JP2005214613A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2005214613A
JP2005214613A JP2004246956A JP2004246956A JP2005214613A JP 2005214613 A JP2005214613 A JP 2005214613A JP 2004246956 A JP2004246956 A JP 2004246956A JP 2004246956 A JP2004246956 A JP 2004246956A JP 2005214613 A JP2005214613 A JP 2005214613A
Authority
JP
Japan
Prior art keywords
refrigerant
air conditioner
pipe
heat exchanger
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004246956A
Other languages
Japanese (ja)
Inventor
Sung Oh Choi
スン オー チョイ
Jon Han Paaku
ジョン ハン パーク
Seok Ho Yoon
ソク ホ ユーン
Sun Chun Kim
スン チュン キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of JP2005214613A publication Critical patent/JP2005214613A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02331Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02334Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-air conditioner having improved air conditioning ability. <P>SOLUTION: The air conditioner comprises an outdoor unit 10 installed outdoor and having a compressor 11 and an outdoor heat exchanger 12 therein, indoor units 30a, 30b and 30c installed indoor and having indoor heat exchangers 31a, 31b and 31c therein, a distributor 20 which guides an inflow refrigerant from the outdoor unit into the indoor unit in accordance with operation conditions and guides the refrigerant having passed through the indoor unit to the outdoor unit again, and a supercooling device 100 which supercools the refrigerant subjected to the heat exchange process in the outdoor heat exchanger under isobaric conditions and then guides the supercooled refrigerant to the distributor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は空気調和機に関し、特に空調能力が向上した空気調和機に関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner with improved air conditioning capability.

一般に、空気調和機は、住居空間、食堂、図書館、又は事務室などのような室内空間を冷房又は暖房する装置であって、圧縮機と熱交換器とを備えて冷媒を流動させることで室内を冷暖房する。   In general, an air conditioner is a device that cools or heats an indoor space such as a residential space, a cafeteria, a library, or an office room, and includes a compressor and a heat exchanger to flow a refrigerant in the room. Air conditioning.

前記空気調和機は、外部の気温や環境に影響を受けることなく、より快適な室内環境を維持するために、冷房と暖房とを同時に行えるマルチ空気調和機に対する開発につながり、全部屋を同一運転モードで冷房又は暖房し得るようになった。   The air conditioner has led to the development of a multi-air conditioner that can perform cooling and heating at the same time in order to maintain a more comfortable indoor environment without being affected by the external temperature and environment. Can be cooled or heated in mode.

このような従来のマルチ空気調和機は、一台の室外機に複数台の室内機が連結され、各室内機が各部屋に設置されて、全部屋を冷房又は暖房モードのうち何れか一方で作動しながら室内の温度を調節する。   In such a conventional multi-air conditioner, a plurality of indoor units are connected to one outdoor unit, each indoor unit is installed in each room, and all the rooms are either in the cooling or heating mode. Adjust indoor temperature while operating.

しかしながら、従来のマルチ空気調和機は、構造が複雑で各部屋の位置又は用途が多様な高層建物のような所に適用される場合には、前記室外機から前記室内機に連結される配管の長さが長くなり、前記室内機に流入する冷媒の圧力低下現象が発生し、前記マルチ空気調和機の空調効率が低下するという問題点があった。   However, when a conventional multi-air conditioner is applied to a place such as a high-rise building having a complicated structure and various room positions or uses, a pipe connected from the outdoor unit to the indoor unit is not suitable. There is a problem that the length of the multi-air conditioner is lowered due to the phenomenon that the pressure of the refrigerant flowing into the indoor unit decreases and the pressure decreases.

本発明は、上記問題点を解決するためのもので、その目的は、空調能力が向上した空気調和機を提供することにある。
本発明の他の目的は、冷媒を案内する冷媒管を長くすることによって引き起こされる該冷媒管の内部を流動する冷媒の圧力損失を最小化し、膨脹装置に流入する冷媒の過冷状態を確保し得る空気調和機を提供することにある。
The present invention is for solving the above-described problems, and an object thereof is to provide an air conditioner having improved air conditioning capability.
Another object of the present invention is to minimize the pressure loss of the refrigerant flowing inside the refrigerant pipe caused by elongating the refrigerant pipe that guides the refrigerant, and to ensure a supercooled state of the refrigerant flowing into the expansion device. It is to provide an air conditioner to obtain.

上記目的を達成するために、本発明による空気調和機は、室外に設置されて、その内部に圧縮機と室外熱交換器とを有する室外機と、室内に設置されて、その内部に室内熱交換器を有する室内機と、前記室外機から流入する冷媒を運転条件により前記室内機に案内し、該室内機を経由した冷媒を前記室外機に再び案内する分配器と、前記室外熱交換器で熱交換過程を経た冷媒を等圧条件下で過冷却させて、該過冷却された冷媒を前記分配器に案内する過冷却装置とを有して構成されることを特徴とする。   In order to achieve the above object, an air conditioner according to the present invention is installed outdoors, an outdoor unit having a compressor and an outdoor heat exchanger therein, an indoor unit, and indoor heat therein. An indoor unit having an exchanger, a distributor that guides refrigerant flowing from the outdoor unit to the indoor unit according to operating conditions, and again guides the refrigerant that has passed through the indoor unit to the outdoor unit, and the outdoor heat exchanger And a supercooling device that supercools the refrigerant that has undergone the heat exchange process under an isobaric condition and guides the supercooled refrigerant to the distributor.

前記過冷却装置は、前記室外熱交換器で熱交換過程を経た冷媒の一部分を膨脹させて、該膨脹させた一部分の冷媒と膨脹させなかった残りの冷媒とを相互熱交換させることを特徴とする。   The subcooling device expands a part of the refrigerant that has undergone a heat exchange process in the outdoor heat exchanger, and exchanges heat between the expanded refrigerant and the remaining refrigerant that has not been expanded. To do.

前記過冷却装置は、前記膨脹させた一部分の冷媒と前記膨脹させなかった残りの冷媒とが相互熱交換される過冷却熱交換器と、前記室外熱交換器で熱交換過程を経た冷媒の一部分を膨脹させる膨脹装置とを有して、前記膨脹させた冷媒を前記過冷却熱交換器に案内する第1連結管と、前記膨脹させなかった冷媒を前記過冷却熱交換器に案内する第2連結管と、前記過冷却熱交換器を経た前記膨脹させなかった冷媒を前記分配器に案内する第3連結管と、前記圧縮機の吸入端に連結される冷媒管に前記過冷却熱交換器を経た前記膨脹させた冷媒を案内する第4連結管とを有して構成されることを特徴とする。   The supercooling device includes a supercooling heat exchanger in which the expanded part of the refrigerant and the remaining unexpanded refrigerant exchange heat with each other, and a part of the refrigerant that has undergone a heat exchange process in the outdoor heat exchanger. A first connecting pipe that guides the expanded refrigerant to the supercooling heat exchanger, and a second guide pipe that guides the unexpanded refrigerant to the supercooling heat exchanger. The supercooling heat exchanger is connected to a connecting pipe, a third connecting pipe for guiding the unexpanded refrigerant having passed through the supercooling heat exchanger to the distributor, and a refrigerant pipe connected to the suction end of the compressor. And a fourth connecting pipe for guiding the expanded refrigerant that has passed through.

前記過冷却熱交換器は、一端が前記第2連結管に、他端が前記第3連結管に連結されて、前記膨脹させなかった冷媒が流動する第1流動管と、一端が前記第1連結管に、他端が前記第4連結管に連結されて、前記第1流動管と熱交換し、前記膨脹させた冷媒が流動する第2流動管とを有して構成されることを特徴とする。   The supercooling heat exchanger has one end connected to the second connecting pipe, the other end connected to the third connecting pipe, the first flow pipe through which the unexpanded refrigerant flows, and one end connected to the first connecting pipe. The other end of the connecting pipe is connected to the fourth connecting pipe to exchange heat with the first flow pipe, and the second flow pipe through which the expanded refrigerant flows is configured. And

前記過冷却熱交換器は、二重管構造から成る。より詳細には、前記第2流動管は、前記第1流動管の内部に長手方向に配置される。
ここで、前記第2流動管に沿って流れる冷媒は、前記第1流動管に沿って流れる冷媒の流動方向と反対方向に流動するか、又は前記第1流動管に沿って流れる冷媒の流動方向と同一方向に流動することを特徴とする。
The supercooling heat exchanger has a double tube structure. More specifically, the second flow pipe is disposed in the longitudinal direction inside the first flow pipe.
Here, the refrigerant flowing along the second flow tube flows in a direction opposite to the flow direction of the refrigerant flowing along the first flow tube, or the flow direction of the refrigerant flowing along the first flow tube. It is characterized by flowing in the same direction.

前記第1流動管は、前記第2流動管の内部に長手方向に配置されることを特徴とする。
このように構成される前記過冷却熱交換器は、その長さが1mから2.5mであることを特徴とする。
The first flow tube is disposed in the longitudinal direction inside the second flow tube.
The supercooling heat exchanger configured as described above has a length of 1 m to 2.5 m.

前記過冷却熱交換器は、内部流動管の壁に形成されて、熱交換面積を大きくする熱交換部を更に有して構成されることを特徴とする。
該熱交換部は、前記内部流動管の内壁から内側に突出形成される。より詳細には、該熱交換部は前記内部流動管の内壁面に円周方向に設けられることを特徴とする。
The subcooling heat exchanger further includes a heat exchange part formed on a wall of the internal flow pipe to increase a heat exchange area.
The heat exchange part is formed to protrude inward from the inner wall of the internal flow pipe. More specifically, the heat exchange part is provided on the inner wall surface of the internal flow pipe in a circumferential direction.

前記熱交換部は、前記内部流動管の内壁面に長手方向に設けられるか、又は前記内部流動管の内壁面に螺旋状に設けることもできる。
そして、前記膨脹装置は、電子膨脹バルブから成ることが望ましい。
The heat exchange part may be provided on the inner wall surface of the internal flow tube in the longitudinal direction, or may be provided on the inner wall surface of the internal flow tube in a spiral shape.
The expansion device is preferably composed of an electronic expansion valve.

上記の構成に加えて、前記マルチ空気調和機は、前記圧縮機の吸入端に連結される冷媒管に具備されて、気体状の冷媒と液体状の冷媒とを分離するアキュムレータを更に有して構成されることを特徴とする。   In addition to the above configuration, the multi-air conditioner further includes an accumulator that is provided in a refrigerant pipe connected to the suction end of the compressor and separates a gaseous refrigerant and a liquid refrigerant. It is characterized by being configured.

この時、前記第4連結管は、前記アキュムレータの冷媒流入端の所定位置に連結される冷媒管に連結されることを特徴とする。
前記過冷却装置は、前記室外機の内部の所定位置に設けられることを特徴とする。
At this time, the fourth connecting pipe is connected to a refrigerant pipe connected to a predetermined position of the refrigerant inflow end of the accumulator.
The supercooling device is provided at a predetermined position inside the outdoor unit.

前記室外機は、前記運転条件によって、前記圧縮機から吐出される冷媒の流動方向を前記室外熱交換器や前記分配器に選択的に切り替えるスイッチ装置を更に有して構成されることを特徴とする。   The outdoor unit further includes a switch device that selectively switches the flow direction of the refrigerant discharged from the compressor to the outdoor heat exchanger or the distributor according to the operating conditions. To do.

上述した本発明によって、各部屋の環境によって一部の部屋は冷房モードで運転され、他の部屋は暖房モードで運転され得るマルチ空気調和機を提供することができ、且つ、マルチ空気調和機の設置上の自由度を向上させて、冷媒の過冷状態を維持し得るマルチ空気調和機を提供することができる。   According to the present invention described above, it is possible to provide a multi-air conditioner in which some rooms can be operated in a cooling mode and other rooms can be operated in a heating mode depending on the environment of each room, and The multi air conditioner which can improve the freedom degree in installation and can maintain the supercooled state of a refrigerant | coolant can be provided.

本発明の空気調和機には次のような効果がある。
第一に、本発明による空気調和機は、前記室外機と室内機との間に設けられる第1冷媒管の長さが長くなっても、前記過冷却装置によって過冷状態の冷媒が提供されるので冷媒圧力の降下が最小化され、冷凍能力が向上する。
The air conditioner of the present invention has the following effects.
First, in the air conditioner according to the present invention, even if the length of the first refrigerant pipe provided between the outdoor unit and the indoor unit becomes long, the supercooling device provides the supercooled refrigerant. Therefore, the refrigerant pressure drop is minimized, and the refrigeration capacity is improved.

第二に、本発明による空気調和機の室内機には、過冷された高圧の液状冷媒が流入するために、前記室内機の膨脹装置から冷媒の膨脹時に発生する騒音を最小化することができる。   Second, since the supercooled high-pressure liquid refrigerant flows into the indoor unit of the air conditioner according to the present invention, it is possible to minimize noise generated when the refrigerant expands from the expansion unit of the indoor unit. it can.

第三に、本発明による空気調和機の室内機に流入する冷媒の圧力降下が最小化されるために、前記空気調和機に提供される圧縮機の容量を最小化することができ、前記空気調和機の製造単価を節減し、容積を最小化することができる。   Third, since the pressure drop of the refrigerant flowing into the indoor unit of the air conditioner according to the present invention is minimized, the capacity of the compressor provided to the air conditioner can be minimized, and the air The unit price of the harmony machine can be saved and the volume can be minimized.

本発明に対する理解を容易にするために、空気調和機の機能に対して先ず説明する。前記空気調和機は、特定領域の空気を使用目的に適合するように空気の温度、湿度、空気の流動及び空気の清浄度等を調節するように機能する。例えば、住居空間や事務所、食堂等のような室内空間を冷房又は暖房する機能を行う装置である。   In order to facilitate understanding of the present invention, the function of the air conditioner will be described first. The air conditioner functions to adjust air temperature, humidity, air flow, air cleanliness, and the like so that air in a specific area is adapted to the intended use. For example, it is a device that performs a function of cooling or heating indoor spaces such as residential spaces, offices, and dining rooms.

このような空気調和機は、冷房運転時には室内の熱を吸収した低圧の冷媒が圧縮機で高圧状態に圧縮された後に室外空気に熱を放出することで室内を冷房し、暖房運転時には上記の行程が反対に行われることで室内を暖房する。   Such an air conditioner cools the room by releasing heat to the outdoor air after the low-pressure refrigerant that has absorbed the heat in the room is compressed to a high pressure state by the compressor during the cooling operation, and The room is heated by the opposite process.

図1は、本発明による空気調和機の第1実施形態であって、冷暖房同時型マルチ空気調和機の構成を示した構成図である。
図1に示したように、前記冷暖房同時型マルチ空気調和機は、大きく室外機10、分配器20及び各部屋に設置される複数個の室内機30a、30b、30cから構成される。
FIG. 1 is a configuration diagram showing a configuration of an air-conditioning simultaneous multi-type air conditioner according to a first embodiment of the present invention.
As shown in FIG. 1, the air-conditioning simultaneous multi-type air conditioner is mainly composed of an outdoor unit 10, a distributor 20, and a plurality of indoor units 30a, 30b, 30c installed in each room.

前記室外機10には、圧縮機11と、室外熱交換器12と、該室外熱交換器12の一方側に設置される室外ファン13と、運転モードによって前記圧縮機11で圧縮された冷媒の流動方向を前記室外熱交換器12や前記分配器20に選択的に切り替えるスイッチ装置15と、前記圧縮機11の吸入端に連結される冷媒管に具備されて、気体状の冷媒と液体状の冷媒とを分離するアキュムレータ14とが設置される。   The outdoor unit 10 includes a compressor 11, an outdoor heat exchanger 12, an outdoor fan 13 installed on one side of the outdoor heat exchanger 12, and a refrigerant compressed by the compressor 11 according to an operation mode. A switch device 15 that selectively switches the flow direction to the outdoor heat exchanger 12 or the distributor 20 and a refrigerant pipe that is connected to the suction end of the compressor 11, and includes a gaseous refrigerant and a liquid state An accumulator 14 for separating the refrigerant is installed.

このような構成を有する冷暖房同時型マルチ空気調和機の室外機10は、前記圧縮機11から吐出される高圧の冷媒を、前記スイッチ装置15により前記室外熱交換器12を通過させて前記分配器20に案内する第1冷媒管21と、前記圧縮機11から吐出される冷媒を前記分配器20に直接案内する第2冷媒管22と、前記分配器20と前記圧縮機11の吸入端とを連結する第3冷媒管23とにより前記分配器20と連結される。   The outdoor unit 10 of the simultaneous heating and cooling type multi-air conditioner having such a configuration allows the high-pressure refrigerant discharged from the compressor 11 to pass through the outdoor heat exchanger 12 by the switch device 15, and to distribute the distributor. A first refrigerant pipe 21 that guides the refrigerant 20, a second refrigerant pipe 22 that directly guides the refrigerant discharged from the compressor 11 to the distributor 20, and the distributor 20 and the suction end of the compressor 11. The distributor 20 is connected to the third refrigerant pipe 23 to be connected.

そして、前記各室内機30a、30b、30cには、各室内熱交換器31a、31b、31cと冷房モード時に該各室内熱交換器31a、31b、31c に流入する冷媒を所定状態に膨脹させる膨脹装置32a、32b、32cとが設置される。   The indoor units 30a, 30b, and 30c are expanded to expand the refrigerant that flows into the indoor heat exchangers 31a, 31b, and 31c and the indoor heat exchangers 31a, 31b, and 31c to a predetermined state in the cooling mode. Devices 32a, 32b, 32c are installed.

次に、前記分配器20は、前記室外機10から流入する冷媒を、冷房モードで運転される室内機の場合には、該当の室内機の膨脹装置32a、32b、32cに直接案内し、暖房モードで運転される室内機の場合には、該当の室内機の各室内熱交換器27a、27b、27cに直接案内するように構成される。   Next, the distributor 20 directly guides the refrigerant flowing from the outdoor unit 10 to the expansion devices 32a, 32b, and 32c of the corresponding indoor unit in the case of an indoor unit that is operated in the cooling mode. In the case of an indoor unit that is operated in the mode, the indoor unit is configured to directly guide the indoor heat exchangers 27a, 27b, and 27c of the corresponding indoor unit.

このために、前記分配器20には、前記第1冷媒管21から前記室内機と同数だけ分岐して、前記各室内機の膨脹装置32a、32b、32に連結される各第1冷媒分岐管21a、21b、21cと、前記第2冷媒管22から分岐して前記各室内機の室内熱交換器31a、31b、31c側に連結される各第2冷媒分岐管22a、22b、22cと、前記第3冷媒管23から分岐して前記各室内機の室内熱交換器31a、31b、31c側に連結される第3冷媒分岐管23a、23b、23cとが設置される。そして、前記各第2冷媒分岐管22a、22b、22cには、各第1電子式開閉バルブ26a、26b、26cが設置され、前記各第3冷媒分岐管22a、22b、22cには、各第2電子式開閉バルブ26a、26b、26cが設置される。   For this purpose, the distributor 20 branches from the first refrigerant pipe 21 by the same number as the indoor unit, and is connected to the expansion devices 32a, 32b, 32 of the indoor units. 21a, 21b, 21c, the second refrigerant branch pipes 22a, 22b, 22c branched from the second refrigerant pipe 22 and connected to the indoor heat exchangers 31a, 31b, 31c of the indoor units, Third refrigerant branch pipes 23a, 23b, and 23c branched from the third refrigerant pipe 23 and connected to the indoor heat exchangers 31a, 31b, and 31c of the indoor units are installed. The second refrigerant branch pipes 22a, 22b and 22c are provided with first electronic on-off valves 26a, 26b and 26c, respectively, and the third refrigerant branch pipes 22a, 22b and 22c are provided with respective first Two-electronic on-off valves 26a, 26b, and 26c are installed.

このような構成によって、暖房モードで運転される室内機の場合には、該室内機側と連結される第2冷媒分岐管に設置された第1電子式開閉バルブは開放されて、前記室内機側と連結される第3冷媒分岐管に設置された第2電子式開閉バルブは閉鎖され、前記圧縮機11から吐出される冷媒が前記第2冷媒管22と前記室内機に連結される第2冷媒分岐管とを通って、前記室内機の室内熱交換器に流入される。そして、冷房モードで運転される室内機の場合には、前記冷房モードで運転される室内機側に連結される第2冷媒分岐管に設置された第1電子式開閉バルブは閉鎖されて、前記室内機側と連結される第3冷媒分岐管に設置された第2電子式開閉バルブは開放され、前記室内機に連結される第1冷媒分岐管を通って前記室内機の膨脹装置に流入して膨脹された冷媒が、前記室内機の室内熱交換器と前記室内機側に連結される第3冷媒分岐管を通過して前記第3冷媒管23に流入する。   With such a configuration, in the case of an indoor unit operated in the heating mode, the first electronic on-off valve installed in the second refrigerant branch pipe connected to the indoor unit side is opened, and the indoor unit The second electronic on-off valve installed in the third refrigerant branch pipe connected to the side is closed, and the refrigerant discharged from the compressor 11 is connected to the second refrigerant pipe 22 and the indoor unit. It passes through the refrigerant branch pipe and flows into the indoor heat exchanger of the indoor unit. In the case of an indoor unit operated in the cooling mode, the first electronic on-off valve installed in the second refrigerant branch pipe connected to the indoor unit operated in the cooling mode is closed, The second electronic on-off valve installed in the third refrigerant branch pipe connected to the indoor unit side is opened and flows into the expansion device of the indoor unit through the first refrigerant branch pipe connected to the indoor unit. The expanded refrigerant passes through the indoor heat exchanger of the indoor unit and the third refrigerant branch pipe connected to the indoor unit side, and flows into the third refrigerant pipe 23.

また、前記分配器20には、前記第2冷媒管22と前記第3冷媒管23とを連結するバイパス管25が設置されて、該バイパス管25の管路上には前記第2冷媒管22に停滞する高圧冷媒を低圧の冷媒に変換させる電子変換バルブ25aが設置され、全ての室内機が冷房モードで運転される場合に、高圧の気体状冷媒が停滞により液化することを防止する。   The distributor 20 is provided with a bypass pipe 25 that connects the second refrigerant pipe 22 and the third refrigerant pipe 23, and the second refrigerant pipe 22 is connected to the bypass pipe 25. An electronic conversion valve 25a that converts the stagnating high-pressure refrigerant into a low-pressure refrigerant is installed to prevent the high-pressure gaseous refrigerant from being liquefied due to the stagnation when all the indoor units are operated in the cooling mode.

一方、本発明による空気調和機の第1実施形態として提供された冷暖房同時型マルチ空気調和機は、前記室外熱交換器12と分配器20とを連結する第1冷媒管21に設置される過冷却装置100を更に有して構成される。   On the other hand, the simultaneous heating and cooling type multi-air conditioner provided as the first embodiment of the air conditioner according to the present invention is an excess air conditioner installed in a first refrigerant pipe 21 connecting the outdoor heat exchanger 12 and the distributor 20. It further includes a cooling device 100.

該過冷却装置100は、前記室外熱交換器で熱交換行程を経た冷媒を等圧条件下で過冷却し、該過冷却された冷媒を前記分配器20に案内する装置であって、前記室外熱交換器12の吐出冷媒のうち一部分を膨脹させ、該膨脹させた冷媒を室外熱交換器から吐出されて前記第1冷媒管21に沿って前記分配器20側に流動される残りの冷媒とを相互熱交換させた後に、該分配器20と圧縮機11の吸入端とを連結する第3冷媒管23に流入させるようにする。前記過冷却装置100の詳細な構成に関しては、図3乃至図5を参照して説明する。   The supercooling device 100 is a device that supercools the refrigerant that has undergone the heat exchange process in the outdoor heat exchanger under an isobaric condition, and guides the supercooled refrigerant to the distributor 20. A part of the refrigerant discharged from the heat exchanger 12 is expanded, and the expanded refrigerant is discharged from the outdoor heat exchanger and flows along the first refrigerant pipe 21 to the distributor 20 side. Are exchanged with each other and then flowed into the third refrigerant pipe 23 connecting the distributor 20 and the suction end of the compressor 11. A detailed configuration of the supercooling device 100 will be described with reference to FIGS.

上記の構成に加えて、前記分配器20は、前記第1冷媒管21に設置される二重管構造の補助過冷装置24を更に有して構成されることが望ましい。該補助過冷装置24は、冷媒間の熱交換作用により前記室内熱交換器31a、31b、31cに流入する冷媒の過冷度を確保するように機能する。   In addition to the above configuration, it is desirable that the distributor 20 further includes an auxiliary supercooling device 24 having a double tube structure installed in the first refrigerant tube 21. The auxiliary supercooling device 24 functions to ensure the degree of supercooling of the refrigerant flowing into the indoor heat exchangers 31a, 31b, 31c by the heat exchange action between the refrigerants.

次に、本発明による空気調和機の他の実施形態としての冷暖房選択型マルチ空気調和機に関して図2を参照して説明する。
図2は、この冷暖房選択型マルチ空気調和機の構成を示した構成図である。
Next, an air conditioning selection type multi-air conditioner as another embodiment of the air conditioner according to the present invention will be described with reference to FIG.
FIG. 2 is a configuration diagram showing the configuration of this air conditioning selection type multi-air conditioner.

前記冷暖房選択型マルチ空気調和機は、大きく室外機50、分配器60、及び、各部屋に設置される複数の室内機70a、70b、70cにより構成されて、前記室内機の全体が冷房モードで運転されるか又は前記室内機の全体が暖房モードで運転される。   The air-conditioning selection type multi-air conditioner is mainly composed of an outdoor unit 50, a distributor 60, and a plurality of indoor units 70a, 70b, 70c installed in each room, and the whole indoor unit is in a cooling mode. It is operated or the whole indoor unit is operated in the heating mode.

前記室外機50には、圧縮機51と、室外熱交換器52と、該室外熱交換器52の一方側に設置される室外ファン53と、運転モードによって前記圧縮機51で圧縮された冷媒の流動方向を前記室外熱交換器又は前記分配器へ選択的に切り替えるスイッチ装置55と、前記圧縮機51の吸入端に連結される冷媒管に具備されて気体状の冷媒と液体状の冷媒とを分離するアキュムレータ54とが設置される。   The outdoor unit 50 includes a compressor 51, an outdoor heat exchanger 52, an outdoor fan 53 installed on one side of the outdoor heat exchanger 52, and refrigerant compressed by the compressor 51 according to an operation mode. A switch device 55 that selectively switches the flow direction to the outdoor heat exchanger or the distributor, a refrigerant pipe connected to the suction end of the compressor 51, and a gaseous refrigerant and a liquid refrigerant. A separate accumulator 54 is installed.

上記のような構成を有する冷暖房選択型マルチ空気調和機の室外機50は、前記圧縮機51から吐出される高圧の冷媒を前記スイッチ装置55により、前記室外熱交換器52を介して前記分配器60に案内する第1冷媒管61と、一方端が前記圧縮機51の吐出端に連結される冷媒管に連結されて、前記圧縮機51から吐出される冷媒を前記分配器60に直接的に案内する第2冷媒管62と、前記分配器60と前記圧縮機11の吸入端とを連結する第3冷媒管63と、により前記分配器20と連結される。   The outdoor unit 50 of the air conditioning selection type multi-air conditioner having the above-described configuration is configured such that the high-pressure refrigerant discharged from the compressor 51 is supplied to the distributor by the switch device 55 via the outdoor heat exchanger 52. The first refrigerant pipe 61 guided to 60 and one end of the refrigerant pipe connected to the discharge end of the compressor 51 are connected directly to the distributor 60 for the refrigerant discharged from the compressor 51. The second refrigerant pipe 62 for guiding and the third refrigerant pipe 63 for connecting the distributor 60 and the suction end of the compressor 11 are connected to the distributor 20.

そして、前記各室内機には、各室内熱交換器71a、71b、71cと、冷房モード時に前記室内熱交換器に流入する冷媒を所定状態に膨脹させる膨脹装置72a、72b、72cとが設置される。   Each indoor unit is provided with each indoor heat exchanger 71a, 71b, 71c and an expansion device 72a, 72b, 72c for expanding the refrigerant flowing into the indoor heat exchanger in a cooling mode to a predetermined state. The

次に、前記分配器60は、前記各室内機70a、70b、70cの全体が冷房モードで運転される場合に、前記第1連結管61を通って流入する冷媒を前記室内機の各膨脹装置72a、72b、72cに直接案内し、前記各室内機70a、70b、70cの全体が暖房モードで運転される場合に、前記第1連結管62を通って流入する冷媒を前記室内機の各室内熱交換器71a、71b、71cに直接案内するように構成される。   Next, the distributor 60 supplies the refrigerant flowing through the first connecting pipe 61 to the expansion devices of the indoor units when the entire indoor units 70a, 70b, 70c are operated in the cooling mode. When the entire indoor units 70a, 70b, and 70c are operated in the heating mode, the refrigerant flowing through the first connecting pipe 62 is supplied to the indoor units 70a, 72b, and 72c. The heat exchangers 71a, 71b, 71c are configured to be guided directly.

このために、前記分配器60には、前記第1冷媒管61から前記室内機70a、70b、70cの数だけ分岐されて前記各室内機の膨脹装置72a、72b、72cと連結される第1冷媒分岐管61a、61b、61cと、前記第2冷媒管62から分岐されて前記各室内機の室内熱交換器71a、71b、71cと連結される第2冷媒分岐管62a、62b、62cと、前記第2冷媒管62が前記各第2冷媒分岐管に分岐される前の所定位置に設けられた電子開閉バルブ64とが設置される。そして、前記第3冷媒管63は、前記第2冷媒管62の他方端に連結されるように構成される。   For this purpose, the distributor 60 is branched from the first refrigerant pipe 61 by the number of the indoor units 70a, 70b, 70c and is connected to the expansion devices 72a, 72b, 72c of the indoor units. Refrigerant branch pipes 61a, 61b, 61c, second refrigerant branch pipes 62a, 62b, 62c branched from the second refrigerant pipe 62 and connected to the indoor heat exchangers 71a, 71b, 71c of the indoor units, An electronic opening / closing valve 64 provided at a predetermined position before the second refrigerant pipe 62 is branched into the second refrigerant branch pipes is installed. The third refrigerant pipe 63 is configured to be connected to the other end of the second refrigerant pipe 62.

上記のような構成によって、前記各室内機70a、70b、70cの全体が冷房モードで運転される場合には、前記2冷媒管62に設置された電子開閉バルブ64が閉鎖され、前記圧縮機51から吐出される冷媒が前記スイッチ装置55により前記第1冷媒管61と前記各室内機70a、70b、70cに連結される各第1冷媒分岐管61a、61b、61cとを通って前記各膨脹装置72a、72b、72cに流入して膨脹された後に、前記各室内熱交換器71a、71b、71c、前記各第2冷媒分岐管62a、62b、62c、及び、前記第3冷媒管63を通過して前記圧縮機51に吸入される。   With the above configuration, when the entire indoor units 70a, 70b, and 70c are operated in the cooling mode, the electronic opening / closing valve 64 installed in the second refrigerant pipe 62 is closed, and the compressor 51 The refrigerant discharged from the passage passes through the first refrigerant pipe 61 and the first refrigerant branch pipes 61a, 61b, 61c connected to the indoor units 70a, 70b, 70c by the switch device 55. 72 a, 72 b, 72 c, expanded and then passed through the indoor heat exchangers 71 a, 71 b, 71 c, the second refrigerant branch pipes 62 a, 62 b, 62 c, and the third refrigerant pipe 63. And sucked into the compressor 51.

そして、前記各室内機70a、70b、70cの全体が暖房モードで運転される場合には、前記2冷媒管62に設置された電子開閉バルブ64が開放され、前記圧縮機51から吐出される冷媒が、前記スイッチ装置55によって前記第2冷媒管62と前記各室内機70a、70b、70cに連結される各第2冷媒分岐管62a、62b、62cとを通って前記各室内熱交換器71a、71b、71cに流入して熱交換された後に、前記各膨脹装置72a、72b、72c、前記第1冷媒分岐管61a、61b、61c、及び、前記第1冷媒管61などを通過して前記圧縮機51に吸入される。   When the entire indoor units 70a, 70b, and 70c are operated in the heating mode, the electronic opening / closing valve 64 installed in the second refrigerant pipe 62 is opened, and the refrigerant discharged from the compressor 51 However, each indoor heat exchanger 71a, through the second refrigerant pipe 62 and the second refrigerant branch pipes 62a, 62b, 62c connected to the indoor units 70a, 70b, 70c by the switch device 55. After the heat exchange by flowing into 71b, 71c, the compression passes through the expansion devices 72a, 72b, 72c, the first refrigerant branch pipes 61a, 61b, 61c, the first refrigerant pipe 61, etc. Inhaled by the machine 51.

また、本発明による空気調和機の他の実施形態として提供される冷暖房選択型マルチ空気調和機は、前記室外熱交換器12と分配器20とを連結する第1冷媒管21に設置される過冷却装置100を更に有して構成される。   In addition, an air-conditioning selection type multi-air conditioner provided as another embodiment of the air conditioner according to the present invention is an excess installed in a first refrigerant pipe 21 that connects the outdoor heat exchanger 12 and the distributor 20. It further includes a cooling device 100.

該過冷却装置100は、前記室外熱交換器52で熱交換過程を経た冷媒を等圧条件下で過冷却させて、該過冷却された冷媒を前記分配器に案内する装置であって、前記室外熱交換器52の吐出冷媒のうち一部分を膨脹させて、該膨脹させた冷媒と前記室外熱交換器52から吐出されて前記第1冷媒管61に沿って前記分配器60側に流動する残りの冷媒とを相互熱交換させた後に、前記分配器60と圧縮機51の吸入端とを連結する第3冷媒管63に流入させるようにする。   The supercooling device 100 is a device that supercools the refrigerant that has undergone the heat exchange process in the outdoor heat exchanger 52 under an isobaric condition, and guides the supercooled refrigerant to the distributor. A part of the refrigerant discharged from the outdoor heat exchanger 52 is expanded, and the expanded refrigerant and the remainder discharged from the outdoor heat exchanger 52 and flowing toward the distributor 60 along the first refrigerant pipe 61 are left. Then, the refrigerant is allowed to flow into a third refrigerant pipe 63 that connects the distributor 60 and the suction end of the compressor 51.

このように冷暖房同時型と選択型マルチ空気調和機に共通的に適用される過冷却装置100の構成に関して、図3乃至図5を参照して説明すると、該過冷却装置100は、過冷却熱交換器110、膨脹装置120、前記過冷却熱交換器110に連結される各連結管を有して構成される。   The configuration of the supercooling device 100 that is commonly applied to the simultaneous heating / cooling type and selective multi-air conditioners will be described with reference to FIGS. 3 to 5. The exchanger 110, the expansion device 120, and each connecting pipe connected to the supercooling heat exchanger 110 are configured.

より詳細に説明すると、前記過冷却装置100は、前記膨脹させた一部分の冷媒と前記膨脹させなかった残りの冷媒とを相互熱交換させる過冷却熱交換器110と、前記室外熱交換器52で熱交換過程を経た冷媒の一部分を膨脹させる前記膨脹装置120とを有し、前記第1冷媒管21、61に連結されて前記膨脹させた冷媒を前記過冷却熱交換器110に案内する第1連結管131と、前記膨脹させなかった冷媒を前記過冷却熱交換器110に案内する第2連結管132と、前記過冷却熱交換器110を通過して熱交換されて過冷却された前記膨脹させなかった冷媒を、前記分配器20、60に案内する第3連結管133、前記圧縮機11、51の吸入端に連結される第3冷媒管に前記過冷却熱交換器を経た熱交換が行われて前記膨脹させた冷媒を案内する第4連結管134とを有して構成される。   More specifically, the supercooling device 100 includes a supercooling heat exchanger 110 that exchanges heat between the part of the expanded refrigerant and the remaining refrigerant that has not been expanded, and the outdoor heat exchanger 52. The expansion device 120 expands a part of the refrigerant that has undergone the heat exchange process, and is connected to the first refrigerant pipes 21 and 61 to guide the expanded refrigerant to the supercooling heat exchanger 110. The connection pipe 131, the second connection pipe 132 that guides the unexpanded refrigerant to the supercooling heat exchanger 110, and the expansion that has passed through the supercooling heat exchanger 110 and is supercooled by heat exchange. Heat exchange via the supercooling heat exchanger is performed on the third refrigerant pipe connected to the third connection pipe 133 that guides the refrigerant that has not been made to the distributors 20 and 60 and the suction end of the compressors 11 and 51. Done and said inflated Constructed and a fourth connecting pipe 134 for guiding the refrigerant.

前記過冷却熱交換器110には、前記各室外熱交換器12、52から吐出された冷媒が分かれて流入するように流路が形成される。このために、前記過冷却熱交換器110は、一方端は前記第2連結管132に、他方端は前記第3連結管133に連結されて、前記膨脹させなかった高温の冷媒が流動する第1流動管111と、一方端は前記第1連結管131に、他方端は前記第4連結管134に連結されて、前記第1流動管111と熱交換し、前記膨脹させた低温の冷媒が流動する第2流動管112と、を有して構成されることが望ましい。   The supercooling heat exchanger 110 is formed with a flow path so that the refrigerant discharged from the outdoor heat exchangers 12 and 52 flows separately. For this purpose, the supercooling heat exchanger 110 has a first end connected to the second connecting pipe 132 and the other end connected to the third connecting pipe 133 so that the unexpanded high-temperature refrigerant flows. One flow pipe 111 is connected to the first connection pipe 131 at one end and to the fourth connection pipe 134 at the other end, and exchanges heat with the first flow pipe 111 so that the expanded low-temperature refrigerant is It is desirable to have a second flow pipe 112 that flows.

ここで、前記過冷却熱交換器110は、冷媒の熱交換効率を向上させるために、内部流動管と該内部流動管の外部に提供される外部流動管から成る二重管構造で形成されることが望ましい。   Here, the supercooling heat exchanger 110 is formed of a double pipe structure including an internal flow pipe and an external flow pipe provided outside the internal flow pipe in order to improve the heat exchange efficiency of the refrigerant. It is desirable.

本発明においては、前記内部流動管を前記第2流動管112とし、前記外部流動管を前記第1流動管111とする方が良い。これは、前記内部流動管112に膨脹した低温冷媒が流動し、前記外部流動管111には前記各室外熱交換器12、52から吐出される高温冷媒が流動するので、前記過冷却熱交換器110の表面に湿気が結露することが防止されるためである。勿論、該過冷却熱交換器110の外部流動管が前記第1連結管131に連結され、前記内部流動管が前記第2連結管132に連結されるようにすることも可能である。この時には、前記外部流動管112に相対的に低温冷媒が流動するために、室外空気の湿気が前記過冷却熱交換器110の表面に結露する可能性がある。   In the present invention, it is preferable that the internal flow pipe is the second flow pipe 112 and the external flow pipe is the first flow pipe 111. This is because the expanded low-temperature refrigerant flows in the internal flow pipe 112 and the high-temperature refrigerant discharged from the outdoor heat exchangers 12 and 52 flows in the external flow pipe 111. This is because moisture is prevented from condensing on the surface of 110. Of course, the external flow pipe of the supercooling heat exchanger 110 may be connected to the first connection pipe 131, and the internal flow pipe may be connected to the second connection pipe 132. At this time, since the low-temperature refrigerant flows relatively to the external flow pipe 112, the humidity of the outdoor air may be condensed on the surface of the supercooling heat exchanger 110.

該過冷却熱交換器110は、二つの流動管111、112が互いに接触する構造なら様々な形態に変更することができる。その例として、前記過冷却熱交換器は、前記第1流動管を前記第二流動管に数回巻き付ける構造等として提供することもできる。そして、前記二つの流動管111、112は、熱伝導性の大きい材質から形成する方が良い。   The supercooling heat exchanger 110 can be changed to various forms as long as the two flow tubes 111 and 112 are in contact with each other. For example, the supercooling heat exchanger can be provided as a structure in which the first flow pipe is wound around the second flow pipe several times. The two flow pipes 111 and 112 are preferably formed of a material having high thermal conductivity.

そして、前記第4連結管134は、前記圧縮機に液状の冷媒が流入されることを防止するために、前記アキュムレータ14、54の流入端に連結される第3冷媒管23、63の所定位置に連結されることが望ましい。   The fourth connecting pipe 134 is provided at a predetermined position of the third refrigerant pipes 23 and 63 connected to the inflow ends of the accumulators 14 and 54 in order to prevent the liquid refrigerant from flowing into the compressor. It is desirable to be connected to.

勿論、前記第4連結管134は、前記第3冷媒管23の前記圧縮機11、51とアキュムレータ14、54との間の所定位置に連結されるようにすることも可能である。このような冷媒は、膨脹して殆ど気体状態であるので、前記圧縮機11、51に流入しても該圧縮機11、51の安全性を大きく損なうことはないからである。   Of course, the fourth connecting pipe 134 may be connected to a predetermined position of the third refrigerant pipe 23 between the compressors 11 and 51 and the accumulators 14 and 54. This is because such a refrigerant expands and is almost in a gaseous state, so that even if it flows into the compressors 11 and 51, the safety of the compressors 11 and 51 is not greatly impaired.

そして、前記第1流動管111に沿って流れる高温の冷媒は、前記第2流動管112に沿って流れる低温の膨脹冷媒の流動方向と反対方向に流動するように、前記第1乃至第4連結管131、132、133、134を前記過冷却熱交換器110に連結することが望ましい。これは、冷媒を相互反対方向に流動させることで、熱交換効率を高めるためである。勿論、前記過冷却装置100の設計条件によっては、前記第1流動管111に沿って流れる高温の冷媒は、前記第2流動管112に沿って流れる低温の膨脹冷媒の流動方向と同一方向に流動するように、前記第1乃至第4連結管131、132、133、134を前記過冷却熱交換器110に連結することもできる。   Then, the first to fourth couplings are performed so that the high-temperature refrigerant flowing along the first flow pipe 111 flows in a direction opposite to the flow direction of the low-temperature expanded refrigerant flowing along the second flow pipe 112. It is desirable to connect the tubes 131, 132, 133, 134 to the supercooling heat exchanger 110. This is to increase the heat exchange efficiency by causing the refrigerant to flow in opposite directions. Of course, depending on the design conditions of the supercooling device 100, the high-temperature refrigerant flowing along the first flow pipe 111 flows in the same direction as the flow direction of the low-temperature expanded refrigerant flowing along the second flow pipe 112. As described above, the first to fourth connection pipes 131, 132, 133, and 134 may be connected to the supercooling heat exchanger 110.

上記のように構成される二重管構造の前記過冷却熱交換器の内部流動管には、熱交換面積を大きくする各熱交換部113a、113bが形成されることが望ましい。
より詳細には、前記各熱交換部113a、113bは、前記内部流動管(本発明においては前記第2流動管112)の内壁から内側に突出形成される。
It is desirable that the heat exchangers 113a and 113b that increase the heat exchange area be formed in the internal flow pipe of the supercooling heat exchanger having the double pipe structure configured as described above.
More specifically, each of the heat exchange portions 113a and 113b is formed to protrude inward from the inner wall of the internal flow pipe (in the present invention, the second flow pipe 112).

これは、前記外部流動管(本発明においては前記第1流動管111)に沿って流動する冷媒に発生する流動抵抗の増加を防止して、前記第2流動管112に沿って流動する冷媒との熱交換面積を向上させるためである。   This prevents an increase in flow resistance generated in the refrigerant flowing along the external flow pipe (the first flow pipe 111 in the present invention), and the refrigerant flowing along the second flow pipe 112. This is to improve the heat exchange area.

勿論、前記各熱交換部113a、113bは、内部流動管の内外壁の全てに形成するか、又は内部流動管の内外壁と外部流動管の内壁との全てに形成することもできる。
前記各熱交換部113a、113bは、前記内部流動管の内壁面にリング状に円周方向に沿って形成されるか、又は、図4に示したように、前記内部流動管の内壁面に冷媒の流動方向に沿って螺旋状に形成される。また、図5に示したように、冷媒の流動方向に沿って細長く形成することもできる。このような構造は、冷媒の熱交換効率を増加させながらも、膨脹冷媒の流動抵抗を減少させることができる。
Of course, each of the heat exchanging parts 113a and 113b can be formed on all the inner and outer walls of the internal flow pipe, or can be formed on all the inner and outer walls of the internal flow pipe and the inner wall of the external flow pipe.
Each of the heat exchanging parts 113a and 113b is formed in a ring shape along the circumferential direction on the inner wall surface of the internal flow pipe, or as shown in FIG. It is formed in a spiral shape along the flow direction of the refrigerant. Moreover, as shown in FIG. 5, it can also be elongate along the flow direction of a refrigerant | coolant. Such a structure can reduce the flow resistance of the expanded refrigerant while increasing the heat exchange efficiency of the refrigerant.

前記各熱交換部113a、113bの形状は、実施形態としての例示であり、様々な形状に変更可能であることは明らかである。
このように構成された過冷却熱交換器110を有する前記過冷却装置100は、前記室外機10、50の内部に設置されることが望ましい。より詳細には、前記過冷却装置100と前記各室外熱交換器12、52との間に設けられる前記第1冷媒管21、61の長さを短くして、前記各室外熱交換器12、52から排出される冷媒を熱交換させることで、前記第1冷媒管21の冷媒のうち一部分が流動中に膨脹することを防止し、過冷状態の液状の冷媒を前記分配器20に供給し、前記第1冷媒管21、61での冷媒圧力の降下を最小化させることができる。
The shape of each of the heat exchange units 113a and 113b is an exemplification as an embodiment, and it is obvious that the shape can be changed to various shapes.
The supercooling device 100 having the supercooling heat exchanger 110 configured as described above is preferably installed inside the outdoor units 10 and 50. More specifically, the lengths of the first refrigerant pipes 21 and 61 provided between the supercooling device 100 and the outdoor heat exchangers 12 and 52 are shortened, and the outdoor heat exchangers 12 and 61 are shortened. By exchanging heat from the refrigerant discharged from 52, a part of the refrigerant in the first refrigerant pipe 21 is prevented from expanding during the flow, and the supercooled liquid refrigerant is supplied to the distributor 20. The refrigerant pressure drop in the first refrigerant pipes 21 and 61 can be minimized.

上記の構成を有する過冷却熱交換器110は、1から2.5mの範囲内の長さを有することが望ましい。これは、前記第1連結管131に設置された膨脹装置120により低温状態に膨脹させた冷媒と、前記第2連結管に沿って流動する膨脹させなかった冷媒とが前記過冷却熱交換器110の内部で充分に熱交換され得るようにするためである。   The supercooling heat exchanger 110 having the above configuration desirably has a length in the range of 1 to 2.5 m. This is because the refrigerant that has been expanded to a low temperature by the expansion device 120 installed in the first connecting pipe 131 and the refrigerant that has not been expanded flowing along the second connecting pipe have the subcooling heat exchanger 110. This is so that heat can be sufficiently exchanged in the interior of the interior.

このように構成される本発明による冷暖房同時型マルチ空気調和機と冷暖房選択型マルチ空気調和機とに設けられた過冷却装置100の作用とは殆ど同一であるので、以下、前記冷暖房同時型マルチ空気調和機の複数の室内機30b、30cは冷房モード、少数の室内機30aは暖房モードで運転される場合に関して説明する。   Since the operation of the supercooling device 100 provided in the heating / cooling simultaneous multi-type air conditioner and the cooling / heating selection-type multi-air conditioner according to the present invention configured as described above is almost the same, hereinafter, the cooling / heating simultaneous multi-type The case where the plurality of indoor units 30b and 30c of the air conditioner are operated in the cooling mode and the few indoor units 30a are operated in the heating mode will be described.

先ず、前記冷暖房同時型マルチ空気調和機が作動すると、前記圧縮機11で高圧の状態に圧縮されて吐出される冷媒は、前記スイッチ装置15によって前記室外熱交換器12に流入される。この時、前記室外ファン13の回転により前記高圧の冷媒は外部空気と熱交換しながら凝縮された後に、前記過冷却装置100と連結される第1冷媒管21に排出される。   First, when the simultaneous heating and cooling multi-air conditioner is operated, the refrigerant that is compressed and discharged to a high pressure state by the compressor 11 flows into the outdoor heat exchanger 12 by the switch device 15. At this time, the high-pressure refrigerant is condensed while exchanging heat with external air by the rotation of the outdoor fan 13 and then discharged to the first refrigerant pipe 21 connected to the supercooling device 100.

ここで、前記第1冷媒管21に沿って前記過冷却装置100に流入される冷媒の一部は、前記第1連結管131に設置された前記膨脹装置120によって低温の冷媒に膨脹した後に、前記第2流動管112に沿って流動し、前記第1冷媒管21に沿って前記過冷却装置100に流入する冷媒の残りは、前記第2連結管132によって前記第1流動管111に流入して相互熱交換することで、前記第1流動管111に沿って流動する冷媒が等圧状態で過冷却に至るようになる。   Here, after a part of the refrigerant flowing into the supercooling device 100 along the first refrigerant pipe 21 is expanded into a low-temperature refrigerant by the expansion device 120 installed in the first connection pipe 131, The remainder of the refrigerant that flows along the second flow pipe 112 and flows into the supercooling device 100 along the first refrigerant pipe 21 flows into the first flow pipe 111 through the second connection pipe 132. As a result of mutual heat exchange, the refrigerant flowing along the first flow pipe 111 reaches supercooling in an isobaric state.

次に、前記過冷却熱交換器110の第1流動管111から排出される冷媒は、前記第1冷媒管21内の膨脹させない状態で、前記第3連結管133を介して前記分配器20に流入した後に、前記冷房モードで運転される室内機に連結される各第1冷媒分岐管21b、21cに沿って該当の各室内機30b、30cに案内され、膨脹過程と熱交換過程を経て各室内を冷房させた後に、前記第3冷媒分岐管23b、23c、前記第3冷媒管23及び前記アキュムレータ14を通過して前記圧縮機11に吸入される。   Next, the refrigerant discharged from the first flow pipe 111 of the supercooling heat exchanger 110 is not expanded in the first refrigerant pipe 21 and is supplied to the distributor 20 via the third connection pipe 133. After flowing in, the air is guided to the corresponding indoor units 30b and 30c along the first refrigerant branch pipes 21b and 21c connected to the indoor unit operated in the cooling mode, and is subjected to an expansion process and a heat exchange process. After the room is cooled, it passes through the third refrigerant branch pipes 23b and 23c, the third refrigerant pipe 23, and the accumulator 14, and is sucked into the compressor 11.

そして、前記過冷却熱交換器110の第2流動管112から排出される冷媒は、前記第4連結管134と前記第3冷媒管23によって案内されて前記アキュムレータ14に流入され気体状の冷媒と液体状の冷媒とに分離された後に、前記圧縮機11に吸入される。   Then, the refrigerant discharged from the second flow pipe 112 of the supercooling heat exchanger 110 is guided by the fourth connecting pipe 134 and the third refrigerant pipe 23 and flows into the accumulator 14 to be a gaseous refrigerant. After being separated into a liquid refrigerant, it is sucked into the compressor 11.

一方、前記圧縮機11から吐出される冷媒の一部分は、前記室外熱交換器12を経ることなく、前記分配器20に直接的に流入した後に、暖房モードで運転される室内機30aに連結される第2冷媒分岐管22aを通って該当の室内機30aに流入して熱交換過程により室内を暖房させた後に、前記暖房モードで運転される室内機に連結される第1冷媒分岐管21aを介して前記第1冷媒管に沿って流動する冷媒と合流するようになる。
図6は、本発明による空気調和機の冷凍サイクルを示したP-h線図である。
On the other hand, a part of the refrigerant discharged from the compressor 11 directly enters the distributor 20 without passing through the outdoor heat exchanger 12, and is connected to the indoor unit 30a operated in the heating mode. The first refrigerant branch pipe 21a connected to the indoor unit operated in the heating mode after flowing into the corresponding indoor unit 30a through the second refrigerant branch pipe 22a and heating the room through the heat exchange process. The refrigerant flows along the first refrigerant pipe.
FIG. 6 is a Ph diagram showing the refrigeration cycle of the air conditioner according to the present invention.

本発明による空気調和機の第1実施形態を示した構成図である。It is the block diagram which showed 1st Embodiment of the air conditioner by this invention. 本発明による空気調和機の他の実施形態を示した構成図である。It is the block diagram which showed other embodiment of the air conditioner by this invention. 図1及び図2に図示された空気調和機に提供される過冷却装置の実施形態を示した構成図である。FIG. 3 is a configuration diagram illustrating an embodiment of a supercooling device provided in the air conditioner illustrated in FIGS. 1 and 2. 図3に図示された過冷却装置に具備される過冷却熱交換器の断面斜視図である。FIG. 4 is a cross-sectional perspective view of a supercooling heat exchanger provided in the supercooling device illustrated in FIG. 3. 図3に図示された過冷却装置に具備される他の過冷却熱交換器の断面斜視図である。FIG. 4 is a cross-sectional perspective view of another supercooling heat exchanger provided in the supercooling device illustrated in FIG. 3. 本発明によるマルチ空気調和機の冷凍サイクルを示したP-h線図である。1 is a Ph diagram showing a refrigeration cycle of a multi-air conditioner according to the present invention.

符号の説明Explanation of symbols

10、50 室外機
11、51 圧縮機
12、52 室外熱交換器
13、53 室外ファン
14、54 アキュムレータ
15、55 スイッチ装置
20、60 分配器
21、61 第1冷媒管
22、62 第2冷媒管
23、63 第3冷媒管
30a、30b、30c 室内機
31a、31b、31c 室内熱交換器
32a、32b、32c 膨脹装置
10, 50 Outdoor unit 11, 51 Compressor 12, 52 Outdoor heat exchanger 13, 53 Outdoor fan 14, 54 Accumulator 15, 55 Switch device 20, 60 Distributor 21, 61 First refrigerant tube 22, 62 Second refrigerant tube 23, 63 Third refrigerant pipes 30a, 30b, 30c indoor units 31a, 31b, 31c indoor heat exchangers 32a, 32b, 32c expansion devices

Claims (20)

室外に設置されて、その内部には圧縮機と室外熱交換器とを有する室外機と、
室内に設置されて、内部に室内熱交換器を有する室内機と、
前記室外機から流入した冷媒を運転条件によって前記室内機の内部に案内し、該室内機を経由した冷媒を前記室外機に再び案内する分配器と、
前記室外熱交換器で熱交換過程を経た冷媒を等圧条件下で過冷却して、該過冷却された冷媒を前記分配器に案内する過冷却装置と、を有して構成されることを特徴とする空気調和機。
An outdoor unit installed outside and having a compressor and an outdoor heat exchanger in its interior;
An indoor unit installed indoors and having an indoor heat exchanger inside;
A distributor that guides the refrigerant flowing from the outdoor unit into the indoor unit according to operating conditions, and again guides the refrigerant that has passed through the indoor unit to the outdoor unit;
A supercooling device that supercools the refrigerant that has undergone the heat exchange process in the outdoor heat exchanger under an isobaric condition and guides the supercooled refrigerant to the distributor. A featured air conditioner.
前記過冷却装置は、
前記室外熱交換器で熱交換過程を経た冷媒の一部分を膨脹させて、該膨脹させた一部分の冷媒と、膨脹させなかった残りの冷媒とを相互熱交換させることを特徴とする請求項1記載の空気調和機。
The supercooling device is:
2. A part of the refrigerant that has undergone a heat exchange process is expanded in the outdoor heat exchanger, and the part of the expanded refrigerant and the remaining refrigerant that has not been expanded are mutually heat-exchanged. Air conditioner.
前記過冷却装置は、
前記膨脹させた一部分の冷媒と前記膨脹させなかった残りの冷媒とを相互熱交換させる過冷却熱交換器と、
前記室外熱交換器で熱交換過程を経た冷媒の一部分を膨脹させる膨脹装置を有して、該膨脹させた冷媒を前記過冷却熱交換器に案内する第1連結管と、
前記膨脹させなかった冷媒を前記過冷却熱交換器に案内する第2連結管と、
前記過冷却熱交換器を経た前記膨脹させなかった冷媒を前記分配器に案内する第3連結管と、
前記圧縮機の吸入端に連結される冷媒管に前記過冷却熱交換器を経た前記膨脹させた冷媒を案内する第4連結管とを有して構成されることを特徴とする請求項1記載の空気調和機。
The supercooling device is:
A supercooling heat exchanger for exchanging heat between the expanded part of the refrigerant and the remaining unexpanded refrigerant;
A first connecting pipe having an expansion device for expanding a part of the refrigerant that has undergone a heat exchange process in the outdoor heat exchanger, and guiding the expanded refrigerant to the supercooling heat exchanger;
A second connecting pipe for guiding the unexpanded refrigerant to the supercooling heat exchanger;
A third connecting pipe for guiding the unexpanded refrigerant that has passed through the supercooling heat exchanger to the distributor;
The refrigerant pipe connected to the suction end of the compressor has a fourth connecting pipe for guiding the expanded refrigerant that has passed through the supercooling heat exchanger. Air conditioner.
前記過冷却熱交換器は、
一方端は前記第2連結管に、他方端は前記第3連結管に連結されて、前記膨脹させなかった冷媒が流動する第1流動管と、
一方端は前記第1連結管に、他方端は前記第4連結管に連結されて前記第1流動管と熱交換し、前記膨脹させた冷媒が流動する第2流動管とを有して構成されることを特徴とする請求項3記載の空気調和機。
The supercooling heat exchanger is
A first flow pipe having one end connected to the second connection pipe and the other end connected to the third connection pipe through which the unexpanded refrigerant flows;
One end is connected to the first connecting pipe, and the other end is connected to the fourth connecting pipe to exchange heat with the first flow pipe, and has a second flow pipe through which the expanded refrigerant flows. The air conditioner according to claim 3, wherein the air conditioner is used.
前記過冷却熱交換器は、
二重管構造から成ることを特徴とする請求項4記載の空気調和機。
The supercooling heat exchanger is
5. The air conditioner according to claim 4, wherein the air conditioner has a double tube structure.
前記第2流動管は、
前記第1流動管の内部に長手方向に設けられることを特徴とする請求項5記載の空気調和機。
The second flow pipe is
The air conditioner according to claim 5, wherein the air conditioner is provided in the first flow pipe in a longitudinal direction.
前記第2流動管に沿って流れる冷媒は、前記第1流動管に沿って流れる冷媒の流動方向と反対方向に流動することを特徴とする請求項6記載の空気調和機。   The air conditioner according to claim 6, wherein the refrigerant flowing along the second flow pipe flows in a direction opposite to a flow direction of the refrigerant flowing along the first flow pipe. 前記第2流動管に沿って流れる冷媒は、前記第1流動管に沿って流れる冷媒の流動方向と同一方向に流動することを特徴とする請求項6記載の空気調和機。   The air conditioner according to claim 6, wherein the refrigerant flowing along the second flow pipe flows in the same direction as the flow direction of the refrigerant flowing along the first flow pipe. 前記第1流動管は、
前記第2流動管の内部に長手方向に設けられることを特徴とする請求項5記載の空気調和機。
The first flow pipe is
The air conditioner according to claim 5, wherein the air conditioner is provided in the longitudinal direction inside the second flow pipe.
前記過冷却熱交換器は、
1mから2.5mの長さを有することを特徴とする請求項5記載の空気調和機。
The supercooling heat exchanger is
6. The air conditioner according to claim 5, wherein the air conditioner has a length of 1 m to 2.5 m.
前記過冷却熱交換器は、
内部流動管の壁に形成されて、熱交換の面積を大きくする熱交換部を更に有して構成されることを特徴とする請求項5記載の空気調和機。
The supercooling heat exchanger is
The air conditioner according to claim 5, further comprising a heat exchange part formed on a wall of the internal flow pipe to increase a heat exchange area.
前記熱交換部は、
前記内部流動管の内壁から内側に突出形成されることを特徴とする請求項11記載の空気調和機。
The heat exchange part is
The air conditioner according to claim 11, wherein the air conditioner is protruded inward from an inner wall of the internal flow pipe.
前記熱交換部は、
前記内部流動管の内壁面に円周方向に設けられることを特徴とする請求項12記載の空気調和機。
The heat exchange part is
The air conditioner according to claim 12, wherein the air conditioner is provided on an inner wall surface of the internal flow pipe in a circumferential direction.
前記熱交換部は、
前記内部流動管の内壁面に冷媒の流動方向に沿って設けられることを特徴とする請求項12記載の空気調和機。
The heat exchange part is
The air conditioner according to claim 12, wherein the air conditioner is provided on an inner wall surface of the internal flow pipe along a flow direction of the refrigerant.
前記熱交換部は、
前記内部流動管の内壁面に螺旋状に設けられることを特徴とする請求項12記載の空気調和機。
The heat exchange part is
The air conditioner according to claim 12, wherein the air conditioner is spirally provided on an inner wall surface of the internal flow pipe.
前記膨脹装置は、
電子膨脹バルブから成ることを特徴とする請求項3記載の空気調和機。
The expansion device is
4. An air conditioner according to claim 3, comprising an electronic expansion valve.
前記圧縮機の吸入端に連結される冷媒管に具備されて、気体状の冷媒と液体状の冷媒とを分離するアキュムレータを更に有して構成されることを特徴とする請求項3記載の空気調和機。   4. The air according to claim 3, further comprising an accumulator that is provided in a refrigerant pipe connected to the suction end of the compressor and separates a gaseous refrigerant and a liquid refrigerant. Harmony machine. 前記第4連結管は、
前記アキュムレータの冷媒流入端に連結される冷媒管に連結されることを特徴とする請求項17記載の空気調和機。
The fourth connecting pipe is
The air conditioner according to claim 17, wherein the air conditioner is connected to a refrigerant pipe connected to a refrigerant inflow end of the accumulator.
前記過冷却装置は、
前記室外機内の所定位置に設けられることを特徴とする請求項1記載の空気調和機。
The supercooling device is:
The air conditioner according to claim 1, wherein the air conditioner is provided at a predetermined position in the outdoor unit.
前記室外機は、
前記運転条件によって、前記圧縮機から吐出される冷媒の流動方向を前記室外熱交換器又は前記分配器に選択的に切り替えるスイッチ装置を更に有して構成されることを特徴とする請求項1記載の空気調和機。
The outdoor unit is
The switch device according to claim 1, further comprising a switch device that selectively switches a flow direction of the refrigerant discharged from the compressor to the outdoor heat exchanger or the distributor according to the operation condition. Air conditioner.
JP2004246956A 2004-01-27 2004-08-26 Air conditioner Pending JP2005214613A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2004-0005045A KR100539570B1 (en) 2004-01-27 2004-01-27 multi airconditioner

Publications (1)

Publication Number Publication Date
JP2005214613A true JP2005214613A (en) 2005-08-11

Family

ID=34651516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246956A Pending JP2005214613A (en) 2004-01-27 2004-08-26 Air conditioner

Country Status (5)

Country Link
US (1) US20050160763A1 (en)
EP (1) EP1559969B1 (en)
JP (1) JP2005214613A (en)
KR (1) KR100539570B1 (en)
CN (1) CN100523660C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7707851B2 (en) * 2006-10-17 2010-05-04 Lg Electronics Inc. Air conditioner
JP2013079763A (en) * 2011-10-04 2013-05-02 Sumikei Copper Tube Co Ltd Supercooler heat-transfer tube and super cooler using the same
CN103615838A (en) * 2013-12-05 2014-03-05 中国扬子集团滁州扬子空调器有限公司 Refrigeration/heating system with inside and outside heat exchanger volume ratio variable
KR101877986B1 (en) * 2011-10-27 2018-07-12 엘지전자 주식회사 Air conditioner
JP2019163866A (en) * 2018-03-19 2019-09-26 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water generating device including the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100761285B1 (en) * 2004-12-10 2007-09-27 엘지전자 주식회사 Air conditioner
KR100688171B1 (en) * 2004-12-29 2007-03-02 엘지전자 주식회사 Multiple air conditioner and refrigerant withdrawing method
JP5263522B2 (en) * 2008-12-11 2013-08-14 株式会社富士通ゼネラル Refrigeration equipment
KR101645183B1 (en) * 2010-03-04 2016-08-03 엘지전자 주식회사 Multi type air conditioner
KR101910658B1 (en) * 2011-07-18 2018-10-23 삼성전자주식회사 Multi type air conditioner
US10175009B2 (en) * 2015-01-07 2019-01-08 Mitsubishi Electric Corporation Method for manufacturing refrigerant distributor, refrigerant distributor manufacturing apparatus, refrigerant distributor, heat exchanger, and air-conditioning device
CN109357429A (en) * 2018-09-21 2019-02-19 青岛海尔空调电子有限公司 A kind of heat-reclamation multi-compressors cool-warm switching device, multi-connected machine and control method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618583U (en) * 1979-07-16 1981-02-18
JPH05172420A (en) * 1991-12-24 1993-07-09 Mitsubishi Heavy Ind Ltd Air conditioner
JPH05180586A (en) * 1991-12-28 1993-07-23 Mitsubishi Heavy Ind Ltd Double tube heat exchanger
JPH0590175U (en) * 1991-05-17 1993-12-07 株式会社日本アルミ Double tube heat exchanger
JPH08121902A (en) * 1994-10-24 1996-05-17 Toupure Kk Air conditioning device
JPH09152195A (en) * 1995-11-28 1997-06-10 Sanyo Electric Co Ltd Refrigerating apparatus
JPH1038413A (en) * 1996-07-24 1998-02-13 Toupure Kk Air conditioner
JP2002013763A (en) * 2000-04-24 2002-01-18 Daikin Ind Ltd Branch unit for air-conditioner
JP2002350080A (en) * 2001-05-24 2002-12-04 Hitachi Cable Ltd Internally grooved heat exchanger tube
JP2003130492A (en) * 2001-10-18 2003-05-08 Hitachi Ltd Air conditioner
JP2003240485A (en) * 2002-02-14 2003-08-27 Hitachi Cable Ltd Heat transfer tube with internal groove

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US134215A (en) * 1872-12-24 Improvement in lead-pencils
US3150498A (en) * 1962-03-08 1964-09-29 Ray Winther Company Method and apparatus for defrosting refrigeration systems
US4483156A (en) * 1984-04-27 1984-11-20 The Trane Company Bi-directional variable subcooler for heat pumps
CH670311A5 (en) * 1985-06-17 1989-05-31 Bbc Brown Boveri & Cie
US4760707A (en) * 1985-09-26 1988-08-02 Carrier Corporation Thermo-charger for multiplex air conditioning system
US4696168A (en) * 1986-10-01 1987-09-29 Roger Rasbach Refrigerant subcooler for air conditioning systems
CN1013300B (en) * 1988-03-29 1991-07-24 三洋电机株式会社 Air-conditioning apparatus
US4893670A (en) * 1989-05-24 1990-01-16 General Motors Corporation Integral radiator hose and oil cooler
US5237833A (en) * 1991-01-10 1993-08-24 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
CN1135341C (en) * 1994-05-30 2004-01-21 三菱电机株式会社 Refrigerating circulating system and refrigerating air conditioning device
JPH1054616A (en) * 1996-08-14 1998-02-24 Daikin Ind Ltd Air conditioner
CN1205073A (en) * 1996-08-14 1999-01-13 大金工业株式会社 Air conditioner
JP3858276B2 (en) * 1997-11-17 2006-12-13 ダイキン工業株式会社 Refrigeration equipment
JPH11248264A (en) * 1998-03-04 1999-09-14 Hitachi Ltd Refrigerating machine
WO2000049346A1 (en) * 1999-02-17 2000-08-24 Yanmar Diesel Engine Co., Ltd. Refrigerant supercooling circuit
DE10038624C2 (en) * 2000-08-03 2002-11-21 Broekelmann Aluminium F W Heat transfer tube with twisted inner fins
US20020157815A1 (en) * 2001-04-27 2002-10-31 Sutter Douglas E. Heat exchange tubing
US6595012B2 (en) * 2001-09-29 2003-07-22 Alexander P Rafalovich Climate control system
KR100504498B1 (en) * 2003-01-13 2005-08-03 엘지전자 주식회사 Air conditioner

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618583U (en) * 1979-07-16 1981-02-18
JPH0590175U (en) * 1991-05-17 1993-12-07 株式会社日本アルミ Double tube heat exchanger
JPH05172420A (en) * 1991-12-24 1993-07-09 Mitsubishi Heavy Ind Ltd Air conditioner
JPH05180586A (en) * 1991-12-28 1993-07-23 Mitsubishi Heavy Ind Ltd Double tube heat exchanger
JPH08121902A (en) * 1994-10-24 1996-05-17 Toupure Kk Air conditioning device
JPH09152195A (en) * 1995-11-28 1997-06-10 Sanyo Electric Co Ltd Refrigerating apparatus
JPH1038413A (en) * 1996-07-24 1998-02-13 Toupure Kk Air conditioner
JP2002013763A (en) * 2000-04-24 2002-01-18 Daikin Ind Ltd Branch unit for air-conditioner
JP2002350080A (en) * 2001-05-24 2002-12-04 Hitachi Cable Ltd Internally grooved heat exchanger tube
JP2003130492A (en) * 2001-10-18 2003-05-08 Hitachi Ltd Air conditioner
JP2003240485A (en) * 2002-02-14 2003-08-27 Hitachi Cable Ltd Heat transfer tube with internal groove

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7707851B2 (en) * 2006-10-17 2010-05-04 Lg Electronics Inc. Air conditioner
JP2013079763A (en) * 2011-10-04 2013-05-02 Sumikei Copper Tube Co Ltd Supercooler heat-transfer tube and super cooler using the same
KR101877986B1 (en) * 2011-10-27 2018-07-12 엘지전자 주식회사 Air conditioner
CN103615838A (en) * 2013-12-05 2014-03-05 中国扬子集团滁州扬子空调器有限公司 Refrigeration/heating system with inside and outside heat exchanger volume ratio variable
JP2019163866A (en) * 2018-03-19 2019-09-26 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water generating device including the same

Also Published As

Publication number Publication date
US20050160763A1 (en) 2005-07-28
EP1559969A1 (en) 2005-08-03
KR20050077139A (en) 2005-08-01
EP1559969B1 (en) 2012-01-18
CN100523660C (en) 2009-08-05
KR100539570B1 (en) 2005-12-29
CN1648558A (en) 2005-08-03

Similar Documents

Publication Publication Date Title
JP4952210B2 (en) Air conditioner
US7124595B2 (en) Multi-type air conditioner with plurality of distributor able to be shutoff
JP3982545B2 (en) Air conditioner
JP3948475B2 (en) Air conditioner
JP2005083741A (en) Air conditioner having heat exchanger and refrigerant switching means
JP2008232548A (en) Heat exchanger
KR102198311B1 (en) Air conditioning system
US20130192809A1 (en) Heat exchanger and air conditioner including same
JP2005214613A (en) Air conditioner
KR100511287B1 (en) Air conditioner capable of defrosting and heating operation simultaneously and out door unit with self defrosting cycle for air conditioner
EP3141844B1 (en) Cooling receiver of an air conditioner and air conditioner using the same
JP2006023073A (en) Air conditioner
KR100803145B1 (en) Air conditioner
KR100720714B1 (en) Apparatus for large-scale heat pump with two-step shell-tube heat exchanger
JP2007093167A (en) Liquid gas heat exchanger for air-conditioner
KR101146783B1 (en) Refrigerant system
KR102136749B1 (en) An air conditioner
JP7224465B2 (en) refrigeration cycle equipment
KR20120020425A (en) Liquid refrigerant supercooling device for air conditioner system of vehicle
KR101138825B1 (en) a heatexchanger for a pattern of double pipe
KR101685846B1 (en) An air conditioner
KR100364534B1 (en) Multi air conditioner
KR101305281B1 (en) Dual supercooling apparatus and airconditioner applying the same
KR20060117534A (en) Connecting pipe for air-conditioner
WO2005121656A1 (en) Air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070312

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080115

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080215