JP2005201491A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2005201491A
JP2005201491A JP2004006580A JP2004006580A JP2005201491A JP 2005201491 A JP2005201491 A JP 2005201491A JP 2004006580 A JP2004006580 A JP 2004006580A JP 2004006580 A JP2004006580 A JP 2004006580A JP 2005201491 A JP2005201491 A JP 2005201491A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
heat
leeward side
flat tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004006580A
Other languages
Japanese (ja)
Inventor
Masaru Yonezawa
勝 米澤
Shigeto Yamaguchi
成人 山口
Shoichi Yokoyama
昭一 横山
Takashi Sugio
孝 杉尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004006580A priority Critical patent/JP2005201491A/en
Publication of JP2005201491A publication Critical patent/JP2005201491A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/04Arrangements of conduits common to different heat exchange sections, the conduits having channels for different circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/02Arrangements of fins common to different heat exchange sections, the fins being in contact with different heat exchange media

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger capable of obtaining a sufficient heat exchange amount by achieving optimum and high heat exchange performance in the case of using the heat exchanger with flat tubes passing through plate fins, as an evaporator or a condenser. <P>SOLUTION: In the flat tube 1, the number of cold passage holes 9a is reduced while enlarging the cross-sectional area of a refrigerant passage from the windward side A to the leeward side B. On the leeward side B, the heat transfer performance of a refrigerant to the air side through the fins 2 brought into close contact with the flat tubes 1 is thereby improved, and the heat exchange amount is increased. Even in the case of being used as the evaporator or condenser, heat exchange on the windward side A and leeward side B of the heat exchanger is performed in a well-balanced manner, and performance can be drawn out to the maximum. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ヒートポンプ式空気調和機に利用される熱交換器に関し、熱交換器全体を有効に利用し、効率良く冷媒と空気との熱交換が可能となる熱交換器に関するものである。   The present invention relates to a heat exchanger used in a heat pump air conditioner, and more particularly to a heat exchanger that effectively uses the entire heat exchanger and can efficiently exchange heat between refrigerant and air.

従来、この種の空気調和機の冷凍サイクルを構成しているフィンアンドチューブタイプの熱交換器は、熱交換能力が小さい場合には、冷媒の循環量が少なく、伝熱管内の圧力損失が小さい為、冷媒通路は単一で良いが、熱交換量が大きい場合には、冷媒の循環量が多く、伝熱管内の圧力損失が大きくなる為に複数の冷媒通路が必要となってくる。   Conventionally, the fin-and-tube type heat exchanger constituting the refrigeration cycle of this type of air conditioner has a small amount of refrigerant circulation and a small pressure loss in the heat transfer tube when the heat exchange capacity is small. Therefore, a single refrigerant passage may be used, but when the amount of heat exchange is large, a large amount of refrigerant is circulated, and a plurality of refrigerant passages are required because the pressure loss in the heat transfer tube increases.

ここで、図7において、熱交換効率の高い偏平管を使用したタイプの熱交換器を蒸発器に使用した場合について説明する。図7に示す従来例の場合、4は中空円筒状のヘッダー4で、下側は閉じてあり、蒸発器として使用される場合、冷媒が流入する接続管5が上側に接合されている。ヘッダー4に流入した冷媒は各ヘッダーに連通する各偏平管1の中を通過しながら、各偏平管1に密着したフィン2を介して空気と熱交換を行い、更にガス化した冷媒は中空円筒状であるヘッダー3の上側の接続管6から流出する。   Here, in FIG. 7, a case where a heat exchanger of a type using a flat tube having high heat exchange efficiency is used for the evaporator will be described. In the case of the conventional example shown in FIG. 7, reference numeral 4 denotes a hollow cylindrical header 4 whose lower side is closed, and when used as an evaporator, a connecting pipe 5 into which a refrigerant flows is joined to the upper side. The refrigerant flowing into the header 4 passes through the flat tubes 1 communicating with the headers, exchanges heat with air via the fins 2 that are in close contact with the flat tubes 1, and the gasified refrigerant is a hollow cylinder. It flows out from the connecting pipe 6 on the upper side of the header 3 that is shaped like a pipe.

また、この熱交換器を凝縮器として使用した場合は、冷凍サイクル中の四方弁の切換えにより冷媒の流れる方向が異なり、図7に示す従来例の場合、圧縮機より吐出された高温高圧の単相の過熱冷媒ガスがの接続管6よりヘッダー3に流入して各ヘッダーに連通する各偏平管1の中を通過しながら、各偏平管1に密着したフィン2を介して空気と熱交換を行い、凝縮液化した冷媒は中空円筒状であるヘッダー4より凝縮器の接続管5から流出する。1は熱伝導性の良いアルミニウムや銅合金等の金属からなる偏平な断面外形を有する熱交換器用の偏平管で、内部に1本ないし数本の冷媒通路を有し、ヘッダー4とヘッダー3とを連通するように、それらのヘッダーを橋絡して水平に複数本取り付けられている。   In addition, when this heat exchanger is used as a condenser, the direction of refrigerant flow differs depending on the switching of the four-way valve in the refrigeration cycle. In the case of the conventional example shown in FIG. 7, a single high-temperature and high-pressure discharged from the compressor is used. The superheated refrigerant gas of the phase flows into the header 3 from the connecting pipe 6 and passes through each flat pipe 1 communicating with each header, and exchanges heat with air through the fins 2 that are in close contact with each flat pipe 1. The refrigerant thus condensed and liquefied flows out from the connection pipe 5 of the condenser through the hollow cylindrical header 4. Reference numeral 1 denotes a flat tube for a heat exchanger having a flat cross-sectional outer shape made of a metal such as aluminum or copper alloy having good thermal conductivity, and has one or several refrigerant passages therein. To communicate with each other, a plurality of headers are attached horizontally by bridging their headers.

従来このような空気調和機用の熱交換器の熱交換効率を良好にした構成例としては、1列の熱交換器で着霜運転時に空気の流入上流部と下流側のフィンの形状を変化させて熱交換器全体が効率良く運転可能となるようにさせた(例えば特許文献1参照)ものや、また、フィンアンドチューブタイプの熱交換器では、フィンの位置を1列目と2列目の熱交換器の間でずらしたものもがある(例えば特許文献2参照)。
特開平8―178366号公報(4頁、第1図) 特開平7―198166号公報(3頁、第1図)
Conventionally, as a configuration example in which the heat exchange efficiency of such a heat exchanger for an air conditioner is improved, the shape of fins on the upstream side and the downstream side of the air is changed during the frosting operation with a single row of heat exchangers. In the heat exchanger that can efficiently operate the entire heat exchanger (see, for example, Patent Document 1) and the fin-and-tube type heat exchanger, the positions of the fins are in the first and second rows. Some of them are shifted between the heat exchangers (see, for example, Patent Document 2).
JP-A-8-178366 (page 4, Fig. 1) JP-A-7-198166 (page 3, Fig. 1)

一般的に、偏平管熱交換器を利用した場合に、従来のフィンアンドチューブタイプの熱交換器よりも熱交換性能が高いものとなっている。ただし、2列で構成したフィンアンドチューブの熱交換器が空気と冷媒の熱交換する過程は、風上に配置した1列目の熱交換器と風下の2列目の熱交換器の間を冷媒が容易に交差して効率よく空気と熱交換する構成を取ることが可能であることに対し、偏平管熱交換器の場合はフィンアンドチューブとは異なり、一本のチューブの中に複数の壁で仕切った冷媒流通路があり、その中を冷媒が流れるので、風上側と風下側の冷媒流通路を流れる冷媒を一本のチューブの中で交差して流すことは不可能である。空気側と冷媒側の熱交換の大部分が風上側で優先的に熱交換される為、風下側の熱交換器での空気側と冷媒の熱交換量は小さくなる。   Generally, when a flat tube heat exchanger is used, the heat exchange performance is higher than that of a conventional fin-and-tube type heat exchanger. However, the process of heat exchange between air and refrigerant by the fin-and-tube heat exchanger composed of two rows is between the first row heat exchanger arranged on the windward side and the second row heat exchanger on the leeward side. Unlike a fin-and-tube, a flat-tube heat exchanger can be configured with multiple tubes in a single tube, whereas the refrigerant can easily cross and efficiently exchange heat with air. There is a refrigerant flow path partitioned by walls, and the refrigerant flows through the refrigerant flow path. Therefore, it is impossible to flow the refrigerant flowing through the refrigerant flow path on the windward side and the leeward side in a single tube. Since most of the heat exchange between the air side and the refrigerant side is preferentially heat exchanged on the windward side, the amount of heat exchange between the air side and the refrigerant in the heat exchanger on the leeward side becomes small.

従って、例えば蒸発器においては、風上側の熱交換器は過熱度が大きく取れ、風下側は
逆に熱交換量が減って過熱度が小さくなり、冷媒の循環量によっては、風上側と風下側の熱交換量が大きく異なってバランスを崩し、熱交換器全体を有効に利用することができず、冷凍サイクルの性能まで低下させる場合がある。
Therefore, for example, in an evaporator, the heat exchanger on the leeward side can take a large degree of superheat, while the leeward side conversely reduces the amount of heat exchange to reduce the degree of superheat, and depending on the circulation amount of the refrigerant, the windward side and leeward side The heat exchange amount of the heat exchanger is greatly different and the balance is lost, so that the entire heat exchanger cannot be used effectively, and the performance of the refrigeration cycle may be lowered.

つまり、マイクロチューブ熱交換器を2列で構成したとしても、1列目と2列目の熱交換器を流れている冷媒をフィンアンドチューブのように途中で交差させるような構成は困難であり、仮に実現しようとしても装置が巨大化するだけで無く、複雑になってコストが上がり、更には冷媒分流が崩れるなど熱交換器の性能が大きく低下してしまうという課題を有していた。   In other words, even if the microtube heat exchangers are configured in two rows, it is difficult to make a configuration in which the refrigerant flowing through the first and second row heat exchangers intersects in the middle like fin-and-tube. Even if it is to be realized, there is a problem that the performance of the heat exchanger is greatly deteriorated such that not only the apparatus is enlarged, but the cost becomes complicated and the cost is further increased, and further, the refrigerant flow is broken.

本発明はこのような従来の課題を解決するものであり、偏平管熱交換器を蒸発器や凝縮器として利用した場合でも、最適で且つ高い熱交換性能を実現し、充分な熱交換量を得ることが可能な熱交換器を提供することを目的とする。   The present invention solves such a conventional problem, and even when a flat tube heat exchanger is used as an evaporator or a condenser, it achieves an optimum and high heat exchange performance and a sufficient heat exchange amount. It aims at providing the heat exchanger which can be obtained.

前記従来の課題を解決するために、本発明の熱交換器は、所定の距離を置いて延在する一対のヘッダーと、該一対のヘッダー間には内部に冷媒が流通する複数の冷媒流通穴が形成された偏平管と、前記偏平管に略直行し密着している、同一ピッチで複数配置されたプレートフィンと、前記偏平管が前記プレートフィンを貫通した構成を備えた熱交換器において、前記偏平管の流通路を風上側に低性能タイプ、風下側には高性能タイプの形状を配置したものである。この熱交換器の形状によって、熱交換器全体が効率良く熱交換を行ない、熱交換器の性能を最大限に引出すことを目的としている。   In order to solve the conventional problems, a heat exchanger according to the present invention includes a pair of headers extending at a predetermined distance, and a plurality of refrigerant circulation holes through which refrigerant flows between the pair of headers. In a heat exchanger comprising: a flat tube formed of: a plurality of plate fins arranged at the same pitch that are substantially perpendicular to and in close contact with the flat tube; and a configuration in which the flat tube penetrates the plate fin. The flow path of the flat tube is a low performance type on the leeward side and a high performance type on the leeward side. The shape of this heat exchanger is intended to efficiently perform heat exchange of the entire heat exchanger and maximize the performance of the heat exchanger.

本発明の熱交換器は、蒸発器または凝縮器として使用した場合、風上側および風下側の熱交換器が有効に熱交換利用されるので、複雑な構成を必要とせずに熱交換性能を最大限に引き出すことが可能となると共に、また、熱交換器を暖房低温用の蒸発器とした場合、風上側の集中的な着霜による熱交換器の性能低下に伴って発生する急激な目詰まりを抑え、着霜による目詰まりに到るまでの時間を長くすることが可能となり、暖房低温の運転効率を向上させて、高い高効率運転を実現する熱交換器を提供することができる。   When the heat exchanger of the present invention is used as an evaporator or a condenser, the heat exchangers on the windward and leeward sides are effectively used for heat exchange, so that the heat exchange performance is maximized without requiring a complicated configuration. In addition, when the heat exchanger is an evaporator for heating and low temperature, sudden clogging that occurs as the heat exchanger performance deteriorates due to concentrated frost formation on the windward side Therefore, it is possible to extend the time until clogging due to frost formation, and to improve the operating efficiency of the heating and low temperature, it is possible to provide a heat exchanger that realizes a highly efficient operation.

第1の発明は、所定の距離を置いて延在する一対のヘッダーと、該一対のヘッダー間には内部に冷媒が流通する複数の冷媒流通穴が形成された偏平管と、前記偏平管に略直行し密着している、同一ピッチで複数配置されたプレートフィンと、前記偏平管が前記プレートフィンを貫通した構成とを備えた熱交換器であって、前記偏平管の流通路を風上側に低性能タイプ、風下側には高性能タイプを配置することにより、風上側より熱交換量の少ない風下側であっても、効率の高い熱交換を行なうことができる。   According to a first aspect of the present invention, there is provided a pair of headers extending at a predetermined distance, a flat tube in which a plurality of refrigerant flow holes through which a refrigerant flows is formed between the pair of headers, and the flat tube A heat exchanger comprising a plurality of plate fins arranged substantially at right angles and in close contact with each other at the same pitch, and a structure in which the flat tube penetrates the plate fin, wherein the flow path of the flat tube is on the windward side By arranging a low performance type and a high performance type on the leeward side, highly efficient heat exchange can be performed even on the leeward side where the amount of heat exchange is smaller than that on the leeward side.

第2の発明は、所定の距離を置いて延在する一対のヘッダーと、該一対のヘッダー間には内部に冷媒が流通する複数の冷媒流通穴が形成された偏平管と、前記偏平管に略直行し密着している、同一ピッチで複数配置されたプレートフィンと、前記偏平管が前記プレートフィンを貫通した構成とを備えた熱交換器であって、前記偏平管の流通路を風上側から風下側にかけて漸次低性能タイプから高性能タイプを配置することにより、熱交換量の高い風上側から熱交換量の低い風下側に漸次効率良く、効果的に冷媒と空気が熱交換を行なうことができる。   According to a second aspect of the present invention, there is provided a pair of headers extending at a predetermined distance, a flat tube in which a plurality of refrigerant flow holes through which a refrigerant flows is formed between the pair of headers, and the flat tube A heat exchanger comprising a plurality of plate fins arranged substantially at right angles and in close contact with each other at the same pitch, and a structure in which the flat tube penetrates the plate fin, wherein the flow path of the flat tube is on the windward side By gradually disposing the high performance type from the low performance type from the leeward side to the leeward side, the refrigerant and air exchange heat efficiently and efficiently from the windward side where the heat exchange amount is high to the leeward side where the heat exchange amount is low. Can do.

第3発明は、前記偏平管の風下側の冷媒流通穴の内部にフィンを施すことにより、風上側より熱交換量の少ない風下側であっても、冷媒が空気に伝える熱伝達性能も向上するので、効率の高い熱交換を行なうことができる。   According to the third aspect of the present invention, by providing fins inside the refrigerant flow hole on the leeward side of the flat tube, the heat transfer performance that the refrigerant transmits to the air is improved even on the leeward side where the amount of heat exchange is smaller than that on the windward side. Therefore, highly efficient heat exchange can be performed.

第4発明は、前記偏平管の風下側の冷媒流通穴の内部のフィンは、風上側より多く施さすことにより、風上側より熱交換量の少ない風下側であっても、冷媒が空気に伝える熱伝達性能も向上するので、効率の高い熱交換を行なうことができる。   According to a fourth aspect of the present invention, the fins in the refrigerant flow hole on the leeward side of the flat tube are provided more than on the leeward side so that the refrigerant is transmitted to the air even on the leeward side where the amount of heat exchange is smaller than that on the leeward side. Since heat transfer performance is also improved, highly efficient heat exchange can be performed.

第5発明は、前記偏平管の風上側から風下側にかけて冷媒流通穴の内部にはフィンが漸次多くなるように施こすことにより、熱交換量の高い風上側から熱交換量の低い風下側かけて、冷媒流速の上昇と共に熱伝達性能も漸次向上するので、効果的に冷媒と空気が熱交換を行なうことができる。   According to a fifth aspect of the present invention, the fins are gradually increased from the windward side to the leeward side of the flat tube so that the fins gradually increase, so that the heat exchange amount from the windward side where the heat exchange amount is low to the leeward side portion where the heat exchange amount is low. As the refrigerant flow rate increases, the heat transfer performance also gradually improves, so that the refrigerant and air can effectively exchange heat.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1にかかる熱交換器の一部を示す斜視図であり、図2は図1の矢印イの方向から見た本発明の実施の形態1にかかる熱交換器の断面図である。
(Embodiment 1)
FIG. 1 is a perspective view showing a part of the heat exchanger according to the first embodiment of the present invention, and FIG. 2 is a heat exchanger according to the first embodiment of the present invention as seen from the direction of arrow A in FIG. FIG.

図2において、風上に近い偏平管1の風上側A1には四角形の冷媒通路穴9a(例えば断面積3mm2)が3個、風下側B1にも同様にA1の冷媒通路穴9aの断面積の半分となる四角形の冷媒通路穴9b(例えば断面積1.5mm2)が6個設けられている。よって、偏平管1の1本当りの冷媒通路穴の全断面積は風上側A1および風下側B1共に(例えば断面積9mm2)同等であるが、風下側B1の方が風上側A1よりも冷媒が流れる冷媒通路穴9bの流通路内表面積の方が大きくなるので、冷媒が偏平管1を介してフィン10から空気に熱伝達する表面積が大きくなる為に、熱交換効率も高くなる。 2, three rectangular refrigerant passage holes 9a (for example, a cross-sectional area of 3 mm 2 ) are provided on the windward side A1 of the flat tube 1 close to the windward, and the cross-sectional area of the refrigerant passage hole 9a of A1 is also provided on the leeward side B1. Six quadrant refrigerant passage holes 9b (for example, a cross-sectional area of 1.5 mm 2 ) are provided. Therefore, the entire cross-sectional area of the refrigerant passage hole per one flat tube 1 is equivalent to both the leeward side A1 and the leeward side B1 (for example, a cross-sectional area of 9 mm 2 ), but the leeward side B1 is more refrigerant than the leeward side A1. Since the surface area in the flow passage of the refrigerant passage hole 9b through which the refrigerant flows is larger, the surface area through which the refrigerant transfers heat from the fins 10 to the air via the flat tubes 1 is increased, so that the heat exchange efficiency is also increased.

従って、通常であれば風上Aから流入した空気と熱交換器の風上側A1が先に熱交換した後に、風下側B1と熱交換するので、風下側B1では空気側と冷媒の温度差が小さい状態で熱交換が行なわれる為に熱交換量も風下側B1の方が小さくなる。よって、本実施の形態1の構成であれば風下側B1の伝熱性能が向上するので、熱交換器全体が空気側と熱交換することが可能となる。   Therefore, normally, the air flowing in from the leeward A and the leeward side A1 of the heat exchanger exchange heat first, and then exchange heat with the leeward side B1. Therefore, in the leeward side B1, there is a temperature difference between the air side and the refrigerant. Since heat exchange is performed in a small state, the amount of heat exchange is also smaller on the leeward side B1. Therefore, since the heat transfer performance of the leeward side B1 is improved with the configuration of the first embodiment, the entire heat exchanger can exchange heat with the air side.

また、風下側B1に風上側A1よりも熱交換効率の高い偏平管1の形状にしたことにより、着霜が発生する低外気温の暖房運転時においても、図7および図2の風上側A1のフィン10に集中的に霜が付着して目詰まりを起こす事無く、熱交換器全体に霜が均一に付着し易くなるので、長時間に渡って暖房運転を持続させることが可能となる。なお、所定の距離を置いて延在する一対のヘッダーは、説明の為に垂直方向に配置したが、水平方向に配置した場合でも、同様な効果を奏する。   Further, the shape of the flat tube 1 having higher heat exchange efficiency than the windward side A1 on the leeward side B1 enables the windward side A1 of FIGS. 7 and 2 even during the heating operation at a low outside temperature where frost formation occurs. Since the frost adheres to the fins 10 intensively and does not cause clogging, the frost easily adheres uniformly to the entire heat exchanger, so that the heating operation can be continued for a long time. The pair of headers extending at a predetermined distance are arranged in the vertical direction for the sake of explanation, but the same effect can be obtained even when arranged in the horizontal direction.

(実施の形態2)
図3は、本発明の実施の形態2にかかるパラレルフロー型熱交換器を、図7の矢印ロ方向から見た断面図である。上記実施の形態と重複する内容と原理は省き、同一機能を示すものであれば同一番号にて以下に説明する。
(Embodiment 2)
FIG. 3 is a cross-sectional view of the parallel flow heat exchanger according to the second embodiment of the present invention as seen from the direction of arrow B in FIG. The contents and principles that are the same as those in the above embodiment are omitted, and the same numbers are used in the following description to indicate the same functions.

図3において、熱交換器の風上側A1から風下側B1にかけて、冷媒流速が次第に早くなるように流すことにより、風上側A1から風下側B1にかけての熱交換器出口の乾き度を等しくすることができる。その為には、図3に示すように、偏平管1の風上側A1を流れる冷媒通路穴9cの断面積を、風下側B1に向かって、漸次小さくし、9c(例えば8mm2)>9d(例えば6mm2)>9e(例えば5mm2)>9f(例えば4mm2)>9g(例えば3mm2)>9h(例えば2mm2)>9i(例えば1mm2)となるような断面積に配置することにより、風上側A1の熱交換器の出口だけが極端に乾き度が高くなる
こと無く、空気と冷媒の熱交換を効率良くすることが可能となり、熱交換器性能を最大限に引出すことができる。
In FIG. 3, it is possible to equalize the dryness of the heat exchanger outlet from the windward side A1 to the leeward side B1 by flowing the refrigerant flow rate gradually from the windward side A1 to the leeward side B1 of the heat exchanger. it can. For this purpose, as shown in FIG. 3, the cross-sectional area of the refrigerant passage hole 9c flowing through the leeward side A1 of the flat tube 1 is gradually reduced toward the leeward side B1, and 9c (for example, 8 mm 2 )> 9d ( for example by 6mm 2)> 9e (e.g. 5mm 2)> 9f (eg 4mm 2)> 9g (e.g. 3mm 2)> 9h (e.g. 2 mm 2)> be placed in the cross-sectional area such that 9i (e.g. 1 mm 2) Only the outlet of the heat exchanger on the windward side A1 can be efficiently exchanged heat between the air and the refrigerant without extremely increasing the dryness, and the heat exchanger performance can be maximized.

従って、通常であれば風上側Aから流入した空気と熱交換器の風上側A1が先に熱交換した後に、熱交換器の風下側B1と熱交換するので、熱交換器B1では空気側と冷媒の温度差が小さい状態で熱交換が行なわれる為に熱交換量も風上側A1の方が大きくなり、風上側A1の方が熱交換器出口での乾き度が大きくなって、風上側A1と風下側B1の熱交換器性能を充分に引出すことができないが、本実施の形態2の構成であれば風上側A1から順次風下側B1にかけて冷媒流速が漸次的に増加するので、冷媒が空気に伝える伝熱性能も漸次的に高くなり、熱交換器全体が空気側とバランス良く熱交換することが可能となる。   Therefore, normally, the air flowing in from the leeward side A and the leeward side A1 of the heat exchanger first exchange heat, and then exchange heat with the leeward side B1 of the heat exchanger. Since heat exchange is performed in a state in which the temperature difference of the refrigerant is small, the heat exchange amount is larger on the windward side A1, and the windward side A1 has a higher degree of dryness at the outlet of the heat exchanger, so that the windward side A1. The heat exchanger performance of the leeward side B1 cannot be sufficiently extracted. However, in the configuration of the second embodiment, the refrigerant flow rate gradually increases from the leeward side A1 to the leeward side B1. The heat transfer performance transferred to the air gradually increases, and the entire heat exchanger can exchange heat with the air side in a well-balanced manner.

(実施の形態3)
図4は、本発明の実施の形態3にかかるパラレルフロー型熱交換器を、図7の矢印ロ方向から見た断面図である。上記実施の形態と重複する内容と原理は省き、同一機能を示すものであれば同一番号にて以下に説明する。
(Embodiment 3)
FIG. 4 is a cross-sectional view of the parallel flow heat exchanger according to the third embodiment of the present invention as viewed from the direction of arrow B in FIG. The contents and principles that are the same as those in the above embodiment are omitted, and the same numbers are used in the following description to indicate the same functions.

図4において、熱交換器の偏平管1の風下側B1を流れる冷媒が、風上側A1よりも空気に伝える伝熱性能が大きくなるようにすることにより、風上側A1と風下側B1の熱交換器出口の乾き度を等しくすることができる。その為には、図3に示すように、風上側A1の偏平管1の冷媒流通穴9jには内部フィンを配置せず、風下側B1の冷媒流通穴9kに内部フィン11を配置することにより、風上側A1の熱交換器の出口だけが極端に乾き度が高くなること無く、空気と冷媒の熱交換を効率良くすることが可能となり、熱交換器性能を最大限に引出すことができる。   In FIG. 4, heat exchange between the leeward side A1 and the leeward side B1 is achieved by the refrigerant flowing through the leeward side B1 of the flat tube 1 of the heat exchanger having a higher heat transfer performance to be transmitted to the air than the windward side A1. The dryness of the vessel outlet can be made equal. For this purpose, as shown in FIG. 3, no internal fins are arranged in the refrigerant circulation hole 9j of the flat tube 1 on the leeward side A1, and internal fins 11 are arranged in the refrigerant circulation hole 9k on the leeward side B1. Only the outlet of the heat exchanger on the windward side A1 can be efficiently exchanged heat between the air and the refrigerant without extremely increasing the dryness, and the heat exchanger performance can be maximized.

従って、通常であれば風上側Aから流入した空気と熱交換器の風上側A1が先に熱交換した後に、熱交換器の風下側B1と熱交換するので、風下側B1では空気側と冷媒の温度差が小さい状態で熱交換が行なわれる為に熱交換量も風上側A1の方が大きくなり、風上側A1の方が熱交換器出口での乾き度が大きくなって、風上側A1と風下側B1の熱交換器性能を充分に引出すことができないが、本実施の形態3の構成であれば、風下側B1の冷媒側の熱伝達性能が向上するので、バランス良く熱交換器全体が空気側と熱交換することが可能となる。   Therefore, normally, the air flowing in from the leeward side A and the leeward side A1 of the heat exchanger first exchange heat, and then exchange heat with the leeward side B1 of the heat exchanger. Since the heat exchange is performed in a state where the temperature difference is small, the amount of heat exchange is larger on the windward side A1, and the windward side A1 has a higher degree of dryness at the outlet of the heat exchanger. Although the heat exchanger performance of the leeward side B1 cannot be sufficiently extracted, the heat transfer performance on the refrigerant side of the leeward side B1 is improved with the configuration of the third embodiment, so that the entire heat exchanger is well balanced. It is possible to exchange heat with the air side.

(実施の形態4)
図5、本発明の実施の形態4にかかるパラレルフロー型熱交換器を、図7矢印ロ方向から見た断面図である。上記実施の形態と重複する内容と原理は省き、同一機能を示すものであれば同一番号にて以下に説明する。
(Embodiment 4)
FIG. 5 is a cross-sectional view of the parallel flow heat exchanger according to the fourth embodiment of the present invention as viewed from the direction of arrow B in FIG. The contents and principles that are the same as those in the above embodiment are omitted, and the same numbers are used in the following description to indicate the same functions.

図5において、熱交換器の偏平管1の風下側B1を流れる冷媒が、風上側A1よりも空気に伝える伝熱性能が大きくなるようにすることにより、風上側A1と風下側B1の熱交換器出口の乾き度を等しくすることができる。その為には、図4に示すように、偏平管1の冷媒が流れる冷媒流通穴9l、9mに内部フィン11を配置し、この内部フィン11の数を上流側A1より風下側Bの方を多くし、内部フィン11の数が9l(例えば2)<9m(例えば5)となるように配置することにより、風上側A1の熱交換器の出口だけが極端に乾き度が高くなること無く、空気と冷媒の熱交換を効率良くすることが可能となり、熱交換器性能を最大限に引出すことができる。   In FIG. 5, the heat exchange between the leeward side A1 and the leeward side B1 is achieved by the refrigerant flowing through the leeward side B1 of the flat tube 1 of the heat exchanger having a higher heat transfer performance to be transmitted to the air than the windward side A1. The dryness of the vessel outlet can be made equal. For this purpose, as shown in FIG. 4, the internal fins 11 are arranged in the refrigerant flow holes 9l and 9m through which the refrigerant of the flat tube 1 flows, and the number of the internal fins 11 is set on the leeward side B from the upstream side A1. By increasing the number of internal fins 11 so that 9 l (for example, 2) <9 m (for example, 5), only the outlet of the heat exchanger on the windward side A1 does not become extremely dry, It becomes possible to efficiently exchange heat between the air and the refrigerant, and the heat exchanger performance can be maximized.

従って、通常であれば風上側Aから流入した空気と熱交換器の風上側A1が先に熱交換した後に、熱交換器の風下側B1と熱交換するので、風下側B1では空気側と冷媒の温度差が小さい状態で熱交換が行なわれる為に熱交換量も風上側A1の方が大きくなり、風上
側A1の方が熱交換器出口での乾き度が大きくなって、風上側A1と風下側B1の熱交換器性能を充分に引出すことができないが、本実施の形態4の構成であれば風下側B1の冷媒側の熱伝達性能が向上するので、バランス良く熱交換器全体が気側と熱交換することが可能となる。
Therefore, normally, the air flowing in from the leeward side A and the leeward side A1 of the heat exchanger first exchange heat, and then exchange heat with the leeward side B1 of the heat exchanger. Since the heat exchange is performed in a state where the temperature difference is small, the amount of heat exchange is larger on the windward side A1, and the windward side A1 has a higher degree of dryness at the outlet of the heat exchanger. Although the performance of the heat exchanger on the leeward side B1 cannot be sufficiently extracted, the configuration of the fourth embodiment improves the heat transfer performance on the refrigerant side of the leeward side B1, so that the entire heat exchanger is well-balanced. It is possible to exchange heat with the side.

(実施の形態5)
図6は、本発明の実施の形態5にかかるパラレルフロー型熱交換器を、図7の矢印ロ方向から見た断面図である。上記実施の形態と重複する内容と原理は省き、同一機能を示すものであれば同一番号にて以下に説明する。
(Embodiment 5)
FIG. 6 is a cross-sectional view of the parallel flow heat exchanger according to the fifth embodiment of the present invention as viewed from the direction of arrow B in FIG. The contents and principles that are the same as those in the above embodiment are omitted, and the same numbers are used in the following description to indicate the same functions.

図6において、熱交換器の風上側A1から風下側B1にかけて、偏平管1における冷媒が空気に伝える伝熱性能を漸次向上するようにすることで、風上側A1と風下側B1の熱交換器出口の乾き度を等しくすることができる。その為には、図5に示すように、偏平管の冷媒が流れる冷媒流通穴9n〜9sに内部フィン11を配置し、この内部フィン11の数を上流側A1から風下側Bにかけて漸次多くし、内部フィン11の数が9n(例えば1)<9o(例えば2)<9p(例えば3)<9q(例えば5)<9r(例えば12)<9s(例えば24)となるように配置することにより、風上側A1の熱交換器の出口だけが極端に乾き度が高くなること無く、空気と冷媒の熱交換を効率良くすることが可能となり、熱交換器性能を最大限に引出すことができる。   In FIG. 6, the heat exchanger of the windward side A1 and the leeward side B1 is gradually improved from the windward side A1 to the leeward side B1 of the heat exchanger by gradually improving the heat transfer performance that the refrigerant in the flat tube 1 transmits to the air. The dryness of the outlet can be made equal. For this purpose, as shown in FIG. 5, the internal fins 11 are arranged in the refrigerant flow holes 9n to 9s through which the refrigerant in the flat tube flows, and the number of the internal fins 11 is gradually increased from the upstream side A1 to the leeward side B. By arranging the number of internal fins 11 such that 9n (for example, 1) <9o (for example, 2) <9p (for example, 3) <9q (for example, 5) <9r (for example, 12) <9s (for example, 24) Only the outlet of the heat exchanger on the windward side A1 can be efficiently exchanged heat between the air and the refrigerant without extremely increasing the dryness, and the heat exchanger performance can be maximized.

従って、通常であれば風上側Aから流入した空気と熱交換器の風上側A1が先に熱交換した後に、熱交換器の風下側B1と熱交換するので、風下側B1では空気側と冷媒の温度差が小さい状態で熱交換が行なわれる為に熱交換量も風上側A1の方が大きくなり、風上側A1の方が熱交換器出口での乾き度が大きくなって、風上側A1と風下側B1の熱交換器性能を充分に引出すことができないが、本実施の形態5の構成であれば風上側A1から風下側B1にかけて漸次、冷媒側の熱伝達性能が向上するので、バランス良く熱交換器全体が空気側と熱交換することが可能となる。なお、上記実施の形態では、内部フィン11を設置して熱伝熱量を調整したが、内部フィン11の高さや位置、内部フィンの形状を変えても同じ意味をなすものである。   Therefore, normally, the air flowing in from the leeward side A and the leeward side A1 of the heat exchanger first exchange heat, and then exchange heat with the leeward side B1 of the heat exchanger. Since the heat exchange is performed in a state where the temperature difference is small, the amount of heat exchange is larger on the windward side A1, and the windward side A1 has a higher degree of dryness at the outlet of the heat exchanger. Although the heat exchanger performance of the leeward side B1 cannot be sufficiently extracted, the configuration of the fifth embodiment gradually improves the heat transfer performance on the refrigerant side from the leeward side A1 to the leeward side B1, so that the balance is good. The entire heat exchanger can exchange heat with the air side. In the above embodiment, the heat transfer amount is adjusted by installing the internal fins 11, but changing the height and position of the internal fins 11 and the shape of the internal fins has the same meaning.

また、上記実施の形態3〜5に示すように内部フィン11を最適化することにより、着霜が発生する低外気温の暖房運転時においても、熱交換器の性能低下に伴う蒸発器温度の低下によって、集中的に霜が付着して目詰まりを起こす事無く、冷媒循環量の最適化により、風上、風下に関係無く、熱交換器全体に霜が均一に付着し易くなるので、長時間に渡って暖房運転を持続させることが可能となる。なお、上記構成において、サーペンタインタイプの熱交換器においても同様の効果が得られるものであり、熱交換器の偏平管やヘッダーの向きや、形状、上下、水平方向を問わず構成されたものも含む。   In addition, by optimizing the internal fins 11 as shown in the above-described Embodiments 3 to 5, the temperature of the evaporator accompanying the performance deterioration of the heat exchanger is reduced even during a heating operation at a low outside temperature where frost formation occurs. Due to the decrease, frost is not concentrated and clogged, and optimization of refrigerant circulation makes it easy for frost to adhere uniformly to the entire heat exchanger regardless of windward or leeward. It becomes possible to continue heating operation over time. In the above configuration, the same effect can be obtained even in the serpentine type heat exchanger, and the configuration is applicable regardless of the orientation, shape, top and bottom, and horizontal direction of the flat tubes and headers of the heat exchanger. Including.

以上のように、本発明にかかる熱交換器の風上側および風下側が有効に熱交換利用され、更には複雑な構成を必要とせずに熱交換性能を最大限に引き出すことが可能となるので、ヒートポンプ式空気調和機やカーエアコン等の熱交換器にも適用できる。   As described above, the windward side and the leeward side of the heat exchanger according to the present invention are effectively used for heat exchange, and further, it is possible to maximize the heat exchange performance without requiring a complicated configuration. It can also be applied to heat exchangers such as heat pump air conditioners and car air conditioners.

本発明の実施の形態1にかかる熱交換器の部分斜視図The partial perspective view of the heat exchanger concerning Embodiment 1 of the present invention. 図1の矢印イの方向から見た本発明の実施の形態1にかかる熱交換器の断面図Sectional drawing of the heat exchanger concerning Embodiment 1 of this invention seen from the direction of arrow A of FIG. 本発明の実施の形態2における熱交換器の一部分を示し、図7における矢印ロ方向から見た部分拡大横断面図The partial expanded cross-sectional view which showed a part of heat exchanger in Embodiment 2 of this invention, and was seen from the arrow B direction in FIG. 本発明の実施の形態3における熱交換器の一部分を示し、図7における矢印ロ方向から見た部分拡大横断面図The partial expanded cross-sectional view which showed a part of heat exchanger in Embodiment 3 of this invention, and was seen from the arrow B direction in FIG. 本発明の実施の形態4における熱交換器の一部分を示し、図7における矢印ロ方向から見た部分拡大横断面図The partial expanded cross-sectional view which showed a part of heat exchanger in Embodiment 4 of this invention, and was seen from the arrow B direction in FIG. 本発明の実施の形態5における熱交換器の一部分を示し、図7における矢印ロ方向から見た部分拡大横断面図The partial expanded cross-sectional view which showed a part of heat exchanger in Embodiment 5 of this invention, and was seen from the arrow B direction in FIG. 従来の偏平管熱交換器の全体斜視図Overall perspective view of a conventional flat tube heat exchanger

符号の説明Explanation of symbols

1 偏平管
2 フィン
3 ヘッダー
4 ヘッダー
5、6 接続管
7、8 ヘッダー
9、9a〜9s 冷媒流通穴
10 ルーバ
11 内部フィン
DESCRIPTION OF SYMBOLS 1 Flat tube 2 Fin 3 Header 4 Header 5, 6 Connection pipe 7, 8 Header 9, 9a-9s Refrigerant flow hole 10 Louver 11 Internal fin

Claims (5)

所定の距離を置いて延在する一対のヘッダーと、該一対のヘッダー間には内部に冷媒が流通する、冷媒流通穴が形成された偏平管と、前記偏平管に略直行し密着している同一ピッチで複数配置されたプレートフィンと、前記偏平管が前記プレートフィンを貫通した構成を備えた熱交換器であって、前記偏平管の流通路を風上側に低性能タイプ、風下側には高性能タイプの形状としたことを特徴とする熱交換器。 A pair of headers extending at a predetermined distance, a flat tube in which a refrigerant flows between the pair of headers, in which a refrigerant circulation hole is formed, and the flat tube are substantially perpendicular to and in close contact with each other. A plurality of plate fins arranged at the same pitch, and a heat exchanger having a structure in which the flat tube penetrates the plate fin, wherein the flow path of the flat tube is a low performance type on the windward side, and on the leeward side A heat exchanger characterized by a high-performance shape. 所定の距離を置いて延在する一対のヘッダーと、該一対のヘッダー間には内部に冷媒が流通する複数の冷媒流通穴が形成された偏平管と、前記偏平管に略直行し密着している同一ピッチで複数配置されたプレートフィンと、前記偏平管が前記プレートフィンを貫通した構成を備えた熱交換器であって、前記偏平管の流通路を風上側から下流側にかけて漸次低性能タイプから高性能タイプの形状としたことを特徴とする熱交換器。 A pair of headers extending at a predetermined distance, a flat tube in which a plurality of refrigerant flow holes are formed between the pair of headers, and a refrigerant pipe through which the refrigerant flows. A plurality of plate fins arranged at the same pitch, and a heat exchanger having a structure in which the flat tube penetrates the plate fin, and the flow path of the flat tube is gradually low performance type from the windward side to the downstream side A heat exchanger characterized by a high-performance shape. 前記偏平管の風下側の冷媒流通穴の内部にのみフィンが施されていることを特徴とする請求項1記載の熱交換器。 The heat exchanger according to claim 1, wherein fins are provided only inside the refrigerant flow hole on the leeward side of the flat tube. 前記偏平管の風下側の冷媒流通穴の内部のフィンは、風上側より多く施されていることを特徴とする請求項1記載の熱交換器 The heat exchanger according to claim 1, wherein more fins are provided in the refrigerant flow hole on the leeward side of the flat tube than on the windward side. 前記偏平管の風上側から風下側にかけて冷媒流通穴の内部にはフィンが漸次多く施されていることを特徴とする請求項2記載の熱交換器。 The heat exchanger according to claim 2, wherein a large number of fins are gradually provided in the refrigerant circulation hole from the windward side to the leeward side of the flat tube.
JP2004006580A 2004-01-14 2004-01-14 Heat exchanger Pending JP2005201491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004006580A JP2005201491A (en) 2004-01-14 2004-01-14 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004006580A JP2005201491A (en) 2004-01-14 2004-01-14 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2005201491A true JP2005201491A (en) 2005-07-28

Family

ID=34820501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004006580A Pending JP2005201491A (en) 2004-01-14 2004-01-14 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2005201491A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232600A (en) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the heat exchanger
JP2008261518A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Heat exchanger and air conditioner comprising the same
JP2009281693A (en) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP2009293849A (en) * 2008-06-04 2009-12-17 Mitsubishi Electric Corp Heat exchanger and air conditioner using the same
CN102052807A (en) * 2011-01-26 2011-05-11 西安交通大学 Condenser
JP2012200769A (en) * 2011-03-25 2012-10-22 Mitsubishi Alum Co Ltd Flat tube for heat exchanger and method of manufacture the same
WO2016121125A1 (en) * 2015-01-30 2016-08-04 三菱電機株式会社 Heat exchanger and refrigeration cycle device
CN107576050A (en) * 2017-10-24 2018-01-12 高风东 A kind of condensate water circulatory system and its air-conditioning
WO2018062519A1 (en) 2016-09-29 2018-04-05 ダイキン工業株式会社 Heat exchanger and air conditioner
JP2019011923A (en) * 2017-06-30 2019-01-24 ダイキン工業株式会社 Heat exchanger
WO2020240936A1 (en) * 2019-05-31 2020-12-03 ダイキン工業株式会社 Heat transfer tube and heat exchanger
WO2024114648A1 (en) * 2022-11-30 2024-06-06 浙江盾安人工环境股份有限公司 Heat exchange flat tube and heat exchanger

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232600A (en) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the heat exchanger
JP4659779B2 (en) * 2007-03-23 2011-03-30 三菱電機株式会社 Heat exchanger and air conditioner equipped with the heat exchanger
JP2008261518A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Heat exchanger and air conditioner comprising the same
JP4671985B2 (en) * 2007-04-10 2011-04-20 三菱電機株式会社 Heat exchanger and air conditioner equipped with the heat exchanger
JP2009281693A (en) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP2009293849A (en) * 2008-06-04 2009-12-17 Mitsubishi Electric Corp Heat exchanger and air conditioner using the same
CN102052807A (en) * 2011-01-26 2011-05-11 西安交通大学 Condenser
JP2012200769A (en) * 2011-03-25 2012-10-22 Mitsubishi Alum Co Ltd Flat tube for heat exchanger and method of manufacture the same
WO2016121125A1 (en) * 2015-01-30 2016-08-04 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JPWO2016121125A1 (en) * 2015-01-30 2017-04-27 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
WO2018062519A1 (en) 2016-09-29 2018-04-05 ダイキン工業株式会社 Heat exchanger and air conditioner
US10794636B2 (en) 2016-09-29 2020-10-06 Daikin Industries, Ltd. Heat exchanger and air conditioner
JP2019011923A (en) * 2017-06-30 2019-01-24 ダイキン工業株式会社 Heat exchanger
CN107576050A (en) * 2017-10-24 2018-01-12 高风东 A kind of condensate water circulatory system and its air-conditioning
CN107576050B (en) * 2017-10-24 2023-07-14 高风东 Condensate water circulation system and air conditioner thereof
WO2020240936A1 (en) * 2019-05-31 2020-12-03 ダイキン工業株式会社 Heat transfer tube and heat exchanger
WO2024114648A1 (en) * 2022-11-30 2024-06-06 浙江盾安人工环境股份有限公司 Heat exchange flat tube and heat exchanger

Similar Documents

Publication Publication Date Title
KR101449889B1 (en) Heat exchanger and air conditioner
JP2005055108A (en) Heat exchanger
KR100765557B1 (en) Heat exchanger
JP2006284134A (en) Heat exchanger
US10041710B2 (en) Heat exchanger and air conditioner
KR20040065626A (en) Heat exchanger
CN113587251B (en) Air conditioner
JP2006329511A (en) Heat exchanger
JP2005201491A (en) Heat exchanger
JP2006284133A (en) Heat exchanger
WO2020129180A1 (en) Heat exchanger and refrigeration cycle device
JP2005127597A (en) Heat exchanger
JP2005127529A (en) Heat exchanger
US11988452B2 (en) Heat exchanger
JP2005201492A (en) Heat exchanger
KR101345840B1 (en) Heat pump having a heat exchanger of dual construction
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
JP2005090805A (en) Heat exchanger
JP2015014397A (en) Heat exchanger
JP4297250B2 (en) Air conditioner heat exchanger
JP2012229897A (en) Heat exchanger and air conditioner equipped with the heat exchanger
CN115298507A (en) Heat exchanger
KR102414545B1 (en) Heat exchanger
CN214665366U (en) Evaporator and household appliance
JP7118279B2 (en) HEAT EXCHANGER, MANUFACTURING METHOD THEREOF, AND AIR CONDITIONER