JP2005009827A - Fin tube type heat exchanger and heat pump device - Google Patents

Fin tube type heat exchanger and heat pump device Download PDF

Info

Publication number
JP2005009827A
JP2005009827A JP2003176512A JP2003176512A JP2005009827A JP 2005009827 A JP2005009827 A JP 2005009827A JP 2003176512 A JP2003176512 A JP 2003176512A JP 2003176512 A JP2003176512 A JP 2003176512A JP 2005009827 A JP2005009827 A JP 2005009827A
Authority
JP
Japan
Prior art keywords
tube
fin
heat exchanger
fluid
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003176512A
Other languages
Japanese (ja)
Inventor
朋子 ▲はま▼川
Tomoko Hamakawa
Osao Kido
長生 木戸
Seishi Imai
誠士 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003176512A priority Critical patent/JP2005009827A/en
Publication of JP2005009827A publication Critical patent/JP2005009827A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fin tube type heat exchanger excellent in frost formation resisting performance with a large heat exchange and a heat pump device using it. <P>SOLUTION: This fin tube type heat exchanger comprises a number of fins arranged substantially in parallel to each other with a space so that a fluid A flows in the space, and a number of heat exchange tubes inserted substantially vertically to the fins, in the inner part of which a fluid B flows. The tube outer diameter D of the heat exchange tube is set to 1 mm≤D<5 mm, the tube line pitch L1 in the flowing direction of the fluid A of the heat exchange tube is 2.5D<L1≤3.4D, and the tube stage pitch L2 vertical to the flowing direction of the fluid A is 3.0D<L2≤3.9D, whereby the fin tube type heat exchanger and the heat pump device can have excellent frost formation resisting performance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、空調、冷凍、冷蔵、給湯等に利用され、冷媒と空気等の流体間で熱の授受を行うフィンチューブ型熱交換器及びヒートポンプ装置に関するものである。
【0002】
【従来の技術】
近年、フィンチューブ型熱交換器及びヒートポンプ装置は、適用製品の高性能化、小型化のため、熱交換量の増加と小型化が要求されている。熱交換量を増加させるためには、伝熱管の細径化が有効であることが知られている。
【0003】
従来のフィンチューブ型熱交換器としては、伝熱管の外径は5mmから8mm前後のものが主流となってきている(例えば、特許文献1参照。)。
【0004】
以下、図面を参考にしながら上記従来のフィンチューブ型熱交換器を説明する。
【0005】
図5は上記従来のフィンチューブ型熱交換器の模式的な斜視図である。図5に示すように上記従来のフィンチューブ型熱交換器1は、所定間隔で平行に配列され、それらの間を気流が流れるように構成された多数のフィン2と、フィン2を直交するように並列して貫通し、断面外周を円形とした伝熱管3とを有し、伝熱管3の管外径をD、伝熱管3の気流方向における管列ピッチをL1、伝熱管3の気流方向と直交する方向における管段ピッチをL2としたとき、2mm≦D≦8mm、1.9D≦L1≦2.5D、2.3D≦L2≦3.7Dとすることで、管外径、気流量、フィンピッチなどを一定としたときに最大熱交換量を得て、なお且つ、コンパクト化を達成することができるとしている。
【0006】
【特許文献1】
特開2002−257483号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の構成は、伝熱管の管外径が2mm≦D≦8mmにおいて、管外径をパラメータとした同一の管ピッチ定義式1.9D≦L1≦2.5D、2.3D≦L2≦3.7Dを用いているため、管外径8mmでは上記管列ピッチL1の範囲にて最大熱交換量を得るが、管径が細くなるに従い、最大熱交換量を得る管列ピッチL1の範囲はスライドして、管径2mmでは2.5Dをこえて最大熱交換量を得ている。管ピッチ定義式を適用する管外径の範囲が広いため、同一の管ピッチ定義式で必ずしも最大熱交換量を得る範囲となっていないという課題がある。また、上記従来の構成は、蒸発器として用いられた場合の耐着霜性能という観点からは検討されていない。このため、耐着霜性能が低いという課題がある。
【0008】
本発明は、上記従来の課題を解決するもので、熱交換量が多く、耐着霜性能に優れたフィンチューブ型熱交換器及びこれを用いたヒートポンプ装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、間隔を空けて略平行に並べられ、その間隙を流体Aが流動する多数のフィンと、前記フィンに略垂直に挿入され、内部に流体Bが流動する多数の伝熱管から構成されたフィンチューブ型熱交換器において、前記伝熱管の管外径Dを1mm≦D<5mm、前記伝熱管の流体Aの流動方向の管列ピッチL1を2.5D<L1≦3.4D、流体Aの流動方向と垂直方向の管段ピッチL2を3.0D<L2≦3.9Dとしたことを特徴とするフィンチューブ型熱交換器であり、管外径Dを1mm≦D<5mmとしたことにより、従来の管径5mmから8mmの伝熱管に比して、伝熱管外を流動する流体Aの流動方向後方部分に生じる死水域が減少し、同一空気抵抗で管ピッチを詰めることができ、フィン効率が上昇するという作用を有する。また、同一耐圧の管肉厚は、従来の管外径5mmから8mmの伝熱管に比して、薄くなるため、伝熱管の材料投入量が少なくなるという作用を有する。また、管列ピッチを詰めると、フィン効率は向上するが、同一列数ではフィンの伝熱面積は減少、耐着霜性能も低下する。逆に管列ピッチを広げると、フィン効率は低下するが、同一列数ではフィンの伝熱面積は増加、耐着霜性能も向上する。そのバランスが良い設計点は、管ピッチがおおよそ正三角形となる点である。さらに、管段ピッチを詰めると伝熱管間の流体Aの速度が増加し、フィン効率が上昇する反面、流体Aの流動抵抗が増加する。このため、管外径と管ピッチとの間には、熱交換量が最大となる最適な関係が存在し、前記管列ピッチL1を2.5D<L1≦3.4D、管段ピッチL2を3.0D<L2≦3.9Dとすることにより、熱交換量と耐着霜性能のバランスが良くなるという作用を有する。
【0010】
本発明の請求項2に記載の発明は、フィンの形状をフラットフィン、または波形状フィンとしたことを特徴とする請求項1に記載のフィンチューブ型熱交換器であり、開口部や端面がない形状のフィンとすることにより、フィンの表面にほこりや凝縮水が付着しにくくなり、フィン間隙の目詰まりを低減できるという作用を有する。
【0011】
本発明の請求項3に記載の発明は、流体Bに、二酸化炭素を用いたことを特徴とする請求項1または請求項2に記載のフィンチューブ型熱交換器であり、二酸化炭素の高圧、高密度な冷媒特性により、同一質量流量では他の冷媒に比して速度が遅く、細径化による伝熱管内の圧力損失の増加が小さいという作用を有する。また、伝熱管内の圧力損失が温度変化に与える影響が小さいという作用を有する。
【0012】
本発明の請求項4に記載の発明は、流体Aと流体Bとを対向流となるように流動させたことを特徴とする請求項1から請求項3のいずれか一項に記載のフィンチューブ型熱交換器であり、これにより、並行流に比べて、流体Aと流体Bとが温度差を保ちながら安定した熱交換を行うという作用を有する。
【0013】
本発明の請求項5に記載の発明は、圧縮機、放熱器、膨張装置、蒸発器を順次接続してなるヒートポンプ装置において、前記蒸発器に請求項1から請求項4のいずれか一項に記載のフィンチューブ型熱交換器を用いたことを特徴とするヒートポンプ装置であり、コンパクトで高耐圧、なお且つ、安定した熱交換量の蒸発器を得るという作用を有する。
【0014】
【発明の実施の形態】
以下、本発明によるフィンチューブ型熱交換器及びこのフィンチューブ型熱交換器を利用したヒートポンプ給湯機の実施の形態について、図面を参照しながら説明する。なお、従来と同一構成については、同一符号を付して詳細な説明を省略する。
【0015】
(実施の形態1)
図1は、本発明の実施の形態におけるフィンチューブ型熱交換器の側面から見た部分断面図である。
【0016】
図1において、フィンチューブ型熱交換器1は、間隔を空けて略平行に並べられ、その間隙を空気が流動する多数のフィン2と、内部に冷媒が流動し、フィン2に対して略垂直に挿入された多数の伝熱管3から構成される。伝熱管3は気流方向と冷媒流動方向とが対向流になるように相互に接続され、また、等間隔で隣り合う列間は半ピッチずれて千鳥格子状に配列される。また、伝熱管3の管外径をD、気流方向の管列ピッチをL1、気流方向と垂直方向の管段ピッチをL2としたとき、1mm≦D<5mm、2.5D<L1≦3.4D、3.0D<L2≦3.9Dとされている。また、フィン2の形状はフラットフィン、または波形状フィンにより構成される。フィン2と伝熱管3は、アルミニウムや銅といった熱伝導性の良い材料で作られる。
【0017】
図2は同実施の形態におけるフィンチューブ型熱交換器を利用したヒートポンプ給湯機の回路図であり、ヒートポンプ回路と湯回路により構成されている。
【0018】
図2において、ヒートポンプ給湯機4のヒートポンプ回路は、冷媒を圧縮する圧縮機5、水と冷媒を熱交換させる放熱器6、冷媒を膨張させる膨張装置7、空気と冷媒を熱交換させる蒸発器8、冷媒の気液分離を行うアキュムレータ9を環状に接続して構成され、蒸発器8にはフィンチューブ型熱交換器1を用いている。以下、蒸発器8をフィンチューブ型熱交換器1と称する。また、湯回路は、放熱器6で加熱された水を貯める貯湯タンク10と、放熱器6を介して貯湯タンク10内の水を循環させる循環ポンプ11から構成される。
【0019】
以上のように構成されたフィンチューブ型熱交換器1及びヒートポンプ給湯機4について、以下その動作を説明する。
【0020】
図3は、フィンチューブ型熱交換器1の熱交換量変化の数値解析結果で、縦軸は熱交換量Q、横軸は列ピッチL1を管外径Dで除した(L1/D)である。熱交換量Qは、同一風速下におけるフィンチューブ型熱交換器1の単位開口面積当たりの熱交換量である。伝熱管3の気流方向と垂直な方向の段数が6段、管外径DがD=3.15mm、管段ピッチL2がL2=10mmの条件で、管列ピッチL1を1.0D≦L1≦4.8Dの範囲において変化させた。伝熱管3の気流方向の列数が3列から6列としたときの各列毎の解析結果を示している。
【0021】
図3において、上記の条件にて列ピッチを変化させた場合、列ピッチを広げるほど熱交換量は増加している。これは、フィン効率は低下するがフィンの伝熱面積は増加するためである。ここで、L1/D=2.8は管配列がおおよそ正三角形となる管ピッチである。列ピッチを広げるほど熱交換量は増加しているが、管配列がおおよそ正三角形となるピッチを過ぎる辺りから向上の度合いが低下している。従って、同一列数において列ピッチをある一定値以上広げることは、フィンの材料投入量の増加に伴うコストアップに見合う熱交換量の増加が見込めないため、不経済である。また、管列ピッチを詰めると耐着霜性能も低下していく。これらのことより、そのバランスが良い設計点は管ピッチがおおよそ正三角形となる点である。このため、上記管外径DがD=3.15mm、管段ピッチL2がL2=10mmの条件では、伝熱管3の気流方向の管列ピッチL1を2.5D<L1≦3.4Dの範囲に設定することにより、熱交換量と耐着霜性能のバランスが良いフィンチューブ型熱交換器を得ることができる。
【0022】
図4は、フィンチューブ型熱交換器1の熱交換量変化の数値解析結果で、縦軸は熱交換量Q、横軸は段ピッチL2を管外径Dで除した(L2/D)である。熱交換量Qは、図3同様、同一風速下におけるフィンチューブ型熱交換器1の単位開口面積当たりの熱交換量である。伝熱管3の気流方向と垂直な方向の段数が6段、伝熱管3の気流方向の列数が3列、管外径DがD=3.15mmの条件で、管段ピッチL2を1.9D≦L2≦5.7Dの範囲において変化させた。このとき、管ピッチがおおよそ正三角形ピッチとなるように、管列ピッチL1も管段ピッチL2に連動して変化させた。
【0023】
図4において、管外径DがD=3.15mmの条件では伝熱管3の気流方向の管段ピッチL2を3.0D<L2≦3.9Dの範囲において熱交換量がピークに達している。これは以下の理由による。管段ピッチを詰めた場合、伝熱管間の空気速度増加及びフィン効率向上の反面、管段ピッチに連動して管列ピッチも小さくなるためフィンの伝熱面積が減少する。また逆に、管段ピッチを広げた場合、伝熱管間の空気速度減少及びフィン効率減少の反面、フィンの伝熱面積が増加する。このため、管外径と管ピッチとの最適な関係が存在し、その最適な関係において熱交換量はピーク値を示す。
【0024】
従って、管外径DがD=3.15mmの条件では、管列ピッチL1、管段ピッチL2を2.5D<L1≦3.4D、3.0D<L2≦3.9Dの範囲に設定することにより熱交換量と耐着霜性能のバランスが良いフィンチューブ型熱交換器となる。
【0025】
さらに、管外径Dを1mm≦D<5mmの範囲においても同様の数値解析を行った結果、管列ピッチL1を2.5D<L1≦3.4D、管段ピッチL2を3.0D<L2≦3.9Dとする範囲設定は、十分に熱交換量と耐着霜性能のバランスが良いフィンチューブ型熱交換器を得るものであることがわかった。ここで、管径Dを1mmから5mmにしたことにより、従来の管径5mmから8mmの伝熱管に比して、伝熱管外を流動する気流方向後方部分に生じる死水域が減少し、また、同一空気抵抗で管ピッチを詰めることができ、さらに、フィン効率が上昇する。このため、熱交換量を増加させることができ、また、同一耐圧での管肉厚が薄くなるため、伝熱管3の材料投入量を少なくすることができる。熱交換器全体のサイズもコンパクト化でき、総重量も軽量化できる。
【0026】
フィン2の形状を、フラットフィン、または波形状フィンとしたため、フィンの表面に開口部や端面がなく、ほこりや凝縮水が付着しにくくなり、フィン間隙の目詰まりを低減できる。このため、フィン間隙の目詰まりによる熱交換量の減少を抑制できる。
【0027】
上記実施の形態においては、冷媒は二酸化炭素が好ましい。二酸化炭素は、高圧、高密度な冷媒特性により、同一質量流量では他の冷媒に比して速度が遅く、細径化による伝熱管内の圧力損失の増加が小さい。また、伝熱管3内の圧力損失が温度変化に与える影響が小さい。このため、細径化による伝熱管3内の圧力損失の増加が熱交換量減少に与える影響が他の冷媒に比して抑制され、上記フィンチューブ型熱交換器1で多くの熱交換量を得ることができる。
【0028】
フィンチューブ型熱交換器1の伝熱管3の管配列を、対向流に構成したことにより、蒸発器として安定した熱交換量を得ることができる。これは、並行流に比べて、熱交換器全体で平均して空気と冷媒とが温度差を保ちながら熱交換を行うためで、並行流は蒸発器出口過熱度を大きく取るほど熱交換量が減少するが、対向流は蒸発器出口過熱度を変化させた場合でも熱交換量はほぼ一定である。
【0029】
上述のフィンチューブ型熱交換器1を蒸発器8に用いたことにより、コンパクトで高耐圧、なお且つ、安定した熱交換量の蒸発器8を得るため、給湯機4自体もコンパクトで高耐圧、なお且つ、安定した性能を持つヒートポンプ給湯機4となる。
【0030】
なお、実施の形態においては、フィンチューブ型熱交換器を給湯機に適用した例を示したが、ヒートポンプ給湯機に限らず、空気調和機の蒸発器や、ヒートポンプ洗濯乾燥機の蒸発器に適用しても同様の効果を奏する。
【0031】
【発明の効果】
以上説明したように請求項1に記載の発明は、間隔を空けて略平行に並べられ、その間隙を流体Aが流動する多数のフィンと、前記フィンに略垂直に挿入され、内部に流体Bが流動する多数の伝熱管から構成されたフィンチューブ型熱交換器において、前記伝熱管の管外径Dを1mm≦D<5mm、前記伝熱管の流体Aの流動方向の管列ピッチL1を2.5D<L1≦3.4D、流体Aの流動方向と垂直方向の管段ピッチL2を3.0D<L1≦3.9Dとしたものである。
【0032】
このように構成することにより、従来のフィンチューブ型熱交換器に比して伝熱管の管径が細いため、伝熱管後方の死水域が減少し、同一空気抵抗では管ピッチを詰められることからフィン効率を向上させることができ、多くの熱交換量を得ることができる。また、同一耐圧の管肉厚は薄くなるため、材料投入量を少なくできる。熱交換器全体のサイズもコンパクト化でき、総重量も軽量化できる。また、管ピッチをおおよそ正三角形としたので、フィン効率と、フィンの伝熱面積、耐着霜性能のバランスがよく、その中でも上記範囲の管ピッチはフィン効率とフィンの伝熱面積のバランスがよいことから、総じて、熱交換量と耐着霜性能のバランスが良い、コンパクトで高耐圧な熱交換器を得ることができる。
【0033】
請求項2に記載の発明は、請求項1に記載のフィンチューブ型熱交換器のフィン形状を、フラットフィンまたは波形状フィンとしたので、フィンの表面に開口部や端面がないため、ほこりや凝縮水が付着しにくくなってフィン間隙の目詰まりを低減でき、フィン間隙の目詰まりによる熱交換量の減少を抑制することができる。
【0034】
請求項3に記載の発明は、請求項1または請求項2に記載の発明において、流体Bに、二酸化炭素を用いたので、その冷媒特性が高圧、高密度なことにより、同一質量流量では他の冷媒に比して速度が遅く、細径化による伝熱管内の圧力損失の増加が小さい上に、伝熱管内の圧力損失が温度変化に与える影響が小さいため、多くの熱交換量を得ることができる。
【0035】
請求項4に記載の発明は、請求項1から請求項3のいずれか一項に記載の発明において、流体Aと流体Bとを対向流となるように流動させたので、並行流に比べて、流体Aと流体Bとが熱交換器全体で平均して温度差を保ちながら安定した熱交換を行うことにより、安定した熱交換量を得ることができる。
【0036】
請求項5に記載の発明は、請求項1から請求項4のいずれか一項に記載の発明において、圧縮機、放熱器、膨張装置、蒸発器を順次接続してなるヒートポンプ装置において、前記蒸発器に請求項1から請求項4のいずれか一項に記載のフィンチューブ型熱交換器を用いたので、コンパクトで高耐圧、なお且つ、安定した熱交換量の蒸発器を得るため、ヒートポンプ装置自体もコンパクトで高耐圧、なお且つ、安定した性能を得ることができる。
【図面の簡単な説明】
【図1】本発明によるフィンチューブ型熱交換器の実施の形態1の側面から見た部分断面図
【図2】同実施の形態のフィンチューブ型熱交換器を使用したヒートポンプ給湯機の回路図
【図3】伝熱管の列ピッチに対する熱交換量変化の特性図
【図4】伝熱管の略正三角形ピッチに対する熱交換量変化の特性図
【図5】従来のフィンチューブ型熱交換器の模式的な斜視図
【符号の説明】
1 フィンチューブ型熱交換器
2 フィン
3 伝熱管
5 圧縮機
6 放熱器
7 膨張装置
8 蒸発器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a finned tube heat exchanger and a heat pump device that are used for air conditioning, refrigeration, refrigeration, hot water supply and the like, and transfer heat between fluids such as refrigerant and air.
[0002]
[Prior art]
In recent years, fin tube type heat exchangers and heat pump devices are required to increase the amount of heat exchange and to be miniaturized in order to improve the performance and size of the applied products. In order to increase the amount of heat exchange, it is known that it is effective to reduce the diameter of the heat transfer tube.
[0003]
As a conventional fin tube type heat exchanger, the outer diameter of the heat transfer tube has become mainstream around 5 mm to 8 mm (see, for example, Patent Document 1).
[0004]
Hereinafter, the conventional fin tube heat exchanger will be described with reference to the drawings.
[0005]
FIG. 5 is a schematic perspective view of the conventional fin tube heat exchanger. As shown in FIG. 5, the conventional fin tube type heat exchanger 1 is arranged in parallel at a predetermined interval, and a large number of fins 2 configured to allow airflow to flow therebetween, and the fins 2 are orthogonal to each other. And the heat transfer tube 3 having a circular outer periphery in section, the tube outer diameter of the heat transfer tube 3 is D, the tube row pitch in the air flow direction of the heat transfer tube 3 is L1, and the air flow direction of the heat transfer tube 3 When the pipe step pitch in the direction orthogonal to L2 is L2, 2 mm ≦ D ≦ 8 mm, 1.9D ≦ L1 ≦ 2.5D, 2.3D ≦ L2 ≦ 3.7D, the pipe outer diameter, the air flow rate, It is said that the maximum heat exchange amount can be obtained when the fin pitch or the like is kept constant, and the compactness can be achieved.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-257383
[Problems to be solved by the invention]
However, the conventional configuration described above has the same pipe pitch definition formula 1.9D ≦ L1 ≦ 2.5D and 2.3D ≦ L2 with the tube outer diameter as a parameter when the tube outer diameter of the heat transfer tube is 2 mm ≦ D ≦ 8 mm. Since ≦ 3.7D is used, the maximum heat exchange amount is obtained in the range of the tube row pitch L1 when the tube outer diameter is 8 mm. However, as the tube diameter becomes smaller, the tube row pitch L1 that obtains the maximum heat exchange amount is obtained. The range slides, and the maximum heat exchange amount is obtained over 2.5D when the tube diameter is 2 mm. Since the range of the pipe outer diameter to which the pipe pitch definition formula is applied is wide, there is a problem that the maximum heat exchange amount is not necessarily obtained by the same pipe pitch definition formula. Moreover, the said conventional structure is not examined from a viewpoint of anti-frosting performance at the time of being used as an evaporator. For this reason, there exists a subject that anti-frosting performance is low.
[0008]
The present invention solves the above-described conventional problems, and an object thereof is to provide a finned tube heat exchanger having a large heat exchange amount and excellent anti-frosting performance, and a heat pump device using the same.
[0009]
[Means for Solving the Problems]
According to the first aspect of the present invention, a large number of fins, which are arranged in parallel at intervals and through which the fluid A flows, are inserted substantially vertically into the fins, and the fluid B flows inside. In the finned tube heat exchanger composed of a large number of heat transfer tubes, the tube outer diameter D of the heat transfer tubes is 1 mm ≦ D <5 mm, and the tube row pitch L1 in the flow direction of the fluid A of the heat transfer tubes is 2.5D. <L1 ≦ 3.4D, a tube tube pitch L2 in the direction perpendicular to the flow direction of the fluid A is 3.0D <L2 ≦ 3.9D, and is a finned tube heat exchanger characterized in that the tube outer diameter D is By setting 1 mm ≦ D <5 mm, the dead water area generated in the rear portion in the flow direction of the fluid A flowing outside the heat transfer tube is reduced as compared with the conventional heat transfer tube having a diameter of 5 mm to 8 mm. The pipe pitch can be reduced, increasing fin efficiency It has the effect of that. In addition, since the tube thickness with the same pressure resistance is thinner than that of a conventional heat transfer tube having an outer diameter of 5 mm to 8 mm, the material input amount of the heat transfer tube is reduced. Further, if the tube row pitch is reduced, the fin efficiency is improved, but with the same number of rows, the heat transfer area of the fins is reduced, and the anti-frosting performance is also lowered. Conversely, when the tube row pitch is widened, the fin efficiency is lowered, but with the same number of rows, the heat transfer area of the fins is increased and the frost resistance is improved. A well-balanced design point is that the tube pitch is approximately an equilateral triangle. Furthermore, if the tube step pitch is reduced, the speed of the fluid A between the heat transfer tubes increases, and the fin efficiency increases, but the flow resistance of the fluid A increases. Therefore, there is an optimum relationship between the outer diameter of the pipe and the pipe pitch that maximizes the amount of heat exchange. The pipe row pitch L1 is 2.5D <L1 ≦ 3.4D, and the pipe stage pitch L2 is 3 By setting 0.0D <L2 ≦ 3.9D, the balance between the heat exchange amount and the anti-frosting performance is improved.
[0010]
The invention according to claim 2 of the present invention is the finned tube heat exchanger according to claim 1, wherein the fin shape is a flat fin or a corrugated fin. By using a fin with no shape, dust and condensed water are less likely to adhere to the surface of the fin, and clogging of the fin gap can be reduced.
[0011]
The invention according to claim 3 of the present invention is the finned tube heat exchanger according to claim 1 or 2, wherein carbon dioxide is used for the fluid B. Due to the high density refrigerant characteristics, the speed is slower than other refrigerants at the same mass flow rate, and the increase in pressure loss in the heat transfer tube due to the diameter reduction is small. Moreover, it has the effect | action that the influence which the pressure loss in a heat exchanger tube has on a temperature change is small.
[0012]
According to a fourth aspect of the present invention, the fin tube according to any one of the first to third aspects is characterized in that the fluid A and the fluid B are caused to flow in opposite directions. As a result, the fluid A and the fluid B have a function of performing stable heat exchange while maintaining a temperature difference as compared with the parallel flow.
[0013]
The invention according to claim 5 of the present invention is a heat pump device in which a compressor, a radiator, an expansion device, and an evaporator are connected in order, and the evaporator according to any one of claims 1 to 4. It is a heat pump apparatus characterized by using the described finned tube heat exchanger, and has an effect of obtaining an evaporator having a compact, high withstand voltage and a stable heat exchange amount.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a fin tube type heat exchanger and a heat pump water heater using the fin tube type heat exchanger according to the present invention will be described with reference to the drawings. In addition, about the same structure as the past, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
[0015]
(Embodiment 1)
FIG. 1 is a partial cross-sectional view seen from the side of a finned tube heat exchanger in an embodiment of the present invention.
[0016]
In FIG. 1, the fin tube type heat exchanger 1 is arranged substantially parallel to each other at intervals, and a large number of fins 2 in which air flows and gaps flow through the gaps. It is comprised from many heat exchanger tubes 3 inserted in. The heat transfer tubes 3 are connected to each other so that the airflow direction and the refrigerant flow direction are opposed to each other, and the rows adjacent at equal intervals are shifted by a half pitch and arranged in a staggered pattern. Further, assuming that the tube outer diameter of the heat transfer tube 3 is D, the tube row pitch in the airflow direction is L1, and the tube step pitch in the direction perpendicular to the airflow direction is L2, 1 mm ≦ D <5 mm, 2.5D <L1 ≦ 3.4D. 3.0D <L2 ≦ 3.9D. Moreover, the shape of the fin 2 is comprised by a flat fin or a waveform fin. The fins 2 and the heat transfer tubes 3 are made of a material having good thermal conductivity such as aluminum or copper.
[0017]
FIG. 2 is a circuit diagram of a heat pump water heater using the finned tube heat exchanger in the same embodiment, and is configured by a heat pump circuit and a hot water circuit.
[0018]
2, the heat pump circuit of the heat pump water heater 4 includes a compressor 5 that compresses refrigerant, a radiator 6 that exchanges heat between water and refrigerant, an expansion device 7 that expands refrigerant, and an evaporator 8 that exchanges heat between air and refrigerant. An accumulator 9 that performs gas-liquid separation of the refrigerant is connected in a ring shape, and the fin tube heat exchanger 1 is used as the evaporator 8. Hereinafter, the evaporator 8 is referred to as a fin tube type heat exchanger 1. The hot water circuit includes a hot water storage tank 10 that stores water heated by the radiator 6 and a circulation pump 11 that circulates the water in the hot water storage tank 10 through the radiator 6.
[0019]
The operation of the fin-tube heat exchanger 1 and the heat pump water heater 4 configured as described above will be described below.
[0020]
FIG. 3 is a numerical analysis result of the heat exchange amount change of the finned tube heat exchanger 1, where the vertical axis represents the heat exchange amount Q, and the horizontal axis represents the row pitch L1 divided by the tube outer diameter D (L1 / D). is there. The heat exchange amount Q is a heat exchange amount per unit opening area of the finned tube heat exchanger 1 under the same wind speed. The tube row pitch L1 is set to 1.0D ≦ L1 ≦ 4 under the condition that the number of steps in the direction perpendicular to the air flow direction of the heat transfer tube 3 is 6, the tube outer diameter D is D = 3.15 mm, and the tube step pitch L2 is L2 = 10 mm. Varying in the 8D range. The analysis result for each row when the number of rows in the airflow direction of the heat transfer tubes 3 is changed from 3 rows to 6 rows is shown.
[0021]
In FIG. 3, when the row pitch is changed under the above conditions, the heat exchange amount increases as the row pitch is increased. This is because the fin efficiency decreases, but the heat transfer area of the fin increases. Here, L1 / D = 2.8 is a tube pitch at which the tube arrangement is approximately an equilateral triangle. The amount of heat exchange increases as the row pitch is increased, but the degree of improvement decreases from the point where the tube arrangement passes a pitch that is approximately a regular triangle. Therefore, it is uneconomical to increase the row pitch by a certain value or more in the same number of rows, because an increase in heat exchange amount corresponding to an increase in cost accompanying an increase in the material input amount of fins cannot be expected. Moreover, if the tube row pitch is reduced, the anti-frosting performance also decreases. From these facts, a design point with a good balance is a point where the tube pitch is approximately an equilateral triangle. For this reason, the tube row pitch L1 in the airflow direction of the heat transfer tube 3 is in the range of 2.5D <L1 ≦ 3.4D under the condition that the tube outer diameter D is D = 3.15 mm and the tube step pitch L2 is L2 = 10 mm. By setting, it is possible to obtain a finned tube heat exchanger having a good balance between the heat exchange amount and the anti-frosting performance.
[0022]
FIG. 4 is a numerical analysis result of the heat exchange amount change of the finned tube heat exchanger 1, where the vertical axis represents the heat exchange amount Q, and the horizontal axis represents the step pitch L2 divided by the tube outer diameter D (L2 / D). is there. The heat exchange amount Q is the heat exchange amount per unit opening area of the finned tube heat exchanger 1 under the same wind speed as in FIG. Under the condition that the number of stages in the direction perpendicular to the air flow direction of the heat transfer tubes 3 is 6, the number of rows in the air flow direction of the heat transfer tubes 3 is 3, and the tube outer diameter D is D = 3.15 mm, the tube step pitch L2 is 1.9D. It was changed in the range of ≦ L2 ≦ 5.7D. At this time, the tube row pitch L1 was also changed in conjunction with the tube step pitch L2 so that the tube pitch was approximately a regular triangle pitch.
[0023]
In FIG. 4, when the tube outer diameter D is D = 3.15 mm, the heat exchange amount reaches a peak when the tube step pitch L2 in the airflow direction of the heat transfer tube 3 is in the range of 3.0D <L2 ≦ 3.9D. This is due to the following reason. When the tube step pitch is reduced, the air velocity between the heat transfer tubes is increased and the fin efficiency is improved. On the other hand, the tube row pitch is reduced in conjunction with the tube step pitch, so the heat transfer area of the fin is reduced. Conversely, when the tube step pitch is widened, the air velocity between the heat transfer tubes and the fin efficiency decrease, but the heat transfer area of the fins increases. For this reason, there exists an optimum relationship between the tube outer diameter and the tube pitch, and the heat exchange amount shows a peak value in the optimum relationship.
[0024]
Therefore, under the condition that the outer diameter D of the tube is D = 3.15 mm, the tube row pitch L1 and the tube step pitch L2 are set in the ranges of 2.5D <L1 ≦ 3.4D and 3.0D <L2 ≦ 3.9D. Thus, a fin tube type heat exchanger having a good balance between the heat exchange amount and the anti-frosting performance is obtained.
[0025]
Furthermore, as a result of performing the same numerical analysis even when the pipe outer diameter D is in the range of 1 mm ≦ D <5 mm, the tube row pitch L1 is 2.5D <L1 ≦ 3.4D, and the tube stage pitch L2 is 3.0D <L2 ≦. It was found that the range setting of 3.9D is to obtain a finned tube heat exchanger with a sufficiently good balance between the heat exchange amount and the frosting resistance. Here, by changing the tube diameter D from 1 mm to 5 mm, the dead water area generated in the rear portion in the airflow direction flowing outside the heat transfer tube is reduced as compared with the conventional heat transfer tube having a tube diameter of 5 mm to 8 mm. The pipe pitch can be reduced with the same air resistance, and the fin efficiency is increased. For this reason, the amount of heat exchange can be increased, and the thickness of the tube with the same pressure resistance is reduced, so that the amount of material input to the heat transfer tube 3 can be reduced. The overall size of the heat exchanger can be reduced, and the total weight can be reduced.
[0026]
Since the fins 2 are flat fins or corrugated fins, there are no openings or end surfaces on the surface of the fins, so that dust and condensed water are less likely to adhere, and clogging of the fin gaps can be reduced. For this reason, the reduction | decrease of the heat exchange amount by clogging of a fin clearance can be suppressed.
[0027]
In the above embodiment, the refrigerant is preferably carbon dioxide. Carbon dioxide has a high-pressure, high-density refrigerant characteristic, and has a lower speed than other refrigerants at the same mass flow rate, and the increase in pressure loss in the heat transfer tube due to the reduction in diameter is small. Moreover, the influence which the pressure loss in the heat exchanger tube 3 has on a temperature change is small. For this reason, the influence which the increase in the pressure loss in the heat exchanger tube 3 by diameter reduction has on the heat exchange amount reduction | decrease is suppressed compared with another refrigerant | coolant, and much heat exchange amount is carried out in the said fin tube type heat exchanger 1. Obtainable.
[0028]
By configuring the tube arrangement of the heat transfer tubes 3 of the finned-tube heat exchanger 1 in a counter flow, a stable heat exchange amount can be obtained as an evaporator. This is because the heat exchange is performed while maintaining a temperature difference between the air and the refrigerant on average in the entire heat exchanger compared to the parallel flow, and the parallel flow has a larger heat exchange amount as the degree of superheat of the evaporator outlet is increased. Although it decreases, the amount of heat exchange in the counterflow is almost constant even when the evaporator outlet superheat degree is changed.
[0029]
By using the above fin tube type heat exchanger 1 for the evaporator 8, in order to obtain the evaporator 8 with a compact and high pressure resistance and a stable heat exchange amount, the water heater 4 itself is also compact and has a high pressure resistance. In addition, the heat pump water heater 4 has stable performance.
[0030]
In the embodiment, an example in which the fin tube heat exchanger is applied to a water heater has been shown. However, the present invention is not limited to a heat pump water heater, but is applied to an evaporator of an air conditioner or an evaporator of a heat pump washer / dryer. However, the same effect is achieved.
[0031]
【The invention's effect】
As described above, the invention according to claim 1 is arranged substantially parallel to each other at intervals, and a plurality of fins in which the fluid A flows through the gaps, and the fins are inserted substantially perpendicularly into the fins. In the finned tube heat exchanger composed of a large number of heat transfer tubes, the tube outer diameter D of the heat transfer tubes is 1 mm ≦ D <5 mm, and the tube row pitch L1 in the flow direction of the fluid A of the heat transfer tubes is 2 0.5D <L1 ≦ 3.4D, and the tube step pitch L2 in the direction perpendicular to the flow direction of the fluid A is 3.0D <L1 ≦ 3.9D.
[0032]
By configuring in this way, since the tube diameter of the heat transfer tube is narrower than that of the conventional fin tube heat exchanger, the dead water area behind the heat transfer tube is reduced, and the tube pitch is reduced with the same air resistance. Fin efficiency can be improved and a large amount of heat exchange can be obtained. Moreover, since the tube thickness with the same pressure resistance is reduced, the amount of material input can be reduced. The overall size of the heat exchanger can be reduced, and the total weight can be reduced. In addition, since the pipe pitch is roughly a regular triangle, the balance between fin efficiency, fin heat transfer area, and anti-frosting performance is good, and the pipe pitch in the above range has a balance between fin efficiency and fin heat transfer area. As a result, a compact and high pressure resistant heat exchanger having a good balance between the heat exchange amount and the anti-frosting performance can be obtained.
[0033]
Since the fin shape of the fin tube type heat exchanger according to claim 1 is a flat fin or a corrugated fin, there is no opening or end face on the surface of the fin. Condensed water is less likely to adhere and clogging of the fin gap can be reduced, and a reduction in heat exchange amount due to clogging of the fin gap can be suppressed.
[0034]
In the invention of claim 3, in the invention of claim 1 or claim 2, since carbon dioxide is used for the fluid B, the refrigerant characteristics are high pressure and high density. Compared to other refrigerants, the speed is slow, the increase in pressure loss in the heat transfer tube due to the smaller diameter is small, and the effect of the pressure loss in the heat transfer tube on the temperature change is small, so a large amount of heat exchange is obtained be able to.
[0035]
The invention according to claim 4 is the invention according to any one of claims 1 to 3, in which the fluid A and the fluid B are caused to flow in a counterflow, so that compared to the parallel flow A stable heat exchange amount can be obtained by performing a stable heat exchange while maintaining a temperature difference between the fluid A and the fluid B on the whole heat exchanger.
[0036]
The invention according to claim 5 is the heat pump apparatus according to any one of claims 1 to 4, wherein the compressor, the radiator, the expansion device, and the evaporator are connected in order. Since the finned tube heat exchanger according to any one of claims 1 to 4 is used as a condenser, a heat pump device is provided in order to obtain a compact, high withstand pressure and stable heat exchange amount evaporator. The device itself is compact, has a high withstand voltage, and can obtain stable performance.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of a fin tube heat exchanger according to the present invention as viewed from the side of a first embodiment. FIG. 2 is a circuit diagram of a heat pump water heater using the fin tube heat exchanger of the first embodiment. FIG. 3 is a characteristic diagram of heat exchange amount change with respect to the row pitch of the heat transfer tube. FIG. 4 is a characteristic diagram of heat exchange amount change with respect to the substantially regular triangle pitch of the heat transfer tube. Perspective view 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 Fin tube type heat exchanger 2 Fin 3 Heat transfer tube 5 Compressor 6 Radiator 7 Expansion device 8 Evaporator

Claims (5)

間隔を空けて略平行に並べられ、その間隙を流体Aが流動する多数のフィンと、前記フィンに略垂直に挿入され、内部に流体Bが流動する多数の伝熱管から構成されたフィンチューブ型熱交換器において、前記伝熱管の管外径Dを1mm≦D<5mm、前記伝熱管の流体Aの流動方向の管列ピッチL1を2.5D<L1≦3.4D、流体Aの流動方向と垂直方向の管段ピッチL2を3.0D<L2≦3.9Dとしたことを特徴とするフィンチューブ型熱交換器。Fin tube type comprising a large number of fins that are arranged substantially in parallel with an interval and fluid A flows through the gaps, and a large number of heat transfer tubes that are inserted substantially vertically into the fins and in which fluid B flows. In the heat exchanger, the tube outer diameter D of the heat transfer tube is 1 mm ≦ D <5 mm, the tube row pitch L1 in the flow direction of the fluid A of the heat transfer tube is 2.5D <L1 ≦ 3.4D, and the flow direction of the fluid A A fin tube heat exchanger characterized in that the vertical tube stage pitch L2 is 3.0D <L2 ≦ 3.9D. 前記フィンの形状をフラットフィン、または波形状フィンとしたことを特徴とする請求項1に記載のフィンチューブ型熱交換器。The fin-tube heat exchanger according to claim 1, wherein the fin has a flat fin shape or a corrugated fin shape. 前記流体Bに二酸化炭素を用いたことを特徴とする請求項1または請求項2に記載のフィンチューブ型熱交換器。The fin tube type heat exchanger according to claim 1 or 2, wherein carbon dioxide is used for the fluid B. 前記流体Aと前記流体Bとを対向流となるように流動させたことを特徴とする請求項1から請求項3のいずれか一項に記載のフィンチューブ型熱交換器。The fin tube type heat exchanger according to any one of claims 1 to 3, wherein the fluid A and the fluid B are caused to flow in a counterflow. 圧縮機、放熱器、膨張装置、蒸発器を順次接続してなるヒートポンプ装置において、前記蒸発器に請求項1から請求項4のいずれか一項に記載のフィンチューブ型熱交換器を用いたことを特徴とするヒートポンプ装置。In the heat pump apparatus formed by sequentially connecting a compressor, a radiator, an expansion device, and an evaporator, the fin tube type heat exchanger according to any one of claims 1 to 4 is used for the evaporator. A heat pump device.
JP2003176512A 2003-06-20 2003-06-20 Fin tube type heat exchanger and heat pump device Pending JP2005009827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176512A JP2005009827A (en) 2003-06-20 2003-06-20 Fin tube type heat exchanger and heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003176512A JP2005009827A (en) 2003-06-20 2003-06-20 Fin tube type heat exchanger and heat pump device

Publications (1)

Publication Number Publication Date
JP2005009827A true JP2005009827A (en) 2005-01-13

Family

ID=34099386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176512A Pending JP2005009827A (en) 2003-06-20 2003-06-20 Fin tube type heat exchanger and heat pump device

Country Status (1)

Country Link
JP (1) JP2005009827A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329534A (en) * 2005-05-26 2006-12-07 Toshiba Kyaria Kk Heat exchanger and air conditioner
JP2007327707A (en) * 2006-06-09 2007-12-20 Hitachi Appliances Inc Air conditioner
JP2009270731A (en) * 2008-04-30 2009-11-19 Daikin Ind Ltd Fin tube type heat exchanger, and refrigerating device and hot water supply device comprising the same
WO2010016615A1 (en) 2008-08-07 2010-02-11 サンデン株式会社 Heat exchanger and heat pump device using same
WO2011152343A1 (en) 2010-05-31 2011-12-08 サンデン株式会社 Heat exchanger and heat pump that uses same
CN103453696A (en) * 2013-09-18 2013-12-18 上海交通大学 Heat exchanger for carbon dioxide air-conditioning system
DE102008024562B4 (en) * 2008-05-21 2021-06-10 Stiebel Eltron Gmbh & Co. Kg Heat pump device with a finned tube heat exchanger as an evaporator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329534A (en) * 2005-05-26 2006-12-07 Toshiba Kyaria Kk Heat exchanger and air conditioner
JP2007327707A (en) * 2006-06-09 2007-12-20 Hitachi Appliances Inc Air conditioner
JP2009270731A (en) * 2008-04-30 2009-11-19 Daikin Ind Ltd Fin tube type heat exchanger, and refrigerating device and hot water supply device comprising the same
DE102008024562B4 (en) * 2008-05-21 2021-06-10 Stiebel Eltron Gmbh & Co. Kg Heat pump device with a finned tube heat exchanger as an evaporator
WO2010016615A1 (en) 2008-08-07 2010-02-11 サンデン株式会社 Heat exchanger and heat pump device using same
JP2010060267A (en) * 2008-08-07 2010-03-18 Sanden Corp Heat exchanger and heat pump apparatus using the same
EP2322892A1 (en) * 2008-08-07 2011-05-18 Sanden Corporation Heat exchanger and heat pump device using same
EP2322892A4 (en) * 2008-08-07 2013-03-20 Sanden Corp Heat exchanger and heat pump device using same
US9593886B2 (en) 2008-08-07 2017-03-14 Sanden Holdings Corporation Heat exchanger and heat pump device using the same
WO2011152343A1 (en) 2010-05-31 2011-12-08 サンデン株式会社 Heat exchanger and heat pump that uses same
US9127868B2 (en) 2010-05-31 2015-09-08 Sanden Corporation Heat exchanger and a heat pump using same
CN103453696A (en) * 2013-09-18 2013-12-18 上海交通大学 Heat exchanger for carbon dioxide air-conditioning system

Similar Documents

Publication Publication Date Title
US6390183B2 (en) Heat exchanger
US20090084129A1 (en) Heat exchanger and refrigeration cycle apparatus having the same
JP6109303B2 (en) Heat exchanger and refrigeration cycle apparatus
EP3021064B1 (en) Heat pump device
WO2007017969A1 (en) Air conditioner and method of producing air conditioner
JP2005055108A (en) Heat exchanger
EP1757869A2 (en) Heat exchanger for air conditioner having different circuit pattern depending on distance from fan
JP2000193389A (en) Outdoor unit of air-conditioner
JP6214670B2 (en) Heat exchanger and refrigeration cycle apparatus using the heat exchanger
KR20040082571A (en) Fin and tube solid type heat exchanger
WO2017158795A1 (en) Heat exchanger and air conditioner
JP2007255785A (en) Heat exchanger with fin and air conditioner
JP2005009827A (en) Fin tube type heat exchanger and heat pump device
JP6575895B2 (en) Heat exchanger
JP6053693B2 (en) Air conditioner
JP5627635B2 (en) Air conditioner
JP2005127597A (en) Heat exchanger
JP5646257B2 (en) Refrigeration cycle equipment
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP2004271113A (en) Heat exchanger
JP2005090805A (en) Heat exchanger
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
JP2004077021A (en) Gas cooler
JP2008121932A (en) Heat exchanger
JP2002235994A (en) Heat transfer tube for heat exchanger, its manufacturing method, heat exchanger and refrigeration air conditioning device using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060712

A977 Report on retrieval

Effective date: 20070903

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108