JP2019163866A - Refrigeration cycle device and hot water generating device including the same - Google Patents

Refrigeration cycle device and hot water generating device including the same Download PDF

Info

Publication number
JP2019163866A
JP2019163866A JP2018050345A JP2018050345A JP2019163866A JP 2019163866 A JP2019163866 A JP 2019163866A JP 2018050345 A JP2018050345 A JP 2018050345A JP 2018050345 A JP2018050345 A JP 2018050345A JP 2019163866 A JP2019163866 A JP 2019163866A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
refrigeration cycle
economizer heat
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018050345A
Other languages
Japanese (ja)
Inventor
一貴 小石原
Kazutaka Koishihara
一貴 小石原
由樹 山岡
Yoshiki Yamaoka
由樹 山岡
繁男 青山
Shigeo Aoyama
繁男 青山
和人 中谷
Kazuto Nakatani
和人 中谷
常子 今川
Tsuneko Imagawa
常子 今川
俊二 森脇
Shunji Moriwaki
俊二 森脇
季セン 徐
Ji Sen Xu
季セン 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018050345A priority Critical patent/JP2019163866A/en
Publication of JP2019163866A publication Critical patent/JP2019163866A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a refrigeration cycle device improved in energy consumption efficiency in both operating conditions of low load and high load.SOLUTION: A refrigeration cycle device includes: a main-side refrigerant circuit 11 having a plurality of compression mechanisms (1a, 1b), a radiator 2, an economizer heat exchanger 3, and first decompression means 4; and an injection-side refrigerant circuit 12 branched from a part between the radiator 2 and the economizer heat exchanger 3, or a part between the economizer heat exchanger 3 and the fist decompression means 4, and having second decompression means 6 and the economizer heat exchanger 3, so that the refrigerant branched from the main-side refrigerant circuit 11 is decompressed by the second decompression means 6, then exchanges heat with the refrigerant flowing through the main-side refrigerant circuit 11 in the economizer heat exchanger 3, and is joined to the refrigerant between the plurality of compression mechanisms (1a, 1b). A pipe through which the refrigerant of the main-side refrigerant circuit 11 of the economizer heat exchanger 3 flows has the shape with a grooved inner face.SELECTED DRAWING: Figure 3

Description

本発明は、冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus.

この種の冷凍サイクル装置としては、低段圧縮機構と高段圧縮機構を有する二段圧縮機を用いて、放熱器とエコノマイザ熱交換器の間から分岐した冷媒の一方が第1の減圧手段へ連通され、他方が第2の減圧手段で減圧した後に一方の冷媒と熱交換して低段圧縮機機構と高段圧縮機構との間に合流するインジェクション回路を備えることにより高能力化を図るエコノマイザサイクルの提案がなされている。   As this type of refrigeration cycle apparatus, using a two-stage compressor having a low-stage compression mechanism and a high-stage compression mechanism, one of the refrigerant branched from between the radiator and the economizer heat exchanger is supplied to the first decompression means. An economizer that achieves high performance by providing an injection circuit that communicates and heat-exchanges with one refrigerant after the other is depressurized by the second depressurization means and merges between the low-stage compressor mechanism and the high-stage compression mechanism A cycle proposal has been made.

図7、図8は、このエコノマイザサイクルに搭載されているエコノマイザ熱交換器20の概略斜視図及び流路断面図である(例えば、特許文献1参照)。   7 and 8 are a schematic perspective view and a channel cross-sectional view of the economizer heat exchanger 20 mounted in the economizer cycle (see, for example, Patent Document 1).

国際公開第2011/021636号International Publication No. 2011/021636

しかしながら、図7および図8に示すような、高圧側が多穴平滑流路のエコノマイザ熱交換器20を搭載した冷凍サイクル装置では、低負荷時と高負荷時の双方の運転条件において、冷凍サイクル装置の省エネルギー性が低下してしまうという課題を有していた。その理由を以下に述べる。   However, in the refrigeration cycle apparatus equipped with the economizer heat exchanger 20 having a multi-hole smooth flow path on the high pressure side as shown in FIGS. 7 and 8, the refrigeration cycle apparatus is operated under both low load and high load operating conditions. There was a problem that the energy-saving property would be reduced. The reason is described below.

冷凍サイクル装置で、暖房・給湯運転をする場合、高段吐出圧力を所定の圧力よりも高くすることが望ましい。図9は、所定の運転条件(入水22℃、出湯30℃、外気12℃)における暖房運転の理論COPと高段吐出圧力の関係を計算したものである。   When heating / hot water supply operation is performed in the refrigeration cycle apparatus, it is desirable that the high stage discharge pressure be higher than a predetermined pressure. FIG. 9 shows the calculated relationship between the theoretical COP of the heating operation and the high stage discharge pressure under predetermined operating conditions (incoming water 22 ° C., outgoing hot water 30 ° C., outside air 12 ° C.).

ここで、計算に用いた冷媒は二酸化炭素である。図9からわかるようにCOPを高い状態で運転するためには、高段側吐出圧力を所定の圧力以上とすることが望ましい。これは、図10(a)(b)に示すように、高段側吐出圧力が低くなると放熱器において、水と冷媒の温度差が取れなくなるため、冷媒のエンタルピー差が縮小し、放熱器の加熱能力が大幅に低下してしまうためである。   Here, the refrigerant used for the calculation is carbon dioxide. As can be seen from FIG. 9, in order to operate the COP at a high state, it is desirable that the high-stage discharge pressure be set to a predetermined pressure or higher. As shown in FIGS. 10 (a) and 10 (b), since the temperature difference between water and the refrigerant cannot be obtained in the radiator when the high-stage discharge pressure becomes low, the enthalpy difference of the refrigerant is reduced, and the radiator This is because the heating capacity is greatly reduced.

ここで、冷凍サイクル装置の暖房運転は、図11に示すように、外気温に応じて負荷が大きく変化し、高負荷時(例えば外気温−10℃)には、冷媒循環量を多くする必要がある。そのため、冷凍サイクル装置の減圧手段には、冷媒循環量が最大となる高負荷時において、高段吐出圧力を、冷凍サイクル装置の省エネルギー性が最大となる所定の圧力近傍となるよう調節し、安定して運転することができる比較的口径の大きなもの(例えば、弁口径φ0.5mm以上)が選定される。   Here, in the heating operation of the refrigeration cycle apparatus, as shown in FIG. 11, the load changes greatly according to the outside air temperature, and it is necessary to increase the refrigerant circulation amount at the time of high load (for example, the outside air temperature −10 ° C.). There is. For this reason, the decompression means of the refrigeration cycle apparatus adjusts the high-stage discharge pressure so that it is close to a predetermined pressure at which the energy saving performance of the refrigeration cycle apparatus is maximized at the time of a high load at which the refrigerant circulation amount is maximum. And having a relatively large diameter (for example, a valve diameter of 0.5 mm or more) is selected.

一方、低負荷時(例えば外気温12℃)には必要な冷媒循環量が少なくなり、第1の減圧手段を流れる冷媒循環量が極端に少なくなる。そのため、減圧量を確保し、高段吐出圧力を所定の圧力以上に維持するには、第1の減圧手段を全閉状態近傍まで絞る必要があるが、全閉状態近傍では減圧手段の制御性が悪く、冷凍サイクルの動作が不安定となるため、利用側端末での温水の温度が安定しない。   On the other hand, when the load is low (for example, the outside air temperature is 12 ° C.), the necessary refrigerant circulation amount is reduced, and the refrigerant circulation amount flowing through the first decompression means is extremely reduced. Therefore, in order to secure the amount of pressure reduction and maintain the high stage discharge pressure at a predetermined pressure or higher, it is necessary to throttle the first pressure reducing means to the vicinity of the fully closed state. However, since the operation of the refrigeration cycle becomes unstable, the temperature of the hot water at the user terminal is not stable.

よって、安定動作のため第1の減圧手段の開度を一定以上とする必要があるが、その場合には、減圧量不足のため、高段吐出圧力を所定の圧力以上に維持することができず、低負荷時の冷凍サイクル装置の省エネルギー性が低下してしまうという課題を有していた。   Therefore, the opening degree of the first pressure reducing means needs to be a certain level or more for stable operation. In this case, the high-stage discharge pressure can be maintained at a predetermined pressure or more because the pressure reduction amount is insufficient. However, the energy-saving property of the refrigeration cycle apparatus at the time of low load will have the subject that it will fall.

また、高負荷時には、冷媒循環量を稼ぐために、エコノマイザ熱交換器20の中間圧側の冷媒流量が、高圧側に対して多くなる場合がある。従来の技術のようにエコノマイザ高圧側流路23が、伝熱促進手段の施されていない多穴平滑流路であると、高圧側冷媒の熱伝達率が大きく低下し、高圧側冷媒の熱抵抗比が増大するため、エコノマイザ熱交換器20の効率が低下し、高負荷時の機器の運転効率が低下してしまうという課題も有していた。   In addition, when the load is high, the refrigerant flow rate on the intermediate pressure side of the economizer heat exchanger 20 may increase relative to the high pressure side in order to increase the refrigerant circulation amount. When the economizer high pressure side flow path 23 is a multi-hole smooth flow path not provided with heat transfer promoting means as in the prior art, the heat transfer coefficient of the high pressure side refrigerant is greatly reduced, and the heat resistance of the high pressure side refrigerant is reduced. Since the ratio is increased, the efficiency of the economizer heat exchanger 20 is decreased, and the operation efficiency of the device at the time of high load is also decreased.

本発明は、上記従来の課題を解決するもので、低負荷時、高負荷時の双方の運転条件において、エネルギー消費効率を向上させた冷凍サイクル装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a refrigeration cycle apparatus with improved energy consumption efficiency under both low load and high load operating conditions.

上記目的を達成するために、本発明の冷凍サイクル装置は、複数の圧縮機構からなる圧縮機、前記圧縮機から吐出された冷媒により利用側熱媒体が加熱される放熱器、エコノマイザ熱交換器、第1の減圧手段、蒸発器が順次接続され形成されているメイン側冷媒回路と、前記放熱器と前記エコノマイザ熱交換器との間、または、前記エコノマイザ熱交換器と前記第1の減圧手段との間から分岐され、第2の減圧手段および前記エコノマイザ熱交換器を有し、前記メイン側冷媒回路から分岐された冷媒が前記第2の減圧手段により減圧された後、前記エコノマイザ熱交換器において、前記メイン側冷媒回路を流れる冷媒と熱交換され、その後、前記複数の圧縮機構の間の冷媒に合流されるインジェクション側冷媒回路と、を備え、前記エコノマイザ熱交換器は、前記メイン側冷媒回路の冷媒が流れる流路を高圧側冷媒管と、前記インジェクション側冷媒回路の冷媒が流れる流路をインジェクション配管とを有し、前記高圧側冷媒管は、内面溝付き形状であることを特徴とするものである。   In order to achieve the above object, a refrigeration cycle apparatus according to the present invention includes a compressor composed of a plurality of compression mechanisms, a radiator in which a use side heat medium is heated by refrigerant discharged from the compressor, an economizer heat exchanger, A first decompression means, a main-side refrigerant circuit formed by sequentially connecting evaporators, and between the radiator and the economizer heat exchanger, or the economizer heat exchanger and the first decompression means; In the economizer heat exchanger after the refrigerant branched from the main refrigerant circuit is depressurized by the second depressurization means. An injection-side refrigerant circuit that exchanges heat with the refrigerant flowing through the main-side refrigerant circuit and then merges with the refrigerant between the plurality of compression mechanisms. The heat exchanger has a high-pressure side refrigerant pipe through which a refrigerant flows in the main-side refrigerant circuit, and an injection pipe through which a refrigerant flows through the injection-side refrigerant circuit. It has a shape with an inner groove.

これによって、冷媒循環量が小さくなる低負荷時において、エコノマイザ熱交換器の高圧側冷媒管が抵抗となるので、冷媒循環量が大きくなる高負荷時に対応した第1の減圧手段を用いながらも、安定した運転状態で、放熱器出口から第1の減圧手段出口までの減圧量を大きくすることができる。   Thereby, since the high-pressure side refrigerant pipe of the economizer heat exchanger becomes a resistance at a low load when the refrigerant circulation amount is small, while using the first decompression means corresponding to the high load when the refrigerant circulation amount is large, In a stable operation state, the amount of pressure reduction from the radiator outlet to the first pressure reducing means outlet can be increased.

その結果、低負荷時においても、高段側吐出圧力を所定の圧力よりも高く維持することができ、放熱器出入り口のエンタルピー差が拡大するので、低負荷時の冷凍サイクル装置の省エネルギー性を向上できる。   As a result, the high-stage discharge pressure can be maintained higher than the specified pressure even at low loads, and the enthalpy difference between the radiator inlet and outlet is increased, improving the energy-saving performance of the refrigeration cycle system at low loads. it can.

また、高負荷時には、エコノマイザ熱交換器の中間圧側の冷媒流量が高圧側に対して多くなるが、エコノマイザ熱交換器の高圧側冷媒管を内面溝付き管としたことにより、内部を流れる冷媒の流速が遅い場合にも、乱流促進効果が生じ冷媒の熱伝達率が高まる。   In addition, when the load is high, the flow rate of refrigerant on the intermediate pressure side of the economizer heat exchanger is higher than that on the high pressure side. Even when the flow rate is low, the effect of promoting turbulence is generated, and the heat transfer coefficient of the refrigerant is increased.

加えて、伝熱面積も拡大し、高圧側冷媒の熱抵抗が減少するため、エコノマイザ熱交換器の熱交換効率が向上し、高負荷時の冷凍サイクル装置の省エネルギー性を向上できる。   In addition, since the heat transfer area is increased and the thermal resistance of the high-pressure side refrigerant is reduced, the heat exchange efficiency of the economizer heat exchanger is improved and the energy saving performance of the refrigeration cycle apparatus at high load can be improved.

本発明によれば、低負荷時、高負荷時の双方の運転条件において、エネルギー消費効率を向上させた冷凍サイクル装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the refrigerating-cycle apparatus which improved energy consumption efficiency can be provided in the driving | running conditions of both the time of low load and high load.

本発明の実施の形態1における冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. (a)本発明の実施の形態1におけるエコノマイザ熱交換器の斜視図(b)同エコノマイザ熱交換器の上面図(A) Perspective view of economizer heat exchanger in Embodiment 1 of the present invention (b) Top view of the economizer heat exchanger (a)図2(b)のA−A断面図(b)図3(a)のC部拡大図(A) AA sectional view of FIG. 2 (b) (b) C portion enlarged view of FIG. 3 (a) 本発明の実施の形態1における冷凍サイクル装置の理想条件での圧力―エンタルピー線図(P−h線図)Pressure-enthalpy diagram (Ph diagram) under ideal conditions of the refrigeration cycle apparatus according to Embodiment 1 of the present invention 同冷凍サイクル装置の減圧手段の開度と流量特性との関係を示す図The figure which shows the relationship between the opening degree of the pressure reduction means of the refrigeration cycle apparatus, and a flow rate characteristic (a)本発明の他の実施の形態におけるエコノマイザ熱交換器の概略図(b)図6(a)のB−B断面図(A) Schematic diagram of economizer heat exchanger according to another embodiment of the present invention (b) BB cross-sectional view of FIG. 6 (a) 従来のエコノマイザ熱交換器の概略図Schematic diagram of a conventional economizer heat exchanger 従来のエコノマイザ熱交換器の流路断面図Cross-sectional view of a conventional economizer heat exchanger 低負荷時の理論COPと高段吐出圧力との関係を示す図Diagram showing the relationship between theoretical COP and high stage discharge pressure at low load (a)低荷時における放熱器の温度とエンタルピー特性との関係を示す図(b)低負荷時における放熱器の温度とエンタルピー特性との関係を示す他の図(A) The figure which shows the relationship between the temperature of a radiator at the time of low load, and an enthalpy characteristic (b) The other figure which shows the relationship between the temperature of the radiator at the time of a low load, and an enthalpy characteristic 冷凍サイクル装置の外気温度と暖房負荷の特性を示す図The figure which shows the characteristic of the outside temperature of the refrigeration cycle device and the heating load

第1の発明は、複数の圧縮機構からなる圧縮機、前記圧縮機から吐出された冷媒により利用側熱媒体が加熱される放熱器、エコノマイザ熱交換器、第1の減圧手段、蒸発器が順次接続され形成されているメイン側冷媒回路と、前記放熱器と前記エコノマイザ熱交換器との間、または、前記エコノマイザ熱交換器と前記第1の減圧手段との間から分岐され、第2の減圧手段および前記エコノマイザ熱交換器を有し、前記メイン側冷媒回路から分岐された冷媒が前記第2の減圧手段により減圧された後、前記エコノマイザ熱交換器において、前記メイン側冷媒回路を流れる冷媒と熱交換され、その後、前記複数の圧縮機構の間の冷媒に合流されるインジェクション側冷媒回路と、を備え、前記エコノマイザ熱交換器は、前記メイン側冷媒回路の冷媒が流れる流路を高圧側冷媒管と、前記インジェクション側冷媒回路の冷媒が流れる流路をインジェクション配管とを有し、前記高圧側冷媒管は、内面溝付き形状であることを特徴とする冷凍サイクル装置である。   In the first invention, a compressor composed of a plurality of compression mechanisms, a radiator in which the use side heat medium is heated by the refrigerant discharged from the compressor, an economizer heat exchanger, a first pressure reducing means, and an evaporator are sequentially provided. Branched from the main refrigerant circuit connected and formed, and between the radiator and the economizer heat exchanger, or between the economizer heat exchanger and the first decompression means, and the second decompression And a refrigerant flowing through the main refrigerant circuit in the economizer heat exchanger after the refrigerant branched from the main refrigerant circuit is depressurized by the second depressurizing means An injection-side refrigerant circuit that is heat-exchanged and then merges with the refrigerant between the plurality of compression mechanisms, and the economizer heat exchanger cools the main-side refrigerant circuit. A refrigeration cycle characterized in that it has a high-pressure side refrigerant pipe as a flow path through which the refrigerant flows, and an injection pipe as a flow path through which the refrigerant in the injection-side refrigerant circuit flows. Device.

これにより、冷媒循環量が小さくなる低負荷時において、エコノマイザ熱交換器の高圧側冷媒管が抵抗となるので、冷媒循環量が大きくなる高負荷時に対応した第1の減圧手段を用いながらも、安定した運転状態で、放熱器出口から第1の減圧手段出口までの減圧量を大きくすることができる。   Thereby, since the high pressure side refrigerant pipe of the economizer heat exchanger becomes a resistance at a low load when the refrigerant circulation amount is small, while using the first decompression means corresponding to the high load when the refrigerant circulation amount is large, In a stable operation state, the amount of pressure reduction from the radiator outlet to the first pressure reducing means outlet can be increased.

その結果、低負荷時においても、高段側吐出圧力を所定の圧力よりも高く維持することができ、放熱器出入り口のエンタルピー差が拡大するので、低負荷時の冷凍サイクル装置の省エネルギー性を向上できるという効果を奏する。   As a result, the high-stage discharge pressure can be maintained higher than the specified pressure even at low loads, and the enthalpy difference between the radiator inlet and outlet is increased, improving the energy-saving performance of the refrigeration cycle system at low loads. It has the effect of being able to

また、高負荷時には、エコノマイザ熱交換器の中間圧側の冷媒流量が高圧側に対して多くなるが、エコノマイザ熱交換器の高圧側冷媒管を内面溝付き管としたことにより、内部を流れる冷媒の流速が遅い場合にも、乱流促進効果が生じ冷媒の熱伝達率が高まる。   In addition, when the load is high, the flow rate of refrigerant on the intermediate pressure side of the economizer heat exchanger is higher than that on the high pressure side. Even when the flow rate is low, the effect of promoting turbulence is generated, and the heat transfer coefficient of the refrigerant is increased.

加えて、伝熱面積も拡大し、高圧側冷媒の熱抵抗が減少するため、エコノマイザ熱交換器の熱交換効率が向上し、中間圧が上昇する。これにより、冷媒循環量の多い高段側の圧縮比が小さくなり、圧縮機の動力が削減できるので、高負荷時の冷凍サイクル装置の省エネルギー性を向上できるという効果を奏する。   In addition, since the heat transfer area is increased and the thermal resistance of the high-pressure refrigerant is reduced, the heat exchange efficiency of the economizer heat exchanger is improved and the intermediate pressure is increased. As a result, the compression ratio on the high stage side with a large amount of refrigerant circulation is reduced, and the power of the compressor can be reduced. Thus, the energy saving performance of the refrigeration cycle apparatus at the time of high load can be improved.

第2の発明は、特に、第1の発明において、前記高圧側冷媒管の冷媒の流れ方向の管中心位置が、前記インジェクション配管の冷媒の流れ方向の管中心位置より鉛直下方側に位置するように、前記エコノマイザ熱交換器は形成されており、前記インジェクション配管を流れる冷媒は、気液二層状態であることを特徴とするものである。   According to a second aspect of the invention, in particular, in the first aspect of the invention, the pipe center position in the refrigerant flow direction of the high-pressure side refrigerant pipe is positioned vertically below the pipe center position of the injection pipe in the refrigerant flow direction. Further, the economizer heat exchanger is formed, and the refrigerant flowing through the injection pipe is in a gas-liquid two-layer state.

これにより、インジェクション配管を流れる気液二層の冷媒に重力が作用し、密度の大きい液成分が伝熱面近傍に押しやられるので、冷媒の液成分がより加熱されやすくなる。よって、エコノマイザ熱交換器の熱交換量が増加し、中間圧力が上昇するので、冷凍サイクル装置の省エネルギー性を更に向上できるという効果を奏する。   Thereby, gravity acts on the gas-liquid two-layer refrigerant flowing through the injection pipe, and a liquid component having a high density is pushed near the heat transfer surface, so that the liquid component of the refrigerant is more easily heated. Therefore, since the heat exchange amount of the economizer heat exchanger increases and the intermediate pressure increases, there is an effect that the energy saving performance of the refrigeration cycle apparatus can be further improved.

第3の発明は、特に、第1または第2の発明において、前記高圧側冷媒管は、前記インジェクション配管の内方に配設されていることを特徴とするものである。   A third invention is characterized in that, in particular, in the first or second invention, the high-pressure side refrigerant pipe is disposed inward of the injection pipe.

これにより、エコノマイザ熱交換器の外周側を低温の中間圧冷媒が流れるので、エコノマイザ熱交換器での放熱ロスが低減できる。よって、エコノマイザ熱交換器の熱交換効率が向上するので、冷凍サイクル装置の省エネルギー性を更に向上できるという効果を奏する。   Thereby, since the low-temperature intermediate pressure refrigerant flows on the outer peripheral side of the economizer heat exchanger, the heat radiation loss in the economizer heat exchanger can be reduced. Therefore, since the heat exchange efficiency of the economizer heat exchanger is improved, the energy saving performance of the refrigeration cycle apparatus can be further improved.

第4の発明は、特に、第1〜第3のいずれかの発明において、前記冷媒は、二酸化炭素であることを特徴とするものである。   A fourth invention is characterized in that, in particular, in any one of the first to third inventions, the refrigerant is carbon dioxide.

これにより、インジェクション側冷媒回路を有する多段圧縮冷凍サイクルに二酸化炭素冷媒を適用することにより、フロン系冷媒に比べて、蒸発器における吸熱時の冷媒エンタルピー差が大幅に拡大される。   Thereby, by applying the carbon dioxide refrigerant to the multistage compression refrigeration cycle having the injection side refrigerant circuit, the refrigerant enthalpy difference at the time of heat absorption in the evaporator is greatly expanded as compared with the fluorocarbon refrigerant.

また、多段圧縮冷凍サイクルの高段圧縮機構より吐出される冷媒流量は、インジェクション側冷媒回路とメイン側冷媒回路とからの冷媒が合流することより、放熱器へ流入する冷媒流量が大幅に増大する。   Further, the refrigerant flow rate discharged from the high-stage compression mechanism of the multistage compression refrigeration cycle greatly increases the refrigerant flow rate flowing into the radiator due to the merge of the refrigerant from the injection side refrigerant circuit and the main side refrigerant circuit. .

その結果、上記第1〜3の発明の効果に加え、暖房向け加熱能力が、フロン系冷媒の場合と比較して大幅に向上する冷凍サイクル装置を提供することができる。   As a result, in addition to the effects of the first to third aspects of the invention, it is possible to provide a refrigeration cycle apparatus in which the heating capacity for heating is significantly improved as compared with the case of a chlorofluorocarbon refrigerant.

第5の発明は、前記利用側熱媒体は、水または不凍液で、第1〜第4のいずれかの発明を備えた温水生成装置である。   5th invention is a warm water production | generation apparatus provided with the said 1st-4th invention with the said utilization side heat medium being water or antifreeze.

これにより、省エネルギー性を向上させた冷凍サイクル装置を備えた温水生成装置を提供できる。   Thereby, the warm water production | generation apparatus provided with the refrigerating-cycle apparatus which improved energy saving property can be provided.

以下、本発明の実施の形態について、図面を参照しながら、説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における冷凍サイクル装置10を備えた温水生成装置の回路構成図である。
(Embodiment 1)
FIG. 1 is a circuit configuration diagram of a hot water generating device including a refrigeration cycle apparatus 10 according to Embodiment 1 of the present invention.

図1において、冷凍サイクル装置は、メイン側冷媒回路11、インジェクション側冷媒回路12、利用側熱媒体回路13とから構成されており、冷媒として自然冷媒である二酸化炭素が封入されている。   In FIG. 1, the refrigeration cycle apparatus includes a main-side refrigerant circuit 11, an injection-side refrigerant circuit 12, and a use-side heat medium circuit 13, and carbon dioxide, which is a natural refrigerant, is enclosed as a refrigerant.

メイン側冷媒回路11は、低段圧縮機構1aと高段圧縮機構1bと複数の圧縮機構からなる二段圧縮機1、放熱器2、エコノマイザ熱交換器3、第1の減圧手段4、蒸発器5を順に冷媒配管で環状に接続して構成され、内部を冷媒が循環している。   The main refrigerant circuit 11 includes a low-stage compression mechanism 1a, a high-stage compression mechanism 1b, and a two-stage compressor 1 composed of a plurality of compression mechanisms, a radiator 2, an economizer heat exchanger 3, a first decompression means 4, and an evaporator. 5 are connected in an annular shape with a refrigerant pipe in order, and the refrigerant circulates inside.

蒸発器5において、外気より吸熱して、二段圧縮機1にて高温高圧に圧縮された冷媒は放熱器2を介して、循環ポンプ15、暖房端末14からなる利用側熱媒体回路13を循環する水や不凍液を加熱(熱交換)して温水を生成し、その温水が暖房や給湯に利用される。   In the evaporator 5, the refrigerant that absorbs heat from the outside air and is compressed to a high temperature and a high pressure by the two-stage compressor 1 circulates through the radiator 2 through the use-side heat medium circuit 13 including the circulation pump 15 and the heating terminal 14. Heated water and antifreeze liquid are heated (heat exchange) to generate hot water, which is used for heating and hot water supply.

また、インジェクション側冷媒回路12は、放熱器2とエコノマイザ熱交換器3の間にある冷媒分岐点Aから分岐した高圧冷媒の一部が、第2の減圧手段6により中間圧まで減圧された後に、エコノマイザ熱交換器3から第1の減圧手段4に向かう冷媒と熱交換した後に、低段圧縮機構1aと高段圧縮機構1bとの間にある冷媒合流点Bに合流するように接続されている。   Further, the injection-side refrigerant circuit 12 is configured so that a part of the high-pressure refrigerant branched from the refrigerant branch point A between the radiator 2 and the economizer heat exchanger 3 is reduced to an intermediate pressure by the second decompression means 6. After the heat exchange with the refrigerant heading from the economizer heat exchanger 3 toward the first decompression means 4, the refrigerant is connected so as to join the refrigerant confluence B between the low-stage compression mechanism 1a and the high-stage compression mechanism 1b. Yes.

図2(a)は、本発明の実施の形態1におけるエコノマイザ熱交換器の斜視図である。図2(b)は、同エコノマイザ熱交換器の上面図である。図3(a)は、図2(b)のA−A断面図である。図3(b)は、図3(a)のC部拡大図である。   FIG. 2A is a perspective view of the economizer heat exchanger according to Embodiment 1 of the present invention. FIG. 2B is a top view of the economizer heat exchanger. Fig.3 (a) is AA sectional drawing of FIG.2 (b). FIG.3 (b) is the C section enlarged view of Fig.3 (a).

図3(b)に示すように、エコノマイザ熱交換器3の高圧側冷媒管3aは、内面溝付き管であり、内部を流れる冷媒が熱交換できるよう高圧側冷媒管3aの外表面と、インジェクション配管3bの外表面とは接合もしくは接触させることで、伝熱面を形成している。   As shown in FIG. 3 (b), the high-pressure side refrigerant pipe 3a of the economizer heat exchanger 3 is an internally grooved pipe, and the outer surface of the high-pressure side refrigerant pipe 3a and the injection so that heat can be exchanged between the refrigerant flowing inside. A heat transfer surface is formed by joining or contacting the outer surface of the pipe 3b.

また、高圧側冷媒管3aの冷媒の流れ方向の管中心位置は、インジェクション配管3bの冷媒の流れ方向の管中心位置より、鉛直下方側に位置するように配置されている。なお、インジェクション配管3bの内部を流れる中間圧冷媒は、一時的には気液二層状態である。   Further, the pipe center position in the refrigerant flow direction of the high-pressure side refrigerant pipe 3a is arranged so as to be positioned vertically downward from the pipe center position of the injection pipe 3b in the refrigerant flow direction. Note that the intermediate pressure refrigerant flowing inside the injection pipe 3b is temporarily in a gas-liquid two-layer state.

以上のように構成された冷凍サイクル装置10を備えた温水生成装置について、以下、その動作、作用について説明する。   Hereinafter, the operation and action of the hot water generating apparatus including the refrigeration cycle apparatus 10 configured as described above will be described.

図4は、本発明の実施の形態1における冷凍サイクル装置の理想条件での圧力―エンタルピー線図(P−h線図)であり、線図中に示すa〜e点と、冷媒分岐店Aと、冷媒分岐点Bは、それぞれ図1に付したものと対応している。   FIG. 4 is a pressure-enthalpy diagram (Ph diagram) under ideal conditions of the refrigeration cycle apparatus according to Embodiment 1 of the present invention, points a to e shown in the diagram, and refrigerant branch store A. And the refrigerant | coolant branch point B respond | corresponds with what was attached | subjected to FIG. 1, respectively.

温水を生成する加熱運転時において、二段圧縮機1の高段圧縮機構1bより吐出された高温・高圧の冷媒(a点)は、放熱器2において水と熱交換して放熱する。加熱された水は、利用側熱媒体回路13を循環し、接続された貯湯タンク、または、床暖防等の暖房端末14に流入し、暖房や給湯に利用される。   During the heating operation for generating warm water, the high-temperature and high-pressure refrigerant (point a) discharged from the high-stage compression mechanism 1b of the two-stage compressor 1 exchanges heat with water in the radiator 2 to dissipate heat. The heated water circulates in the use-side heat medium circuit 13 and flows into a connected hot water storage tank or a heating terminal 14 such as a floor warmer, and is used for heating or hot water supply.

放熱器2にて放熱した高圧冷媒は、冷媒分岐点Aでメイン側冷媒回路11とインジェクション側冷媒回路12に分岐し、メイン側冷媒回路11を流れる高圧冷媒は、第2の減圧手段6により中間圧にまで減圧されたインジェクション側冷媒回路12を流れる中間圧冷媒とエコノマイザ熱交換器3にて熱交換しさらに冷却される(b点)。   The high-pressure refrigerant radiated by the radiator 2 branches into the main-side refrigerant circuit 11 and the injection-side refrigerant circuit 12 at the refrigerant branch point A, and the high-pressure refrigerant flowing through the main-side refrigerant circuit 11 is intermediated by the second decompression means 6. The intermediate-pressure refrigerant flowing through the injection-side refrigerant circuit 12 that has been depressurized to the pressure is exchanged with the economizer heat exchanger 3 to be further cooled (point b).

これにより、第1の減圧手段4で減圧されたメイン側の冷媒は、低温・低圧の気液二層状態で蒸発器5に流入し(c点)、大気から吸熱して二段圧縮機1の低段圧縮機構1aに吸入される(d点)。   As a result, the main-side refrigerant decompressed by the first decompression means 4 flows into the evaporator 5 in a low-temperature and low-pressure gas-liquid two-layer state (point c), absorbs heat from the atmosphere, and is thus a two-stage compressor 1. Are sucked into the low-stage compression mechanism 1a (point d).

一方、冷媒分岐点Aで分岐されたインジェクション側の冷媒は、第2の減圧手段6により中間圧まで減圧され、上述したようにエコノマイザ熱交換器3にてメイン側の高圧冷媒と熱交換したのちに、二段圧縮機1の低段圧縮機構1aから吐出されたメイン側の冷媒と合流し(冷媒合流点B点)、二段圧縮機1の高段圧縮機構1bに吸入される。   On the other hand, the injection-side refrigerant branched at the refrigerant branch point A is decompressed to the intermediate pressure by the second decompression means 6, and after exchanging heat with the main-side high-pressure refrigerant in the economizer heat exchanger 3 as described above. Next, the main refrigerant discharged from the low-stage compression mechanism 1 a of the two-stage compressor 1 joins (refrigerant merge point B) and is sucked into the high-stage compression mechanism 1 b of the two-stage compressor 1.

このため、高段圧縮機構1bの吸入側(B点)では、低段圧縮機構1aの吸入側(d点)より冷媒圧力が高いため、冷媒密度も高く、かつ、低段圧縮機構1aを吐出した冷媒と合流した冷媒が吸入され、圧縮および吐出されるため、放熱器2に流入する冷媒流量が大幅に増大し、利用側熱媒体である水を加熱する能力が大幅に増大する効果が得られる。この動作を繰り返すことにより、冷凍サイクル装置10は温水を生成する加熱運転を行う。   For this reason, since the refrigerant pressure is higher on the suction side (point B) of the high-stage compression mechanism 1b than on the suction side (point d) of the low-stage compression mechanism 1a, the refrigerant density is high and the low-stage compression mechanism 1a is discharged. Since the refrigerant combined with the refrigerant is sucked, compressed and discharged, the flow rate of the refrigerant flowing into the radiator 2 is greatly increased, and the ability to heat the water that is the heat medium on the use side is greatly increased. It is done. By repeating this operation, the refrigeration cycle apparatus 10 performs a heating operation for generating hot water.

なお、メイン側冷媒回路11とインジェクション側冷媒回路12を流れる冷媒の循環量は、二段圧縮機1の回転周波数と、第1の減圧手段4、第2の減圧手段6の減圧量により調整することができる。冷凍サイクル装置10は、外気温度、負荷、入水温度などの条件に応じて、メイン側冷媒回路11とインジェクション側冷媒回路12の冷媒循環量を調整することで、負荷を満足しつつ、効率の良い運転を行うことができる。   The circulation amount of the refrigerant flowing through the main refrigerant circuit 11 and the injection refrigerant circuit 12 is adjusted by the rotational frequency of the two-stage compressor 1 and the decompression amounts of the first decompression means 4 and the second decompression means 6. be able to. The refrigeration cycle apparatus 10 is efficient while satisfying the load by adjusting the refrigerant circulation amount of the main-side refrigerant circuit 11 and the injection-side refrigerant circuit 12 according to conditions such as the outside air temperature, the load, and the incoming water temperature. You can drive.

ここで、本発明の実施の形態1によれば、図3(b)に示すように、エコノマイザ熱交換器3の高圧側冷媒管3aは内面溝付き管であり、高圧側冷媒管3aの冷媒の流れ方向の管中心位置が、インジェクション配管3bの冷媒の流れ方向の管中心位置縦断面より、鉛直下方側に位置するように配設されている。   Here, according to Embodiment 1 of the present invention, as shown in FIG. 3 (b), the high-pressure side refrigerant tube 3a of the economizer heat exchanger 3 is an internally grooved tube, and the refrigerant of the high-pressure side refrigerant tube 3a. The pipe center position in the flow direction of the injection pipe 3b is disposed so as to be positioned vertically downward from the longitudinal section of the pipe center position in the refrigerant flow direction of the injection pipe 3b.

高圧側冷媒管3aを内面溝付き管としたことにより、冷媒循環量が小さくなる低負荷時において、エコノマイザ熱交換器3の高圧側冷媒管3aが抵抗となるので、冷媒循環量が大きくなる高負荷時に対応した第1の減圧手段4を用いながらも、安定した運転状態で、放熱器2出口から第1の減圧手段4出口までの減圧量を大きくすることができる。   Since the high pressure side refrigerant pipe 3a is an internally grooved pipe, the high pressure side refrigerant pipe 3a of the economizer heat exchanger 3 becomes a resistance at a low load where the refrigerant circulation amount is small. While using the first pressure reducing means 4 corresponding to the load, the amount of pressure reduction from the radiator 2 outlet to the first pressure reducing means 4 outlet can be increased in a stable operating state.

その結果、低負荷時においても高段側吐出圧力を所定の圧力よりも高く維持することができ、放熱器2の出入り口のエンタルピー差が拡大するので、低負荷時の冷凍サイクル装置10の省エネルギー性を向上できるという効果を奏する。   As a result, the high-stage discharge pressure can be maintained higher than a predetermined pressure even when the load is low, and the enthalpy difference at the entrance and exit of the radiator 2 is increased. The effect that can be improved.

一方、高負荷時には、エコノマイザ熱交換器3の中間圧側の冷媒流量が高圧側に対して多くなるが、エコノマイザ熱交換器3の高圧側冷媒管3aを内面溝付き管としたことにより、内部を流れる冷媒の流速が遅い場合にも乱流促進効果が生じ、冷媒の熱伝達率が高まる。加えて、伝熱面積も拡大し高圧側冷媒の熱抵抗が減少するため、エコノマイザ熱交換器3の熱交換効率が向上し、高負荷時の冷凍サイクル装置10の省エネルギー性を向上できるという効果を奏する。   On the other hand, when the load is high, the flow rate of refrigerant on the intermediate pressure side of the economizer heat exchanger 3 is larger than that on the high pressure side. Even when the flow rate of the flowing refrigerant is low, the effect of promoting turbulence occurs, and the heat transfer coefficient of the refrigerant increases. In addition, since the heat transfer area is enlarged and the thermal resistance of the high-pressure side refrigerant is reduced, the heat exchange efficiency of the economizer heat exchanger 3 is improved, and the energy saving performance of the refrigeration cycle apparatus 10 at high load can be improved. Play.

また、図3(b)に示すように、エコノマイザ熱交換器3の高圧側冷媒管3aの冷媒の流れ方向の管中心位置が、インジェクション配管3bの冷媒の流れ方向の管中心位置より、鉛直下方側に位置するように配置されていることにより、インジェクション配管3bを流れる気液二層冷媒に重力が作用し、密度の大きい液成分が、高圧側冷媒管3aとインジェクション配管3bとの伝熱面に沿って流れるので、冷媒の液成分がより加熱されやすくなる。これにより、エコノマイザ熱交換器3の熱交換量が増加し、中間圧力が上昇するので、冷凍サイクル装置10の省エネルギー性を更に向上できるという効果を奏する。   Further, as shown in FIG. 3B, the pipe center position in the refrigerant flow direction of the high-pressure side refrigerant pipe 3a of the economizer heat exchanger 3 is vertically lower than the pipe center position in the refrigerant flow direction of the injection pipe 3b. By being arranged so as to be located on the side, gravity acts on the gas-liquid two-layer refrigerant flowing through the injection pipe 3b, and a liquid component having a high density is transferred to the heat transfer surface between the high-pressure side refrigerant pipe 3a and the injection pipe 3b. As a result, the liquid component of the refrigerant is more easily heated. Thereby, since the heat exchange amount of the economizer heat exchanger 3 is increased and the intermediate pressure is increased, the energy saving performance of the refrigeration cycle apparatus 10 can be further improved.

ここで、第1の減圧手段4、第2の減圧手段6は、開度可変式の電動膨張弁であり、減圧量を任意に調整できる。図5に全閉式の減圧手段の開度―流量特性の一例を示す。   Here, the first decompression unit 4 and the second decompression unit 6 are electric expansion valves with variable opening, and the amount of decompression can be arbitrarily adjusted. FIG. 5 shows an example of the opening degree-flow rate characteristic of the fully-closed pressure reducing means.

図5に示すように、減圧手段の開度―流量特性が変曲点を持ち、全閉近傍開度域の開度―流量特性の勾配が安定開度域の勾配よりも大きい場合でも、エコノマイザ熱交換器3の高圧側冷媒管3aを内面溝付き管としたことにより、放熱器2の出口から第1の減圧手段4の出口までの減圧量を大きくすることができるので、高段側吐出圧力の調整を開度―流量特性が緩やかな安定開度域で行いやすくなる。これにより、冷凍サイクル装置10の動作の安定性が増すため、温水の温度が比較的均一となり、暖房端末等での快適性が増すという効果を奏する。   As shown in FIG. 5, even when the opening-flow rate characteristic of the decompression means has an inflection point and the gradient of the opening-flow rate characteristic in the vicinity of the fully closed opening range is larger than the gradient of the stable opening range, the economizer Since the high-pressure side refrigerant pipe 3a of the heat exchanger 3 is an internally grooved pipe, the amount of reduced pressure from the outlet of the radiator 2 to the outlet of the first pressure reducing means 4 can be increased, so that the high stage side discharge It becomes easier to adjust the pressure in a stable opening range where the opening-flow rate characteristics are moderate. Thereby, since the stability of operation | movement of the refrigerating-cycle apparatus 10 increases, there exists an effect that the temperature of warm water becomes comparatively uniform and the comfort in a heating terminal etc. increases.

以上のように、本実施の形態1におけるエコノマイザ熱交換器3を搭載した冷凍サイクル装置10は、低負荷時、高負荷時の双方の運転条件において、省エネルギー性を向上させることができる。   As described above, the refrigeration cycle apparatus 10 equipped with the economizer heat exchanger 3 according to Embodiment 1 can improve energy saving performance under both low load and high load operating conditions.

なお、本実施の形態では、複数の圧縮機構からなる圧縮機を、低段圧縮機構1aと高段圧縮機構1bが同一容器(シェル)内にからなる二段圧縮機1としているが、低段圧縮機構1aおよび高段圧縮機構1bが、それぞれが独立して2台の圧縮機として構成されても構わない。   In the present embodiment, the compressor composed of a plurality of compression mechanisms is the two-stage compressor 1 in which the low-stage compression mechanism 1a and the high-stage compression mechanism 1b are in the same container (shell). The compression mechanism 1a and the high-stage compression mechanism 1b may be configured independently as two compressors.

以下、他の実施の形態のエコノマイザ熱交換器3について、図面を参照しながら説明する。なお、実施の形態1と同様の部分については同一符号を付し、その詳細な説明は省略する。   Hereinafter, the economizer heat exchanger 3 according to another embodiment will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected about the part similar to Embodiment 1, and the detailed description is abbreviate | omitted.

図6(a)は他の実施の形態におけるエコノマイザ熱交換器の概略図である。図6(b)図6(a)のB−B断面図である。   FIG. 6A is a schematic diagram of an economizer heat exchanger according to another embodiment. FIG. 6B is a cross-sectional view taken along the line BB in FIG.

本実施の形態と実施の形態1のエコノマイザ熱交換器3の構成の相違点は、図6(b)に示すように、高圧側冷媒管3aが、インジェクション配管3bの内方に配設されていている点である。   The difference between the present embodiment and the economizer heat exchanger 3 of the first embodiment is that, as shown in FIG. 6 (b), the high-pressure side refrigerant pipe 3a is disposed inside the injection pipe 3b. It is a point.

なお、高圧側冷媒管3aの冷媒の流れ方向の管中心位置が、インジェクション配管3bの冷媒の流れ方向の管中心位置より、鉛直下方側に位置するように配置されている点は、実施の形態1と同様である。   The point that the pipe center position in the refrigerant flow direction of the high-pressure side refrigerant pipe 3a is positioned to be vertically lower than the pipe center position in the refrigerant flow direction of the injection pipe 3b is the embodiment. Same as 1.

以下、その作用、効果について説明する。   The operation and effect will be described below.

極低外気温、高入水温条件では、高圧側冷媒管3aの内部を高温の冷媒(例えば、65℃)が流れ、インジェクション配管3bの内部を低温気液二層状態(例えば、20℃)の冷媒が流れることがある。   Under extremely low outside air temperature and high incoming water temperature conditions, a high-temperature refrigerant (for example, 65 ° C.) flows through the high-pressure side refrigerant pipe 3a, and a low-temperature gas-liquid two-layer state (for example, 20 ° C.) flows through the injection pipe 3b. Refrigerant may flow.

これにより、内部を高温の冷媒が流れる高圧側冷媒管3aを、内部を低温の中間圧気液二層状態の冷媒が流れるインジェクション配管3bにて覆うことになるので、エコノマイザ熱交換器3として放熱ロスが低減できる。よって、エコノマイザ熱交換器3の熱交換効率が向上するので、冷凍サイクル装置10の省エネルギー性を向上できるという効果を奏する。   As a result, the high-pressure side refrigerant pipe 3a in which the high-temperature refrigerant flows is covered with the injection pipe 3b in which the low-temperature intermediate-pressure gas-liquid two-layer refrigerant flows, so that the heat loss is reduced as the economizer heat exchanger 3. Can be reduced. Therefore, since the heat exchange efficiency of the economizer heat exchanger 3 is improved, the energy saving property of the refrigeration cycle apparatus 10 can be improved.

また、図6(b)に示すように、エコノマイザ熱交換器3の高圧側冷媒管3aの冷媒の流れ方向の管中心位置が、インジェクション配管3bの冷媒の流れ方向の管中心位置より、鉛直下方側に位置するように配置されていることにより、インジェクション配管3bを流れる気液二層冷媒に重力が作用し、密度の大きい液成分が、高圧側冷媒管3aとインジェクション配管3bとの鉛直下方側の隙間を流れるので、冷媒の液成分がより加熱されやすくなる。これにより、エコノマイザ熱交換器3の熱交換量が増加し、中間圧力が上昇するので、冷凍サイクル装置10の省エネルギー性を更に向上できるという効果を奏する。   Further, as shown in FIG. 6B, the pipe center position in the refrigerant flow direction of the high-pressure side refrigerant pipe 3a of the economizer heat exchanger 3 is vertically lower than the pipe center position of the injection pipe 3b in the refrigerant flow direction. By being arranged so as to be located on the side, gravity acts on the gas-liquid two-layer refrigerant flowing through the injection pipe 3b, and the liquid component having a high density is vertically below the high-pressure side refrigerant pipe 3a and the injection pipe 3b. The liquid component of the refrigerant is more easily heated. Thereby, since the heat exchange amount of the economizer heat exchanger 3 is increased and the intermediate pressure is increased, the energy saving performance of the refrigeration cycle apparatus 10 can be further improved.

以上のように、本発明にかかる冷凍サイクル装置は、冷凍サイクルのエネルギー消費効率を向上させることができるので、冷凍サイクル装置を用いた冷凍、空調、給湯、暖房機器等に有用である。   As described above, since the refrigeration cycle apparatus according to the present invention can improve the energy consumption efficiency of the refrigeration cycle, it is useful for refrigeration, air conditioning, hot water supply, heating equipment and the like using the refrigeration cycle apparatus.

1 二段圧縮機
1a 低段圧縮機構
1b 高段圧縮機構
2 放熱器
3 エコノマイザ熱交換器
3a 高圧側冷媒管
3b インジェクション配管
4 第1の減圧手段
5 蒸発器
6 第2の減圧手段
10 冷凍サイクル装置
11 メイン側冷媒回路
12 インジェクション側冷媒回路
13 利用側熱媒体回路
14 暖房端末
15 循環ポンプ
DESCRIPTION OF SYMBOLS 1 Two-stage compressor 1a Low stage compression mechanism 1b High stage compression mechanism 2 Radiator 3 Economizer heat exchanger 3a High pressure side refrigerant pipe 3b Injection pipe 4 First decompression means 5 Evaporator 6 Second decompression means 10 Refrigeration cycle apparatus DESCRIPTION OF SYMBOLS 11 Main side refrigerant circuit 12 Injection side refrigerant circuit 13 Use side heat medium circuit 14 Heating terminal 15 Circulation pump

Claims (5)

複数の圧縮機構からなる圧縮機、前記圧縮機から吐出された冷媒により利用側熱媒体が加熱される放熱器、エコノマイザ熱交換器、第1の減圧手段、蒸発器が順次接続され形成されているメイン側冷媒回路と、
前記放熱器と前記エコノマイザ熱交換器との間、または、前記エコノマイザ熱交換器と前記第1の減圧手段との間から分岐され、第2の減圧手段および前記エコノマイザ熱交換器を有し、前記メイン側冷媒回路から分岐された冷媒が前記第2の減圧手段により減圧された後、前記エコノマイザ熱交換器において、前記メイン側冷媒回路を流れる冷媒と熱交換され、その後、前記複数の圧縮機構の間の冷媒に合流されるインジェクション側冷媒回路と、を備え、
前記エコノマイザ熱交換器は、前記メイン側冷媒回路の冷媒が流れる高圧側冷媒管と、前記インジェクション側冷媒回路の冷媒が流れる流路をインジェクション配管とを有し、前記高圧側冷媒管は、内面溝付き形状であることを特徴とする冷凍サイクル装置。
A compressor composed of a plurality of compression mechanisms, a radiator in which the use side heat medium is heated by the refrigerant discharged from the compressor, an economizer heat exchanger, a first pressure reducing means, and an evaporator are sequentially connected. A main refrigerant circuit;
Branched between the radiator and the economizer heat exchanger, or between the economizer heat exchanger and the first pressure reducing means, and having a second pressure reducing means and the economizer heat exchanger, After the refrigerant branched from the main-side refrigerant circuit is depressurized by the second depressurization means, the economizer heat exchanger exchanges heat with the refrigerant flowing through the main-side refrigerant circuit, and then the plurality of compression mechanisms. An injection-side refrigerant circuit joined to the refrigerant between,
The economizer heat exchanger includes a high-pressure side refrigerant pipe through which a refrigerant of the main-side refrigerant circuit flows, and an injection pipe having a flow path through which the refrigerant of the injection-side refrigerant circuit flows. A refrigeration cycle apparatus having a shape with a tip.
前記高圧側冷媒管の冷媒の流れ方向の管中心位置が、前記インジェクション配管の冷媒の流れ方向の管中心位置より鉛直下方側に位置するように、前記エコノマイザ熱交換器は形成されており、前記インジェクション配管を流れる冷媒は、気液二層状態であることを特徴とする請求項1に記載の冷凍サイクル装置。 The economizer heat exchanger is formed so that a pipe center position in the refrigerant flow direction of the high-pressure side refrigerant pipe is positioned vertically below a pipe center position in the refrigerant flow direction of the injection pipe, The refrigeration cycle apparatus according to claim 1, wherein the refrigerant flowing through the injection pipe is in a gas-liquid two-layer state. 前記高圧側冷媒管は、前記インジェクション配管の内方に配設されていることを特徴とする請求項1または2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, wherein the high-pressure side refrigerant pipe is disposed inside the injection pipe. 前記冷媒は、二酸化炭素であることを特徴とする請求項1〜3に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the refrigerant is carbon dioxide. 前記利用側熱媒体は、水または不凍液で、請求項1〜4のいずれか1項に記載の冷凍サイクル装置を備えた温水生成装置。 The said utilization side heat medium is a warm water production | generation apparatus provided with the refrigeration cycle apparatus of any one of Claims 1-4 by water or antifreeze.
JP2018050345A 2018-03-19 2018-03-19 Refrigeration cycle device and hot water generating device including the same Pending JP2019163866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018050345A JP2019163866A (en) 2018-03-19 2018-03-19 Refrigeration cycle device and hot water generating device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018050345A JP2019163866A (en) 2018-03-19 2018-03-19 Refrigeration cycle device and hot water generating device including the same

Publications (1)

Publication Number Publication Date
JP2019163866A true JP2019163866A (en) 2019-09-26

Family

ID=68065267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018050345A Pending JP2019163866A (en) 2018-03-19 2018-03-19 Refrigeration cycle device and hot water generating device including the same

Country Status (1)

Country Link
JP (1) JP2019163866A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019418A (en) * 1996-07-03 1998-01-23 Toshiba Corp Refrigerator with deep freezer
JP2005214613A (en) * 2004-01-27 2005-08-11 Lg Electronics Inc Air conditioner
JP2008082669A (en) * 2006-09-29 2008-04-10 Mitsubishi Electric Corp Heat pump type water heater
JP2010014311A (en) * 2008-07-02 2010-01-21 Hitachi Cable Ltd Supercooler
WO2011021636A1 (en) * 2009-08-21 2011-02-24 ダイキン工業株式会社 Heat exchanger and refrigeration device with same
JP2013036696A (en) * 2011-08-09 2013-02-21 Daikin Industries Ltd Heat exchanger and freezer unit including the same
JP2013079763A (en) * 2011-10-04 2013-05-02 Sumikei Copper Tube Co Ltd Supercooler heat-transfer tube and super cooler using the same
JP2014016057A (en) * 2012-07-06 2014-01-30 Hitachi Appliances Inc Air conditioner
JP2014181870A (en) * 2013-03-21 2014-09-29 Panasonic Corp Refrigeration cycle device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019418A (en) * 1996-07-03 1998-01-23 Toshiba Corp Refrigerator with deep freezer
JP2005214613A (en) * 2004-01-27 2005-08-11 Lg Electronics Inc Air conditioner
JP2008082669A (en) * 2006-09-29 2008-04-10 Mitsubishi Electric Corp Heat pump type water heater
JP2010014311A (en) * 2008-07-02 2010-01-21 Hitachi Cable Ltd Supercooler
WO2011021636A1 (en) * 2009-08-21 2011-02-24 ダイキン工業株式会社 Heat exchanger and refrigeration device with same
JP2013036696A (en) * 2011-08-09 2013-02-21 Daikin Industries Ltd Heat exchanger and freezer unit including the same
JP2013079763A (en) * 2011-10-04 2013-05-02 Sumikei Copper Tube Co Ltd Supercooler heat-transfer tube and super cooler using the same
JP2014016057A (en) * 2012-07-06 2014-01-30 Hitachi Appliances Inc Air conditioner
JP2014181870A (en) * 2013-03-21 2014-09-29 Panasonic Corp Refrigeration cycle device

Similar Documents

Publication Publication Date Title
US10514187B2 (en) Reversible heat pump with cycle enhancements
US20070180853A1 (en) Refrigerator
JP5205079B2 (en) Heat pump water heater / heater
CN103471276B (en) A kind of air injection enthalpy-increasing type aircondition
WO2014045612A1 (en) Heat pump system and cooling system using same
JP2009270745A (en) Refrigerating system
EP2770277B1 (en) Water heater
EP2770278A1 (en) Water heater
JP4062930B2 (en) Multi-function water heater
CN112923616B (en) Air source CO for preventing evaporator from frosting by using heat of heat regenerator2Heat pump system
JP2009092258A (en) Refrigerating cycle device
CN109682134A (en) Gas-liquid separator and heat pump system
JP2013124802A (en) Refrigeration cycle apparatus
JP2008082601A (en) Heat pump hot water supply device
JP2019163866A (en) Refrigeration cycle device and hot water generating device including the same
JP5150300B2 (en) Heat pump type water heater
JPWO2018097124A1 (en) Air conditioner
CN107178823A (en) Air-conditioning and water-heating system
CN105783331A (en) Heat efficient recovery device for air source water chilling unit
JP2011043273A (en) Heat pump type heating liquid system
JP2008224073A (en) Heat pump hot water supply device
CN106796060A (en) Heat pump assembly
CN219716994U (en) Secondary temperature regulating system and energy storage liquid cooling system
CN113266437B (en) Liquid air energy storage device based on integrated cold box
CN208859932U (en) A kind of refrigeration equipment improving air-conditioning Energy Efficiency Ratio

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220208