JPH02143094A - Heat exchanger equipped with heat transfer tube - Google Patents

Heat exchanger equipped with heat transfer tube

Info

Publication number
JPH02143094A
JPH02143094A JP29860388A JP29860388A JPH02143094A JP H02143094 A JPH02143094 A JP H02143094A JP 29860388 A JP29860388 A JP 29860388A JP 29860388 A JP29860388 A JP 29860388A JP H02143094 A JPH02143094 A JP H02143094A
Authority
JP
Japan
Prior art keywords
tube
refrigerant
grooved
heat transfer
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29860388A
Other languages
Japanese (ja)
Inventor
Tomio Higo
肥後 富夫
Mamoru Ishikawa
守 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29860388A priority Critical patent/JPH02143094A/en
Publication of JPH02143094A publication Critical patent/JPH02143094A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve both of evaporation performance and condensation performance by a method wherein a flat tube is connected lengthwisely to a grooved tube and refrigerant is made to flow from the side of the flat tube in the case of an evaporator while refrigerant is made to flow from the side of the grooved pipe in the case of a condenser. CONSTITUTION:A heat transfer tube is constituted by combining a flat tube 1 with a grooved tube 2 and refrigerant is made to flow from the side of the flat tube 1 when a heat exchanger, equipped with this heat transfer tube, is used as an evaporator. The tube is filled with liquid refrigerant upon the early period of evaporation and, therefore, heat transfer performance, same as the heat transfer performance obtained when the grooved tube 2 is used, may be obtained when the flat tube 1 is used. On the other hand, gaseous refrigerant is produced in the tube at the later period of evaporation and, therefore, the refrigerant is made to flow through the grooved tube 2, in which the heat transfer of the gaseous refrigerant is effected highly efficiently. According to this method, highly efficient evaporating performance and condensing performance, same as the performances obtained when the total length of the tube is made by the grooved tube, may be obtained while the pressure loss and the manufacturing cost of said combined tube may be reduced as compared a unit grooved tube.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は伝熱管内で冷媒を蒸発させ、又は凝縮させるこ
とにより熱交換を行う伝熱管を備えた熱交換器に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat exchanger equipped with heat exchanger tubes that exchange heat by evaporating or condensing a refrigerant within the heat exchanger tubes.

[従来の技術] プレートフィン型熱交換器又は二重管式熱交換器等の従
来の熱交換器に使用される伝熱管としては、内面が平滑
な平滑管、内面に螺旋溝が形成された内面溝付管及び内
面が多孔質構造の内面多孔管がある。この内面溝付管及
び内面多孔管は伝熱性能を高めるために開発された伝熱
管であるが、内面溝付管は凝縮特性が優れており、内面
多孔管は蒸発特性が内面溝付管の場合の約185%と優
れている。また、圧力損失は、内面多孔管の方が蒸発及
び凝縮共に内面溝付管よりも優れている。
[Prior art] Heat transfer tubes used in conventional heat exchangers such as plate-fin heat exchangers or double-tube heat exchangers include smooth tubes with a smooth inner surface and spiral grooves formed on the inner surface. There are internally grooved pipes and internally porous pipes with a porous structure. These internally grooved tubes and internally perforated tubes are heat transfer tubes developed to improve heat transfer performance. Internally grooved tubes have superior condensation characteristics, while internally porous tubes have better evaporation characteristics than internally grooved tubes. This is approximately 185% of the case. In addition, in terms of pressure loss, the internally porous tube is superior to the internally grooved tube in both evaporation and condensation.

方、平滑管は製造コストが低いと共に、圧力損失が最も
小さいという利点を有する。
On the other hand, smooth tubes have the advantage of low manufacturing cost and minimal pressure loss.

[発明が解決しようとする課題] しかしながら、熱交換器用伝熱管としては、−船釣に蒸
発特性及び凝縮特性の双方が優れていることが望ましい
。特に、ヒートポンプタイプとして使用される熱交換器
は、蒸発と凝縮とが交互に入れ換わるために、蒸発特性
及び凝縮特性がいずれも優れていることが必要である。
[Problems to be Solved by the Invention] However, as a heat transfer tube for a heat exchanger, it is desirable that both evaporation characteristics and condensation characteristics are excellent for boat fishing. In particular, a heat exchanger used as a heat pump type must have excellent evaporation characteristics and condensation characteristics since evaporation and condensation alternate.

しかしながら、内面多孔管は蒸発特性は優れているもの
の、凝縮特性は内面溝付管の72%と低く、ヒートポン
プタイプの熱交換器用伝熱管としては不適当て・ある。
However, although internally porous tubes have excellent evaporation characteristics, their condensation characteristics are as low as 72% of internally grooved tubes, making them unsuitable as heat exchanger tubes for heat pump type heat exchangers.

一方、平滑管は最も廉価であるが、特に外径が101以
下の場合、これを蒸発器として使用すると、冷媒流量を
多くしたときに伝熱性能が低下してしまうという現象が
起きる。
On the other hand, although smooth tubes are the least expensive, when they are used as evaporators, particularly when the outer diameter is 101 or less, a phenomenon occurs in which the heat transfer performance deteriorates when the refrigerant flow rate is increased.

更に、内面溝付管はプレートフィン型又は二重管式熱交
換器に多く使用されているが、平滑管に比して極めて高
価であり、このため、熱交換器の製造コストを著しく上
昇させてしまう。
Furthermore, although internally grooved tubes are often used in plate-fin or double-tube heat exchangers, they are significantly more expensive than smooth tubes, which significantly increases the manufacturing cost of the heat exchanger. It ends up.

本発明はかかる問題点に鑑みてなされたものであって、
蒸発特性及び凝縮特性の双方が優れており、また製造コ
ストが低い伝熱管を備えた熱交換器を提供することを目
的とする。
The present invention has been made in view of such problems, and includes:
It is an object of the present invention to provide a heat exchanger equipped with heat exchanger tubes that has excellent both evaporation characteristics and condensation characteristics and is inexpensive to manufacture.

[課題を解決するための手段] 本発明に係る伝熱管を備えた熱交換器は、内面が平滑の
平滑管と、内面に溝が形成された溝付管とをその長手方
向に連結し、蒸発器として使用する場合は前記平滑管側
から冷媒を通流させ、凝縮器として使用する場合は前記
溝付管側から冷媒を通流させることを特徴とする。
[Means for Solving the Problems] A heat exchanger equipped with a heat transfer tube according to the present invention connects a smooth tube with a smooth inner surface and a grooved tube with grooves formed on the inner surface in the longitudinal direction, When used as an evaporator, the refrigerant is passed through the smooth tube side, and when used as a condenser, the refrigerant is passed through the grooved tube side.

本発明に係る伝熱管を備えた熱交換器は、内面に溝が形
成された溝付管と、内面が多孔質構造の多孔管とをその
長手方向に連結し、蒸発器として使用する場合は前記多
孔管側から冷媒を通流させ、凝縮器として使用する場合
は前記溝付管側から冷媒を通流させることを特徴とする
A heat exchanger equipped with a heat transfer tube according to the present invention connects a grooved tube with grooves formed on the inner surface and a perforated tube with a porous inner surface in the longitudinal direction, and when used as an evaporator, The refrigerant is allowed to flow through the porous tube side, and when used as a condenser, the refrigerant is allowed to flow through the grooved tube side.

[作用] 本発明においては、平滑管と溝付管とを組み合わせて伝
熱管を楕成し、この伝熱管を備えた熱交換器を蒸発器と
して使用する場合は、平滑管側から冷媒を通流させる。
[Function] In the present invention, when a heat exchanger tube is formed by combining a smooth tube and a grooved tube to form an oval heat exchanger tube and a heat exchanger equipped with this heat exchanger tube is used as an evaporator, the refrigerant is passed from the smooth tube side. Let it flow.

蒸発前期においては、管内が液体状冷媒で満たされてい
るので、この状態では管内面に溝加工を施しであるか否
かは伝熱性能に大きな影響を与えない。このため、平滑
管を使用しても溝付管と同様の伝熱性能を有する。一方
、蒸発後期においては、管内にガス状の冷媒が生成して
いるため、このガス状冷媒との伝熱を高効率で行うため
に溝付管を使用する。これにより、全長を溝付管で構成
した場合と同等の伝熱性能を有する伝熱管が低コストで
得られる。
In the early stage of evaporation, the inside of the tube is filled with liquid refrigerant, so in this state, whether or not the inner surface of the tube is grooved has no significant effect on heat transfer performance. Therefore, even if a smooth tube is used, it has the same heat transfer performance as a grooved tube. On the other hand, in the latter stage of evaporation, a gaseous refrigerant is generated within the tube, so a grooved tube is used in order to conduct heat transfer with this gaseous refrigerant with high efficiency. As a result, a heat exchanger tube having the same heat transfer performance as a case where the entire length is composed of a grooved tube can be obtained at a low cost.

一方、この熱交換器を凝縮器として使用する場合は、溝
付管側から冷媒を通流させる。凝縮前期は管内がガス状
の冷媒で満たされているため、溝付管を使用して伝熱性
能を高める必要があるが、凝縮後期は管内が液体状冷媒
で満たされているので、前述の蒸発の場合と同様に、内
面の溝の有無は伝熱性能に影響を与えないため、紙庫な
平滑管を使用する。
On the other hand, when this heat exchanger is used as a condenser, the refrigerant is passed through from the grooved tube side. In the early stage of condensation, the inside of the pipe is filled with gaseous refrigerant, so it is necessary to use grooved pipes to improve heat transfer performance, but in the latter stage of condensation, the inside of the pipe is filled with liquid refrigerant, so the above-mentioned As in the case of evaporation, the presence or absence of grooves on the inner surface does not affect heat transfer performance, so a smooth tube is used.

また、溝付管と多孔管とを組み合わせて伝熱管を構成し
た場合には、この伝熱管を備えた熱交換器を蒸発器とし
て使用するときは、多孔管側を冷媒入口側とし、凝縮器
として使用するときは、溝付管側を冷媒入口側とする。
In addition, when a heat exchanger tube is configured by combining a grooved tube and a perforated tube, when using a heat exchanger equipped with this heat exchanger tube as an evaporator, the perforated tube side is the refrigerant inlet side, and the condenser When used as a refrigerant, the grooved tube side should be the refrigerant inlet side.

管内冷媒の流れの形態は気液2相流であるが、内面溝付
管は冷媒の流れに旋回流を与え、気液2相の境界層が剥
離しやすくなるので、気相が多い方が伝熱効果上有効で
ある。一方、内面多孔管は多数の小孔が核となり、核沸
騰が生じやすいので、液相が多い方が伝熱効果上有効で
ある。このため、内面溝付管は蒸発器の冷媒出口側及び
凝縮器の冷媒入口側に使用し、内面多孔管は蒸発器の冷
媒入口側及び凝縮器の冷媒出口側に使用する。これによ
り、蒸発性能及び凝縮性能の双方が優れた熱交換器が得
られる。
The flow form of the refrigerant in the pipe is a gas-liquid two-phase flow, but internally grooved pipes give a swirling flow to the refrigerant flow, making it easier for the gas-liquid two-phase boundary layer to separate, so the more gas phase the better. It is effective in terms of heat transfer effect. On the other hand, in an internally porous tube, a large number of small pores serve as nuclei, and nucleate boiling is likely to occur, so the more liquid phase there is, the more effective the heat transfer effect will be. Therefore, the internally grooved tube is used on the refrigerant outlet side of the evaporator and the refrigerant inlet side of the condenser, and the internally porous tube is used on the refrigerant inlet side of the evaporator and the refrigerant outlet side of the condenser. As a result, a heat exchanger having both excellent evaporation performance and condensation performance can be obtained.

[実施例] 以下、本発明の実施例について添付の図面を参照して説
明する。
[Examples] Examples of the present invention will be described below with reference to the accompanying drawings.

先ず、第1図に示すように、内面が平滑な平滑管lと、
内面に螺旋状の溝が形成された溝付管2とをその長手方
向に連結した伝熱管を使用した熱交換器について説明す
る。
First, as shown in Fig. 1, a smooth tube l with a smooth inner surface,
A heat exchanger using a heat exchanger tube in which a grooved tube 2 having a spiral groove formed on the inner surface is connected in the longitudinal direction will be described.

この第1図の実施例は管全長の3/4が平滑管1になり
、残りの1/4が溝付管2になるように両者を直線状に
継ぎ合わせたものである。なお、これらの平滑管1及び
溝付管2の全長は例えば4mであり、外径が6.35m
mである。
In the embodiment shown in FIG. 1, 3/4 of the total length of the tube is a smooth tube 1, and the remaining 1/4 is a grooved tube 2, which are joined in a straight line. The total length of these smooth tubes 1 and grooved tubes 2 is, for example, 4 m, and the outer diameter is 6.35 m.
It is m.

上述の如く構成された伝熱管を使用した熱交換器を蒸発
器に使用する場合においては、液状の冷媒を先ず平滑管
1に通流させた後、溝付管2を通流させる。この平滑管
1を通流する間に液状の冷媒は熱交換(加熱)を受けて
蒸発し、気相と液相との2相になる。そして、この2相
の冷媒は次いで内面溝付管2を通流して高効率で熱交換
(加熱)を受ける、 一方、凝縮器においては、ガス状の冷媒が先ず溝付管2
を通流した後、平滑管1を通流する。この溝付管2を通
流する間にガス状の冷媒は高効率で熱交換(冷却)を受
けて凝縮し、気相と液相の2相となる。そして、この2
相の冷媒は次いで平滑管1を通流して更に熱交換(冷却
)を受ける。
When a heat exchanger using heat transfer tubes configured as described above is used in an evaporator, liquid refrigerant is first passed through the smooth tubes 1 and then through the grooved tubes 2. While flowing through the smooth tube 1, the liquid refrigerant undergoes heat exchange (heating) and evaporates, becoming two phases: a gas phase and a liquid phase. This two-phase refrigerant then flows through the internally grooved tube 2 and undergoes heat exchange (heating) with high efficiency.On the other hand, in the condenser, the gaseous refrigerant first flows through the grooved tube 2.
After passing through the fluid, the smooth tube 1 is passed through. While flowing through the grooved pipe 2, the gaseous refrigerant undergoes heat exchange (cooling) with high efficiency and is condensed into two phases: a gas phase and a liquid phase. And this 2
The phase refrigerant then flows through the smooth tube 1 to undergo further heat exchange (cooling).

このように、本実施例においては、管内が液体状冷媒で
満たされている蒸発前期又は凝縮後期に、冷媒は平滑管
1からの熱伝達により熱交換を受け、気相が多い蒸発後
期又は凝縮前期には、冷媒は溝付管2からの熱伝達によ
り加熱される。この場合に液体状冷媒に対しては、平滑
管も溝付管も伝熱性能に大きな差が存在しないため、本
実施例の組み合わせ管は溝付管単管を使用した場合と同
様の伝熱効率が得られる。また、全長の3/4が平滑管
であるため、圧力損失は小さく、この点では溝付管単管
の場合よりも優れている。更に、全長の3/4が平滑管
であるから、全長を溝付管で構成した場合に比して製造
コストが極めて低い。
As described above, in this embodiment, the refrigerant undergoes heat exchange by heat transfer from the smooth tube 1 during the early stage of evaporation or the late stage of condensation when the inside of the pipe is filled with liquid refrigerant, and the refrigerant undergoes heat exchange during the late stage of evaporation or condensation when the inside of the pipe is filled with liquid refrigerant. In the first period, the refrigerant is heated by heat transfer from the grooved tube 2. In this case, for liquid refrigerant, there is no big difference in heat transfer performance between smooth tubes and grooved tubes, so the combined tube of this example has the same heat transfer efficiency as when using a single grooved tube. is obtained. Furthermore, since 3/4 of the total length is a smooth tube, the pressure loss is small, and in this respect it is superior to the case of a single grooved tube. Furthermore, since 3/4 of the total length is a smooth tube, the manufacturing cost is extremely low compared to a case where the entire length is composed of a grooved tube.

一方、気相が多い冷媒に対しては、内面溝付管2により
旋回流が与えられ、気液2相の境界層が剥離して高効率
で熱交換される。
On the other hand, for a refrigerant with a large amount of gas phase, a swirling flow is given by the internally grooved tube 2, and the gas-liquid two-phase boundary layer is separated, resulting in highly efficient heat exchange.

即ち、流体がそれとは温度が異なる壁面に沿って流れる
場合に、壁面の近くに流体の温度及び速度が急変する境
界層が出現する。この境界層の生成の仕方は流体の速度
及び流体と壁面との温度差により異なるが、この境界層
が熱抵抗となり、流体の主流部と壁面との熱交換が阻害
される。
That is, when a fluid flows along a wall surface whose temperature is different from that of the wall surface, a boundary layer appears near the wall surface where the temperature and velocity of the fluid suddenly change. The manner in which this boundary layer is generated differs depending on the velocity of the fluid and the temperature difference between the fluid and the wall surface, but this boundary layer acts as a thermal resistance and inhibits heat exchange between the main flow part of the fluid and the wall surface.

平滑管の場合は、管内壁の殆どの領域が発達した境界層
により覆われるため伝熱性能が悪い、−方、内面溝付管
は内面の溝により流体の流れが旋回流になると同時に、
溝部において乱流を生ずるため、この流れにより内面溝
付管に発生する境界層は薄く、断続的なものとなる。従
って、気液2層流域においては、内面溝付管の内部に生
ずる乱流により細かな気泡が巻き込まれ、この気泡によ
り前述の境界層が剥離及び破壊され、境界層が形成し難
くなるため、流体と管壁内面とは常に良好な熱伝達を行
うことができる。
In the case of a smooth tube, most of the inner wall of the tube is covered by a well-developed boundary layer, resulting in poor heat transfer performance.In contrast, in a tube with internal grooves, the fluid flow becomes a swirling flow due to the grooves on the inner surface, and at the same time,
Since turbulence is generated in the groove, the boundary layer generated in the internally grooved tube due to this flow is thin and intermittent. Therefore, in the gas-liquid two-layer region, the turbulent flow generated inside the internally grooved tube entrains fine air bubbles, and these air bubbles separate and destroy the aforementioned boundary layer, making it difficult to form a boundary layer. Good heat transfer is always possible between the fluid and the inner surface of the tube wall.

次に、本実施例の組み合わせ管の伝熱性能及び圧力損失
を実測した結果について説明する。
Next, the results of actually measuring the heat transfer performance and pressure loss of the combined tube of this example will be explained.

第2図は横軸に冷媒流量をとり、縦軸に伝熱性能をとっ
て、平滑管、内面溝付管及び本実施例の組み合わせ管(
平滑管+内面溝付管)についてその蒸発性能を示すグラ
フ図である。なお、容管の外径は6.35m+nである
。また、本実施例管においては、冷媒を平滑管側から導
入した。この第2図から明らかなように、平滑管の場合
は伝熱性能が低く、また、冷媒流量が低いとき及び高い
ときにその伝熱性能が著しく低下してしまう。これに対
し、本実施例の組み合わせ管の場合は、内面溝付管単管
と同様に優れた伝熱性能が得られる。
Figure 2 shows the refrigerant flow rate on the horizontal axis and the heat transfer performance on the vertical axis.
FIG. 2 is a graph showing the evaporation performance of a smooth tube + an internally grooved tube. Note that the outer diameter of the container tube is 6.35 m+n. Furthermore, in the tube of this example, the refrigerant was introduced from the smooth tube side. As is clear from FIG. 2, the heat transfer performance of the smooth tube is low, and the heat transfer performance is significantly reduced when the refrigerant flow rate is low or high. On the other hand, in the case of the combined tube of this embodiment, excellent heat transfer performance can be obtained similar to that of the single tube with internal grooves.

また、第3図は横軸に冷媒流Iをとり、縦軸に圧力損失
をとって容管の圧力損失を示すグラフ図である。この第
3図から明らかなように、内面溝付管の圧力損失が最も
大きく、平滑管の圧力損失が最も小さい。本実施例の組
み合わせ管はこれらの単管の中間の圧力損失を示す・。
Moreover, FIG. 3 is a graph showing the pressure loss of the container tube, with the refrigerant flow I plotted on the horizontal axis and the pressure loss plotted on the vertical axis. As is clear from FIG. 3, the internally grooved pipe has the largest pressure loss, and the smooth pipe has the smallest pressure loss. The combined pipe of this example exhibits a pressure loss intermediate between these single pipes.

上述の如く、本実施例の組み合わせ管は、全長を内面溝
付管で構成した場合と、同様の伝熱性能を有する一方、
圧力損失は内面溝付管よりも小さい 第4図は、本発明をプレートフィン型熱交換器に適用し
た実施例を示す模式図である。板状のアルミニウム製フ
ィン5を複数枚適長間隔をおいて平行に配置し、ヘアピ
ン状に曲管した3本の平滑管3と、同じくヘアピン状の
1本の内面溝付管4とをフィン5にその面に垂直に挿通
し、相互に固定しである。そして、隣接する平滑管3同
士を、又は隣接する平滑管3と内面溝付管4とをUベン
ド管6により相互に連結しである。これにより、全長の
3/4が平滑管3であり、残りの1/4が溝付管4であ
る冷媒1回路が構成される。
As mentioned above, the combined tube of this example has the same heat transfer performance as the case where the entire length is composed of internally grooved tubes, but
The pressure loss is smaller than that of an internally grooved tube. FIG. 4 is a schematic diagram showing an embodiment in which the present invention is applied to a plate-fin type heat exchanger. A plurality of plate-shaped aluminum fins 5 are arranged in parallel at appropriate length intervals, and three smooth tubes 3 curved in a hairpin shape and one tube 4 with an inner groove in the shape of a hairpin are formed into a fin. 5 perpendicularly to that surface and fixed to each other. Adjacent smooth tubes 3 or adjacent smooth tubes 3 and inner grooved tubes 4 are interconnected by U-bend tubes 6. This constitutes one refrigerant circuit in which 3/4 of the total length is the smooth tube 3 and the remaining 1/4 is the grooved tube 4.

本実施例においても、蒸発器として使用する場合は、冷
媒を平滑管3側から導入し、凝縮器として使用する場合
は、冷媒を溝付管4(ll!Iから導入する。これによ
り、第1図の実施例と同様の効果を奏する。なお、上記
各実施例は平滑管が全長の3/4を占める場合のもので
あるが、本発明はこれに限らず、種々の配分比率で両管
を組み合わせることが可能であることは勿論である。
In this embodiment as well, when used as an evaporator, the refrigerant is introduced from the smooth pipe 3 side, and when used as a condenser, the refrigerant is introduced from the grooved pipe 4 (ll!I). The same effect as that of the embodiment shown in Fig. 1 is achieved.Although each of the above embodiments is a case where the smooth tube occupies 3/4 of the total length, the present invention is not limited to this, and the present invention is not limited to this. It is of course possible to combine tubes.

次に、内面に螺旋溝が形成された内面溝付管と、内面に
貫通しない小孔が多数形成された内面多孔管とを組み合
わせて伝熱管を構成した場合について説明する。
Next, a case will be described in which a heat exchanger tube is constructed by combining an internally grooved tube in which a spiral groove is formed on the internal surface and an internally porous tube in which a large number of small holes that do not penetrate are formed in the internal surface.

第5図はこの組み合わせ伝熱管を組み込んだ所謂フィン
トコイルタイプの熱交換器を示す模式図である。ヘアピ
ン型又はU字型の5本の内面溝付管11(NlLL〜5
)と、同様にヘアピン型又はU字型の5本の内面多孔管
12(N[L6〜10)とがアルミニウム製フィン13
に対し、その面に垂直に挿通して密着固定されている。
FIG. 5 is a schematic diagram showing a so-called finted coil type heat exchanger incorporating this combination of heat exchanger tubes. Five hairpin-shaped or U-shaped internally grooved tubes 11 (NlLL~5
) and five hairpin-shaped or U-shaped internally porous tubes 12 (N[L6-10) are made of aluminum fins 13.
However, it is inserted perpendicularly to that surface and is tightly fixed.

そして、隣接する管(内面溝付管11及び内面多孔管1
2)同士をUベンド管14により連結して冷媒1回路が
構成されている。これにより、−列に20段の伝熱管が
配置されたフィン型熱交換器が構成される。
Then, the adjacent pipes (the internally grooved pipe 11 and the internally porous pipe 1
2) One refrigerant circuit is constructed by connecting them with each other through a U-bend pipe 14. This constitutes a fin-type heat exchanger in which 20 stages of heat transfer tubes are arranged in the negative row.

この熱交換器を蒸発器として使用する場合は、内面多孔
管12側の管端Bが冷媒入口となり、内面溝付管11側
の管端Aが冷媒出口となるように、管内に冷媒を通流さ
せる。そうすると、液体状の冷媒は先ず内面多孔管12
を通流して熱を受け、気相が生成して液相と気相の2相
流になる。内面多孔管12においては、内面の多数の小
孔が核となって液体状の冷媒が核沸騰する。このため、
内面多孔管12は、液相が多い冷媒の熱伝達に使用する
方が有効である。
When this heat exchanger is used as an evaporator, the refrigerant is passed through the tubes so that the tube end B on the internally porous tube 12 side serves as the refrigerant inlet, and the tube end A on the internally grooved tube 11 side serves as the refrigerant outlet. Let it flow. Then, the liquid refrigerant first enters the internally porous pipe 12.
A flow passes through it, heat is received, and a gas phase is generated, resulting in a two-phase flow of a liquid phase and a gas phase. In the internally porous tube 12, the liquid refrigerant undergoes nucleate boiling with the large number of small pores on the internal surface serving as nuclei. For this reason,
It is more effective to use the internally porous tube 12 for heat transfer of a refrigerant with a large liquid phase.

次いで、2相の冷媒は内面溝付管11を通流して熱を受
け、冷媒の蒸発が更に進行する。内面溝付管11におい
ては、冷媒の流れに旋回流が与えられ、境界層の剥離が
進行し、熱交換を受けやずくなるので、気相が多い冷媒
の熱伝達に使用する方が有効である。
Next, the two-phase refrigerant flows through the internally grooved tube 11 and receives heat, further progressing evaporation of the refrigerant. In the internally grooved tube 11, swirling flow is given to the refrigerant flow, separation of the boundary layer progresses, and heat exchange becomes difficult, so it is more effective to use the refrigerant for heat transfer with a large gas phase. be.

このようにして、液相が多い蒸発前期は内面多孔管12
により高効率で熱交換を受け、気相が多い蒸発後期は内
面溝付管11により高効率で熱交換を受ける。
In this way, during the early stage of evaporation when there is a large amount of liquid phase, the inner porous tube 12
In the latter stage of evaporation when there is a large amount of gas phase, heat is exchanged with high efficiency by the internally grooved tube 11.

一方、熱交換器を凝縮器として使用する場合は、内面溝
付管11側の管端Aが冷媒入口となり、内面多孔管12
側の管端Bが冷媒出口となるように、管内に冷媒を通流
させる。そうすると、気相が多い凝縮前期においては、
冷媒は内面溝付管11による旋回流を伴う熱交換により
高効率の熱伝達を受ける。
On the other hand, when the heat exchanger is used as a condenser, the tube end A on the internally grooved tube 11 side becomes the refrigerant inlet, and the internally porous tube 12
The refrigerant is made to flow through the tube so that the side tube end B becomes the refrigerant outlet. Then, in the early condensation stage where there is a lot of gas phase,
The refrigerant receives highly efficient heat transfer through heat exchange accompanied by a swirling flow through the internally grooved tube 11 .

従って、本実施例においては、蒸発特性及び凝縮特性の
双方が優れている。第6図は横軸に内面多孔管12と内
面溝付管11の配分比率をとり、縦軸に熱伝達特性をと
って、蒸発特性及び凝縮特性と配分率との関係を示すグ
ラフ図である。この第6図に示すように、内面多孔管が
20%未満であると、蒸発特性が著しく低下し、逆に内
面溝付管が20%未満であると、凝縮特性が著しく低下
する。
Therefore, in this example, both the evaporation characteristics and the condensation characteristics are excellent. FIG. 6 is a graph showing the relationship between evaporation characteristics, condensation characteristics, and distribution ratio, with the horizontal axis representing the distribution ratio of the internally porous tube 12 and the internally grooved tube 11, and the vertical axis representing the heat transfer characteristic. . As shown in FIG. 6, if the internally porous tube accounts for less than 20%, the evaporation characteristics will be significantly reduced, and conversely, if the internally grooved tube accounts for less than 20%, the condensing characteristics will decrease significantly.

これは、蒸発特性は内面多孔管の方が、また、凝縮特性
は内面溝付管の方が優れているからである。
This is because a tube with internal holes has better evaporation characteristics, and a tube with grooves on the inside has better condensation characteristics.

第7図は横軸に冷媒流量をとり、縦軸に管内熱伝達率を
とって、平滑管(A)、三角溝の溝付管(B)、台形溝
の溝付管(C)及び多孔管(D)の蒸発特性を示すグラ
フ図である。この第7図から明らかなように、蒸発特性
は多孔管(D)が最も優れており、多孔管(D)は三角
溝の溝付管(B)の場合の1.85倍の熱伝達率を有す
る。
Figure 7 shows the refrigerant flow rate on the horizontal axis and the internal heat transfer coefficient on the vertical axis. It is a graph diagram showing the evaporation characteristics of the tube (D). As is clear from Fig. 7, the perforated pipe (D) has the best evaporation characteristics, and the perforated pipe (D) has a heat transfer coefficient of 1.85 times that of the triangular grooved pipe (B). has.

一方、第8図は横軸に冷媒流量をとり、1i1軸に管内
熱伝達率をとって、上述の容管の凝縮特性を示すグラフ
図である。この第8図から明らかなように、凝縮特性は
、溝付管(C,B)が最も優れており、三角溝溝付管(
B)の凝縮特性を100とすると、多孔管(D)の凝縮
特性は72となる。
On the other hand, FIG. 8 is a graph showing the condensation characteristics of the above-mentioned container tube, with the refrigerant flow rate plotted on the horizontal axis and the heat transfer coefficient within the tube plotted on the 1i1 axis. As is clear from Fig. 8, the grooved tubes (C, B) have the best condensation characteristics, and the triangular grooved tubes (C, B) have the best condensation characteristics.
If the condensation characteristic of B) is 100, the condensation characteristic of the porous pipe (D) is 72.

従って、本実施例のように、内面溝付管11と内面多孔
管12とを組み合わせ、管内蒸発を目的とする場合に内
面多孔管側を冷媒入口とし、管内凝縮を目的とする場合
に内面溝付管側を冷媒入口とすることにより、内面多孔
管及び内面溝付管のもつ特長を兼ね備え、蒸発特性及び
凝縮特性の双方が優れた伝熱管が得られる。
Therefore, as in this embodiment, when the internally grooved tube 11 and the internally porous tube 12 are combined, the internally porous tube side is used as the refrigerant inlet when the objective is to evaporate within the tube, and the internally grooved tube is used when the objective is to condense within the tube. By using the attached tube side as the refrigerant inlet, it is possible to obtain a heat exchanger tube that has both the features of an internally porous tube and an internally grooved tube and has excellent evaporation characteristics and condensation characteristics.

この場合に、第6図に示すように、内面多孔管及び内面
溝付管のいずれも配分比率が20%未満であると、蒸発
特性又は凝縮特性のいずれか一方が極めて低下する。こ
のため、内面多孔管又は内面溝付管の配分比率をいずれ
も20乃至80%とすることが好ましい。
In this case, as shown in FIG. 6, if the distribution ratio of both the internally porous tube and the internally grooved tube is less than 20%, either the evaporation characteristics or the condensation characteristics will be extremely degraded. For this reason, it is preferable that the distribution ratio of the internally porous tube or the internally grooved tube be 20 to 80%.

このように構成された組み合わせ管の蒸発時の伝熱特性
は、第9図に示すように、内面溝付管単管の場合に比し
て優れた性能が得られる。また、凝縮時も同様であり、
更に、内面多孔管単管に対しても本実施例の組み合わせ
管は同様に優れた伝熱性能が得られる。
As shown in FIG. 9, the heat transfer characteristics during evaporation of the combined tube constructed in this way are superior to those of a single tube with internal grooves. The same is true when condensing,
Furthermore, the combination tube of this embodiment can similarly provide excellent heat transfer performance with respect to a single tube with internally porous tubes.

この熱交換器を室内及び室外に設け、室内器を凝縮器、
室外器を蒸発器とし、室外器を強制的に加熱しつつ、冷
媒を側熱交換器に通流させることにより、暖房装置とし
て組み立てることができる。
This heat exchanger is installed indoors and outdoors, and the indoor unit is used as a condenser,
It can be assembled as a heating device by using the outdoor unit as an evaporator and forcing refrigerant to flow through the side heat exchanger while heating the outdoor unit.

逆に、室内器を蒸発器、室外器を凝縮器とし、室外器を
強制的に冷却しつつ、冷媒を側熱交換器に通流させるこ
とにより、この熱交換器を冷房装置として組み立てるこ
とができる。
Conversely, by using the indoor unit as an evaporator and the outdoor unit as a condenser, and forcing the outdoor unit to cool down while allowing the refrigerant to flow through the side heat exchanger, it is possible to assemble this heat exchanger as a cooling device. can.

第11図は本発明をシェルアンドタイプの熱交換器に適
用した場合の実施例を示す模式図である。
FIG. 11 is a schematic diagram showing an embodiment in which the present invention is applied to a shell-and-type heat exchanger.

直管状の内面溝付管15と、直管状の内面多孔管16と
をその長手方向に連結して伝熱管が構成されている。こ
の伝熱管はその1/2の長さ部分が内面溝付管15であ
り、残りの1/2の長さ部分が内面多孔管16である。
A heat transfer tube is constructed by connecting a straight inner grooved tube 15 and a straight inner porous tube 16 in the longitudinal direction. In this heat exchanger tube, 1/2 of its length is an internally grooved tube 15, and the remaining 1/2 is an internally porous tube 16.

そして、この複数本の伝熱管はそれらの管端で一対の管
板17を挿通させて気密的及び液密的に固定されている
。このようにして組み立てられた伝熱管はシェル18内
に装入され、管板17によりシェル18内に3個の空間
が仕切られる。そして、シェル18の両端部にはその両
端部側の空間と連通ずる冷媒通流口19a、19bが設
けられている。この冷媒通流口19a(又は1つb)を
介してシェル18内に導入された冷媒が内面溝付管15
及び内面多孔管16の組み合わせにより構成される伝熱
管内を通流し、他方の冷媒通流口19b(又は19a)
を介してシェル18外に排出される。一方、シェル18
の中央部の空間には、他の冷媒が通流し、伝熱管の外面
に接触して伝熱管との間で熱交換を行うにの熱交換器を
蒸発器として使用する場合は、内面多孔管16側の冷媒
通流口19bを冷媒入口とし、凝縮器として使用する場
合は、内面溝付管15側の冷媒通流口19aを冷媒入口
とする。このように構成された本実施例においても、第
5図に示す実施例と同様の効果を奏する。
The plurality of heat transfer tubes are fixed in an air-tight and liquid-tight manner by inserting a pair of tube plates 17 at their tube ends. The heat exchanger tubes assembled in this manner are inserted into the shell 18, and three spaces are partitioned within the shell 18 by the tube plate 17. At both ends of the shell 18, refrigerant flow ports 19a and 19b are provided which communicate with the spaces at both ends. The refrigerant introduced into the shell 18 through this refrigerant flow port 19a (or one b) is transferred to the inner grooved pipe 15.
and the other refrigerant flow port 19b (or 19a).
It is discharged to the outside of the shell 18 through the. On the other hand, shell 18
When using the heat exchanger as an evaporator, other refrigerant flows through the space in the center of the tube and contacts the outer surface of the heat transfer tube to exchange heat with the heat transfer tube. The refrigerant flow port 19b on the 16 side is used as a refrigerant inlet, and when used as a condenser, the refrigerant flow port 19a on the inner grooved tube 15 side is used as a refrigerant inlet. This embodiment configured in this manner also provides the same effects as the embodiment shown in FIG. 5.

[発明の効果] 本発明によれば、平滑管と溝付管とを組み合わぜな伝熱
管を使用するから、全長を内面溝付管で構成した場合と
同様の蒸発性能及び凝縮性能が得られる一方、圧力損失
及び製造コストは内面溝付管単管の場合よりも低い。
[Effects of the Invention] According to the present invention, since a heat transfer tube that is a combination of a smooth tube and a grooved tube is used, it is possible to obtain the same evaporation performance and condensation performance as when the entire length is composed of an internally grooved tube. On the other hand, the pressure drop and manufacturing cost are lower than in the case of a single tube with internal grooves.

また、本願の他の発明は、溝付管と多孔管とを組み合わ
せた伝熱管を使用するから、蒸発特性及び凝縮特性の双
方が優れていて、ヒートポンプタイプの熱交換器として
極めて有益である。
Further, since the other invention of the present application uses a heat exchanger tube that is a combination of a grooved tube and a perforated tube, it has excellent evaporation characteristics and condensation characteristics, and is extremely useful as a heat pump type heat exchanger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例に係る熱交換器に使用す
る伝熱管を示す模式図、第2図はその蒸発性能を示すグ
ラフ図、第3図は同じくその圧力損失を示すグラフ図、
第4図は本発明の第2の実施例を示す模式図、第5図は
本発明の第3の実施例を示す模式図、第6図はその配分
比率と熱伝達特性との関係を示すグラフ図、第7図は容
管の蒸発特性を示すグラフ図、第8図は同じく容管の凝
縮特性を示すグラフ図、第9図は伝熱性能を示すグラフ
図、第10図は圧力損失を示すグラフ図、第11図は本
発明の第4の実施例を示す模式図である。 1.3;平滑管、2,4,11,15:内面溝付管、1
2,16;内面多孔管、6.14;Uベンド管、18;
シェル
Fig. 1 is a schematic diagram showing a heat exchanger tube used in a heat exchanger according to the first embodiment of the present invention, Fig. 2 is a graph showing its evaporation performance, and Fig. 3 is a graph showing its pressure loss. figure,
Fig. 4 is a schematic diagram showing a second embodiment of the present invention, Fig. 5 is a schematic diagram showing a third embodiment of the invention, and Fig. 6 shows the relationship between the distribution ratio and heat transfer characteristics. Graph diagram, Figure 7 is a graph diagram showing the evaporation characteristics of the container tube, Figure 8 is a graph diagram showing the condensation characteristics of the container tube, Figure 9 is a graph diagram showing heat transfer performance, and Figure 10 is a graph diagram showing the pressure loss. FIG. 11 is a schematic diagram showing a fourth embodiment of the present invention. 1.3; Smooth pipe, 2, 4, 11, 15: Internally grooved pipe, 1
2, 16; Internally porous tube, 6.14; U-bend tube, 18;
shell

Claims (3)

【特許請求の範囲】[Claims] (1) 内面が平滑の平滑管と、内面に溝が形成された
溝付管とをその長手方向に連結し、蒸発器として使用す
る場合は前記平滑管側から冷媒を通流させ、凝縮器とし
て使用する場合は前記溝付管側から冷媒を通流させるこ
とを特徴とする伝熱管を備えた熱交換器。
(1) A smooth tube with a smooth inner surface and a grooved tube with grooves formed on the inner surface are connected in the longitudinal direction, and when used as an evaporator, a refrigerant is passed from the smooth tube side to form a condenser. A heat exchanger equipped with a heat transfer tube, characterized in that when used as a heat exchanger, a refrigerant is caused to flow from the grooved tube side.
(2) 内面に溝が形成された溝付管と、内面が多孔質
構造の多孔管とをその長手方向に連結し、蒸発器として
使用する場合は前記多孔管側から冷媒を通流させ、凝縮
器として使用する場合は前記溝付管側から冷媒を通流さ
せることを特徴とする伝熱管を備えた熱交換器。
(2) A grooved tube with grooves formed on the inner surface and a porous tube with a porous structure on the inner surface are connected in the longitudinal direction, and when used as an evaporator, a refrigerant is caused to flow from the porous tube side, A heat exchanger equipped with a heat transfer tube, characterized in that when used as a condenser, a refrigerant is passed through the grooved tube side.
(3) 前記多孔管は管全長の20乃至80%を占める
ことを特徴とする請求項2に記載の伝熱管を備えた熱交
換器。
(3) The heat exchanger equipped with a heat transfer tube according to claim 2, wherein the perforated tube occupies 20 to 80% of the total length of the tube.
JP29860388A 1988-11-25 1988-11-25 Heat exchanger equipped with heat transfer tube Pending JPH02143094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29860388A JPH02143094A (en) 1988-11-25 1988-11-25 Heat exchanger equipped with heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29860388A JPH02143094A (en) 1988-11-25 1988-11-25 Heat exchanger equipped with heat transfer tube

Publications (1)

Publication Number Publication Date
JPH02143094A true JPH02143094A (en) 1990-06-01

Family

ID=17861868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29860388A Pending JPH02143094A (en) 1988-11-25 1988-11-25 Heat exchanger equipped with heat transfer tube

Country Status (1)

Country Link
JP (1) JPH02143094A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002796A (en) * 2006-06-26 2008-01-10 Denso Corp Ejector type refrigeration cycle
JP2012247180A (en) * 2012-08-10 2012-12-13 Hitachi Appliances Inc Heat exchanger
WO2020202492A1 (en) * 2019-04-03 2020-10-08 三菱電機株式会社 Heat exchanger and air conditioner
WO2020240858A1 (en) * 2019-05-31 2020-12-03 三菱電機株式会社 Refrigeration cycle device and refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029351B1 (en) * 1969-05-24 1975-09-22
JPS5911268B2 (en) * 1976-11-27 1984-03-14 三菱電機株式会社 thyristor conversion device
JPS61114092A (en) * 1984-11-06 1986-05-31 Matsushita Electric Ind Co Ltd Heat exchanger
JPH0293296A (en) * 1988-09-30 1990-04-04 Mitsubishi Metal Corp Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029351B1 (en) * 1969-05-24 1975-09-22
JPS5911268B2 (en) * 1976-11-27 1984-03-14 三菱電機株式会社 thyristor conversion device
JPS61114092A (en) * 1984-11-06 1986-05-31 Matsushita Electric Ind Co Ltd Heat exchanger
JPH0293296A (en) * 1988-09-30 1990-04-04 Mitsubishi Metal Corp Heat exchanger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002796A (en) * 2006-06-26 2008-01-10 Denso Corp Ejector type refrigeration cycle
JP4591413B2 (en) * 2006-06-26 2010-12-01 株式会社デンソー Ejector refrigeration cycle
JP2012247180A (en) * 2012-08-10 2012-12-13 Hitachi Appliances Inc Heat exchanger
WO2020202492A1 (en) * 2019-04-03 2020-10-08 三菱電機株式会社 Heat exchanger and air conditioner
US11959648B2 (en) 2019-04-03 2024-04-16 Mitsubishi Electric Corporation Heat exchanger and air conditioning apparatus
WO2020240858A1 (en) * 2019-05-31 2020-12-03 三菱電機株式会社 Refrigeration cycle device and refrigerator
JPWO2020240858A1 (en) * 2019-05-31 2020-12-03
CN113853502A (en) * 2019-05-31 2021-12-28 三菱电机株式会社 Refrigeration cycle device and refrigerator

Similar Documents

Publication Publication Date Title
JP3056151B2 (en) Heat exchanger
JP3627382B2 (en) Refrigerant condensing device and refrigerant condenser
JP3866905B2 (en) Heat exchanger and refrigeration cycle equipment
JP2004286246A (en) Parallel flow heat exchanger for heat pump
JP2002267289A (en) Plate heat exchanger
JP3576486B2 (en) Evaporators and refrigerators
JP2005127529A (en) Heat exchanger
JP2014137177A (en) Heat exchanger and refrigerator
JPS6214751B2 (en)
JPH02143094A (en) Heat exchanger equipped with heat transfer tube
JP2004251556A (en) Heat exchanger
JP2644900B2 (en) Heat exchanger
JP2005090805A (en) Heat exchanger
JPH05215482A (en) Heat exchanger
JP2014137172A (en) Heat exchanger and refrigerator
JP2574488B2 (en) Heat exchanger
JP2003222436A (en) Heat exchanger for heat pump type air conditioner
JP2001141382A (en) Air heat exchanger
JPS6252238B2 (en)
JP2020190383A (en) Heat exchanger
JPS61191889A (en) Heat exchanger
JPS61285389A (en) Heat exchanger
JP2004332958A (en) Heat exchanger of air conditioner
JP2008095989A (en) Condenser and refrigerating cycle device
JP3421130B2 (en) Air conditioner