JP2003262433A - Heat exchanger - Google Patents
Heat exchangerInfo
- Publication number
- JP2003262433A JP2003262433A JP2002060469A JP2002060469A JP2003262433A JP 2003262433 A JP2003262433 A JP 2003262433A JP 2002060469 A JP2002060469 A JP 2002060469A JP 2002060469 A JP2002060469 A JP 2002060469A JP 2003262433 A JP2003262433 A JP 2003262433A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- tube
- heat exchanger
- heat
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、空気調和機やヒー
トポンプ等に用いられる熱交換器に係り、特に、管内で
冷媒が凝縮または蒸発することで熱交換を行う伝熱管を
用いた熱交換器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger used in an air conditioner, a heat pump, etc., and particularly to a heat exchanger using a heat transfer tube for exchanging heat by condensing or evaporating a refrigerant in the tube. Regarding
【0002】[0002]
【従来の技術】一般的に、空気調和機やヒートポンプ等
における熱交換器には、冷媒を伝熱管内に通し、その冷
媒を伝熱管内で蒸発または凝縮させることにより、熱交
換を行う伝熱管が使用されている。2. Description of the Related Art Generally, a heat exchanger in an air conditioner, a heat pump or the like has a heat transfer tube for exchanging heat by passing a refrigerant through the heat transfer tube and evaporating or condensing the refrigerant in the heat transfer tube. Is used.
【0003】図6は、従来の空気調和機およびヒートポ
ンプ等の冷凍サイクルを示す図である。この図6におい
て、12は圧縮機、13は室内熱交換器、14は室外熱
交換器、15は膨張弁、16は四方弁である。破線10
は冷房運転時の冷媒の流れを、実線11は暖房運転時の
流れを示す。FIG. 6 is a view showing a refrigerating cycle of a conventional air conditioner, heat pump and the like. In FIG. 6, 12 is a compressor, 13 is an indoor heat exchanger, 14 is an outdoor heat exchanger, 15 is an expansion valve, and 16 is a four-way valve. Dashed line 10
Indicates the flow of the refrigerant during the cooling operation, and the solid line 11 indicates the flow during the heating operation.
【0004】図7は、従来の空気調和機およびヒートポ
ンプ等に用いられる熱交換器の構成を示す図であり、
(a)は側面図、(b)は正面図である。熱交換器は、
伝熱管21と、外部流体と熱交換を行うフィン22と、
U型パイプ23と、サイドプレート24とを備えて構成
されている。FIG. 7 is a diagram showing the structure of a heat exchanger used in a conventional air conditioner, heat pump, etc.,
(A) is a side view and (b) is a front view. Heat exchanger
A heat transfer tube 21, fins 22 that exchange heat with an external fluid,
The U-shaped pipe 23 and the side plate 24 are provided.
【0005】この熱交換器に使用される伝熱管21の内
面は、当初は平滑なものであったが、熱力学的研究が進
むにつれ、所定の凹凸を形成した方が熱伝達率を向上さ
せることが分かり、最近では主に外径4mm〜10mm
の伝熱管21の内面に断面が略台形の溝と、この溝を隔
てる断面が略三角形のフィン22を螺旋状に連続的に形
成した内面溝付管が主流を占めるようになった。The inner surface of the heat transfer tube 21 used in this heat exchanger was initially smooth, but with the progress of thermodynamic research, it is better to form predetermined irregularities to improve the heat transfer coefficient. It has been found that recently, mainly the outer diameter is 4 mm to 10 mm.
The inner surface grooved tube in which the grooves having a substantially trapezoidal cross section on the inner surface of the heat transfer tube 21 and the fins 22 having a substantially triangular cross section separating the grooves are continuously formed in a spiral shape has become the main stream.
【0006】その一例を図8に示す。図8は従来の管内
蒸発及び凝縮用伝熱管を示す図であり、(a)は縦断面
図、(b)は横断面図、(c)は(b)に示すA部拡大
図である。なお、図8(a)においてHは溝深さ、βは
管軸方向に対する角度(ねじれ角)を示す。この管内蒸
発および凝縮用伝熱管31は、伝熱管本体32の内面に
連続した螺旋溝33および螺旋フィン34を形成したも
のである。An example thereof is shown in FIG. 8A and 8B are views showing a conventional heat transfer tube for evaporation and condensation in a tube, FIG. 8A is a vertical sectional view, FIG. 8B is a lateral sectional view, and FIG. 8C is an enlarged view of part A shown in FIG. 8B. In FIG. 8A, H indicates the groove depth, and β indicates the angle (twist angle) with respect to the tube axis direction. The heat transfer tube 31 for vaporization and condensation in the tube has a spiral groove 33 and a spiral fin 34 which are continuous with the inner surface of the heat transfer tube body 32.
【0007】このような螺旋溝33及び螺旋フィン34
を形成することにより、管内の表面積が大きくなり熱伝
達面積が増大する。また、それだけでなく、乱流効果の
促進、冷媒液膜厚さの減少により高い蒸発熱伝達率、及
び凝縮熱伝達率が得られ、空気調和機およびヒートポン
プ等の性能を向上させることができる。Such a spiral groove 33 and a spiral fin 34
By forming the, the surface area in the tube is increased and the heat transfer area is increased. In addition to that, high evaporation heat transfer coefficient and high condensation heat transfer coefficient can be obtained by promoting the turbulent flow effect and reducing the refrigerant liquid film thickness, so that the performance of the air conditioner, the heat pump and the like can be improved.
【0008】ところで、図6に示したように、暖房運転
時と冷房運転時では、管内を流れる冷媒の流れが逆にな
る。つまり、図7に示すように、冷媒の凝縮時は伝熱管
1から伝熱管5へ向かって流れ(図示では下から上に流
れ)、蒸発時は逆に、伝熱管5から伝熱管1へ向かって
流れる(上から下に流れる)ことになる。By the way, as shown in FIG. 6, during the heating operation and the cooling operation, the flow of the refrigerant flowing in the pipe is reversed. That is, as shown in FIG. 7, when the refrigerant condenses, it flows from the heat transfer tube 1 to the heat transfer tube 5 (from the bottom to the top in the figure), and conversely when it evaporates, from the heat transfer tube 5 to the heat transfer tube 1. Will flow (flow from top to bottom).
【0009】これらの場合の伝熱管1から伝熱管5にお
ける管内の凝縮熱伝達率の測定値を図9に示し、蒸発熱
伝達率の測定値を図10に、蒸発圧力損失の測定値を図
11に示す。この際の冷媒の測定条件を下記表1に、ね
じれ角の異なる2種類の内面溝付管の仕様を下記表2に
示す。FIG. 9 shows the measured values of the condensation heat transfer coefficient in the heat transfer tubes 1 to 5 in these cases, FIG. 10 shows the measured values of the evaporation heat transfer coefficient, and FIG. 10 shows the measured values of the evaporation pressure loss. 11 shows. Table 1 below shows the measurement conditions of the refrigerant at this time, and Table 2 below shows the specifications of the two kinds of inner grooved tubes having different twist angles.
【0010】[0010]
【表1】 [Table 1]
【表2】
この結果から内面溝付管のねじれ角を大きくすると、冷
媒の撹拝効果が増して凝縮熱伝達率が向上し、熱交換器
の性能を向上させることができる。つまり、図9に示す
ように、ねじれ角の大きい内面溝付管(β:35度)
は、ねじれ角の小さい内面溝付管(β:16度)よりも
高い凝縮熱伝達率を示しており、伝熱管のねじれ角を大
きくすることにより、熱交換器の性能を向上させること
が可能となる。[Table 2] From this result, when the twist angle of the inner grooved tube is increased, the effect of stirring the refrigerant is increased, the condensation heat transfer rate is improved, and the performance of the heat exchanger can be improved. That is, as shown in FIG. 9, an inner grooved tube with a large helix angle (β: 35 degrees)
Shows a higher condensation heat transfer coefficient than the inner grooved tube (β: 16 degrees) with a small twist angle, and it is possible to improve the performance of the heat exchanger by increasing the twist angle of the heat transfer tube. Becomes
【0011】[0011]
【発明が解決しようとする課題】しかし、従来の空調用
熱交換器においては、熱交換器内で冷媒が蒸発する場
合、図10に示すように、蒸発熱伝達率は若干低下して
いるが、それよりも大きな問題として、図11に示すよ
うに、ねじれ角の増加により蒸発圧力損失が増加してし
まうことが上げられる。この圧力損失の増加により、冷
媒が蒸発したときの熱交換器の能力が大幅に低下してし
まうという問題がある。However, in the conventional heat exchanger for air conditioning, when the refrigerant evaporates in the heat exchanger, the evaporation heat transfer coefficient is slightly lowered as shown in FIG. As a larger problem, as shown in FIG. 11, the evaporation pressure loss increases due to an increase in the twist angle. Due to this increase in pressure loss, there is a problem that the capacity of the heat exchanger when the refrigerant evaporates is significantly reduced.
【0012】図11に示すように、特に冷媒蒸発時の出
側、伝熱管1、伝熱管2付近の蒸発圧力損失が大きくな
るので、この部分の圧力損失を低減する必要がある。As shown in FIG. 11, vaporization pressure loss in the outlet side, the heat transfer tube 1 and the vicinity of the heat transfer tube 2 becomes large, especially during evaporation of the refrigerant, so it is necessary to reduce the pressure loss in this portion.
【0013】また、前述したように、ねじれ角を増加さ
せて凝縮熱伝達率を上げる方法では、熱交換器を凝縮器
としてのみ使用する場合に、熱交換器の能力を向上させ
ることができる。しかし、図6に示したような冷暖房兼
用の冷凍サイクルに適用すると、熱交換器内で冷媒を蒸
発させたとき、圧力損失が増加し、蒸発運転時の熱交換
器の能力が低下してしまうという問題がある。Further, as described above, the method of increasing the twist angle to increase the condensation heat transfer coefficient can improve the capacity of the heat exchanger when the heat exchanger is used only as the condenser. However, when applied to a refrigeration cycle that also serves as a cooling and heating system as shown in FIG. 6, when the refrigerant is evaporated in the heat exchanger, the pressure loss increases and the capacity of the heat exchanger during evaporation operation decreases. There is a problem.
【0014】本発明は、かかる点に鑑みてなされたもの
であり、ねじれ角の異なる2種類以上の伝熱管の配置を
適正に決めることにより、蒸発時の冷媒圧力損失の増加
を少なくしながら、且つ凝縮時の能力を向上させること
ができる熱交換器を提供することを目的とする。The present invention has been made in view of the above point, and by appropriately arranging two or more types of heat transfer tubes having different twist angles, the increase in refrigerant pressure loss during evaporation can be suppressed, Moreover, it is an object of the present invention to provide a heat exchanger capable of improving the capacity at the time of condensation.
【0015】[0015]
【課題を解決するための手段】上記課題を解決するため
に、本発明の熱交換器は、管内面に管の軸に対して任意
のねじれ角で螺旋状に溝が形成された管内の冷媒が凝縮
または蒸発することで熱交換を行う伝熱管と、この伝熱
管が挿入されたフィンとを有する熱交換器において、前
記ねじれ角の異なる複数の伝熱管を接続し、この接続さ
れた複数の伝熱管は、前記冷媒の乾き度の小さい側に、
乾き度の大きい側よりも、前記ねじれ角が大きい伝熱管
が配置されていることを特徴としている。In order to solve the above problems, the heat exchanger according to the present invention is a refrigerant in a pipe in which a groove is spirally formed on the inner surface of the pipe at an arbitrary helix angle with respect to the axis of the pipe. In a heat exchanger having a heat transfer tube that exchanges heat by condensing or evaporating, and a fin in which this heat transfer tube is inserted, a plurality of heat transfer tubes having different twist angles are connected, and a plurality of the connected plurality of heat transfer tubes are connected. The heat transfer tube, on the side of the dryness of the refrigerant is small,
It is characterized in that a heat transfer tube having a larger twist angle than that on the dry side is arranged.
【0016】また、本発明の熱交換器は、管内面に管の
軸に対して所定のねじれ角で螺旋状に溝が形成された管
内の冷媒が凝縮または蒸発することで熱交換を行う伝熱
管と、この伝熱管が挿入されたフィンとを有する熱交換
器において、前記ねじれ角の異なる2種類の伝熱管を接
続し、この接続された2種類の伝熱管は、前記冷媒の乾
き度の小さい側に、乾き度の大きい側よりも、前記ねじ
れ角が10度以上大きい伝熱管が配置されていることを
特徴としている。In the heat exchanger of the present invention, heat transfer is carried out by condensing or evaporating the refrigerant in the tube having a spiral groove formed on the inner surface of the tube at a predetermined twist angle with respect to the axis of the tube. In a heat exchanger having a heat pipe and a fin into which the heat transfer pipe is inserted, two types of heat transfer pipes having different twist angles are connected to each other, and the two kinds of connected heat transfer pipes have a dryness of the refrigerant. It is characterized in that a heat transfer tube having a larger twist angle of 10 degrees or more is arranged on the smaller side than on the side having a higher dryness.
【0017】また、本発明の熱交換器は、管内面に管の
軸に対して所定のねじれ角で螺旋状に溝が形成された管
内の冷媒が凝縮または蒸発することで熱交換を行う伝熱
管と、この伝熱管が挿入されたフィンとを有する熱交換
器において、前記ねじれ角の異なる3種類の伝熱管を接
続し、この接続された3種類の伝熱管は、前記冷媒の乾
き度の小さい側に、乾き度の大きい側よりも、前記ねじ
れ角が10度以上大きい伝熱管が配置されていることを
特徴としている。Further, in the heat exchanger of the present invention, heat transfer is carried out by condensing or evaporating the refrigerant in the tube having a spiral groove formed on the inner surface of the tube at a predetermined twist angle with respect to the axis of the tube. In a heat exchanger having a heat pipe and a fin into which the heat transfer pipe is inserted, three types of heat transfer pipes having different twist angles are connected to each other, and the three types of connected heat transfer pipes have a dryness of the refrigerant. It is characterized in that a heat transfer tube having a larger twist angle of 10 degrees or more is arranged on the smaller side than on the side having a higher dryness.
【0018】また、前記伝熱管の外径が4〜10mm、
その内面に形成された溝の深さが0.1〜0.3mmで
あることを特徴としている。The outer diameter of the heat transfer tube is 4 to 10 mm,
The groove formed on the inner surface has a depth of 0.1 to 0.3 mm.
【0019】また、前記ねじれ角が異なる伝熱管同士の
溝の深さの差が0.04mm以下であることを特徴とし
ている。The difference in groove depth between the heat transfer tubes having different twist angles is 0.04 mm or less.
【0020】[0020]
【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings.
【0021】(実施の形態)図1は、本発明の実施の形
態に係る熱交換器の構成を示す図であり、(a)は側面
図、(b)は正面図である。(Embodiment) FIG. 1 is a diagram showing a configuration of a heat exchanger according to an embodiment of the present invention, (a) is a side view and (b) is a front view.
【0022】この図1に示す熱交換器は、空気調和機や
ヒートポンプ等に適用されるものであり、伝熱管21a
と、外部流体と熱交換を行うフィン22と、U型パイプ
23と、サイドプレート24とを備えて構成されてい
る。さらに、伝熱管21aは、乾き度(後述で説明)の
大きい側、すなわち冷媒が凝縮するときの入口側の伝熱
管1と伝熱管2に、ねじれ角の小さい内面溝付管(従来
例に示した表2中のねじれ角16度の内面溝付管)を用
い、乾き度の小さい側の伝熱管3、4、5に、ねじれ角
の大きい内面溝付管(表2中のねじれ角35度の内面溝
付管)を用いて構成されている。The heat exchanger shown in FIG. 1 is applied to an air conditioner, a heat pump, etc., and has a heat transfer tube 21a.
, A fin 22 that exchanges heat with an external fluid, a U-shaped pipe 23, and a side plate 24. Further, the heat transfer tubes 21a have inner grooved tubes having a small helix angle (shown in the conventional example) on the heat transfer tube 1 and the heat transfer tube 2 on the side having a high degree of dryness (described later), that is, when the refrigerant condenses. Using the inner grooved tube with a helix angle of 16 degrees in Table 2), the inner grooved tube with a large helix angle (the helix angle of 35 degrees in Table 2) is used for the heat transfer tubes 3, 4, and 5 on the dry side. Inner grooved tube).
【0023】但し、乾き度とは、気体と液体が混在して
流れるときの全質量流量に対する気相の質量流量の比で
あり、完全に気体のときは乾き度1であり、完全に液体
のときは乾き度0である。However, the dryness is the ratio of the mass flow rate of the gas phase to the total mass flow rate when the gas and the liquid are mixed and flowing, and when the gas is completely gas, the dryness is 1 and the dryness is completely liquid. When the dryness is 0.
【0024】このような伝熱管1から伝熱管5における
管内の凝縮熱伝達率の測定値を図2に示し、蒸発熱伝達
率の測定値を図3に、蒸発圧力損失の測定値を図4に示
す。これら図2〜図4において、本実施の形態に係る熱
交換器の性能を黒塗りで示した。The measured values of the condensation heat transfer coefficient in the heat transfer tubes 1 to 5 are shown in FIG. 2, the measured values of the evaporation heat transfer coefficient are shown in FIG. 3, and the measured values of the evaporation pressure loss are shown in FIG. Shown in. 2 to 4, the performance of the heat exchanger according to this embodiment is shown in black.
【0025】図2の凝縮熱伝達率は、乾き度の大きい箇
所である伝熱管1と伝熱管2に、ねじれ角の小さい伝熱
管を使用しているため、全てに、ねじれ角の大きい伝熱
管を使用したときに比べ、伝熱管1〜5の凝縮熱伝達率
の平均値は低下する。しかし、伝熱管2は冷媒が凝縮を
開始する領域のため、冷媒の凝縮熱伝達率が非常に高
く、外部流体の熱伝達率との差が非常に大きくなり、こ
の部分(伝熱管2)の熱通過率は、外部流体の熱伝達率
に足を引っ張られ、管内熱伝達率向上の影響が小さくな
る。よって本実施の形態による熱交換器においては、全
てねじれ角の小さい伝熱管(β16度)を使用したとき
に比べて、凝縮時の熱交換器の能力を向上させることが
できる。In the condensation heat transfer coefficient shown in FIG. 2, the heat transfer tubes having a large twist angle are used for the heat transfer tube 1 and the heat transfer tube 2 which have a high degree of dryness. The average value of the condensing heat transfer coefficients of the heat transfer tubes 1 to 5 is lower than that when the heat transfer tubes 1 to 5 are used. However, since the heat transfer tube 2 is a region where the refrigerant starts to condense, the condensation heat transfer coefficient of the refrigerant is very high, and the difference from the heat transfer coefficient of the external fluid becomes very large, so that this portion (heat transfer tube 2) The heat transfer coefficient is affected by the heat transfer coefficient of the external fluid, and the effect of improving the heat transfer coefficient in the tube is reduced. Therefore, in the heat exchanger according to the present embodiment, the capacity of the heat exchanger at the time of condensation can be improved as compared with the case where all the heat transfer tubes (β16 degrees) having a small twist angle are used.
【0026】また、凝縮時の圧力損失は、蒸発時に比べ
て値が小さいので、熱交換器に与える影響は小さい。図
4の蒸発圧力損失については、蒸発時の冷媒出口側の伝
熱管1と伝熱管2に、ねじれ角の大きい伝熱管(β35
度)を用いると圧力損失は大きくなるが、本実施の形態
に係る熱交換器では、伝熱管1と伝熱管2に、ねじれ角
の小さい伝熱管(β16度)を使用しているため、全て
ねじれ角の小さい伝熱管(β16度)を使用したときと
ほぼ同じ圧力損失にすることができる。Further, since the pressure loss at the time of condensation is smaller than that at the time of evaporation, the influence on the heat exchanger is small. Regarding the evaporation pressure loss in FIG. 4, the heat transfer tubes 1 and 2 on the refrigerant outlet side at the time of evaporation have a large twist angle (β35).
However, in the heat exchanger according to the present embodiment, since the heat transfer tubes 1 and 2 are heat transfer tubes with a small twist angle (β16 degrees), The pressure loss can be almost the same as when using a heat transfer tube (β16 degrees) with a small twist angle.
【0027】図3の蒸発熱伝達率については、本実施の
形態に係る熱交換器では、全てねじれ角の大きい内面溝
付管(β35)を使用したときとほぼ同等の蒸発熱伝達
率であるが、前述したように圧力損失を低減することが
できる。つまり、蒸発時に圧力損失が高く、乾き度の高
い伝熱管の部分に、ねじれ角の小さい伝熱管を用い、圧
力損失の小さく乾き度の小さい伝熱管に、ねじれ角の大
きい伝熱管を用いることにより、低圧損、高性能な熱交
換器を構成することができる。Regarding the heat transfer coefficient of evaporation shown in FIG. 3, in the heat exchanger according to this embodiment, the heat transfer coefficient of evaporation is almost the same as when the inner grooved tube (β35) having a large helix angle is used. However, the pressure loss can be reduced as described above. In other words, by using a heat transfer tube with a small twist angle in the part of the heat transfer tube with a high pressure loss during evaporation and a high dryness, and using a heat transfer tube with a large twist angle in the heat transfer tube with a small pressure loss and a low dryness A low-pressure loss, high-performance heat exchanger can be constructed.
【0028】また、本実施の形態のように、2種類の伝
熱管のねじれ角の差が10度以上あれば、低圧損、高性
能な熱交換器を構成することができる。ねじれ角の差が
10度未満においては、熱交換器の低圧損高性能化の効
果が小さくなり、熱交換器製造時に2種類の伝熱管を使
用する手間を考慮すると、溝付管のねじれ角の差は10
度以上が望ましい。Further, as in the present embodiment, if the difference between the twist angles of the two types of heat transfer tubes is 10 degrees or more, a low-pressure loss, high-performance heat exchanger can be constructed. If the difference in the twist angle is less than 10 degrees, the effect of improving the low pressure loss and high performance of the heat exchanger is small, and considering the labor of using two types of heat transfer tubes in manufacturing the heat exchanger, the twist angle of the grooved tube is considered. Difference of 10
A degree or more is desirable.
【0029】図1に示した空調用熱交換器の製造方法
は、通常、フィン22に伝熱管21aを挿入し、伝熱管
21a内に、内径よりも大きいジグを挿入し、伝熱管2
1aを押し広げることにより、フィン22と伝熱管21
aとを密着させる。このため、ねじれ角の異なる数種類
の伝熱管の内径が同じであれば、同一の押し広げジグを
用いることができ、製造性が良好となる。内面溝付管の
底肉厚は、冷媒毎の設計圧力により決まるので、溝深さ
の差が0.04mm以内であれば、同一の押し広げジグ
を用いることができる。In the method for manufacturing the heat exchanger for air conditioning shown in FIG. 1, usually, the heat transfer tube 21a is inserted into the fin 22, and a jig having a diameter larger than the inner diameter is inserted into the heat transfer tube 21a.
By expanding 1a, the fins 22 and the heat transfer tubes 21
Make a close contact with a. Therefore, if several kinds of heat transfer tubes having different twist angles have the same inner diameter, the same pressing and expanding jig can be used, and the manufacturability is improved. Since the bottom wall thickness of the inner grooved tube is determined by the design pressure for each refrigerant, if the difference in groove depth is within 0.04 mm, the same pushing jig can be used.
【0030】この他の実施の形態に係る熱交換器の構成
を図5に側面図で示し、その説明を行う。この図5に示
す熱交換器は、2列の熱交換器1台及び1列の熱交換器
1台により構成されている。その2列の熱交換器に、下
記表3で仕様が示される内面溝付管35を、1列の熱交
換器に同表3で示される内面溝付管36を組み込んであ
る。この他の実施の形態においても、上記実施の形態と
同様な効果を得ることができる。The configuration of the heat exchanger according to the other embodiment is shown in a side view in FIG. 5, and its description will be given. The heat exchanger shown in FIG. 5 is composed of two rows of heat exchangers and one row of heat exchangers. The two rows of heat exchangers are fitted with the inner grooved pipes 35 whose specifications are shown in Table 3 below, and the one row of the heat exchangers are fitted with the inner grooved pipes 36 shown in the same table 3. Also in this other embodiment, the same effect as the above embodiment can be obtained.
【0031】[0031]
【表3】 [Table 3]
【発明の効果】以上説明したように、本発明によれば、
管内面に管の軸に対して所定のねじれ角で螺旋状に溝が
形成された管内の冷媒が凝縮または蒸発することで熱交
換を行う伝熱管と、この伝熱管が挿入されたフィンとを
有する熱交換を構成する際に、ねじれ角の異なる複数の
伝熱管を接続し、この接続された複数の伝熱管におい
て、冷媒の乾き度の小さい側に、乾き度の大きい側より
も、ねじれ角が大きい伝熱管が配置される構成としたの
で、ねじれ角の異なる2種類以上の伝熱管の配置を適正
に決めることにより、蒸発時の冷媒圧力損失の増加を少
なくしながら、且つ凝縮時の能力を向上させることがで
きる。As described above, according to the present invention,
A heat transfer tube that performs heat exchange by condensing or evaporating the refrigerant in the tube, which has spiral grooves formed on the inner surface of the tube at a predetermined twist angle with respect to the axis of the tube, and a fin into which the heat transfer tube is inserted. When configuring the heat exchange having, a plurality of heat transfer tubes having different twist angles are connected, and in the connected plurality of heat transfer tubes, the side with a smaller degree of dryness of the refrigerant has a greater twist angle than the side with a greater degree of dryness. Since a heat transfer tube with a large heat transfer tube is arranged, by appropriately deciding the arrangement of two or more types of heat transfer tubes with different twist angles, it is possible to reduce the increase in refrigerant pressure loss during evaporation and to reduce the capacity during condensation. Can be improved.
【図1】本発明の実施の形態に係る熱交換器の構成を示
す図である。FIG. 1 is a diagram showing a configuration of a heat exchanger according to an embodiment of the present invention.
【図2】上記熱交換器の伝熱管1から伝熱管5における
管内の凝縮熱伝達率の測定値を示す図である。FIG. 2 is a diagram showing measured values of the condensation heat transfer coefficient in the heat transfer tubes 1 to 5 of the heat exchanger.
【図3】上記熱交換器の伝熱管1から伝熱管5における
管内の蒸発熱伝達率の測定値を示す図である。FIG. 3 is a diagram showing measured values of evaporative heat transfer coefficients in heat transfer tubes 1 to 5 of the heat exchanger.
【図4】上記熱交換器の伝熱管1から伝熱管5における
管内の蒸発圧力損失の測定値を示す図である。FIG. 4 is a diagram showing measured values of evaporation pressure loss inside the heat transfer tubes 1 to 5 of the heat exchanger.
【図5】他の実施の形態に係る熱交換器の構成を示す図
である。FIG. 5 is a diagram showing a configuration of a heat exchanger according to another embodiment.
【図6】従来の空気調和機およびヒートポンプ等の冷凍
サイクルを示す図である。FIG. 6 is a diagram showing a conventional refrigeration cycle such as an air conditioner and a heat pump.
【図7】従来の空気調和機およびヒートポンプ等に用い
られる熱交換器の構成を示す図である。FIG. 7 is a diagram showing a configuration of a heat exchanger used in a conventional air conditioner, a heat pump, and the like.
【図8】従来の熱交換器における管内蒸発及び凝縮用伝
熱管を示す図である。FIG. 8 is a view showing heat transfer tubes for in-tube evaporation and condensation in a conventional heat exchanger.
【図9】従来の熱交換器の伝熱管1から伝熱管5におけ
る管内の凝縮熱伝達率の測定値を示す図である。FIG. 9 is a diagram showing measured values of condensation heat transfer coefficients in the heat transfer tubes 1 to 5 of the conventional heat exchanger.
【図10】従来の熱交換器の伝熱管1から伝熱管5にお
ける管内の蒸発熱伝達率の測定値を示す図である。FIG. 10 is a diagram showing measured values of the evaporation heat transfer coefficient in the heat transfer tubes 1 to 5 of the conventional heat exchanger.
【図11】従来の熱交換器の伝熱管1から伝熱管5にお
ける管内の蒸発圧力損失の測定値を示す図である。FIG. 11 is a diagram showing measured values of evaporation pressure loss in the heat transfer tubes 1 to 5 of the conventional heat exchanger.
10 冷房運転時の冷媒の流れ 11 暖房運転時の冷媒の流れ 12 圧縮機 13 室内熱交換器 14 室外熱交換器 15 膨張弁 16 四方弁 21,21a 伝熱管 22 フィン 23 U型パイプ 24 サイドプレート 31 内面溝付管 32 伝熱管本体 33 螺旋溝 34 螺旋フィン 35 ねじれ角の小さい内面溝付管 36 ねじれ角の大きい内面溝付管 10 Refrigerant flow during cooling operation 11 Refrigerant flow during heating operation 12 compressor 13 Indoor heat exchanger 14 outdoor heat exchanger 15 Expansion valve 16 four-way valve 21,21a Heat transfer tube 22 fins 23 U type pipe 24 Side plate 31 Inner grooved pipe 32 Heat transfer tube body 33 spiral groove 34 spiral fin 35 Inner grooved pipe with small twist angle 36 Inner grooved tube with large helix angle
Claims (5)
で螺旋状に溝が形成された管内の冷媒が凝縮または蒸発
することで熱交換を行う伝熱管と、この伝熱管が挿入さ
れたフィンとを有する熱交換器において、 前記ねじれ角の異なる複数の伝熱管を接続し、この接続
された複数の伝熱管は、前記冷媒の乾き度の小さい側
に、乾き度の大きい側よりも、前記ねじれ角が大きい伝
熱管が配置されていることを特徴とする熱交換器。1. A heat transfer tube for exchanging heat by condensing or evaporating a refrigerant in a tube in which a spiral groove is formed on the inner surface of the tube at an arbitrary twist angle with respect to the axis of the tube, and the heat transfer tube is inserted. In a heat exchanger having a fin, the plurality of heat transfer tubes having different twist angles are connected to each other, and the plurality of connected heat transfer tubes are arranged on a side having a low degree of dryness of the refrigerant, from a side having a high degree of dryness. Also, a heat exchanger characterized in that a heat transfer tube having a large twist angle is arranged.
で螺旋状に溝が形成された管内の冷媒が凝縮または蒸発
することで熱交換を行う伝熱管と、この伝熱管が挿入さ
れたフィンとを有する熱交換器において、 前記ねじれ角の異なる2種類の伝熱管を接続し、この接
続された2種類の伝熱管は、前記冷媒の乾き度の小さい
側に、乾き度の大きい側よりも、前記ねじれ角が10度
以上大きい伝熱管が配置されていることを特徴とする熱
交換器。2. A heat transfer tube for heat exchange by condensing or evaporating a refrigerant in a tube in which a spiral groove is formed on the inner surface of the tube at a predetermined twist angle with respect to the axis of the tube, and the heat transfer tube is inserted. In the heat exchanger having the fins, the two kinds of heat transfer tubes having different twist angles are connected, and the two kinds of connected heat transfer tubes have a high degree of dryness on the side of the refrigerant having a low degree of dryness. A heat exchanger characterized in that a heat transfer tube having a twist angle larger than that of the side by 10 degrees or more is arranged.
で螺旋状に溝が形成された管内の冷媒が凝縮または蒸発
することで熱交換を行う伝熱管と、この伝熱管が挿入さ
れたフィンとを有する熱交換器において、 前記ねじれ角の異なる3種類の伝熱管を接続し、この接
続された3種類の伝熱管は、前記冷媒の乾き度の小さい
側に、乾き度の大きい側よりも、前記ねじれ角が10度
以上大きい伝熱管が配置されていることを特徴とする熱
交換器。3. A heat transfer tube for heat exchange by condensing or evaporating a refrigerant in a tube having a spiral groove formed on the inner surface of the tube at a predetermined twist angle with respect to the axis of the tube, and the heat transfer tube being inserted. In the heat exchanger having the fins, the three types of heat transfer tubes having different twist angles are connected, and the three types of connected heat transfer tubes have a high degree of dryness on the side of the refrigerant having a low degree of dryness. A heat exchanger characterized in that a heat transfer tube having a twist angle larger than that of the side by 10 degrees or more is arranged.
内面に形成された溝の深さが0.1〜0.3mmである
ことを特徴とする請求項1〜3のいずれかに記載の熱交
換器。4. The outer diameter of the heat transfer tube is 4 to 10 mm, and the depth of the groove formed on the inner surface of the heat transfer tube is 0.1 to 0.3 mm. The heat exchanger described.
深さの差が0.04mm以下であることを特徴とする請
求項1〜4のいずれかに記載の熱交換器。5. The heat exchanger according to claim 1, wherein a difference in groove depth between the heat transfer tubes having different twist angles is 0.04 mm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002060469A JP2003262433A (en) | 2002-03-06 | 2002-03-06 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002060469A JP2003262433A (en) | 2002-03-06 | 2002-03-06 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003262433A true JP2003262433A (en) | 2003-09-19 |
Family
ID=29195594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002060469A Pending JP2003262433A (en) | 2002-03-06 | 2002-03-06 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003262433A (en) |
-
2002
- 2002-03-06 JP JP2002060469A patent/JP2003262433A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4665713B2 (en) | Internal grooved heat transfer tube | |
US6390183B2 (en) | Heat exchanger | |
CN103842760B (en) | Heat exchanger and use the refrigerating circulatory device of this heat exchanger | |
JP2012163310A (en) | Heat exchanger and air conditioner | |
KR102048356B1 (en) | Refrigerant pipe, and fin type heat exchanger and air conditioner comprising the same | |
JP6053693B2 (en) | Air conditioner | |
JP3829648B2 (en) | Internal grooved heat transfer tube | |
JP5646257B2 (en) | Refrigeration cycle equipment | |
JP6104357B2 (en) | Heat exchange device and refrigeration cycle device provided with the same | |
JP2003240485A (en) | Heat transfer tube with internal groove | |
EP3115730B1 (en) | Refrigeration cycle device | |
JP2003262433A (en) | Heat exchanger | |
JP4983878B2 (en) | Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner | |
JPH0968396A (en) | Heat exchanger | |
JPH11264630A (en) | Air-conditioning equipment | |
JP3417825B2 (en) | Inner grooved pipe | |
JP3758310B2 (en) | Air conditioner | |
JPH08145490A (en) | Heat exchanger for heat pump air conditioner | |
JPH02143094A (en) | Heat exchanger equipped with heat transfer tube | |
JPH04260792A (en) | Small-diameter heat transfer tube | |
JP6904487B2 (en) | Heat exchanger | |
KR200314025Y1 (en) | Fin tube type heat exchanger and airconditioner and refrigerator using the heat exchanger | |
JP3421130B2 (en) | Air conditioner | |
JPH0336496A (en) | Refrigerant pipe of heat pump type air conditioner heat exchanger | |
JPH08105699A (en) | Heat transfer tube with inside grooves |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040423 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061225 |
|
A131 | Notification of reasons for refusal |
Effective date: 20070110 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070223 |
|
A02 | Decision of refusal |
Effective date: 20070404 Free format text: JAPANESE INTERMEDIATE CODE: A02 |