JP2005127597A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2005127597A
JP2005127597A JP2003363076A JP2003363076A JP2005127597A JP 2005127597 A JP2005127597 A JP 2005127597A JP 2003363076 A JP2003363076 A JP 2003363076A JP 2003363076 A JP2003363076 A JP 2003363076A JP 2005127597 A JP2005127597 A JP 2005127597A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
refrigerant
leeward side
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003363076A
Other languages
Japanese (ja)
Inventor
Shigeto Yamaguchi
成人 山口
Shoichi Yokoyama
昭一 横山
Takashi Sugio
孝 杉尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003363076A priority Critical patent/JP2005127597A/en
Publication of JP2005127597A publication Critical patent/JP2005127597A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/04Arrangements of conduits common to different heat exchange sections, the conduits having channels for different circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/02Arrangements of fins common to different heat exchange sections, the fins being in contact with different heat exchange media

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micro-tube heat exchanger capable of realizing the optimum and high heat exchanging performance and achieving the sufficient heat exchanging quantity, even when the parallel flow type or serpentine type micro-tube heat exchanger is used as an evaporator or a condenser. <P>SOLUTION: The number of refrigerant passage holes is reduced and the cross-sectional area of a refrigerant passage is increased as going from a leeward side to a windward side in a flat pipe, whereby heat transfer performance to an air side through fins closely kept into contact with the flat pipe, from the refrigerant can be improved, and the heat exchanging effect can be improved. The windward-side heat exchanger and the leeward-side heat exchanger can be effectively utilized with good balance, even when the heat exchangers are used as the evaporator or the condenser, whereby the performance can be maximized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ヒートポンプ式空気調和機に利用される熱交換器に関し、熱交換器全体を有効に利用し、効率良く冷媒と空気との熱交換が可能となる熱交換器に関するものである。   The present invention relates to a heat exchanger used in a heat pump air conditioner, and more particularly to a heat exchanger that effectively uses the entire heat exchanger and can efficiently exchange heat between refrigerant and air.

従来、この種の空気調和機の冷凍サイクルを構成しているフィンアンドチューブタイプの熱交換器は、熱交換能力が小さい場合には、冷媒の循環量が少なく、伝熱管内の圧力損失が小さい為、冷媒通路は単一で良いが、熱交換能力が大きい場合には、冷媒の循環量が多く、伝熱管内の圧力損失が大きくなる為に複数の冷媒通路が必要となってくる。そこで、フィンの位置を1列目と2列目の熱交換器の間でずらしたものもがある(例えば特許文献1参照)。   Conventionally, the fin-and-tube type heat exchanger constituting the refrigeration cycle of this type of air conditioner has a small amount of refrigerant circulation and a small pressure loss in the heat transfer tube when the heat exchange capacity is small. For this reason, a single refrigerant passage is sufficient, but when the heat exchange capacity is large, a large amount of refrigerant is circulated, and a plurality of refrigerant passages are required because the pressure loss in the heat transfer tube increases. Therefore, there is a case in which the positions of the fins are shifted between the heat exchangers in the first row and the second row (see, for example, Patent Document 1).

また、熱交換効率の高いパラレルフロータイプの熱交換器を蒸発器に使用した場合について説明すると、図6に示すように、中空円筒状の下部ヘッダー4を有し、左側は閉じてあり、蒸発器として使用される場合、冷媒が流入する接続管5が右側に接合されている。下部ヘッダー4に流入した冷媒は各ヘッダーに連通する各偏平管1の中を通過しながら、各偏平管1に密着したフィン2を介して空気と熱交換を行い、更にガス化した冷媒は中空円筒状である上側ヘッダー3の右側の接続管6から流出する。   Further, the case where a parallel flow type heat exchanger with high heat exchange efficiency is used for the evaporator will be described. As shown in FIG. 6, the heat exchanger has a hollow cylindrical lower header 4 and the left side is closed. When used as a container, the connecting pipe 5 into which the refrigerant flows is joined to the right side. The refrigerant flowing into the lower header 4 passes through the flat tubes 1 communicating with the headers, exchanges heat with air through the fins 2 that are in close contact with the flat tubes 1, and the gasified refrigerant is hollow. It flows out from the connection pipe 6 on the right side of the cylindrical upper header 3.

このパラレルフロータイプの熱交換器を凝縮器として使用した場合は、圧縮機より吐出された高温高圧の単相の過熱冷媒ガスがの接続管6より上部ヘッダー3に流入して各ヘッダーに連通する各偏平管1の中を通過しながら、各偏平管1に密着したフィン2を介して空気と熱交換を行い、凝縮液化した冷媒は中空円筒状である下部ヘッダー4より凝縮器の接続管5から流出する。扁平管1は熱伝導性の良いアルミニウムや銅合金等の金属からなる偏平な断面外形を有しており、内部に1本ないし数本の冷媒通路を有し、下部ヘッダー4と上部ヘッダー3とを連通するように、それらのヘッダーを橋絡して垂直に複数本取り付けられている。   When this parallel flow type heat exchanger is used as a condenser, the high-temperature and high-pressure single-phase superheated refrigerant gas discharged from the compressor flows into the upper header 3 through the connection pipe 6 and communicates with each header. While passing through each flat tube 1, heat exchange with air is performed through fins 2 that are in close contact with each flat tube 1, and the condensed and liquefied refrigerant is connected to a condenser connecting tube 5 from a lower header 4 that has a hollow cylindrical shape. Spill from. The flat tube 1 has a flat cross-sectional outer shape made of a metal such as aluminum or copper alloy having good thermal conductivity, and has one or several refrigerant passages therein. The lower header 4 and the upper header 3 To communicate with each other, a plurality of the headers are attached vertically by bridging the headers.

このような空気調和機用の熱交換器の熱交換効率を良好にした構成例としては、1列の熱交換器で着霜運転時に空気の流入上流部と下流側のフィンの形状を変化させて熱交換器全体が効率良く運転可能となるようにさせたものがある(例えば特許文献2参照)。   As a configuration example in which the heat exchange efficiency of such a heat exchanger for an air conditioner is improved, the shape of the fins on the upstream side and the downstream side of the air is changed at the time of frosting operation with one row of heat exchangers. Some of the heat exchangers can be operated efficiently (see, for example, Patent Document 2).

また、上記パラレルフロータイプの熱交換器の他に、図7に示すようなサーペンタインタイプの熱交換器があり、これは、一対の中空円筒状のヘッダー7、8と、このヘッダー7,8を接続する蛇行した偏平管10と、その偏平管10の間に設けられたフィン11から構成され、偏平管10は上記パラレルフロータイプの熱交換器と同様に内部が、1本ないし数本の冷媒通路を有している。パラレルフロータイプとサーペンタインタイプの熱交換器のフィン2、11と偏平管1、10は基本的に同様な構成となっている。
特開平7―198166号公報 特開平8―178366号公報
In addition to the parallel flow type heat exchanger, there is a serpentine type heat exchanger as shown in FIG. 7, which includes a pair of hollow cylindrical headers 7 and 8 and the headers 7 and 8. The meandering flat tube 10 to be connected and the fins 11 provided between the flat tubes 10, the flat tube 10, like the parallel flow type heat exchanger, have one or several refrigerants inside. Has a passage. The fins 2 and 11 and the flat tubes 1 and 10 of the parallel flow type and serpentine type heat exchangers have basically the same configuration.
Japanese Patent Laid-Open No. 7-198166 JP-A-8-178366

しかしながら、前記従来の構成では、このようにパラレルフロータイプやサーペンタインタイプのマイクロチューブ熱交換器を利用した場合に、従来のフィンアンドチューブタイプの熱交換器よりも熱交換性能が高いものとなっている。2列で構成したフィンアンドチューブの熱交換器が空気と冷媒の熱交換する過程は、風上に配置した1列目の熱交換器
と風下の2列目の熱交換器の間を冷媒が容易に交差して効率よく空気と熱交換する構成を取ることができるが、パラレルフロータイプやサーペンタインタイプの場合はフィンアンドチューブとは異なり、一本の扁平管の中に複数の壁で仕切った冷媒流通路があり、その中を冷媒が流れるので、風上側と風下側の冷媒流通路を流れる冷媒を一本の扁平管の中で交差して流すことは不可能である。
However, in the conventional configuration, when the parallel flow type or serpentine type micro tube heat exchanger is used, the heat exchange performance is higher than that of the conventional fin and tube type heat exchanger. Yes. The process of heat exchange between the fin and tube heat exchanger composed of two rows between the air and the refrigerant is performed between the first row heat exchanger arranged on the windward side and the second row heat exchanger located on the leeward side. It can be easily crossed to efficiently exchange heat with air. However, unlike the fin-and-tube type, the parallel flow type and serpentine type are divided by a single flat tube with multiple walls. Since there is a refrigerant flow passage and the refrigerant flows through it, it is impossible to cross the refrigerant flowing through the refrigerant flow passage on the windward side and the leeward side in a single flat tube.

そして空気側と冷媒側の熱交換の大部分が風上側で優先的に熱交換される為、風下側の熱交換器での空気側と冷媒の熱交換量は小さくなる。従って、例えば蒸発器においては、風上側の熱交換器は過熱度が大きく取れ、風下側は逆に熱交換量が減って過熱度が小さくなり、冷媒の循環量によっては、風上側と風下側の熱交換量が大きく異なってバランスを崩し、熱交換器全体を有効に利用することができず、冷凍サイクルの性能まで低下させる場合がある。   Since most of the heat exchange between the air side and the refrigerant side is preferentially heat exchanged on the windward side, the amount of heat exchange between the air side and the refrigerant in the heat exchanger on the leeward side becomes small. Therefore, for example, in an evaporator, the heat exchanger on the leeward side can take a large degree of superheat, while the leeward side conversely reduces the amount of heat exchange to reduce the degree of superheat, and depending on the circulation amount of the refrigerant, the windward side and leeward side The heat exchange amount of the heat exchanger is greatly different and the balance is lost, so that the entire heat exchanger cannot be used effectively, and the performance of the refrigeration cycle may be lowered.

仮に、パラレルフロータイプやサーペンタインタイプの熱交換器を2列で構成したとしても、1列目と2列目の熱交換器を流れている冷媒をフィンアンドチューブのように途中で交差させるような構成は困難であり、仮に実現しようとしても装置が巨大化するだけで無く、複雑になってコストが上がり、更には冷媒分流が崩れるなど熱交換器の性能が大きく低下してしまうことになる。   Even if a parallel flow type or serpentine type heat exchanger is configured in two rows, the refrigerant flowing through the heat exchangers in the first row and the second row crosses in the middle like a fin and tube. The configuration is difficult, and even if it is to be realized, the apparatus will not only be enlarged, but it will become complicated and cost will be increased, and further, the performance of the heat exchanger will be greatly deteriorated, such as collapse of the refrigerant flow.

本発明はこのような従来の課題を解決するものであり、パラレルフロータイプやサーペンタインタイプの熱交換器を蒸発器や凝縮器として利用した場合でも、最適で且つ高い熱交換性能を実現し、充分な熱交換量を得ることが可能な熱交換器を提供することを目的とする。   The present invention solves such a conventional problem, and even when a parallel flow type or serpentine type heat exchanger is used as an evaporator or a condenser, it achieves optimum and high heat exchange performance and is sufficient. An object of the present invention is to provide a heat exchanger capable of obtaining a large amount of heat exchange.

前記従来の課題を解決するために、本発明の熱交換器は、冷媒が流通する複数の冷媒流通路を内部に形成した偏平管と、隣接する前記偏平管の間に配置された放熱用フィンとを備えた熱交換器であって、前記冷媒流通路の形状を異ならせることにより、前記熱交換器を通過する風上側より風下側の熱交換能力を大きくしたことを特徴とする。これにより、熱交換器全体が効率良く熱交換を行ない、パラレルフロータイプやサーペンタインタイプの熱交換器として、性能を最大限に引出すことができる。   In order to solve the above-described conventional problems, a heat exchanger according to the present invention includes a flat tube in which a plurality of refrigerant flow passages through which a refrigerant circulates is formed, and a heat radiation fin disposed between the adjacent flat tubes. The heat exchange capacity of the leeward side is made larger than that of the leeward side passing through the heat exchanger by changing the shape of the refrigerant flow passage. As a result, the entire heat exchanger efficiently exchanges heat, and the performance can be maximized as a parallel flow type or serpentine type heat exchanger.

本発明の熱交換器によれば、蒸発器または凝縮器として使用した場合、風上側および風下側の熱交換器が有効に熱交換利用されるので、複雑な構成を必要とせずに熱交換性能を最大限に引き出すことが可能となると共に、また、熱交換器を暖房低温用の蒸発器とした場合でも、風上側の集中的な着霜による熱交換器の性能低下に伴って発生する急激な目詰まりを抑え、着霜による目詰まりに到るまでの時間を長くすることが可能となる。   According to the heat exchanger of the present invention, when used as an evaporator or a condenser, the heat exchangers on the windward side and the leeward side are effectively used for heat exchange, so that heat exchange performance is not required without requiring a complicated configuration. In addition, even when the heat exchanger is an evaporator for heating and low temperature, the rapid heat generated due to the deterioration of the heat exchanger performance due to concentrated frost formation on the windward side can be obtained. It is possible to suppress clogging and to increase the time until clogging due to frost formation.

第1の発明は、冷媒が流通する複数の冷媒流通路を内部に形成した偏平管と、隣接する前記偏平管の間に配置された放熱用フィンとを備えた熱交換器であって、前記冷媒流通路の形状を異ならせることにより、前記熱交換器を通過する風上側より風下側の熱交換能力を大きくしたことを特徴とし、風上側より熱交換量の少ない風下側であっても、効率の高い熱交換を行なうことができる。   1st invention is a heat exchanger provided with the flat tube which formed the some refrigerant | coolant flow path through which a refrigerant | coolant distribute | circulates inside, and the fin for heat radiation arrange | positioned between the said adjacent flat tubes, By making the shape of the refrigerant flow path different, the heat exchange capacity on the leeward side is larger than that on the leeward side that passes through the heat exchanger, and even on the leeward side where the amount of heat exchange is less than that on the leeward side, Highly efficient heat exchange can be performed.

第2の発明は、風上側から下流側にかけて熱交換能力を漸次大きくしたことを特徴とし、熱交換量の高い風上側から熱交換量の低い風下側に漸次効率良く、効果的に冷媒と空気が熱交換を行なうことができる。   The second invention is characterized in that the heat exchange capacity is gradually increased from the windward side to the downstream side, and the refrigerant and air are effectively and effectively gradually increased from the windward side where the heat exchange amount is high to the leeward side where the heat exchange amount is low. Can exchange heat.

第3の発明は、偏平管の冷媒流通路の数を風下側より風上側を少なし、且つ断面積を小さくしたことを特徴とし、風下側の冷媒通路穴の管内表面積の増大と冷媒流速の上昇と共に熱伝達性能も向上するので、効率の高い熱交換を行なうことができる。   The third invention is characterized in that the number of the refrigerant flow passages in the flat tube is smaller on the leeward side than on the leeward side, and the cross-sectional area is reduced. Since heat transfer performance improves with the rise, highly efficient heat exchange can be performed.

第4発明は、偏平管の冷媒流通路の断面積を風上側より風下側にかけて漸次小さくしたことを特徴とし、熱交換量の高い風上側から熱交換量の低い風下側かけて、冷媒流速の上昇と共に熱伝達性能も漸次向上するので、効果的に冷媒と空気が熱交換を行なうことができる。   The fourth invention is characterized in that the cross-sectional area of the refrigerant flow passage of the flat tube is gradually reduced from the leeward side to the leeward side, and the refrigerant flow rate is increased from the leeward side where the heat exchange amount is high to the leeward side where the heat exchange amount is low. As the heat transfer performance gradually increases with the rise, the refrigerant and air can effectively exchange heat.

第5発明は、扁平管の風下側の冷媒流通路内部にフィンが施されていることを特徴とし、冷媒が空気に伝える熱伝達性能も向上するので、効率の高い熱交換を行なうことができる。   The fifth invention is characterized in that fins are provided in the refrigerant flow passage on the lee side of the flat tube, and the heat transfer performance that the refrigerant transmits to the air is improved, so that highly efficient heat exchange can be performed. .

第6発明は、冷媒流通路の内部にフィンを設け、偏平管の風下側の冷媒流通路の内部のフィンは、風上側の冷媒流通路の内部のフィンより多く施されていることを特徴とし、風上側より熱交換量の少ない風下側であっても、冷媒が空気に伝える熱伝達性能も向上するので、効率の高い熱交換を行なうことができる。   The sixth invention is characterized in that fins are provided in the refrigerant flow passage, and more fins are provided in the refrigerant flow passage on the leeward side of the flat tube than fins in the refrigerant flow passage on the leeward side. Even on the leeward side where the amount of heat exchange is smaller than that on the leeward side, the heat transfer performance transmitted to the air by the refrigerant is improved, so that highly efficient heat exchange can be performed.

第7発明は、冷媒流通路の内部にフィンを設け、偏平管の風上側から風下側にかけて、冷媒流通路の内部のフィンを漸次多く施されていることを特徴とし、熱交換量の高い風上側から熱交換量の低い風下側かけて、冷媒流速の上昇と共に熱伝達性能も漸次向上するので、効果的に冷媒と空気が熱交換を行なうことができる。   The seventh invention is characterized in that fins are provided inside the refrigerant flow passage, and the fins inside the refrigerant flow passage are gradually increased from the windward side to the leeward side of the flat tube. From the upper side to the leeward side where the amount of heat exchange is low, the heat transfer performance is gradually improved as the refrigerant flow rate increases, so that the refrigerant and air can effectively exchange heat.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1にかかるパラレルフロー型熱交換器の部分断面図であり、隣り合う扁平管2本の断面とその間のフィンを示している。 図1において、偏平管21の風上側部分A1には四角形の冷媒通路穴22a(例えば断面積3mm)が3個、風下側部分B1に、A1の冷媒通路穴22aの断面積の半分となる四角形の冷媒通路穴22b(例えば断面積1.5mm)が6個設けられている。よって、偏平管21の1本当りの冷媒通路穴の全断面積は風上側部分A1および風下側B1共に(例えば断面積9mm)同等であるが、風下側部分B1の方が風上側部分A1よりも冷媒が流れる冷媒通路穴22bの流通路内表面積の方が大きくなるので、冷媒が偏平管21を介してフィン23から空気に熱伝達する表面積が大きくなる為に、熱交換効率も高くなる。従って、通常であれば流入した空気と熱交換器の風上側部分A1が先に熱交換した後に、風下側部分B1と熱交換するので、風下側部分B1では空気側と冷媒の温度差が小さい状態で熱交換が行なわれる為に熱交換量も風下側部分B1の方が小さくなる。よって、本実施の形態1の構成であれば風下側部分B1の伝熱性能が向上するので、熱交換器全体が空気側と熱交換することが可能となる。なおフィン23には放熱促進用のルーバー(切り起こし片)24が設けられている。
(Embodiment 1)
FIG. 1 is a partial cross-sectional view of a parallel flow heat exchanger according to a first embodiment of the present invention, showing a cross section of two adjacent flat tubes and fins therebetween. In FIG. 1, three rectangular refrigerant passage holes 22a (for example, a cross-sectional area of 3 mm 2 ) are provided in the windward side portion A1 of the flat tube 21, and half of the cross-sectional area of the refrigerant passage hole 22a of A1 is provided in the leeward side portion B1. Six rectangular refrigerant passage holes 22b (for example, a cross-sectional area of 1.5 mm 2 ) are provided. Accordingly, the entire cross-sectional area of the refrigerant passage hole per one flat tube 21 is equivalent to both the leeward side portion A1 and the leeward side B1 (for example, a cross-sectional area of 9 mm 2 ), but the leeward side portion B1 is the same as the windward side portion A1. Since the surface area in the flow passage of the refrigerant passage hole 22b through which the refrigerant flows is larger than that, the surface area through which the refrigerant transfers heat from the fins 23 to the air via the flat tubes 21 is increased, so that the heat exchange efficiency is also increased. . Therefore, normally, since the air that has flowed in and the windward portion A1 of the heat exchanger first exchange heat with the leeward portion B1, the temperature difference between the air side and the refrigerant is small in the leeward portion B1. Since heat exchange is performed in the state, the amount of heat exchange is also smaller in the leeward side portion B1. Therefore, if it is the structure of this Embodiment 1, since the heat-transfer performance of the leeward side part B1 will improve, it will become possible for the whole heat exchanger to heat-exchange with the air side. The fins 23 are provided with louvers (cut-and-raised pieces) 24 for promoting heat dissipation.

また、風下側Bに風上側Aよりも熱交換効率の高い偏平管21の形状にしたことにより、着霜が発生する低外気温の暖房運転時においても、図1の風上側Aのフィン23に集中的に霜が付着して目詰まりを起こす事無く、熱交換器全体に霜が均一に付着し易くなるので、長時間に渡って暖房運転を持続させることが可能となる。   Further, since the flat tube 21 having a higher heat exchange efficiency than the windward side A is formed on the leeward side B, the fins 23 on the windward side A in FIG. Since the frost is easily attached to the entire heat exchanger without causing clogging due to the frost being concentrated on the heat exchanger, the heating operation can be continued for a long time.

(実施の形態2)
図2は、本発明の実施の形態2にかかるパラレルフロー型熱交換器の部分断面図である
。図2において、熱交換器の風上側Aから風下側Bにかけて、冷媒流速が次第に早くなるように流すことにより、風上側Aから風下側Bにかけての熱交換器出口の乾き度を等しくすることができる。その為には、図2に示すように、偏平管31の風上側Aを流れる冷媒通路穴32aの断面積を、風下側Bに向かって、漸次小さくし、32a(例えば8mm)>32b(例えば6mm)>32a(例えば5mm)>32b(例えば4mm)>32e(例えば3mm)>32f(例えば2mm)>32g(例えば1mm)となるような断面積に配置することにより、風上側Bの熱交換器の出口だけが極端に乾き度が高くなること無く、空気と冷媒の熱交換を効率良くすることが可能となり、熱交換器性能を最大限に引出すことができる。
(Embodiment 2)
FIG. 2 is a partial cross-sectional view of a parallel flow heat exchanger according to a second embodiment of the present invention. In FIG. 2, the dryness of the heat exchanger outlet from the leeward side A to the leeward side B can be made equal by flowing the refrigerant flow rate from the leeward side A to the leeward side B of the heat exchanger. it can. For this purpose, as shown in FIG. 2, the cross-sectional area of the refrigerant passage hole 32a flowing through the leeward side A of the flat tube 31 is gradually reduced toward the leeward side B, and 32a (for example, 8 mm 2 )> 32b ( for example by 6mm 2)> 32a (e.g. 5mm 2)> 32b (eg 4mm 2)> 32e (e.g. 3mm 2)> 32f (e.g. 2 mm 2)> be placed in the cross-sectional area such that 32 g (e.g. 1 mm 2) Only the outlet of the heat exchanger on the windward side B becomes extremely dry, so that the heat exchange between the air and the refrigerant can be efficiently performed, and the heat exchanger performance can be maximized.

従って、通常であれば流入した空気と熱交換器の風上側Aが先に熱交換した後に、熱交換器の風下側Bと熱交換するので、熱交換器の風下側Bでは空気側と冷媒の温度差が小さい状態で熱交換が行なわれる為に熱交換量も風上側Aの方が大きくなり、風上側Aの方が熱交換器出口での乾き度が大きくなって、風上側Aと風下側Bの熱交換器性能を充分に引出すことができないが、本実施の形態2の構成であれば風上側Aから順次風下側Bにかけて冷媒流速が漸次的に増加するので、冷媒が空気に伝える伝熱性能も漸次的に高くなり、熱交換器全体が空気側とバランス良く熱交換することが可能となる。   Therefore, normally, the air that has flowed in and the leeward side A of the heat exchanger first exchange heat, and then exchange heat with the leeward side B of the heat exchanger. Because the heat exchange is performed in a state where the temperature difference is small, the amount of heat exchange is larger on the windward side A, and the windward side A has a higher degree of dryness at the outlet of the heat exchanger. Although the heat exchanger performance of the leeward side B cannot be sufficiently extracted, the refrigerant flow rate gradually increases from the leeward side A to the leeward side B in the configuration of the second embodiment, so that the refrigerant is converted into the air. The heat transfer performance to be transferred gradually increases, and the entire heat exchanger can exchange heat with the air side in a well-balanced manner.

(実施の形態3)
図3は、本発明の実施の形態3にかかるパラレルフロー型熱交換器の部分断面図である。図3において、熱交換器の偏平管41の風下側部分B1を流れる冷媒が、風上側部分A1よりも空気に伝える伝熱性能が大きくなるようにすることにより、風上側Aと風下側Bの熱交換器出口の乾き度を等しくすることができる。その為には、図3に示すように、風上側部分A1の偏平管41の冷媒流通穴42aには内部フィンを配置せず、風下側部分B1の冷媒流通穴42bに内部フィン43を配置することにより、風上Aの熱交換器の出口だけが極端に乾き度が高くなること無く、空気と冷媒の熱交換を効率良くすることが可能となり、熱交換器性能を最大限に引出すことができる。
(Embodiment 3)
FIG. 3 is a partial cross-sectional view of a parallel flow heat exchanger according to Embodiment 3 of the present invention. In FIG. 3, the refrigerant flowing through the leeward side portion B1 of the flat tube 41 of the heat exchanger has a higher heat transfer performance that is transmitted to the air than the leeward side portion A1, so that the leeward side A and the leeward side B The dryness of the heat exchanger outlet can be made equal. For this purpose, as shown in FIG. 3, no internal fin is disposed in the refrigerant circulation hole 42a of the flat tube 41 of the windward portion A1, and the internal fin 43 is disposed in the refrigerant circulation hole 42b of the leeward portion B1. As a result, only the outlet of the heat exchanger of the windward A is not extremely dry, it is possible to efficiently exchange heat between the air and the refrigerant, and to maximize the heat exchanger performance. it can.

従って、通常であれば風上側Aから流入した空気と熱交換器の風上側Aが先に熱交換した後に、熱交換器の風下側Bと熱交換するので、風下側Bでは空気側と冷媒の温度差が小さい状態で熱交換が行なわれる為に熱交換量も風上側Aの方が大きくなり、風上側Aの方が熱交換器出口での乾き度が大きくなって、風上側Aと風下側Bの熱交換器性能を充分に引出すことができないが、本実施の形態3の構成であれば、風下側Bの冷媒側の熱伝達性能が向上するので、バランス良く熱交換器全体が空気側と熱交換することが可能となる。   Therefore, normally, the air flowing in from the leeward side A and the leeward side A of the heat exchanger first exchange heat, and then exchange heat with the leeward side B of the heat exchanger. Because the heat exchange is performed in a state where the temperature difference is small, the amount of heat exchange is larger on the windward side A, and the windward side A has a higher degree of dryness at the outlet of the heat exchanger. Although the performance of the heat exchanger on the leeward side B cannot be sufficiently extracted, the heat transfer performance on the refrigerant side of the leeward side B is improved with the configuration of the third embodiment, so that the entire heat exchanger is well balanced. It is possible to exchange heat with the air side.

(実施の形態4)
図4は、本発明の実施の形態4にかかるパラレルフロー型熱交換器の部分断面図である。図4において、熱交換器の偏平管51の風下側Bを流れる冷媒が、風上側Aよりも空気に伝える伝熱性能が大きくなるようにすることにより、風上側Aと風下側Bの熱交換器出口の乾き度を等しくすることができる。その為には、図4に示すように、偏平管51の冷媒が流れる冷媒流通穴52a、52bに内部フィン53を配置し、この内部フィン53の数を上流側部分A1より風下側部分B1の方を多くし、内部フィン53の数が52a(例えば2)<52b(例えば5)となるように配置することにより、風上側Aの熱交換器の出口だけが極端に乾き度が高くなること無く、空気と冷媒の熱交換を効率良くすることが可能となり、熱交換器性能を最大限に引出すことができる。
(Embodiment 4)
FIG. 4 is a partial cross-sectional view of a parallel flow heat exchanger according to a fourth embodiment of the present invention. In FIG. 4, the heat flow between the leeward side A and the leeward side B is such that the refrigerant flowing on the leeward side B of the flat tube 51 of the heat exchanger has greater heat transfer performance to the air than the windward side A. The dryness of the vessel outlet can be made equal. For this purpose, as shown in FIG. 4, the internal fins 53 are arranged in the refrigerant flow holes 52a and 52b through which the refrigerant of the flat tube 51 flows, and the number of the internal fins 53 is less than that of the leeward part B1 from the upstream part A1. The number of internal fins 53 is increased so that the number of internal fins 53 is 52a (for example, 2) <52b (for example, 5), so that only the outlet of the heat exchanger on the windward side A becomes extremely dry. Therefore, it is possible to efficiently exchange heat between the air and the refrigerant, and the heat exchanger performance can be maximized.

従って、通常であれば風上側Aから流入した空気と熱交換器の風上側Aが先に熱交換した後に、熱交換器の風下側Bと熱交換するので、風下側Bでは空気側と冷媒の温度差が小さい状態で熱交換が行なわれる為に熱交換量も風上側Aの方が大きくなり、風上側Aの方が熱交換器出口での乾き度が大きくなって、風上側Aと風下側Bの熱交換器性能を充分に
引出すことができないが、本実施の形態4の構成であれば風下側Bの冷媒側の熱伝達性能が向上するので、バランス良く熱交換器全体が気側と熱交換することが可能となる。
Therefore, normally, the air flowing in from the leeward side A and the leeward side A of the heat exchanger first exchange heat, and then exchange heat with the leeward side B of the heat exchanger. Because the heat exchange is performed in a state where the temperature difference is small, the amount of heat exchange is larger on the windward side A, and the windward side A has a higher degree of dryness at the outlet of the heat exchanger. Although the performance of the heat exchanger on the leeward side B cannot be sufficiently extracted, the heat transfer performance on the refrigerant side of the leeward side B is improved with the configuration of the fourth embodiment, so that the entire heat exchanger is well-balanced. It is possible to exchange heat with the side.

(実施の形態5)
図5は、本発明の実施の形態5にかかるパラレルフロー型熱交換器の部分断面図である。図5において、熱交換器の風上側Aから風下側Bにかけて、偏平管61における冷媒が空気に伝える伝熱性能を漸次向上するようにすることで、風上側Aと風下側Bの熱交換器出口の乾き度を等しくすることができる。その為には、図5に示すように、偏平管61の冷媒が流れる冷媒流通穴62a〜62fに内部フィン63を配置し、この内部フィン63の数を上流側Aから風下側Bにかけて漸次多くし、内部フィン63の数が62a(例えば1)<62b(例えば2)<62c(例えば3)<62d(例えば5)<62e(例えば12)<62f(例えば24)となるように配置することにより、風上側Aの熱交換器の出口だけが極端に乾き度が高くなること無く、空気と冷媒の熱交換を効率良くすることが可能となり、熱交換器性能を最大限に引出すことができる。
(Embodiment 5)
FIG. 5: is a fragmentary sectional view of the parallel flow type heat exchanger concerning Embodiment 5 of this invention. In FIG. 5, from the leeward side A to the leeward side B of the heat exchanger, the heat transfer performance that the refrigerant in the flat tube 61 transfers to the air is gradually improved, so that the heat exchangers of the leeward side A and the leeward side B The dryness of the outlet can be made equal. For this purpose, as shown in FIG. 5, internal fins 63 are arranged in the refrigerant circulation holes 62 a to 62 f through which the refrigerant of the flat tube 61 flows, and the number of the internal fins 63 gradually increases from the upstream side A to the leeward side B. The number of the internal fins 63 is arranged so that 62a (for example, 1) <62b (for example, 2) <62c (for example, 3) <62d (for example, 5) <62e (for example, 12) <62f (for example, 24). As a result, only the outlet of the heat exchanger on the windward side A becomes extremely dry and the heat exchange between the air and the refrigerant can be efficiently performed, and the heat exchanger performance can be maximized. .

従って、通常であれば風上側Aから流入した空気と熱交換器の風上側Aが先に熱交換した後に、熱交換器の風下側Bと熱交換するので、風下側Bでは空気側と冷媒の温度差が小さい状態で熱交換が行なわれる為に熱交換量も風上側Aの方が大きくなり、風上側Aの方が熱交換器出口での乾き度が大きくなって、風上側Aと風下側Bの熱交換器性能を充分に引出すことができないが、本実施の形態5の構成であれば風上側Aから風下側Bにかけて漸次、冷媒側の熱伝達性能が向上するので、バランス良く熱交換器全体が空気側と熱交換することが可能となる。   Therefore, normally, the air flowing in from the leeward side A and the leeward side A of the heat exchanger first exchange heat, and then exchange heat with the leeward side B of the heat exchanger. Because the heat exchange is performed in a state where the temperature difference is small, the amount of heat exchange is larger on the windward side A, and the windward side A has a higher degree of dryness at the outlet of the heat exchanger. Although the performance of the heat exchanger on the leeward side B cannot be sufficiently extracted, the heat transfer performance on the refrigerant side gradually improves from the leeward side A to the leeward side B with the configuration of the fifth embodiment, so that the balance is good. The entire heat exchanger can exchange heat with the air side.

但し、上記実施の形態では、内部フィン43、53、63を設置して熱伝熱量を調整したが、内部フィンの高さや位置、内部フィンの形状を変えても同じ意味をなすものである。   However, in the above embodiment, the internal fins 43, 53, and 63 are installed to adjust the heat transfer amount, but changing the height and position of the internal fins and the shape of the internal fins has the same meaning.

また、上記実施の形態3〜5に示すように内部フィン43、53、63を最適化することにより、着霜が発生する低外気温の暖房運転時においても、熱交換器の性能低下に伴う蒸発器温度の低下によって、集中的に霜が付着して目詰まりを起こす事無く、冷媒循環量の最適化により、風上、風下に関係無く、熱交換器全体に霜が均一に付着し易くなるので、長時間に渡って暖房運転を持続させることが可能となる。   Further, by optimizing the internal fins 43, 53, and 63 as shown in the above-described third to fifth embodiments, the performance of the heat exchanger is reduced even during heating operation at a low outside temperature where frost formation occurs. Due to the decrease in the evaporator temperature, frost does not concentrate and cause clogging, and by optimizing the refrigerant circulation rate, frost easily adheres to the entire heat exchanger regardless of the windward or leeward. Therefore, the heating operation can be continued for a long time.

なお、上記構成において、サーペンタインタイプの熱交換器においても同様の効果が得られるものであり、熱交換器の偏平管やヘッダーの向きや、形状、上下、水平方向を問わず構成されたものも含む。   In the above configuration, the same effect can be obtained even in the serpentine type heat exchanger, and the configuration is applicable regardless of the orientation, shape, top and bottom, and horizontal direction of the flat tubes and headers of the heat exchanger. Including.

以上のように、本発明にかかる熱交換器の風上側および風下側が有効に熱交換利用され、更には複雑な構成を必要とせずに熱交換性能を最大限に引き出すことが可能となるので、ヒートポンプ式空気調和機やカーエアコン等の熱交換器にも適用できる。   As described above, the windward side and the leeward side of the heat exchanger according to the present invention are effectively used for heat exchange, and further, it is possible to maximize the heat exchange performance without requiring a complicated configuration. It can also be applied to heat exchangers such as heat pump air conditioners and car air conditioners.

本発明の実施の形態1における熱交換器の部分断面図The fragmentary sectional view of the heat exchanger in Embodiment 1 of the present invention 本発明の実施の形態2における熱交換器の部分断面図The fragmentary sectional view of the heat exchanger in Embodiment 2 of the present invention 本発明の実施の形態3における熱交換器の部分断面図Partial sectional view of a heat exchanger according to Embodiment 3 of the present invention 本発明の実施の形態4における熱交換器の部分断面図Partial sectional view of a heat exchanger in Embodiment 4 of the present invention 本発明の実施の形態5における熱交換器の部分断面図The fragmentary sectional view of the heat exchanger in Embodiment 5 of the present invention 従来のパラレルフロータイプ熱交換器の全体斜視図Overall perspective view of a conventional parallel flow type heat exchanger 従来のサーペンタインタイプ熱交換器の全体斜視図Overall perspective view of a conventional serpentine type heat exchanger

符号の説明Explanation of symbols

21、31、41、51、61 偏平管
23 フィン
22a、22b、32a〜32g、42a、42b、52a、52b、62a〜62f
冷媒流通穴
43、53、63 内部フィン
21, 31, 41, 51, 61 Flat tube 23 Fins 22a, 22b, 32a-32g, 42a, 42b, 52a, 52b, 62a-62f
Refrigerant flow hole 43, 53, 63 Internal fin

Claims (7)

冷媒が流通する複数の冷媒流通路を内部に形成した偏平管と、隣接する前記偏平管の間に配置された放熱用フィンとを備えた熱交換器であって、前記冷媒流通路の形状を異ならせることにより、前記熱交換器を通過する風上側より風下側の熱交換能力を大きくしたことを特徴とする熱交換器。 A heat exchanger comprising a flat tube formed therein with a plurality of refrigerant flow passages through which refrigerant flows, and fins for heat dissipation disposed between the adjacent flat tubes, wherein the shape of the refrigerant flow passage is The heat exchanger is characterized in that the heat exchange capacity on the leeward side is made larger than that on the leeward side passing through the heat exchanger. 風上側から下流側にかけて熱交換能力を漸次大きくしたことを特徴とする請求項1記載の熱交換器。 The heat exchanger according to claim 1, wherein the heat exchange capacity is gradually increased from the windward side to the downstream side. 偏平管の冷媒流通路の数を風下側より風上側を少なし、且つ断面積を小さくしたことを特徴とする請求項1または2に記載の熱交換器。 3. The heat exchanger according to claim 1, wherein the number of refrigerant flow passages in the flat tube is less on the leeward side than on the leeward side, and the cross-sectional area is reduced. 偏平管の冷媒流通路の断面積を風上側より風下側にかけて漸次小さくしたことを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the cross-sectional area of the refrigerant flow passage of the flat tube is gradually reduced from the windward side to the leeward side. 扁平管の風下側の冷媒流通路内部にフィンが施されていることを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein fins are provided inside the refrigerant flow passage on the leeward side of the flat tube. 冷媒流通路の内部にフィンを設け、偏平管の風下側の冷媒流通路の内部のフィンは、風上側の冷媒流通路の内部のフィンより多く施されていることを特徴とする請求項1または2に記載の熱交換器。 The fins are provided inside the refrigerant flow passage, and more fins are provided inside the refrigerant flow passage on the leeward side of the flat tube than fins inside the refrigerant flow passage on the leeward side. 2. The heat exchanger according to 2. 冷媒流通路の内部にフィンを設け、偏平管の風上側から風下側にかけて、冷媒流通路の内部のフィンを漸次多く施されていることを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein fins are provided inside the refrigerant flow passage, and the fins inside the refrigerant flow passage are gradually increased from the windward side to the leeward side of the flat tube. .
JP2003363076A 2003-10-23 2003-10-23 Heat exchanger Pending JP2005127597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003363076A JP2005127597A (en) 2003-10-23 2003-10-23 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003363076A JP2005127597A (en) 2003-10-23 2003-10-23 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2005127597A true JP2005127597A (en) 2005-05-19

Family

ID=34642508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003363076A Pending JP2005127597A (en) 2003-10-23 2003-10-23 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2005127597A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088796A2 (en) * 2007-12-30 2009-07-16 Valeo Inc. Heat exchanger tubes and methods for enhancing thermal performance and reducing flow passage plugging
US8177932B2 (en) 2009-02-27 2012-05-15 International Mezzo Technologies, Inc. Method for manufacturing a micro tube heat exchanger
CN103307812A (en) * 2013-06-04 2013-09-18 浙江三可热交换系统有限公司 Micro-channel heat exchanger for air conditioner of subway train
JP2014001867A (en) * 2012-06-15 2014-01-09 Sanden Corp Heat exchanger
WO2014084342A1 (en) * 2012-11-29 2014-06-05 サンデン株式会社 Heat exchanger and method for manufacturing heat exchanger
KR101424286B1 (en) * 2008-06-27 2014-08-13 엘지전자 주식회사 Flat tube and Heat exchanger comprising in the same
CN107270761A (en) * 2017-05-25 2017-10-20 合肥皖化电泵有限公司 A kind of stove water pump heat exchanger
WO2018062519A1 (en) 2016-09-29 2018-04-05 ダイキン工業株式会社 Heat exchanger and air conditioner
WO2019004139A1 (en) * 2017-06-30 2019-01-03 ダイキン工業株式会社 Heat exchanger
WO2019203115A1 (en) * 2018-04-19 2019-10-24 三菱電機株式会社 Flat multi-hole tube, heat exchanger, and method for manufacturing heat exchanger
WO2020224563A1 (en) * 2019-05-05 2020-11-12 杭州三花研究院有限公司 Microchannel flat tube and microchannel heat exchanger
WO2020224564A1 (en) * 2019-05-05 2020-11-12 杭州三花研究院有限公司 Microchannel flat tube and microchannel heat exchanger

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088796A2 (en) * 2007-12-30 2009-07-16 Valeo Inc. Heat exchanger tubes and methods for enhancing thermal performance and reducing flow passage plugging
WO2009088796A3 (en) * 2007-12-30 2009-10-08 Valeo Inc. Heat exchanger tubes and methods for enhancing thermal performance and reducing flow passage plugging
US8776874B2 (en) 2007-12-30 2014-07-15 Valeo, Inc. Heat exchanger tubes and methods for enhancing thermal performance and reducing flow passage plugging
KR101424286B1 (en) * 2008-06-27 2014-08-13 엘지전자 주식회사 Flat tube and Heat exchanger comprising in the same
US8177932B2 (en) 2009-02-27 2012-05-15 International Mezzo Technologies, Inc. Method for manufacturing a micro tube heat exchanger
JP2014001867A (en) * 2012-06-15 2014-01-09 Sanden Corp Heat exchanger
CN104380025A (en) * 2012-06-15 2015-02-25 三电有限公司 Heat exchanger
WO2014084342A1 (en) * 2012-11-29 2014-06-05 サンデン株式会社 Heat exchanger and method for manufacturing heat exchanger
JP2014105958A (en) * 2012-11-29 2014-06-09 Sanden Corp Heat exchanger and method of manufacturing the same
CN103307812A (en) * 2013-06-04 2013-09-18 浙江三可热交换系统有限公司 Micro-channel heat exchanger for air conditioner of subway train
US10794636B2 (en) 2016-09-29 2020-10-06 Daikin Industries, Ltd. Heat exchanger and air conditioner
WO2018062519A1 (en) 2016-09-29 2018-04-05 ダイキン工業株式会社 Heat exchanger and air conditioner
CN107270761A (en) * 2017-05-25 2017-10-20 合肥皖化电泵有限公司 A kind of stove water pump heat exchanger
WO2019004139A1 (en) * 2017-06-30 2019-01-03 ダイキン工業株式会社 Heat exchanger
JP2019011923A (en) * 2017-06-30 2019-01-24 ダイキン工業株式会社 Heat exchanger
WO2019203115A1 (en) * 2018-04-19 2019-10-24 三菱電機株式会社 Flat multi-hole tube, heat exchanger, and method for manufacturing heat exchanger
WO2020224563A1 (en) * 2019-05-05 2020-11-12 杭州三花研究院有限公司 Microchannel flat tube and microchannel heat exchanger
WO2020224564A1 (en) * 2019-05-05 2020-11-12 杭州三花研究院有限公司 Microchannel flat tube and microchannel heat exchanger
EP3786566A4 (en) * 2019-05-05 2021-08-18 Hangzhou Sanhua Research Institute Co., Ltd. Microchannel flat tube and microchannel heat exchanger
EP3786565A4 (en) * 2019-05-05 2021-08-18 Hangzhou Sanhua Research Institute Co., Ltd. Microchannel flat tube and microchannel heat exchanger
US11353271B2 (en) 2019-05-05 2022-06-07 Hangzhou Sanhua Research Institute Co., Ltd. Microchannel flat tube and microchannel heat exchanger
US11619453B2 (en) 2019-05-05 2023-04-04 Hangzhou Sanhua Research Institute Co., Ltd. Microchannel flat tube and microchannel heat exchanger
US11754348B2 (en) 2019-05-05 2023-09-12 Hangzhou Sanhua Research Institute Co., Ltd. Microchannel flat tube and microchannel heat exchanger

Similar Documents

Publication Publication Date Title
KR100265657B1 (en) Evaporator or condenser
JP2005055108A (en) Heat exchanger
CN103822406B (en) heat pump heat exchanger with low pressure drop distribution pipe
US20080184734A1 (en) Flat Tube Single Serpentine Co2 Heat Exchanger
JP2006284134A (en) Heat exchanger
JP2004219052A (en) Heat exchanger
JP2006329511A (en) Heat exchanger
JP2005127597A (en) Heat exchanger
JP2006284133A (en) Heat exchanger
JP2005201491A (en) Heat exchanger
KR100479781B1 (en) Evaporator and refrigerator
JP2005127529A (en) Heat exchanger
JP2005090805A (en) Heat exchanger
JP2005201492A (en) Heat exchanger
JP6611101B2 (en) Refrigeration cycle equipment
JPH0854194A (en) Heat exchanger
JP6590957B2 (en) Refrigeration equipment
JP2004251556A (en) Heat exchanger
KR100638488B1 (en) Heat exchanger for using CO2 as a refrigerant
JP2015014397A (en) Heat exchanger
AU2017444848A1 (en) Heat exchanger and refrigeration cycle device
JP3918284B2 (en) Cross fin tube heat exchanger
JP2005531748A (en) Heat exchanger
JP2005009827A (en) Fin tube type heat exchanger and heat pump device
JP2003222436A (en) Heat exchanger for heat pump type air conditioner