JP2004251556A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2004251556A
JP2004251556A JP2003042852A JP2003042852A JP2004251556A JP 2004251556 A JP2004251556 A JP 2004251556A JP 2003042852 A JP2003042852 A JP 2003042852A JP 2003042852 A JP2003042852 A JP 2003042852A JP 2004251556 A JP2004251556 A JP 2004251556A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
header
pipe
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003042852A
Other languages
Japanese (ja)
Inventor
Shigeto Yamaguchi
成人 山口
Takashi Sugio
孝 杉尾
Shoichi Yokoyama
昭一 横山
Tsutomu Shimizu
努 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003042852A priority Critical patent/JP2004251556A/en
Priority to CNB2004100050859A priority patent/CN1324290C/en
Priority to KR1020040007131A priority patent/KR20040075717A/en
Publication of JP2004251556A publication Critical patent/JP2004251556A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K3/00Baths; Douches; Appurtenances therefor
    • A47K3/12Separate seats or body supports
    • A47K3/125Body supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B91/00Feet for furniture in general
    • A47B91/06Gliders or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/02Reclining or easy chairs
    • A47C1/022Reclining or easy chairs having independently-adjustable supporting parts
    • A47C1/024Reclining or easy chairs having independently-adjustable supporting parts the parts, being the back-rest, or the back-rest and seat unit, having adjustable and lockable inclination
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C1/00Chairs adapted for special purposes
    • A47C1/04Hairdressers' or similar chairs, e.g. beauty salon chairs
    • A47C1/06Hairdressers' or similar chairs, e.g. beauty salon chairs adjustable
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C3/00Chairs characterised by structural features; Chairs or stools with rotatable or vertically-adjustable seats
    • A47C3/20Chairs or stools with vertically-adjustable seats
    • A47C3/30Chairs or stools with vertically-adjustable seats with vertically-acting fluid cylinder
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/36Support for the head or the back
    • A47C7/40Support for the head or the back for the back
    • A47C7/44Support for the head or the back for the back with elastically-mounted back-rest or backrest-seat unit in the base frame
    • A47C7/441Support for the head or the back for the back with elastically-mounted back-rest or backrest-seat unit in the base frame with adjustable elasticity
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/36Support for the head or the back
    • A47C7/40Support for the head or the back for the back
    • A47C7/46Support for the head or the back for the back with special, e.g. adjustable, lumbar region support profile; "Ackerblom" profile chairs
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C9/00Stools for specified purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G7/00Beds specially adapted for nursing; Devices for lifting patients or disabled persons
    • A61G7/0005Means for bathing bedridden persons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dentistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Nursing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly-reliable parallel flow type heat exchanger which realizes good split-flow state and can obtain a sufficient amount of heat exchange even when the parallel flow type heat exchanger is used in either of an evaporator and a condenser. <P>SOLUTION: The split-flow state of a cooling medium can be improved by arranging multiple flat tubes 3 extending substantially vertically between a lower header 2 and an upper header 5 arranged substantially horizontally, providing a fin 4 between the adjacent flat tubes 3, attaching a connection tube 1 into which the cooling medium flows, to an end of the lower header 2 in the longitudinal direction and arranging a connection tube 6 out of which the cooling medium flows in the vicinity of a central section of the upper header 5. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプ式空気調和機に利用される熱交換器に関し、特に複数の伝熱管に分流される冷媒の分流量の均等化を図ることのできる熱交換器に関する。
【0002】
【従来の技術】
従来の空気調和機の冷凍サイクルを構成している熱交換器は、熱交換能力が小さい場合には、冷媒の循環量が少なく、伝熱管内の圧力損失が小さい為、冷媒通路は単一で良いが、熱交換量が大きい場合には、冷媒の循環量が多く、複数の冷媒通路が必要となってくる。このように複数の冷媒通路が必要な場合、冷媒を複数の伝熱管に均等に分流して熱交換器の性能を最大限に発揮させる為の手段が必要となる。
【0003】
ここで、図6において、パラレルフロータイプの熱交換器を蒸発器に使用した場合について説明する。図6に示す従来例の場合、2は中空円筒状の下部ヘッダー2で、右側は閉じてあり、蒸発器として使用される場合、冷媒が流入する接続管1に接合されている。下部ヘッダー2に流入した冷媒は各ヘッダーに連通する偏平管3に密着したフィン4を介して空気と熱交換を行い、更にガス化した冷媒は中空円筒状である上側ヘッダーより蒸発器の接続管6から流出する。
【0004】
また、凝縮器として使用した場合は、冷凍サイクル中の四方弁によるサイクル切換え弁により蒸発器とは冷媒の流入方向が異なり、図6に示す従来例の場合、圧縮機より吐出された高温高圧の単相の過熱冷媒ガスが凝縮器の接続管6より上側ヘッダー5に流入して各ヘッダーに連通する偏平管3に密着したフィン4を介して空気と熱交換を行い、凝縮液化した冷媒は中空円筒状である下部ヘッダー2より凝縮器の接続管1から流出する。また、偏平管3は熱伝導性の良いアルミニウムや銅合金等の金属からなる偏平な断面外形を有する熱交換器用の偏平管で、内部に1本ないし数本の冷媒通路を有し、下部ヘッダー2と上部ヘッダー5とを連通するように、それらのヘッダーを橋絡して垂直に複数本取り付けられている。
【0005】
また、複数の偏平管3には、均等に冷媒が分配されて分流状態を良好にし、性能を充分に発揮できるように様々な工夫がなされ、各偏平管の間には熱伝導性の良いアウルミニウムや銅合金等の薄い金属板を波形に成形したフィン4が、複数の偏平管3のなす面に対して直角方向に無数のハニカム状の通気路を形成するように取り付けられて、空気と冷媒の熱交換を円滑に行われている。
【0006】
従来このような空気調和機用の熱交換器の分流状態を良好にした構成例としては、ヘッダー内部の仕切り板をヘッダーの軸直角方向に対して傾斜させているもの(例えば特許文献1参照)や、また、偏平管3の端面を傾斜させたものもある(例えば特許文献2参照)。
【0007】
【特許文献1】
特開平6―174335号公報(第1―5、第1図)
【特許文献2】
特開平8―5194号公報(第1―5、第1図)
【0008】
【発明が解決しようとする課題】
上記従来のパラレルフローの熱交換器を凝縮器として使用した場合、圧縮機から吐出された単相の過熱冷媒ガスが図6に示す上部ヘッダー5に接続管6より流入し、各偏平管3を均一に流れて空気と熱交換した後、凝縮液化した冷媒は重力の影響を受けて下部ヘッダー2に流れる為に各偏平管3を流れる冷媒の分流状態に大きな問題は見られない。
【0009】
しかしながら、蒸発器として利用した場合に、液とガスが混在したニ相の冷媒が図7に示す下部ヘッダー2に流入し、気体状の冷媒7の他に低部に滞留している液体状の冷媒8が流れの慣性の影響で、蒸発器入口近傍と下流側になる右方において厚くなり、下部ヘッダー2の中央部に近いところで薄くなる傾向がある。よって、下側ヘッダー2から各偏平管3内を上昇して通過する冷媒の量が不均一となり、更には、冷凍サイクル中の粘性の高い冷凍機油も含まれる影響や、各偏平管を流れる冷媒に偏流が発生する影響により、また、条件によっては蒸発器入口からもっとも経路的に距離が短くて抵抗が少なくなる蒸発器出口に近い図6の偏平管3a、3b近傍を冷媒は優先的に通って接続管6に流れ出し、蒸発器入口から出口まで経路において距離的に最も遠くなる偏平管3e、3f近傍では、管路損失による抵抗が大きくなる為に流入する冷媒も減少する。
【0010】
図8は、蒸発器として使用した場合の熱交換器全体を赤外線測定器で温度分布を測定した結果を簡易的に示したものである。斜線部は他の部分よりも温度が高いことを示したものであり、図8の斜線部に示すように抵抗が大きく下流側となる右側の半分以上が冷媒流量低下に伴い冷媒過熱度が大きくなり、熱交換器の性能が大きく低下してしまうという課題を有していた。
【0011】
本発明はこのような従来の課題を解決するものであり、パラレルフローの熱交換器を蒸発器や凝縮器として利用した場合でも、良好な分流状態を実現し、充分な熱交換量を得ることが可能なパラレルフロー熱交換器を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記従来の課題を解決する為に、本発明のうちで請求項1記載の発明は、所定の距離を置いて略水平に延在する一対のヘッダーと、該一対のヘッダー間に配置された複数の伝熱管と、隣接する伝熱管の間に配置されたフィンとを備えた熱交換器であって、冷媒の流入管は前記一対のヘッダーの一方の端部に配し、冷媒の流出管は前記一対のヘッダーの他方の中央部近傍に配したことを特徴とする。
【0013】
また、請求項2に記載の発明は、前記流入管は、前記ヘッダーの一端に前記ヘッダーの長手方向に配したことを特徴とする。
【0014】
さらに、請求項3に記載の発明は、前記流入管は、前記ヘッダーの両端部に接続したことを特徴とする。
【0015】
また、請求項4に記載の発明は、前記熱交換器を蒸発器として使用する場合、前記流入管は前記流出管より管の径を小さくし、前記ヘッダーパイプに配置することを特徴とする。
【0016】
さらに、請求項5に記載の発明は、前記熱交換器を凝縮器として使用する場合、前記流入管は、前記流出管より管の径を大きくし、前記ヘッダーパイプに配置することを特徴とする。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
【0018】
(実施の形態1)
図1は本発明の実施の形態1にかかるパラレルフロー型熱交換器を示しており、所定の距離を置いて略水平に延在する下部ヘッダー2及び上部ヘッダー5と、これら二つのヘッダー2、5に両端が接続され両者間に略垂直に配置された複数の偏平管(伝熱管)3と、隣接する偏平管3の間に蛇行するように配置されたハニカム状のフィン4と、下部ヘッダー2及び上部ヘッダー5にそれぞれ接続され熱交換器への冷媒の出入口となる接続管1、6とを備えている。また、接続管1は、下部ヘッダー2の長手方向に、接続管6は、上部ヘッダー5に対し、垂直方向に延在している。
【0019】
図1において、実線矢印は熱交換器を蒸発器として使用した場合と、破線矢印はは凝縮器として利用した場合を示しており、蒸発器として利用した場合には下部ヘッダー2の左側が冷媒入口で、上部ヘッダー5は冷媒出口となり、凝縮器として利用した場合は蒸発器の場合とは逆の流れとなる。
【0020】
上記構成の熱交換器を蒸発器として使用した場合、蒸発器への冷媒入口は下部ヘッダー2に接続された接続管1となり、冷媒は偏平管3を通過して、偏平管3に密着したフィン4を介して空気と熱交換を行う。熱交換によりガス化した冷媒は上部ヘッダー5に集結し、蒸発器からの冷媒出口となる接続管6を通って冷凍サイクル中の圧縮機(図示せず)の吸入部へ導かれる。
【0021】
一方、上記構成の熱交換器を凝縮器として使用した場合は、圧縮機より吐出された単相の過熱冷媒ガスが凝縮器の接続管6より上部ヘッダー5に流入し、各偏平管3に密着したフィン4を介して空気と熱交換を行う。熱交換により凝縮液化した冷媒は、重力の影響も受けながら各偏平管3を均一に流れた後、下部ヘッダー2に流れ込み、凝縮器の接続管1を介して圧縮機の吸入部に導かれる。
【0022】
図2は、蒸発器として使用した場合の熱交換器全体を赤外線測定器で温度分布を測定した結果を簡易的に示したものである。
【0023】
図2において、斜線部は他の部分よりも温度が高く、冷媒がほとんど流れず本来の熱交換器としての役割を果たしていない部分ではあるが、従来例で説明した図8の蒸発器の温度分布と比較すると、温度分布もほとんど均一で熱交換器として有効な面積も増大し、性能も大きく向上している。これは、図1の熱交換器の場合、蒸発器入口となる接続管1から液とガスが混在した2相の冷媒が下部ヘッダー2の左側から水平に流入するために、下側ヘッダー2に対し垂直に配置された各偏平管3に均等に冷媒が流れるようになるからである。
【0024】
また、図3に示されるように、低部に滞留している液体状の冷媒8が下流側になる右方において厚くなり且つ蒸発器出口となる6の位置が、上部ヘッダー5の中央になるように設置されたことにより、接続管1をから下部ヘッダー2に流入する冷媒の流れの慣性の影響が下流方向に働く為、図6に示すように下部ヘッダー2内部で下流側に向かうほど滑らかに冷媒液相が増加する傾向にあり、従来例で示した下部ヘッダー2内の冷媒の状態よりも冷媒液相が均一化されて、各偏平管3に流入する冷媒量も均一化されたものと考えられる。さらに、図1に示すように冷媒が各偏平管3を通過しながら熱交換によりガス化し、管内での圧力損失が最も高くなって通過する上部ヘッダー5内において、冷媒出口の位置が中央に配置されているので、中央出口より最も遠い上部ヘッダー5の両端に配置してある3a、3fの偏平管を通過したガス冷媒が出口に向かって通過する距離が最短で等しくなる。よって、熱交換器内の圧力分布も等しくなり、冷媒の偏流が小さくなって、熱交換器を有効に利用でき、性能を向上させることが可能となる。
【0025】
また蒸発器では冷媒入口の接続管1の直径を蒸発器出口となる接続管6よりも小さくすることで、蒸発器出口での管内の圧力損失を低減し、蒸発器入口に流入する冷媒の流速の増加と共に、液とガスの比率が均等になった冷媒を各偏平管3に流すことができる。
【0026】
逆に、凝縮器として使用した場合、凝縮器入口の接続管6の直径を凝縮器出口の接続管1よりも大きくすることで、高温高圧の単相ガスの冷媒が、接続管6を通過したときの圧力損失による性能低下を抑止することができる。
【0027】
なお、上記構成において、接続管1、6は、図1に示される位置に特定されているが、特に位置は限定されるものではなく左右逆に取り付けることもでき、熱交換器の形態により位置を変更することができる。
【0028】
また、下部ヘッダー2や上部ヘッダー5あるいは、接続管1、6は円筒状の形状に代えて、四角形や楕円形、多角形やその他の形状を用いても良い。
【0029】
(実施の形態2)
図4は、本発明の実施の形態2にかかるパラレルフロー型熱交換器を示しており、図中、矢印実線は熱交換器を蒸発器として使用した場合を、破線矢印は凝縮器として利用した場合を示している。
【0030】
また、蒸発器として使用した場合には、下部ヘッダー2の両側が冷媒入口で、上部ヘッダ5の中央が冷媒出口となり、凝縮器として使用した場合は、蒸発器として使用した場合とは逆の流れとなる。
【0031】
本実施の形態においては、冷媒が各偏平管3に最も均一に流入するように下部ヘッダー2の長手方向の両側に接続管1及び1aを配置し、接続管1および1aの直径を接続管6より小さくした点にある。
【0032】
本実施の形態によれば、熱交換器を蒸発器として使用した場合、冷媒が接続管1及び1aより下部ヘッダー2へ流入した後、図4の実線で示すように冷媒は、各偏平管3に均等に流入し、蒸発器出口となる接続管6より、冷凍サイクル中に設けられた圧縮機の吸入部に導かれる。したがって、蒸発器としての冷媒入口が下部ヘッダー2に2箇所あることになる。
【0033】
図5は、蒸発器として使用した場合の熱交換器全体を赤外線測定器で温度分布を測定した結果を簡易的に示したものである。
【0034】
図5において、斜線部は他の部分よりも温度が高く、冷媒がほとんど流れず本来の熱交換器としての役割を果たしていない部分ではあるが、上述した図2にである実施の形態1の熱交換器の蒸発器の温度分布と比較すると、温度分布がさらに均一になり、熱交換器として有効な面積も増大し、性能も大きく向上している。これは、図4の熱交換器の場合、下部ヘッダー2の両側より流入する冷媒が、接続管1及び1aの2箇所である為、流速が低下し、冷媒の流れの慣性の影響が上述の図2の熱交換器よりも小さくなって、下部ヘッダー2内の冷媒液相がさらに均一化されて、各偏平管3を均等に冷媒が流れるようになるからである。従って、熱交換器性能をさらに向上させることが可能となる。
【0035】
なお、上記構成において、接続管1、1a、6および下部ヘッダー2や上部ヘッダー5は円筒状の形状に代えて、四角形や楕円形、多角形やその他の形状を用いても良い。
【0036】
【発明の効果】
本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。
【0037】
本発明にかかる熱交換器を蒸発器として使用した場合、各偏平管に流れる冷媒の分流が均一化されるので、熱交換性能を最大限に引き出すことができる信頼性の高い熱交換器を提供することができる。
【0038】
また、本発明にかかる熱交換器を蒸発器と凝縮器を併用して、冷凍サイクルに利用した場合でも、複雑な加工や大型化の必要性がなく熱交換性能を向上することができるとともに、収納性やコンパクト化を図りながら加工性、生産性の向上した信頼性の高い熱交換器を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1にかかるパラレルフロー型熱交換器の概略正面図
【図2】図1の熱交換器における温度分布を示す概略正面図
【図3】図1の熱交換器の下部ヘッダー内部の冷媒状態図
【図4】本発明の実施の形態2かかるパラレルフロー型熱交換器の概略正面図
【図5】図4の熱交換器における温度分布を示す概略正面図
【図6】従来の熱交換器の概略正面図
【図7】図6の下部ヘッダー内部の冷媒状態図
【図8】図6の熱交換器における温度分布を示す概略正面図
【符号の説明】
1、1a 接続管
2 下部ヘッダー
3、3a、3b、3c、3d、3e、3f 偏平管
4 フィン
5 上部ヘッダー
6 接続管
7 気体状の冷媒
8 液体状の冷媒
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger used for a heat pump type air conditioner, and more particularly to a heat exchanger capable of equalizing a divided flow rate of a refrigerant divided into a plurality of heat transfer tubes.
[0002]
[Prior art]
When the heat exchanger constituting the refrigeration cycle of the conventional air conditioner has a small heat exchange capacity, the refrigerant circulation amount is small and the pressure loss in the heat transfer tube is small, so that the refrigerant passage is single. Good, but when the heat exchange amount is large, the circulation amount of the refrigerant is large and a plurality of refrigerant passages are required. When a plurality of refrigerant passages are required as described above, a means for diverting the refrigerant equally to the plurality of heat transfer tubes to maximize the performance of the heat exchanger is required.
[0003]
Here, the case where the parallel flow type heat exchanger is used for the evaporator in FIG. 6 will be described. In the case of the conventional example shown in FIG. 6, reference numeral 2 denotes a hollow cylindrical lower header 2 which is closed on the right side and, when used as an evaporator, is joined to a connecting pipe 1 into which a refrigerant flows. The refrigerant flowing into the lower header 2 exchanges heat with the air through the fins 4 which are in close contact with the flat tubes 3 communicating with the respective headers. Further, the gasified refrigerant is connected to the connecting pipe of the evaporator from the hollow cylindrical upper header. Outflow from 6.
[0004]
Also, when used as a condenser, the flow direction of the refrigerant is different from that of the evaporator due to the cycle switching valve by the four-way valve in the refrigeration cycle. In the case of the conventional example shown in FIG. The single-phase superheated refrigerant gas flows into the upper header 5 from the connection pipe 6 of the condenser and exchanges heat with air through the fins 4 which are in close contact with the flat tubes 3 communicating with each header. It flows out from the connection pipe 1 of the condenser through the cylindrical lower header 2. Further, the flat tube 3 is a flat tube for a heat exchanger having a flat cross section made of a metal such as aluminum or copper alloy having good heat conductivity, and has one or several refrigerant passages therein and a lower header. A plurality of the headers are attached vertically by bridging the headers so that the headers 2 communicate with the upper header 5.
[0005]
In addition, various measures are taken to distribute the refrigerant evenly to the plurality of flat tubes 3 so as to improve the state of the divided flow and sufficiently exhibit the performance. Fins 4 formed by corrugating a thin metal plate such as a luminium or copper alloy are attached so as to form an infinite number of honeycomb-shaped air passages in a direction perpendicular to the plane formed by the plurality of flat tubes 3, and air and The heat exchange of the refrigerant is performed smoothly.
[0006]
Conventionally, as an example of a configuration in which such a heat exchanger for an air conditioner has a good split state, a partition plate inside a header is inclined with respect to a direction perpendicular to the axis of the header (for example, see Patent Document 1). Also, there is a flat tube 3 in which the end face is inclined (for example, see Patent Document 2).
[0007]
[Patent Document 1]
JP-A-6-174335 (FIGS. 1-5, FIG. 1)
[Patent Document 2]
JP-A-8-5194 (FIGS. 1-5, FIG. 1)
[0008]
[Problems to be solved by the invention]
When the conventional parallel-flow heat exchanger is used as a condenser, the single-phase superheated refrigerant gas discharged from the compressor flows into the upper header 5 shown in FIG. After the refrigerant flows uniformly and exchanges heat with air, the condensed and liquefied refrigerant flows to the lower header 2 under the influence of gravity, so that there is no significant problem in the state of the refrigerant flowing through each flat tube 3.
[0009]
However, when used as an evaporator, a two-phase refrigerant containing a mixture of liquid and gas flows into the lower header 2 shown in FIG. Due to the inertia of the flow, the refrigerant 8 tends to be thicker near the evaporator inlet and to the right on the downstream side, and thinner near the center of the lower header 2. Therefore, the amount of the refrigerant that rises from the lower header 2 through each flat tube 3 and passes therethrough becomes non-uniform. The refrigerant preferentially passes through the vicinity of the flat tubes 3a and 3b in FIG. 6 which is close to the evaporator outlet where the distance is the shortest and the resistance is the shortest in the path from the evaporator inlet, depending on the conditions. In the vicinity of the flat tubes 3e and 3f, which flow out to the connecting pipe 6 and are the longest in the path from the evaporator inlet to the outlet, the refrigerant flowing in decreases because the resistance due to the pipe loss increases.
[0010]
FIG. 8 simply shows the results of measuring the temperature distribution of the entire heat exchanger when used as an evaporator with an infrared measuring device. The hatched portion indicates that the temperature is higher than the other portions. As shown in the hatched portion of FIG. 8, the resistance is large, and more than half of the right side, which is on the downstream side, has a large refrigerant superheat with a decrease in the refrigerant flow rate. Therefore, there is a problem that the performance of the heat exchanger is greatly reduced.
[0011]
The present invention solves such a conventional problem, and realizes a good branching state and obtains a sufficient heat exchange amount even when a parallel flow heat exchanger is used as an evaporator or a condenser. It is an object of the present invention to provide a parallel flow heat exchanger capable of performing the following.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned conventional problems, the invention according to claim 1 of the present invention comprises a pair of headers extending substantially horizontally at a predetermined distance, and a plurality of headers arranged between the pair of headers. A heat exchanger comprising a heat transfer tube and a fin disposed between adjacent heat transfer tubes, wherein a refrigerant inflow tube is disposed at one end of the pair of headers, and a refrigerant outflow tube is provided. The pair of headers is arranged near the other central portion.
[0013]
The invention according to claim 2 is characterized in that the inflow pipe is arranged at one end of the header in a longitudinal direction of the header.
[0014]
Further, the invention according to claim 3 is characterized in that the inflow pipe is connected to both ends of the header.
[0015]
The invention according to claim 4 is characterized in that, when the heat exchanger is used as an evaporator, the inflow pipe has a smaller diameter than the outflow pipe and is arranged on the header pipe.
[0016]
Further, the invention according to claim 5 is characterized in that, when the heat exchanger is used as a condenser, the inflow pipe has a larger diameter than the outflow pipe and is arranged on the header pipe. .
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
(Embodiment 1)
FIG. 1 shows a parallel flow type heat exchanger according to a first embodiment of the present invention, in which a lower header 2 and an upper header 5 extending substantially horizontally at a predetermined distance, and these two headers 2, A plurality of flat tubes (heat transfer tubes) 3 both ends of which are connected to each other and arranged substantially vertically between the two; a honeycomb-shaped fin 4 arranged so as to meander between adjacent flat tubes 3; 2 and connection pipes 1 and 6, which are connected to the upper header 5 and serve as entrances and exits of the refrigerant to and from the heat exchanger. The connecting pipe 1 extends in the longitudinal direction of the lower header 2, and the connecting pipe 6 extends in a direction perpendicular to the upper header 5.
[0019]
In FIG. 1, a solid arrow indicates a case where the heat exchanger is used as an evaporator, and a dashed arrow indicates a case where the heat exchanger is used as a condenser. Thus, the upper header 5 serves as a refrigerant outlet, and when used as a condenser, the flow is reverse to that of the evaporator.
[0020]
When the heat exchanger having the above configuration is used as an evaporator, the refrigerant inlet to the evaporator is the connection pipe 1 connected to the lower header 2, and the refrigerant passes through the flat pipe 3 and the fin is in close contact with the flat pipe 3. Heat exchange with air via 4 The refrigerant gasified by the heat exchange is collected in the upper header 5 and guided to the suction part of a compressor (not shown) in the refrigeration cycle through the connection pipe 6 serving as the refrigerant outlet from the evaporator.
[0021]
On the other hand, when the heat exchanger having the above configuration is used as a condenser, the single-phase superheated refrigerant gas discharged from the compressor flows into the upper header 5 from the connection pipe 6 of the condenser, and adheres to each flat pipe 3. Heat is exchanged with air through the fins 4 thus formed. The refrigerant condensed and liquefied by the heat exchange uniformly flows through each flat tube 3 under the influence of gravity, then flows into the lower header 2 and is guided to the suction portion of the compressor via the connection tube 1 of the condenser.
[0022]
FIG. 2 schematically shows the result of measuring the temperature distribution of the entire heat exchanger when used as an evaporator with an infrared measuring device.
[0023]
In FIG. 2, the shaded portion has a higher temperature than the other portions and hardly flows the refrigerant, and does not serve as the original heat exchanger. However, the temperature distribution of the evaporator in FIG. Compared with, the temperature distribution is almost uniform, the area effective as a heat exchanger is increased, and the performance is greatly improved. This is because, in the case of the heat exchanger of FIG. 1, the two-phase refrigerant in which the liquid and the gas are mixed flows in horizontally from the left side of the lower header 2 from the connection pipe 1 serving as the evaporator inlet. This is because the refrigerant uniformly flows through the flat tubes 3 arranged vertically.
[0024]
As shown in FIG. 3, the position of the liquid refrigerant 8 stagnating in the lower part becomes thicker on the right side on the downstream side and becomes the outlet of the evaporator at the center of the upper header 5. As a result, the influence of the inertia of the flow of the refrigerant flowing from the connection pipe 1 into the lower header 2 acts in the downstream direction, and therefore, as shown in FIG. The refrigerant liquid phase tends to increase, the refrigerant liquid phase is made more uniform than the state of the refrigerant in the lower header 2 shown in the conventional example, and the amount of refrigerant flowing into each flat tube 3 is also made uniform. it is conceivable that. Further, as shown in FIG. 1, the refrigerant is gasified by heat exchange while passing through each flat tube 3, and the pressure loss in the tube is highest and the refrigerant outlet is located at the center in the upper header 5 through which the gas passes. Therefore, the distance that the gas refrigerant that has passed through the flat tubes 3a and 3f disposed at both ends of the upper header 5 farthest from the center outlet passes through the flat tubes becomes the shortest and equal. Therefore, the pressure distribution in the heat exchanger is also equal, the drift of the refrigerant is reduced, and the heat exchanger can be used effectively and the performance can be improved.
[0025]
Further, in the evaporator, the diameter of the connection pipe 1 at the refrigerant inlet is made smaller than the diameter of the connection pipe 6 at the evaporator outlet, so that the pressure loss in the pipe at the evaporator outlet is reduced and the flow rate of the refrigerant flowing into the evaporator inlet is reduced. With the increase in the flow rate, the refrigerant in which the ratio between the liquid and the gas is equalized can flow through each flat tube 3.
[0026]
Conversely, when used as a condenser, by making the diameter of the connecting pipe 6 at the condenser inlet larger than the connecting pipe 1 at the condenser outlet, the high-temperature and high-pressure single-phase gas refrigerant passed through the connecting pipe 6. Performance degradation due to pressure loss at the time can be suppressed.
[0027]
In the above configuration, the connection pipes 1 and 6 are specified at the positions shown in FIG. 1, but the positions are not particularly limited, and the connection pipes 1 and 6 can be mounted right and left reversed. Can be changed.
[0028]
Further, the lower header 2, the upper header 5, or the connection pipes 1 and 6 may be square, elliptical, polygonal, or other shapes instead of cylindrical shapes.
[0029]
(Embodiment 2)
FIG. 4 shows a parallel flow type heat exchanger according to a second embodiment of the present invention. In the figure, a solid arrow indicates a case where the heat exchanger is used as an evaporator, and a broken arrow indicates a case where the heat exchanger is used as a condenser. Shows the case.
[0030]
Also, when used as an evaporator, both sides of the lower header 2 are refrigerant inlets, and the center of the upper header 5 is a refrigerant outlet. When used as a condenser, the flow is opposite to that when used as an evaporator. It becomes.
[0031]
In the present embodiment, connection pipes 1 and 1a are arranged on both sides in the longitudinal direction of lower header 2 so that the refrigerant flows into each flat pipe 3 most uniformly, and the diameter of connection pipes 1 and 1a is changed to connection pipe 6 The point is to make it smaller.
[0032]
According to the present embodiment, when the heat exchanger is used as an evaporator, after the refrigerant flows into the lower header 2 from the connection pipes 1 and 1a, the refrigerant flows into each flat pipe 3 as shown by the solid line in FIG. To the suction pipe of the compressor provided in the refrigeration cycle from the connection pipe 6 serving as the evaporator outlet. Therefore, the lower header 2 has two refrigerant inlets as evaporators.
[0033]
FIG. 5 simply shows the result of measuring the temperature distribution of the entire heat exchanger when used as an evaporator with an infrared measuring device.
[0034]
In FIG. 5, the hatched portion has a higher temperature than the other portions and hardly flows the refrigerant, and does not fulfill the role of the original heat exchanger, but the heat of the first embodiment shown in FIG. Compared with the temperature distribution of the evaporator of the exchanger, the temperature distribution is more uniform, the area effective as a heat exchanger is increased, and the performance is greatly improved. This is because, in the case of the heat exchanger of FIG. 4, since the refrigerant flowing from both sides of the lower header 2 is at two locations of the connection pipes 1 and 1a, the flow velocity is reduced, and the influence of the inertia of the flow of the refrigerant is as described above. This is because the refrigerant becomes smaller than the heat exchanger of FIG. 2 and the refrigerant liquid phase in the lower header 2 is further uniformed, so that the refrigerant flows evenly through each flat tube 3. Therefore, it is possible to further improve the heat exchanger performance.
[0035]
In the above configuration, the connection pipes 1, 1a, 6 and the lower header 2 and the upper header 5 may be square, elliptical, polygonal, or other shapes instead of cylindrical shapes.
[0036]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
[0037]
When the heat exchanger according to the present invention is used as an evaporator, the branch flow of the refrigerant flowing through each flat tube is made uniform, so that a highly reliable heat exchanger capable of maximizing heat exchange performance is provided. can do.
[0038]
In addition, even when the heat exchanger according to the present invention is used in a refrigeration cycle by using an evaporator and a condenser together, heat exchange performance can be improved without the need for complicated processing and upsizing, It is possible to provide a highly reliable heat exchanger with improved workability and productivity while improving storage efficiency and compactness.
[Brief description of the drawings]
FIG. 1 is a schematic front view of a parallel flow heat exchanger according to a first embodiment of the present invention. FIG. 2 is a schematic front view showing a temperature distribution in the heat exchanger of FIG. 1. FIG. FIG. 4 is a schematic front view of a parallel flow type heat exchanger according to a second embodiment of the present invention. FIG. 5 is a schematic front view showing a temperature distribution in the heat exchanger of FIG. FIG. 6 is a schematic front view of a conventional heat exchanger. FIG. 7 is a refrigerant state diagram inside a lower header of FIG. 6. FIG. 8 is a schematic front view showing a temperature distribution in the heat exchanger of FIG.
1, 1a Connection pipe 2 Lower header 3, 3a, 3b, 3c, 3d, 3e, 3f Flat pipe 4 Fin 5 Upper header 6 Connection pipe 7 Gaseous refrigerant 8 Liquid refrigerant

Claims (5)

所定の距離を置いて略水平に延在する一対のヘッダーと、該一対のヘッダー間に配置された複数の伝熱管と、隣接する伝熱管の間に配置されたフィンとを備えた熱交換器であって、冷媒の流入管は前記一対のヘッダーの一方の端部に配し、冷媒の流出管は前記一対のヘッダーの他方の中央部近傍に配したことを特徴とする熱交換器。A heat exchanger including a pair of headers extending substantially horizontally at a predetermined distance, a plurality of heat transfer tubes disposed between the pair of headers, and fins disposed between adjacent heat transfer tubes. A heat exchanger wherein a refrigerant inflow pipe is disposed at one end of the pair of headers, and a refrigerant outflow pipe is disposed near the other central part of the pair of headers. 前記流入管は、前記ヘッダーの一端に前記ヘッダーの長手方向に配したことを特徴とする請求項1記載の熱交換器。The heat exchanger according to claim 1, wherein the inflow pipe is arranged at one end of the header in a longitudinal direction of the header. 前記流入管は、前記ヘッダーの両端部に接続したことを特徴とする前記請求項1または2記載の熱交換器。The heat exchanger according to claim 1, wherein the inflow pipe is connected to both ends of the header. 前記熱交換器を蒸発器として使用する場合、前記流入管は前記流出管より管の径を小さくし、前記ヘッダーパイプに配置することを特徴とする請求項1〜3記載の熱交換器。4. The heat exchanger according to claim 1, wherein when the heat exchanger is used as an evaporator, the diameter of the inflow pipe is smaller than that of the outflow pipe, and the heat exchanger is disposed on the header pipe. 5. 前記熱交換器を凝縮器として使用する場合、前記流入管は、前記流出管より管の径を大きくし、前記ヘッダーパイプに配置することを特徴とする請求項1〜3記載の熱交換器。4. The heat exchanger according to claim 1, wherein, when the heat exchanger is used as a condenser, the inflow pipe has a larger diameter than the outflow pipe and is arranged in the header pipe. 5.
JP2003042852A 2003-02-20 2003-02-20 Heat exchanger Pending JP2004251556A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003042852A JP2004251556A (en) 2003-02-20 2003-02-20 Heat exchanger
CNB2004100050859A CN1324290C (en) 2003-02-20 2004-01-16 Heat exchanger
KR1020040007131A KR20040075717A (en) 2003-02-20 2004-02-04 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042852A JP2004251556A (en) 2003-02-20 2003-02-20 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2004251556A true JP2004251556A (en) 2004-09-09

Family

ID=33026023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042852A Pending JP2004251556A (en) 2003-02-20 2003-02-20 Heat exchanger

Country Status (3)

Country Link
JP (1) JP2004251556A (en)
KR (1) KR20040075717A (en)
CN (1) CN1324290C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225151A (en) * 2006-02-21 2007-09-06 Shinko Kogyo Co Ltd Structure for preventing freezing and thermal stress fracture of single-tube steam coil of air conditioner
JP2008039304A (en) * 2006-08-07 2008-02-21 Sharp Corp Heat exchanger
CN110440613A (en) * 2018-05-02 2019-11-12 姚勤俭 A kind of novel vehicle radiator
WO2021193967A1 (en) * 2020-03-27 2021-09-30 ダイキン工業株式会社 Refrigeration cycle device
CN113970199A (en) * 2020-07-22 2022-01-25 中山工程株式会社 Heat exchanger

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4357571B2 (en) * 2008-02-19 2009-11-04 シャープ株式会社 Heat exchanger
WO2012056790A1 (en) * 2010-10-25 2012-05-03 シャープ株式会社 Heat exchanger and air conditioner having same installed therein
CN107576211A (en) * 2017-09-11 2018-01-12 广东芬尼克兹节能设备有限公司 A kind of cross flow heat exchanger and Multi-stage heating heat pump
CN111699351A (en) * 2018-03-27 2020-09-22 东芝开利株式会社 Heat exchanger, heat exchange module, and refrigeration cycle device
CN111380395A (en) * 2018-12-28 2020-07-07 丹佛斯有限公司 Heat exchanger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241678A (en) * 1993-02-19 1994-09-02 Hitachi Ltd Parallel flow heat exchanger for heat pump
JP3214272B2 (en) * 1994-12-28 2001-10-02 日産自動車株式会社 Condenser
US5752566A (en) * 1997-01-16 1998-05-19 Ford Motor Company High capacity condenser
US5826649A (en) * 1997-01-24 1998-10-27 Modine Manufacturing Co. Evaporator, condenser for a heat pump
KR100264815B1 (en) * 1997-06-16 2000-09-01 신영주 Multi-stage air and liquid separable type condenser
CN2483683Y (en) * 2001-04-06 2002-03-27 范山岭 Copper-aluminium composited finned tube radiator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225151A (en) * 2006-02-21 2007-09-06 Shinko Kogyo Co Ltd Structure for preventing freezing and thermal stress fracture of single-tube steam coil of air conditioner
JP2008039304A (en) * 2006-08-07 2008-02-21 Sharp Corp Heat exchanger
CN110440613A (en) * 2018-05-02 2019-11-12 姚勤俭 A kind of novel vehicle radiator
WO2021193967A1 (en) * 2020-03-27 2021-09-30 ダイキン工業株式会社 Refrigeration cycle device
JP2021156522A (en) * 2020-03-27 2021-10-07 ダイキン工業株式会社 Refrigeration cycle device
JP7037087B2 (en) 2020-03-27 2022-03-16 ダイキン工業株式会社 Refrigeration cycle device
CN115335647A (en) * 2020-03-27 2022-11-11 大金工业株式会社 Refrigeration cycle device
CN115335647B (en) * 2020-03-27 2023-07-21 大金工业株式会社 Refrigeration cycle device
EP4113039A4 (en) * 2020-03-27 2023-08-09 Daikin Industries, Ltd. Refrigeration cycle device
US11859882B2 (en) 2020-03-27 2024-01-02 Daikin Industries, Ltd. Refrigeration cycle apparatus
CN113970199A (en) * 2020-07-22 2022-01-25 中山工程株式会社 Heat exchanger

Also Published As

Publication number Publication date
KR20040075717A (en) 2004-08-30
CN1324290C (en) 2007-07-04
CN1523316A (en) 2004-08-25

Similar Documents

Publication Publication Date Title
JP2004177041A (en) Heat exchanger
EP2660550B1 (en) Heat exchanger and air conditioner
KR100216052B1 (en) Evaporator
US10520237B2 (en) Refrigeration cycle comprising a common condensing section for two separate evaporator-compressor circuits
CN103822406B (en) heat pump heat exchanger with low pressure drop distribution pipe
US20060054310A1 (en) Evaporator using micro-channel tubes
JP2006284134A (en) Heat exchanger
US10222141B2 (en) Stacking type header, heat exchanger and air-conditioning apparatus
JP2005055108A (en) Heat exchanger
CN113587251B (en) Air conditioner
JP2004286246A (en) Parallel flow heat exchanger for heat pump
TWI551837B (en) Air conditioner
JP2004251556A (en) Heat exchanger
JP2005127529A (en) Heat exchanger
JP2014137177A (en) Heat exchanger and refrigerator
JP2005127597A (en) Heat exchanger
JP2005201491A (en) Heat exchanger
EP3789697A1 (en) Heat exchanger and refrigeration cycle device
JP3083385B2 (en) Heat exchanger
JP2005090805A (en) Heat exchanger
CN108489152A (en) Heat exchanger, heat transmission equipment and heat-exchange system
JP2014137172A (en) Heat exchanger and refrigerator
JP2644900B2 (en) Heat exchanger
JP2005016866A (en) Heat exchanger
JP2005016865A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108