperature Tin (for example, dT> 7 ° C.) (for example, R = 6000 min-1), the operation is started. If the command compressor rotational speed R at this time is equal to or higher than a predetermined compressor rotational speed Rc (for example, R = 3000 min−1) (103), the efficiency of the supercooling cycle is greatly improved and the operation mode is cooling. The supercooled cold storage operation 104 is selected. The cooling supercooling cold storage operation 104 is operated with higher efficiency than when the supercooling cycle is not used, and the heat storage material is cooled by the low-temperature bypass refrigerant (for example, Tm = 20 ° C.).

一定時間経過後、設定室内温度と現在室内温度の差が小さくなると、図6に示すように指令圧縮回転数Rは徐々に減少し(図中の区間104後半)、圧縮機回転数Rc未満(103)(例えばR=2900min−1<Rc)になる。このとき、過冷却サイクルによるサイクル効率向上効果が少なくなるため、運転モードは冷房蓄熱利用運転105が選択される。   When the difference between the set room temperature and the current room temperature becomes small after a certain period of time, the command compression speed R gradually decreases as shown in FIG. 6 (second half of the section 104 in the figure), and is less than the compressor speed Rc ( 103) (for example, R = 2900 min-1 <Rc). At this time, since the effect of improving the cycle efficiency by the supercooling cycle is reduced, the cooling heat storage utilization operation 105 is selected as the operation mode.

蒸発側の比エンタルピ差拡大による効果は、蓄熱材11の熱容量分だけ持続する(例えば、300mLの水で10分程度)。すなわち蓄熱材11は図6に示すように冷房蓄熱利用運転(105)後、冷媒と同じ温度(例えばTm=35℃)になるまで徐々に温度が上昇する(図中の区間105)。効果が持続している間、同じ圧縮機動力で冷却能力が増加するため、本実施例を適用しない場合に比べ設定温度までの到達時間が同じ消費電力で短くなる。   The effect of increasing the specific enthalpy difference on the evaporation side lasts for the heat capacity of the heat storage material 11 (for example, about 10 minutes with 300 mL of water). That is, as shown in FIG. 6, the heat storage material 11 gradually increases in temperature until the same temperature as the refrigerant (for example, Tm = 35 ° C.) after the cooling heat storage use operation (105) (section 105 in the figure). While the effect continues, the cooling capacity increases with the same compressor power, so that the time to reach the set temperature is shortened with the same power consumption as compared with the case where the present embodiment is not applied.

尚、冷媒として従来のR22やR410Aを適用したが、本実施例の冷媒サイクルにおいては、R32冷媒を適用することがより好ましい。つまり、R32冷媒はR22やR410A冷媒よりもGWP(GWP:CO2=1とした場合の地球温暖化係数)が小さい。さらに、R32冷媒は、R410AやR22よりも同じ温度での蒸発潜熱が大きいため、同じ冷媒循環流量でより大きな能力を得られる。R32冷媒を適用する場合、冷媒循環流量が多い高い能力では吐出温度の高さが問題となるが、バイパス流量を増加させることにより、蒸発能力を維持したまま、吸込冷媒の乾き度を下げ、吐出温度を下げることができる。さらにバイパス流量が増加することで蓄熱槽への熱交換が促進される。   In addition, although conventional R22 and R410A were applied as the refrigerant, it is more preferable to apply the R32 refrigerant in the refrigerant cycle of the present embodiment. That is, the R32 refrigerant has a smaller GWP (global warming potential when GWP: CO2 = 1) than the R22 or R410A refrigerant. Furthermore, since the R32 refrigerant has a larger latent heat of vaporization at the same temperature than R410A and R22, a larger capacity can be obtained with the same refrigerant circulation flow rate. When R32 refrigerant is applied, high discharge temperature is a problem with high capacity with a large refrigerant circulation flow rate, but by increasing the bypass flow rate, the dryness of the suction refrigerant is reduced and the discharge capacity is maintained while maintaining the evaporation capacity. The temperature can be lowered. Furthermore, heat exchange to the heat storage tank is promoted by increasing the bypass flow rate.

また、本実施例では、流路切換弁を設けた冷房・暖房運転可能な空気調和機における効果を示したが、流路切換弁のない冷房専用の空気調和機や冷凍装置においても同様の効果が得られる。   Further, in the present embodiment, the effect in the air conditioner capable of cooling / heating operation provided with the flow path switching valve is shown, but the same effect is also obtained in the air conditioner and the refrigeration apparatus dedicated to cooling without the flow path switching valve. Is obtained.

以上説明したように本実施例の空気調和機は、圧縮機、室外熱交換器、過冷却用熱交換器、膨張弁、及び室内熱交換器が冷媒配管により順次接続して冷媒を循環させる主回路と、室外熱交換器と過冷却用熱交換器との間の主回路から分岐して、過冷却用膨張弁及び過冷却用熱交換器を介して、室内熱交換器と圧縮機との間の主回路に接続するバイパス回路と、を備え、過冷却用熱交換器は、過冷却用熱交換器内を流れる主回路及びバイパス回路の冷媒と熱交換する蓄熱槽を備える。過冷却用熱交換器が備える蓄熱槽と主回路及びバイパス回路の冷媒とが熱交換するので、バイパス回路の運転に応じて、高負荷時にはバイパス回路の冷媒により主回路の冷媒を過冷却するとともに蓄熱槽に冷熱を蓄冷して、低負荷時には蓄冷された冷熱を主回路の冷媒に付与することができるので、冷房運転において、運転始動時などの高負荷時から安定運転時の低負荷時まで、空気調和機の消費電力を低減することができる。   As described above, the air conditioner of the present embodiment is configured such that the compressor, the outdoor heat exchanger, the supercooling heat exchanger, the expansion valve, and the indoor heat exchanger are sequentially connected by the refrigerant pipe to circulate the refrigerant. Branching from the main circuit between the circuit and the outdoor heat exchanger and the supercooling heat exchanger, and via the supercooling expansion valve and the supercooling heat exchanger, the indoor heat exchanger and the compressor A bypass circuit connected to the main circuit therebetween, and the supercooling heat exchanger includes a heat storage tank for exchanging heat with the main circuit flowing in the supercooling heat exchanger and the refrigerant of the bypass circuit. Since the heat storage tank provided in the supercooling heat exchanger and the refrigerant in the main circuit and the bypass circuit exchange heat, according to the operation of the bypass circuit, the refrigerant in the main circuit is supercooled by the refrigerant in the bypass circuit at high load. Since cold energy is stored in the heat storage tank and the stored cold energy can be given to the refrigerant in the main circuit at low load, in cooling operation, from high load such as when starting operation to low load during stable operation The power consumption of the air conditioner can be reduced.

特に、冷房運転時、膨張弁及び過冷却用膨張弁を所定の開度に開くことにより、過冷却用熱交換器において、主回路の冷媒とバイパス回路の冷媒とが熱交換するとともに、バイパス回路の冷媒の冷熱を蓄熱槽に蓄冷する過冷却蓄冷運転モードと、膨張弁を所定の開度に開くとともに過冷却用膨張弁を閉じることにより、過冷却用熱交換器において、蓄熱槽に蓄冷された冷熱を主回路の冷媒に付与する蓄冷利用運転モードと、を備えることにより、上述のように、冷房運転において、運転始動時などの高負荷時から、安定運転時の低負荷時まで、空気調和機の消費電力を低減することができる。   In particular, during cooling operation, by opening the expansion valve and the supercooling expansion valve to a predetermined opening, in the heat exchanger for supercooling, the refrigerant of the main circuit and the refrigerant of the bypass circuit exchange heat, and the bypass circuit Is stored in the heat storage tank in the supercooling heat exchanger by opening the expansion valve at a predetermined opening and closing the expansion valve for supercooling. In the cooling operation, as described above, in the cooling operation, air is applied from a high load at the start of operation to a low load at the stable operation. The power consumption of the harmony machine can be reduced.

また、過冷却蓄冷運転モードで運転した後、蓄冷利用運転モードに移行することにより、蓄冷利用運転モードの前の過冷却蓄冷運転モードにおいて蓄熱槽が蓄冷されるため、過冷却蓄冷運転モードにおいて確実に蓄熱槽の蓄冷を主回路の冷媒に付与することができる。   In addition, after operating in the supercooling cold storage operation mode, the heat storage tank is stored in the supercooling cold storage operation mode before the cold storage usage operation mode by shifting to the cold storage usage operation mode. In addition, cold storage in the heat storage tank can be applied to the refrigerant in the main circuit.

また、特に、高負荷時である冷房運転起動時に過冷却蓄冷運転モードで運転し、その後、低負荷時になると蓄冷利用運転モードに移行するようにすることで、過冷却運転及び蓄冷利用運転の効果を考慮して、より効果的に、運転始動時などの高負荷時から安定運転時の低負荷時まで、空気調和機の消費電力を低減することができる。   In particular, the effect of the supercooling operation and the cold storage use operation is achieved by operating in the supercooled cold storage operation mode at the start of the cooling operation when the load is high, and then shifting to the cold storage use operation mode when the load is low. In consideration of the above, the power consumption of the air conditioner can be more effectively reduced from a high load at the time of starting operation to a low load at the time of stable operation.

1…空気調和機、2…圧縮機、3…流路切換弁、4…室外熱交換器、5…膨張弁、6…室内熱交換器、7…サクションタンク、8…過冷却用膨張弁、9…過冷却用熱交換器、9a…内管、9b…外管、10…蓄熱槽、11…蓄熱材、12…主回路、13…バイパス回路、13a…分岐点、13b…合流点、 DESCRIPTION OF SYMBOLS 1 ... Air conditioner, 2 ... Compressor, 3 ... Flow path switching valve, 4 ... Outdoor heat exchanger, 5 ... Expansion valve, 6 ... Indoor heat exchanger, 7 ... Suction tank, 8 ... Expansion valve for supercooling, DESCRIPTION OF SYMBOLS 9 ... Heat exchanger for supercooling, 9a ... Inner pipe, 9b ... Outer pipe, 10 ... Heat storage tank, 11 ... Heat storage material, 12 ... Main circuit, 13 ... Bypass circuit, 13a ... Branch point, 13b ... Junction point,

Claims (9)

圧縮機、室外熱交換器、過冷却用熱交換器、膨張弁、及び室内熱交換器が冷媒配管により順次接続して冷媒を循環させる主回路と、
前記室外熱交換器と前記過冷却用熱交換器との間の前記主回路から分岐して、過冷却用膨張弁及び前記過冷却用熱交換器を介して、前記室内熱交換器と前記圧縮機との間の前記主回路に接続するバイパス回路と、を備え、
前記過冷却用熱交換器は、前記過冷却用熱交換器内を流れる前記主回路及び前記バイパス回路の冷媒と熱交換する蓄熱槽を備える空気調和機。
A main circuit in which a compressor, an outdoor heat exchanger, a supercooling heat exchanger, an expansion valve, and an indoor heat exchanger are sequentially connected by a refrigerant pipe to circulate the refrigerant;
Branching from the main circuit between the outdoor heat exchanger and the supercooling heat exchanger, the indoor heat exchanger and the compression via the supercooling expansion valve and the supercooling heat exchanger A bypass circuit connected to the main circuit between the machine,
The said supercooling heat exchanger is an air conditioner provided with the thermal storage tank which heat-exchanges with the refrigerant | coolant of the said main circuit and the said bypass circuit which flow through the inside of the said supercooling heat exchanger.
請求項1において、
前記過冷却用熱交換器は、内側流路と前記内側流路を覆うように構成された外側流路とを有する二重管であり、
前記主回路が前記内側流路を構成し、
前記バイパス回路が前記外側流路を構成し、
前記蓄熱槽が前記外側流路を覆うように配置された空気調和機。
In claim 1,
The supercooling heat exchanger is a double pipe having an inner channel and an outer channel configured to cover the inner channel,
The main circuit constitutes the inner flow path;
The bypass circuit constitutes the outer flow path;
An air conditioner arranged so that the heat storage tank covers the outer flow path.
請求項2において、前記二重管における前記主回路と前記バイパス回路とが対抗流となるように構成された空気調和機。   3. The air conditioner according to claim 2, wherein the main circuit and the bypass circuit in the double pipe are configured to counteract the flow. 請求項1乃至3の何れかにおいて、冷房運転時、前記蓄熱槽に蓄冷された冷熱を、前記過冷却用熱交換器を介して冷媒に付与する空気調和機。   4. The air conditioner according to claim 1, wherein during cooling operation, the cold energy stored in the heat storage tank is applied to the refrigerant through the supercooling heat exchanger. 請求項4において、冷房運転時、
前記膨張弁及び前記過冷却用膨張弁を所定の開度に開くことにより、前記過冷却用熱交換器において、前記主回路の冷媒と前記バイパス回路の冷媒とが熱交換するとともに、前記バイパス回路の冷媒の冷熱を前記蓄熱槽に蓄冷する過冷却蓄冷運転モードと、
前記膨張弁を所定の開度に開くとともに前記過冷却用膨張弁を閉じることにより、前記過冷却用熱交換器において、前記蓄熱槽に蓄冷された冷熱を前記主回路の冷媒に付与する蓄冷利用運転モードと、を備える空気調和機。
In claim 4, during cooling operation,
By opening the expansion valve and the supercooling expansion valve to a predetermined opening, in the supercooling heat exchanger, the refrigerant of the main circuit and the refrigerant of the bypass circuit exchange heat, and the bypass circuit A supercooled cold storage operation mode for storing the cold heat of the refrigerant in the heat storage tank;
Cold storage use for providing cold heat stored in the heat storage tank to the refrigerant of the main circuit in the supercooling heat exchanger by opening the expansion valve to a predetermined opening and closing the supercooling expansion valve An air conditioner comprising an operation mode.
請求項5において、前記過冷却蓄冷運転モードで運転し、その後、前記蓄冷利用運転モードに移行する空気調和機。   6. The air conditioner according to claim 5, wherein the air conditioner operates in the supercooled regenerative operation mode and then shifts to the regenerative use operation mode. 請求項6において、冷房運転起動時に前記過冷却蓄冷運転モードで運転し、その後、前記蓄冷利用運転モードに移行する空気調和機。   The air conditioner according to claim 6, wherein the air conditioner operates in the supercooled regenerative storage operation mode when the cooling operation is started, and then shifts to the regenerative storage operation mode. 請求項6又は7において、前記過冷却蓄冷運転モードで運転中に、前記圧縮機の回転数が所定値以下となると、前記蓄冷利用運転モードに移行する空気調和機。   8. The air conditioner according to claim 6, wherein when the rotation speed of the compressor becomes a predetermined value or less during operation in the supercooling cold storage operation mode, the air conditioner shifts to the cold storage operation mode. 請求項1乃至8の何れかにおいて、前記冷媒としてR32を用いる空気調和機。   9. An air conditioner according to claim 1, wherein R32 is used as the refrigerant.
JP2012151998A 2012-07-06 2012-07-06 Air conditioner Pending JP2014016057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012151998A JP2014016057A (en) 2012-07-06 2012-07-06 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012151998A JP2014016057A (en) 2012-07-06 2012-07-06 Air conditioner

Publications (1)

Publication Number Publication Date
JP2014016057A true JP2014016057A (en) 2014-01-30

Family

ID=50110913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012151998A Pending JP2014016057A (en) 2012-07-06 2012-07-06 Air conditioner

Country Status (1)

Country Link
JP (1) JP2014016057A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2924364A1 (en) * 2014-03-24 2015-09-30 Cordivari S.r.L. Solar collector with integrated storage tank
JP2016125808A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Storage air conditioner
JP2019163866A (en) * 2018-03-19 2019-09-26 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water generating device including the same
WO2023286591A1 (en) * 2021-07-15 2023-01-19 イーグル工業株式会社 Heat storage heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2924364A1 (en) * 2014-03-24 2015-09-30 Cordivari S.r.L. Solar collector with integrated storage tank
JP2016125808A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Storage air conditioner
JP2019163866A (en) * 2018-03-19 2019-09-26 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water generating device including the same
WO2023286591A1 (en) * 2021-07-15 2023-01-19 イーグル工業株式会社 Heat storage heat exchanger

Similar Documents

Publication Publication Date Title
JP5327308B2 (en) Hot water supply air conditioning system
JP5380226B2 (en) Air conditioning and hot water supply system and heat pump unit
JP5455521B2 (en) Air conditioning and hot water supply system
KR101638675B1 (en) Combined binary refrigeration cycle apparatus
JP4428341B2 (en) Refrigeration cycle equipment
US20140338389A1 (en) Vapor compression system with thermal energy storage
JP2007010288A (en) Cooling and heating capacity enhancement method of existing heat pump type air conditioner, thermal storage unit device and heat pump type air conditioner using the device
EP3995758A1 (en) Heat exchange unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
JP2008196798A (en) Air conditioner
JP2013083439A (en) Hot water supply air conditioning system
JP2013083439A5 (en)
JP2014016057A (en) Air conditioner
JP4651452B2 (en) Refrigeration air conditioner
JPWO2011104834A1 (en) Air conditioner
JP5503167B2 (en) Air conditioning system
JP5333557B2 (en) Hot water supply air conditioning system
JP3896705B2 (en) Refrigeration cycle and refrigeration cycle control method
JP2013245850A (en) Air conditioner
JP2017161164A (en) Air-conditioning hot water supply system
JP2010112698A (en) Refrigeration device
US20230392829A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method for controlling a refrigerant circuit
EP3995761A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method forcontrolling a refrigerant circuit
EP3995760A1 (en) Thermal storage unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
JP3783153B2 (en) Air conditioner
JP2013092342A (en) Refrigerating device