JP2002350080A - Internally grooved heat exchanger tube - Google Patents

Internally grooved heat exchanger tube

Info

Publication number
JP2002350080A
JP2002350080A JP2001155719A JP2001155719A JP2002350080A JP 2002350080 A JP2002350080 A JP 2002350080A JP 2001155719 A JP2001155719 A JP 2001155719A JP 2001155719 A JP2001155719 A JP 2001155719A JP 2002350080 A JP2002350080 A JP 2002350080A
Authority
JP
Japan
Prior art keywords
heat transfer
fin
tube
fins
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001155719A
Other languages
Japanese (ja)
Other versions
JP3829648B2 (en
Inventor
Mamoru Hofuku
守 法福
Hideto Omoto
秀人 於本
Yukihisa Okumura
幸尚 奥村
Ryuichi Kobayashi
隆一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001155719A priority Critical patent/JP3829648B2/en
Publication of JP2002350080A publication Critical patent/JP2002350080A/en
Application granted granted Critical
Publication of JP3829648B2 publication Critical patent/JP3829648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internally grooved heat exchanger tube that can be improved in transmissibility for both heat of condensation and heat of vaporization in a well-balanced state without increasing the pressure loss in the tube nor increasing the mass of the tube. SOLUTION: This internally grooved heat exchanger tube 10 is obtained by spirally forming high fins 12a having heights of 0.1-0.3 mm on the internal surface of the main body 11 of the tube 10 at a helix angle of 15-35 deg. from the axis of the main body 11 and one or a plurality of low fins 13a having heights of 1/15 to 1/5 of the heights of the fins 12a between the high fins 12a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱交換器に適用さ
れ、冷媒を管内で蒸発あるいは凝縮させて熱交換を行う
内面溝付伝熱管に関し、特に、管内の圧力損失や伝熱管
の質量を増加させることなく、凝縮熱伝達率と蒸発熱伝
達率をバランス良く向上させることができる内面溝付伝
熱管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube having an inner surface groove, which is applied to a heat exchanger and performs heat exchange by evaporating or condensing a refrigerant in a tube, and more particularly to pressure loss in the tube and mass of the heat transfer tube. The present invention relates to a heat transfer tube with an inner groove that can improve the condensation heat transfer coefficient and the evaporation heat transfer coefficient in a well-balanced manner without increasing them.

【0002】[0002]

【従来の技術】冷凍機、空気調和機、ヒートポンプ等に
おける熱交換器には、冷媒を伝熱管内に通し、その冷媒
を伝熱管内で蒸発あるいは凝縮させることにより、熱交
換を行う伝熱管が使用されている。
2. Description of the Related Art A heat exchanger in a refrigerator, an air conditioner, a heat pump, or the like is provided with a heat transfer tube that exchanges heat by passing a refrigerant through a heat transfer tube and evaporating or condensing the refrigerant in the heat transfer tube. It is used.

【0003】上記のような伝熱管の内面は、当初は平滑
なものであったが、熱力学的研究が進むにつれ、管の内
面に所定の凹凸を形成した方が熱伝達率を向上させるこ
とが分かり、最近では、主に外径7〜9.52mmの伝
熱管の内面に、断面略台形の溝とその溝を隔てる断面略
三角形のフィンを螺旋状に連続的に形成させた内面溝付
管が主流を占めるようになってきている(「コンパクト
熱交換器」,瀬下裕著,P138)。
[0003] The inner surface of the heat transfer tube as described above was initially smooth, but as the thermodynamics research progressed, the formation of predetermined irregularities on the inner surface of the tube improved the heat transfer coefficient. Recently, an inner groove having a substantially trapezoidal cross section and a generally triangular cross section fin separating the groove in a spiral shape is mainly formed on the inner surface of a heat transfer tube having an outer diameter of 7 to 9.52 mm. Tubes have become the mainstream ("Compact Heat Exchanger", Hiroshi Seshita, p. 138).

【0004】図7は、その従来の管内蒸発および凝縮用
の内面溝付伝熱管を示し、同図(a)は縦断面図、同図
(b)は横断面図、同図(c)は同図(b)のA部拡大
図である。なお、同図においてHはフィン高さ、βは管
軸方向に対する角度(ねじれ角)、Wは溝底幅を示す。
この内面溝付伝熱管1は、伝熱管本体2の内面に連続し
た螺旋溝3および螺旋フィン4を形成したものである。
FIGS. 7A and 7B show a conventional heat transfer tube with an inner groove for evaporation and condensation in a tube. FIG. 7A is a longitudinal sectional view, FIG. 7B is a transverse sectional view, and FIG. FIG. 4 is an enlarged view of a portion A in FIG. In the figure, H indicates the fin height, β indicates the angle (twist angle) with respect to the tube axis direction, and W indicates the groove bottom width.
The heat transfer tube 1 with an inner groove has a spiral groove 3 and a spiral fin 4 formed on the inner surface of a heat transfer tube main body 2.

【0005】このような螺旋溝3および螺旋フィン4を
形成することにより、管内の表面積が大きくなり、熱伝
達面積が増大する。また、それだけでなく、乱流効果の
促進、冷媒液の膜厚の減少により、高い蒸発熱伝達率、
および凝縮熱伝達率が得られ、冷凍機、空気調和器、ヒ
ートポンプ等の性能を向上させることができる。
[0005] By forming such spiral grooves 3 and spiral fins 4, the surface area inside the tube is increased, and the heat transfer area is increased. In addition, due to the promotion of the turbulence effect and the decrease in the thickness of the refrigerant liquid, a high evaporation heat transfer coefficient,
Further, a condensed heat transfer coefficient can be obtained, and the performance of a refrigerator, an air conditioner, a heat pump, and the like can be improved.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の内面溝
付伝熱管1によると、螺旋フィン4の数を増やして管内
面の表面積を増加させると、伝熱面積の増加により蒸発
熱伝達率および凝縮熱伝達率が向上するが、さらに性能
を向上させるために溝数を増加しすぎると凝縮熱伝達率
は低下してしまう。この原因は、螺旋フィン4の数が多
すぎると、溝底幅Wが狭くなり、凝縮した液がすぐに螺
旋溝3を充満させてしまうからである。冷媒液が螺旋フ
ィン4を覆うと、凝縮した冷媒液自体が熱抵抗となり熱
伝達率は低下してしまう。また、凝縮熱伝達率を向上さ
せるために螺旋溝3のねじれ角βを大きくすると、蒸発
性能が低下するという現象が生じる。逆に螺旋溝3のね
じれ角βを小さくすると、蒸発熱伝達率は向上するが、
凝縮熱伝達率は低下するという現象が生じる。従って、
溝数を増加させたり、ねじれ角を変更するだけでは、凝
縮熱伝達率と蒸発熱伝達率を同時にかつ大幅に向上させ
ることはできない。
However, according to the conventional heat transfer tube 1 with an inner groove, when the number of the spiral fins 4 is increased to increase the surface area of the inner surface of the tube, the heat transfer area is increased and the evaporative heat transfer rate and the heat transfer area are increased. Although the condensed heat transfer coefficient is improved, the condensed heat transfer coefficient is reduced if the number of grooves is excessively increased to further improve the performance. This is because if the number of the spiral fins 4 is too large, the groove bottom width W becomes narrow, and the condensed liquid immediately fills the spiral groove 3. When the refrigerant liquid covers the spiral fins 4, the condensed refrigerant liquid itself becomes thermal resistance, and the heat transfer coefficient decreases. Further, when the torsion angle β of the spiral groove 3 is increased in order to improve the condensation heat transfer coefficient, a phenomenon that the evaporation performance is reduced occurs. Conversely, if the helix angle β of the spiral groove 3 is reduced, the heat transfer coefficient of evaporation increases,
A phenomenon occurs in which the condensation heat transfer coefficient decreases. Therefore,
Simply increasing the number of grooves or changing the helix angle cannot simultaneously and significantly improve the condensation heat transfer coefficient and the evaporative heat transfer coefficient.

【0007】一方、螺旋フィン4の高さを高くすると、
凝縮熱伝達率と蒸発熱伝達率はともに向上するが、管内
の圧力損失が増加するため、冷媒を送り出す圧縮機の負
荷が増大し、伝熱管の質量も増加してしまう。
On the other hand, when the height of the spiral fin 4 is increased,
Although both the condensation heat transfer coefficient and the evaporative heat transfer coefficient are improved, the pressure loss in the pipe increases, so that the load on the compressor that sends out the refrigerant increases, and the mass of the heat transfer pipe also increases.

【0008】従って、本発明の目的は、凝縮熱伝達率と
蒸発熱伝達率をバランス良く向上させることができる内
面溝付伝熱管を提供することにある。また、本発明の他
の目的は、管内の圧力損失や伝熱管の質量を増加させる
ことのない内面溝付伝熱管を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a heat transfer tube having an inner surface groove capable of improving the condensation heat transfer coefficient and the evaporation heat transfer coefficient in a well-balanced manner. Another object of the present invention is to provide a heat transfer tube with an inner surface groove which does not increase the pressure loss in the tube or increase the mass of the heat transfer tube.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するため、管本体の内面に所定の高さの高フィンを螺
旋状に形成し、前記高フィンの間に前記高フィンよりも
高さの低い1つあるいは複数の低フィンを形成した内面
溝付伝熱管において、前記低フィンは、高さが前記高フ
ィンの高さの1/15〜1/5であることを特徴とする
内面溝付伝熱管を提供する。低フィンの高さが、高フィ
ンの高さの1/5よりも大きいと、低フィンの無い従来
の内面溝付伝熱管と比較して凝縮熱伝達率の低下が大き
くなり、1/15よりも小さいと、低フィンの無いのと
等しくなるため、低フィンの高さは高フィンの高さの1
/15〜1/5が望ましい。
According to the present invention, in order to achieve the above object, a high fin having a predetermined height is spirally formed on an inner surface of a tube body, and a high fin is provided between the high fins. An inner grooved heat transfer tube having one or more low fins having a low height, wherein the low fins have a height of 1/15 to 1/5 of a height of the high fins. Provide an inner grooved heat transfer tube. If the height of the low fins is larger than 1/5 of the height of the high fins, the condensation heat transfer coefficient is greatly reduced as compared with a conventional heat transfer tube with internal fins having no low fins. Is smaller than the height of the low fin, the height of the low fin is one of the height of the high fin.
/ 15 to 1/5 is desirable.

【0010】高フィンの高さは0.1〜0.3mmが望
ましい。高フィンの高さが0.1mmよりも小さいと、
熱伝達性能が悪くなり、0.3mmよりも大きいと、伝
熱管の質量の増加によるコスト増大を招くとともに、冷
媒の圧力損失の増加が大きくなる。従って、コストと性
能の両方を考慮した場合、0.1〜0.3mmの範囲で
あることが望ましい。
The height of the high fin is desirably 0.1 to 0.3 mm. If the height of the high fin is smaller than 0.1 mm,
If the heat transfer performance is deteriorated, and if it is larger than 0.3 mm, the cost increases due to an increase in the mass of the heat transfer tube, and the pressure loss of the refrigerant increases. Therefore, in consideration of both cost and performance, it is desirable that the distance be in the range of 0.1 to 0.3 mm.

【0011】高フィンは、管本体の管軸に対するねじれ
角が15〜35度であることが望ましい。高フィンの管
軸に対するねじれ角が15度よりも小さいと、凝縮熱伝
達率が低くなり、35度よりも大きいと、蒸発熱伝達率
が低くなるため、ねじれ角は15〜35度の範囲である
ことが望ましい。
The high fin preferably has a twist angle of 15 to 35 degrees with respect to the pipe axis of the pipe body. When the twist angle of the high fin with respect to the tube axis is smaller than 15 degrees, the condensed heat transfer coefficient decreases. When the twist angle is larger than 35 degrees, the evaporative heat transfer coefficient decreases. Therefore, the twist angle is in the range of 15 to 35 degrees. Desirably.

【0012】[0012]

【発明の実施の形態】図1(a)は本発明の実施の形態
に係る内面溝付伝熱管を示す横断面図、同図(b)は同
図(a)のA部拡大図である。この内面溝付伝熱管10
は、伝熱管本体11の内面に、15〜35度のねじれ角
度βを有して螺旋状に高フィン12aを形成し、高フィ
ン12aと高フィン12aの間12bに高フィン12a
よりも高さの低い1つあるいは複数の低フィン13aを
形成したものであり、例えば、高フィン12aのフィン
高さHfは0.1〜0.3mm、その頂角αは10〜5
0°、低フィン13aのフィン高さhfは0.02〜
0.08mm、深溝底幅Wfは0.1〜0.3mm、低
フィン13aと高フィン12aのフィン高さの比は1/
15〜1/5である。
FIG. 1A is a cross-sectional view showing a heat transfer tube with an inner groove according to an embodiment of the present invention, and FIG. 1B is an enlarged view of a portion A in FIG. 1A. . The inner grooved heat transfer tube 10
Has a high fin 12a formed spirally on the inner surface of the heat transfer tube main body 11 with a twist angle β of 15 to 35 degrees, and a high fin 12a is formed between the high fins 12a and 12b between the high fins 12a.
One or a plurality of low fins 13a having a lower height than the lower fin 13a are formed. For example, the fin height Hf of the high fin 12a is 0.1 to 0.3 mm, and the apex angle α is 10 to 5 mm.
0 °, the fin height hf of the low fin 13a is 0.02
0.08 mm, the deep groove bottom width Wf is 0.1 to 0.3 mm, and the ratio of the fin height of the low fin 13a to the high fin 12a is 1 /
15 to 1/5.

【0013】図2は伝熱管性能測定装置を示す。この伝
熱管性能測定装置100は、冷媒蒸気を圧縮する圧縮機
101と、圧縮機101によって圧縮された冷媒蒸気を
凝縮して冷媒液を得る凝縮器102と、凝縮器102か
らの冷媒液を減圧する膨張弁103と、膨張弁103に
よって減圧された冷媒を蒸発させて冷媒ガスを得る蒸発
器104とを備え、測定対象の内面溝付伝熱管10を有
効長5000mmとして蒸発器104に組み込んで伝熱
管10の蒸発熱伝達率を測定できるようにしたものであ
る。蒸発器104は、二重管構造となっており、伝熱管
10の外側に水を流して伝熱管10の中の冷媒を蒸発さ
せるものである。凝縮熱伝達率を測定する場合には、凝
縮器102に測定対象の内面溝付伝熱管10を組み込ん
で、測定を行う。冷媒にはフロンR410Aを用い、蒸
発試験時には蒸発器104の入口乾き度を0.2、出口
飽和温度を8.5度、出口過熱度を5度とし、凝縮試験
時には凝縮器102の入口過熱度を22.5度、入口飽
和温度を40度、出口過冷却度を5度にした。
FIG. 2 shows a heat transfer tube performance measuring device. The heat transfer tube performance measuring device 100 includes a compressor 101 for compressing a refrigerant vapor, a condenser 102 for condensing the refrigerant vapor compressed by the compressor 101 to obtain a refrigerant liquid, and depressurizing the refrigerant liquid from the condenser 102. And an evaporator 104 for evaporating the refrigerant decompressed by the expansion valve 103 to obtain a refrigerant gas. The heat transfer tube 10 having an inner surface groove to be measured is incorporated into the evaporator 104 with an effective length of 5000 mm. The heat transfer coefficient of the heat pipe 10 can be measured. The evaporator 104 has a double-pipe structure, in which water flows outside the heat transfer tube 10 to evaporate the refrigerant in the heat transfer tube 10. When measuring the condensation heat transfer coefficient, the measurement is performed by incorporating the heat transfer tube 10 with the inner surface groove to be measured into the condenser 102. The refrigerant used is Freon R410A. During the evaporation test, the inlet dryness of the evaporator 104 is 0.2, the outlet saturation temperature is 8.5 ° C, and the outlet superheat is 5 °. During the condensation test, the inlet superheat of the condenser 102 is used. Was set to 22.5 degrees, the inlet saturation temperature was set to 40 degrees, and the degree of outlet supercooling was set to 5 degrees.

【0014】図3は、図2に示す測定装置100を用い
て低フィン13aと高フィン12aとのフィン高さ比が
凝縮および蒸発熱伝達率に及ぼす影響を測定した結果を
示す。なお、横軸はフィン高さ比を示し、縦軸は従来の
内面溝付管との熱伝達率比を示す。ここで従来の内面溝
付管とは、低フィンと高フィンのフィン高さ比が0、す
なわち高フィンだけの内面溝付管を指す。また、熱伝達
率比は冷媒流量が30kg/hの場合である。
FIG. 3 shows the result of measuring the effect of the fin height ratio between the low fin 13a and the high fin 12a on the heat transfer coefficient of condensation and evaporation using the measuring apparatus 100 shown in FIG. The horizontal axis shows the fin height ratio, and the vertical axis shows the heat transfer coefficient ratio with the conventional inner grooved tube. Here, the conventional inner grooved pipe refers to an inner grooved pipe in which the fin height ratio between the low fin and the high fin is 0, that is, only the high fin. The heat transfer coefficient ratio is for the case where the refrigerant flow rate is 30 kg / h.

【0015】同図から明らかなように、フィン高さ比が
0.2を超えると、蒸発熱伝達率の向上よりも凝縮熱伝
達率の低下の割合が大きくなってしまう。これは、低フ
ィン13aの占める体積が大きいと、凝縮した冷媒液が
溝内を早期に充満させ、凝縮熱伝達率を低下させてしま
うからである。従って、低フィン13aと高フィン12
aのフィン高さ比は0.2、つまり1/5以下であるこ
とが望ましい。
As is apparent from FIG. 1, when the fin height ratio exceeds 0.2, the rate of decrease in the condensation heat transfer rate becomes larger than the improvement in the evaporation heat transfer rate. This is because if the volume occupied by the low fins 13a is large, the condensed refrigerant liquid fills the inside of the groove at an early stage, and lowers the condensation heat transfer coefficient. Therefore, the low fin 13a and the high fin 12
The fin height ratio of a is desirably 0.2, that is, 1/5 or less.

【0016】[0016]

【実施例】本発明の第1の実施例について説明する。こ
の第1の実施例の内面溝付伝熱管は、外径7mm、底肉
厚0.25mmの鋼管からなる伝熱管本体11の内面
に、フィン高さ0.2mm、ねじれ角16度、フィン数
50個の高フィン12aを形成し、高フィン12aと高
フィン12aの間12bに高さ0.03mmの低フィン
13aを4山ずつ(相当山数で250山)形成したもの
である。なお、「相当山数」とは、低フィン13aを伝
熱管本体11の内面に同一ピッチで並べたと仮定したと
きの山数である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described. The heat transfer tube with an inner surface groove according to the first embodiment has a fin height of 0.2 mm, a twist angle of 16 degrees, a fin number on the inner surface of a heat transfer tube main body 11 made of a steel tube having an outer diameter of 7 mm and a bottom wall thickness of 0.25 mm. 50 high fins 12a are formed, and four low fins 13a having a height of 0.03 mm (equivalent to 250 peaks) are formed between the high fins 12a and 12b between the high fins 12a. The “equivalent number of peaks” is the number of peaks when it is assumed that the low fins 13 a are arranged at the same pitch on the inner surface of the heat transfer tube main body 11.

【0017】この第1の実施例によれば、高フィン12
aのフィン高さは0.2mm、低フィン13aのフィン
高さは0.03mmであるので、フィン高さ比は0.1
5となり、図3に示すように、従来の内面溝付管に比べ
蒸発熱伝達率が1.1倍、凝縮熱伝達率が0.97倍と
なっている。従って、この内面溝付伝熱管は従来の内面
溝付伝熱管と比較して、凝縮熱伝達率をほぼ同等としな
がら蒸発熱伝達率を向上させ、本発明に係る内面溝付管
を使用した冷凍機、空気調和器、ヒートポンプ等の機器
の性能を向上させることができる。
According to the first embodiment, the high fins 12
a is 0.2 mm, and the fin height of the low fin 13a is 0.03 mm.
As shown in FIG. 3, the evaporative heat transfer coefficient is 1.1 times and the condensing heat transfer coefficient is 0.97 times as compared with the conventional inner grooved tube. Therefore, the inner grooved heat transfer tube improves the evaporation heat transfer coefficient while making the condensed heat transfer coefficient almost equal to the conventional inner grooved heat transfer tube, and the refrigeration using the inner grooved tube according to the present invention. The performance of equipment such as air conditioners, air conditioners, and heat pumps can be improved.

【0018】図4は、本発明の第2の実施例を示す。こ
の第2の実施例は、外径7mm、底肉厚さ0.25mm
の伝熱管本体11の内面に、フィン高さ0.22mm、
ねじれ角30度、フィン数50子の高フィン12aを形
成し、高フィン12a間にフィン高さ0.03mm、相
当山数100個の低フィン13aを形成したものであ
る。
FIG. 4 shows a second embodiment of the present invention. The second embodiment has an outer diameter of 7 mm and a bottom thickness of 0.25 mm.
The inner surface of the heat transfer tube main body 11 has a fin height of 0.22 mm,
A high fin 12a having a twist angle of 30 degrees and 50 fins is formed, and a low fin 13a having a fin height of 0.03 mm and an equivalent number of peaks of 100 is formed between the high fins 12a.

【0019】図5は、本発明の第3の実施例を示す。こ
の第3の実施例は、第2の実施例に対して低フィン13
aの相当山数を150個にしたものである。
FIG. 5 shows a third embodiment of the present invention. This third embodiment is different from the second embodiment in that the low fins 13 are used.
The number of peaks of a is 150.

【0020】図6は、本発明の第4の実施例を示す。こ
の第4の実施例は、第2の実施例に対して低フィン13
aの相当山数を200個、低フィン13aのフィン高さ
を0.02mmにしたものである。同図に示すように、
高フィン12aと低フィン13aとの間に溝が形成しな
いように低フィン13aを設けてもよい。
FIG. 6 shows a fourth embodiment of the present invention. This fourth embodiment is different from the second embodiment in that the low fins 13 are used.
The number of peaks of a is 200, and the fin height of the low fin 13a is 0.02 mm. As shown in the figure,
The low fin 13a may be provided so that a groove is not formed between the high fin 12a and the low fin 13a.

【0021】これらの第2乃至第4の実施例において
も、第1の実施例と同様の効果が得られる。
The same effects as those of the first embodiment can be obtained in the second to fourth embodiments.

【0022】[0022]

【発明の効果】以上から明らかなように、本発明の内面
溝付伝熱管によれば、管本体の内面に所定のフィン高さ
を有する高フィンを螺旋状に形成し、高フィンと高フィ
ンの間に所定の高さの低フィンを形成したので、凝縮熱
伝達率と蒸発熱伝達率をバランス良く向上させることが
できる。また、高フィンの高さを0.1〜0.3mmと
することにより、管内の圧力損失や伝熱管の質量を増加
させることなく、性能を向上させることができる。
As is apparent from the above, according to the heat transfer tube with the inner groove of the present invention, the high fin having a predetermined fin height is formed in a spiral shape on the inner surface of the tube body, and the high fin and the high fin are formed. Since the low fins having a predetermined height are formed between them, the condensation heat transfer coefficient and the evaporation heat transfer coefficient can be improved in a well-balanced manner. Further, by setting the height of the high fins to 0.1 to 0.3 mm, the performance can be improved without increasing the pressure loss in the tube or the mass of the heat transfer tube.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の実施の形態に係る内面溝付伝
熱管の横断面図、(b)は(a)のA部拡大図である。
1A is a cross-sectional view of an inner grooved heat transfer tube according to an embodiment of the present invention, and FIG. 1B is an enlarged view of a portion A in FIG.

【図2】伝熱管性能測定装置の概略を示す図である。FIG. 2 is a view schematically showing a heat transfer tube performance measuring device.

【図3】内面溝付伝熱管のフィン高さ比と熱伝達率比の
関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a fin height ratio and a heat transfer coefficient ratio of a heat transfer tube with an inner surface groove.

【図4】本発明の第2の実施例の内面溝付伝熱管の要部
横断面図である。
FIG. 4 is a cross-sectional view of a main part of an inner grooved heat transfer tube according to a second embodiment of the present invention.

【図5】本発明の第3の実施例の内面溝付伝熱管の要部
横断面図である。
FIG. 5 is a cross-sectional view of a main part of a heat transfer tube with an inner surface groove according to a third embodiment of the present invention.

【図6】本発明の第4の実施例の内面溝付伝熱管の要部
横断面図である。
FIG. 6 is a cross-sectional view of a main portion of an inner grooved heat transfer tube according to a fourth embodiment of the present invention.

【図7】従来の内面溝付伝熱管を示し、(a)は縦断面
図、(b)は横断面図、(c)は(b)のA部拡大図で
ある。
7A and 7B show a conventional heat transfer tube with an inner groove, in which FIG. 7A is a longitudinal sectional view, FIG. 7B is a transverse sectional view, and FIG. 7C is an enlarged view of a portion A in FIG.

【符号の説明】[Explanation of symbols]

1 内面溝付伝熱管 2 伝熱管本体 3 螺旋溝 4 螺旋フィン 5 溝 10 内面溝付伝熱管 11 伝熱管本体 12a 高フィン 12b 高フィンと高フィンの間 13a 低フィン 100 伝熱管性能測定装置 101 圧縮機 102 凝縮器 103 膨張弁 104 蒸発器 H,Hf,hf フィン高さ W 溝底幅 Wf 深溝底幅 α 頂角 β ねじれ角 REFERENCE SIGNS LIST 1 heat transfer tube with internal groove 2 heat transfer tube main body 3 spiral groove 4 spiral fin 5 groove 10 heat transfer tube with internal groove 11 heat transfer tube main body 12a high fin 12b between high fin and high fin 13a low fin 100 heat transfer tube performance measuring device 101 compression Machine 102 Condenser 103 Expansion valve 104 Evaporator H, Hf, hf Fin height W Groove bottom width Wf Deep groove bottom width α Apex angle β Helix angle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥村 幸尚 茨城県土浦市木田余町3550番地 日立伸材 株式会社内 (72)発明者 小林 隆一 茨城県土浦市木田余町3550番地 日立電線 株式会社土浦工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yukihisa Okumura 3550 Kida Yomachi, Tsuchiura City, Ibaraki Prefecture Within Hitachi Shinzai Co., Ltd. (72) Ryuichi Kobayashi 3550 Kida Yomachi, Tsuchiura City, Ibaraki Prefecture Hitachi Cable, Ltd. Tsuchiura factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】管本体の内面に所定の高さの高フィンを螺
旋状に形成し、前記高フィンの間に前記高フィンよりも
高さの低い1つあるいは複数の低フィンを形成した内面
溝付伝熱管において、 前記低フィンは、高さが前記高フィンの高さの1/15
〜1/5であることを特徴とする内面溝付伝熱管。
1. An inner surface in which high fins having a predetermined height are spirally formed on an inner surface of a tube main body, and one or a plurality of low fins having a height lower than the high fins are formed between the high fins. In the grooved heat transfer tube, the height of the low fin is 1/15 of the height of the high fin.
An inner grooved heat transfer tube, characterized in that the heat transfer tube has an inner groove diameter of about 1/5.
【請求項2】前記高フィンは、高さが0.1〜0.3m
mであることを特徴とする請求項1記載の内面溝付伝熱
管。
2. The high fin has a height of 0.1 to 0.3 m.
The heat transfer tube with an inner surface groove according to claim 1, wherein m is m.
【請求項3】前記高フィンは、前記管本体の管軸に対す
るねじれ角が15〜35度であることを特徴とする請求
項1記載の内面溝付伝熱管。
3. The heat transfer tube with an inner surface groove according to claim 1, wherein said high fin has a twist angle of 15 to 35 degrees with respect to a tube axis of said tube main body.
JP2001155719A 2001-05-24 2001-05-24 Internal grooved heat transfer tube Expired - Fee Related JP3829648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001155719A JP3829648B2 (en) 2001-05-24 2001-05-24 Internal grooved heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001155719A JP3829648B2 (en) 2001-05-24 2001-05-24 Internal grooved heat transfer tube

Publications (2)

Publication Number Publication Date
JP2002350080A true JP2002350080A (en) 2002-12-04
JP3829648B2 JP3829648B2 (en) 2006-10-04

Family

ID=18999853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001155719A Expired - Fee Related JP3829648B2 (en) 2001-05-24 2001-05-24 Internal grooved heat transfer tube

Country Status (1)

Country Link
JP (1) JP3829648B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214613A (en) * 2004-01-27 2005-08-11 Lg Electronics Inc Air conditioner
JP2007120787A (en) * 2005-10-25 2007-05-17 Hitachi Cable Ltd Heat exchanger tube with inner surface groove
CN100365370C (en) * 2005-12-20 2008-01-30 金龙精密铜管集团股份有限公司 Internal thread heat transfer pipe
JP2009186130A (en) * 2008-02-08 2009-08-20 Furukawa Electric Co Ltd:The Heat transfer tube for radiator with inner face fin
JP2014142175A (en) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd Tube with spiral grooved inner surface, manufacturing method therefor, and heat exchanger
WO2022267235A1 (en) * 2021-06-25 2022-12-29 重庆美的制冷设备有限公司 Copper pipe for heat exchanger, heat exchanger, and air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104097038A (en) * 2013-04-03 2014-10-15 昭和电工株式会社 Method for manufacturing heat pipe type heat exchanging device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214613A (en) * 2004-01-27 2005-08-11 Lg Electronics Inc Air conditioner
JP2007120787A (en) * 2005-10-25 2007-05-17 Hitachi Cable Ltd Heat exchanger tube with inner surface groove
JP4665713B2 (en) * 2005-10-25 2011-04-06 日立電線株式会社 Internal grooved heat transfer tube
US8091615B2 (en) 2005-10-25 2012-01-10 Hitachi Cable, Ltd. Heat transfer pipe with grooved inner surface
CN100365370C (en) * 2005-12-20 2008-01-30 金龙精密铜管集团股份有限公司 Internal thread heat transfer pipe
JP2009186130A (en) * 2008-02-08 2009-08-20 Furukawa Electric Co Ltd:The Heat transfer tube for radiator with inner face fin
JP2014142175A (en) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd Tube with spiral grooved inner surface, manufacturing method therefor, and heat exchanger
WO2022267235A1 (en) * 2021-06-25 2022-12-29 重庆美的制冷设备有限公司 Copper pipe for heat exchanger, heat exchanger, and air conditioner

Also Published As

Publication number Publication date
JP3829648B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
JP4665713B2 (en) Internal grooved heat transfer tube
KR100300640B1 (en) Refrigeration cycle for using a heat transfer tube for a zeotropic refrigerant mixture
US6390183B2 (en) Heat exchanger
KR100918216B1 (en) Heat transfer tube with inner surface grooves, used for high-pressure refrigerant
KR101797176B1 (en) Dual pipe structure for internal heat exchanger
JP2000193389A (en) Outdoor unit of air-conditioner
JP4119836B2 (en) Internal grooved heat transfer tube
JP2002350080A (en) Internally grooved heat exchanger tube
EP2796822B1 (en) Air conditioner
JP2001304783A (en) Outdoor heat exchanger, indoor heat exchanger and air conditioner
JP4422590B2 (en) Return bend and fin-and-tube heat exchangers
JP2003240485A (en) Heat transfer tube with internal groove
JP3494625B2 (en) Internal grooved heat transfer tube
JP2005127570A (en) Heat transfer pipe and refrigeration unit using the same
JP5255249B2 (en) Heat transfer tube with internal fin
JP3417825B2 (en) Inner grooved pipe
JP4119765B2 (en) Internal grooved heat transfer tube
JPH08105699A (en) Heat transfer tube with inside grooves
KR200314025Y1 (en) Fin tube type heat exchanger and airconditioner and refrigerator using the heat exchanger
JP2003262433A (en) Heat exchanger
WO2014115332A1 (en) Heat exchanger and refrigeration cycle device
JPH11125496A (en) Internally grooved heating tube
JP2004116809A (en) Refrigerant distributor of heat exchanger for air conditioner
KR200408236Y1 (en) structure of condenser
JPH0979779A (en) Heat transfer tube with internal surface groove and heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees