JP6575895B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP6575895B2
JP6575895B2 JP2015014837A JP2015014837A JP6575895B2 JP 6575895 B2 JP6575895 B2 JP 6575895B2 JP 2015014837 A JP2015014837 A JP 2015014837A JP 2015014837 A JP2015014837 A JP 2015014837A JP 6575895 B2 JP6575895 B2 JP 6575895B2
Authority
JP
Japan
Prior art keywords
fin
plate
heat transfer
pitch
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015014837A
Other languages
Japanese (ja)
Other versions
JP2016138726A (en
Inventor
轟 篤
篤 轟
隼次 岡村
隼次 岡村
賢司 坂野上
賢司 坂野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015014837A priority Critical patent/JP6575895B2/en
Priority to CN201610040373.0A priority patent/CN105823271B/en
Publication of JP2016138726A publication Critical patent/JP2016138726A/en
Application granted granted Critical
Publication of JP6575895B2 publication Critical patent/JP6575895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、空調冷凍装置に用いられる熱交換器に関するものである。   The present invention relates to a heat exchanger used in an air conditioning refrigeration apparatus.

従来、スーパーマーケットやコンビニエンスストア等の店舗に設置されるショーケース用の冷凍装置では、店外に設置された冷凍機の圧縮機で圧縮された冷媒をガスクーラにて放熱した後、膨張弁に送り、この膨張弁にて減圧して膨張させる。そして、ショーケースに設けられた蒸発器にて蒸発させ、このときの冷媒の蒸発によりショーケースの庫内を冷却する。   Conventionally, in refrigeration equipment for showcases installed in stores such as supermarkets and convenience stores, the refrigerant compressed by the compressor of the refrigerator installed outside the store is radiated with a gas cooler, and then sent to the expansion valve. The expansion valve is depressurized and expanded. And it evaporates with the evaporator provided in the showcase, The inside of a showcase is cooled by evaporation of the refrigerant | coolant at this time.

また、自然環境の問題等から、ショーケース用の冷凍装置においてもHFC(Hydrofluorocarbon)系冷媒の代替品として自然冷媒である二酸化炭素を使用するものも開発されている(例えば、特許文献1を参照)。   Also, due to problems in the natural environment, a refrigeration system for showcases has been developed that uses carbon dioxide, which is a natural refrigerant, as an alternative to an HFC (Hydrofluorocarbon) refrigerant (see, for example, Patent Document 1). ).

また、近年では、冷凍装置への二酸化炭素冷媒の採用に併せ、冷凍装置に高圧化が求められるようになり、蒸発器に用いられる伝熱管にも、薄肉化とともに高強度化が求められている。   In recent years, in conjunction with the adoption of carbon dioxide refrigerant in refrigeration equipment, higher pressure is required for refrigeration equipment, and heat transfer tubes used in evaporators are also required to be thinner and have higher strength. .

二酸化炭素冷媒は、HFC系冷媒に比べて、ガス密度が高く粘性も小さいため、乾き度が小さい状態でも管摩擦に起因する圧力損失が少ない。そのため、ガスを送る配管を細径化できる。   Since the carbon dioxide refrigerant has a higher gas density and lower viscosity than the HFC refrigerant, the pressure loss due to the pipe friction is small even in a low dryness state. Therefore, the diameter of the pipe for sending gas can be reduced.

しかし、冷凍機で用いられる蒸発器の冷凍効率は、冷媒の乾き度が大きい程小さくなるため、乾き度が大きい状態では、その分だけ冷媒循環量が多くなる。そのため、蒸発器を構成する伝熱管の管摩擦抵抗が大きくなり、蒸発器内での圧力損失が大きくなる。   However, since the refrigeration efficiency of the evaporator used in the refrigerator decreases as the dryness of the refrigerant increases, the amount of refrigerant circulation increases as the dryness increases. Therefore, the tube friction resistance of the heat transfer tube constituting the evaporator is increased, and the pressure loss in the evaporator is increased.

このようなことから、蒸発器内を流れる冷媒流路を複数系統で構成した蒸発器も提案されている。この蒸発器では、蒸発器の入口部分で伝熱管を分流し、蒸発器の出口部分で伝熱管を合流させる。   For this reason, an evaporator having a plurality of refrigerant flow paths that flow through the evaporator has also been proposed. In this evaporator, the heat transfer tubes are divided at the inlet portion of the evaporator, and the heat transfer tubes are joined at the outlet portion of the evaporator.

特開2013−245857号公報JP 2013-245857 A

冷凍装置の蒸発器に用いられる熱交換器では、耐霜閉性が重要になる。熱交換器のフィンピッチ(板状フィンの間隔)が小さいと、蒸発器に着霜が発生した際に板状フィン間の隙間が閉塞されやすくなり、除霜処理を頻繁に行う必要が生じる。着霜による冷却効率の悪化を防ぐためには、伝熱管の管径によらず、フィンピッチをある程度大きくする必要がある。   In a heat exchanger used for an evaporator of a refrigeration apparatus, frost resistance is important. When the fin pitch (interval of the plate-like fins) of the heat exchanger is small, the gap between the plate-like fins is likely to be closed when frosting occurs in the evaporator, and it is necessary to frequently perform the defrosting process. In order to prevent deterioration in cooling efficiency due to frost formation, it is necessary to increase the fin pitch to some extent regardless of the diameter of the heat transfer tube.

一方、板状フィンにおいて、伝熱管が貫通する貫通穴の周囲にはカラー部が設けられるが、伝熱管が細径化するとカラー部の高背化が難しくなる。カラーの高さが所望のフィンピッチよりも小さいと、貫通穴に挿入した伝熱管の一部が露出する。この状態で蒸発器の使用を続けると、伝熱管がドレン水で腐食されるため、伝熱管に耐腐食剤をコーティングする必要がある。   On the other hand, in the plate-like fin, a collar portion is provided around a through hole through which the heat transfer tube passes. However, if the heat transfer tube is reduced in diameter, it is difficult to increase the height of the collar portion. When the collar height is smaller than the desired fin pitch, a part of the heat transfer tube inserted into the through hole is exposed. If the use of the evaporator is continued in this state, the heat transfer tube is corroded by the drain water, so it is necessary to coat the heat transfer tube with a corrosion-resistant agent.

本発明は、係る従来の技術的課題を解決するためになされたものであり、蒸発器における冷却効率ならびに耐腐食性を向上させることを目的とする。   The present invention has been made in order to solve the conventional technical problems, and an object thereof is to improve the cooling efficiency and the corrosion resistance in the evaporator.

前記目的を解決するため、本発明の熱交換器は、気体の流動方向と平行な列方向、および、気体の流動方向と直交する段方向に貫通穴が複数設けられ、各貫通穴の周囲に筒状のカラー部が設けられた複数の板状フィンと、貫通穴を貫通してカラー部と接し、内部を冷媒が通過する伝熱管と、を備え、伝熱管の外径Dは7mm以上10mm以下であり、複数の板状フィンのフィンピッチFpは8mm以上12mm以下であり、複数の板状フィンは、各板状フィンのカラー部が一方向に突出するように平行に配置され、複数の板状フィンのうち、隣り合う板状フィンの一方の板状フィンのカラー部の端部は、いずれも、他方の板状フィンのカラー部が突出している面と反対側の面に接しており、列方向における伝熱管の列ピッチLpは65mm以上75mm以下であり、段方向における伝熱管の段ピッチDpは19mm以上25mm以下であることを特徴とする。
In order to solve the above-mentioned object, the heat exchanger of the present invention is provided with a plurality of through holes in the row direction parallel to the gas flow direction and in the step direction orthogonal to the gas flow direction, and around each through hole. A plurality of plate-like fins provided with a cylindrical collar portion, and a heat transfer tube that passes through the through-hole and contacts the collar portion and through which the refrigerant passes, and the outer diameter D of the heat transfer tube is 7 mm or more and 10 mm. The fin pitch Fp of the plurality of plate-like fins is 8 mm or more and 12 mm or less, and the plurality of plate-like fins are arranged in parallel so that the collar portion of each plate-like fin protrudes in one direction. in the plate-like fins, collar portion of the end portion of one of the plate fin plate adjacent fins are both in contact with the surface opposite to the surface on which the collar portion of the other plate-like fins protrude The row pitch Lp of the heat transfer tubes in the row direction is 65 mm or less And at 75mm or less, step pitch Dp of the heat transfer tubes in the column direction is characterized in that at 25mm or less than 19 mm.

本発明によれば、伝熱管の外径Dが7mm以上10mm以下の範囲で、フィンピッチが8mm以上12mm以下となるようカラー部の高さを高くすることにより、蒸発器における冷却効率を向上させることができる。   According to the present invention, the cooling portion efficiency is improved by increasing the height of the collar portion so that the outer diameter D of the heat transfer tube is 7 mm or more and 10 mm or less and the fin pitch is 8 mm or more and 12 mm or less. be able to.

また、隣り合う板状フィンの一方の板状フィンのカラー部の端部は、他方の板状フィンのカラー部が突出している面と反対側の面に接していることから、蒸発器の耐霜閉性を改善できる。また、係る構成とすることで、板状フィンの貫通穴に挿入した伝熱管の一部が露出することがなくなり、蒸発器の耐腐食性が向上する。   In addition, the end of the collar portion of one plate fin of adjacent plate fins is in contact with the surface opposite to the surface from which the collar portion of the other plate fin protrudes. Can improve frost closure. Moreover, by setting it as such a structure, a part of heat exchanger tube inserted in the through-hole of a plate-shaped fin will not be exposed, and the corrosion resistance of an evaporator will improve.

本発明の実施の形態に係る熱交換器の構成の一例を示す図The figure which shows an example of a structure of the heat exchanger which concerns on embodiment of this invention 図1に示した板状フィンの概略構成を示す図The figure which shows schematic structure of the plate-shaped fin shown in FIG. 熱交換器における複数の板状フィンの配置を示す図The figure which shows arrangement | positioning of the several plate-shaped fin in a heat exchanger 伝熱管内の気液二相流の概念図Conceptual diagram of gas-liquid two-phase flow in heat transfer tubes Lp=72.8mm、Dp=21mmの場合の冷凍装置の性能の計算結果を示す図The figure which shows the calculation result of the performance of the freezing apparatus in case of Lp = 72.8mm and Dp = 21mm Lp=72.8mm、Dp=21mmの場合の管径とフィンピッチの関係を示す図The figure which shows the relationship between the pipe diameter and fin pitch in the case of Lp = 72.8mm and Dp = 21mm Lp=65mm、Dp=19mmの場合の冷凍装置の性能の計算結果を示す図The figure which shows the calculation result of the performance of the freezing apparatus in case of Lp = 65mm and Dp = 19mm Lp=65mm、Dp=19mmの場合の管径とフィンピッチの関係を示す図The figure which shows the relationship between the pipe diameter and fin pitch in case of Lp = 65mm and Dp = 19mm Lp=75mm、Dp=25mmの場合の冷凍装置の性能の計算結果を示す図The figure which shows the calculation result of the performance of the freezing apparatus in case of Lp = 75mm and Dp = 25mm Lp=75mm、Dp=25mmの場合の管径とフィンピッチの関係を示す図The figure which shows the relationship between the pipe diameter and fin pitch in case of Lp = 75mm and Dp = 25mm

以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、以下に説明する各実施の形態は一例であり、本発明はこの実施形態により限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Each embodiment described below is an example, and the present invention is not limited to this embodiment.

図1は、本発明の実施の形態に係る熱交換器1の構成の一例を示す図である。図2は、図1に示した板状フィン2の概略構成を示す図である。図3は、熱交換器1における複数の板状フィン2の配置を示す図である。   FIG. 1 is a diagram illustrating an example of a configuration of a heat exchanger 1 according to an embodiment of the present invention. FIG. 2 is a view showing a schematic configuration of the plate-like fin 2 shown in FIG. FIG. 3 is a view showing the arrangement of the plurality of plate-like fins 2 in the heat exchanger 1.

図1に示すように、熱交換器1は、板状フィン2、伝熱管3、管板4を備える。板状フィン2は、複数設けられ、各板状フィン2には、気体の流動方向(図1の実線の矢印、図2の点線の矢印で示される方向)と平行な列方向、および、気体の流動方向と直交する段方向に貫通穴2aが複数設けられ、さらに各貫通穴2aの周囲には筒状のカラー部2bが設けられる。   As shown in FIG. 1, the heat exchanger 1 includes a plate-like fin 2, a heat transfer tube 3, and a tube plate 4. A plurality of plate-like fins 2 are provided, and each plate-like fin 2 has a row direction parallel to the gas flow direction (the direction indicated by the solid arrow in FIG. 1 and the dotted arrow in FIG. 2), and gas. A plurality of through-holes 2a are provided in a step direction orthogonal to the flow direction, and a cylindrical collar portion 2b is provided around each through-hole 2a.

図1では、伝熱管3がみえるように、中央の管板4に隣接する板状フィン2と、両側の管板4に隣接する板状フィン2との間で板状フィン2が省略されているが、実際には多数の板状フィン2が隣接して設けられている。   In FIG. 1, the plate-like fins 2 are omitted between the plate-like fins 2 adjacent to the central tube plate 4 and the plate-like fins 2 adjacent to the tube plates 4 on both sides so that the heat transfer tube 3 can be seen. In reality, however, a large number of plate-like fins 2 are provided adjacent to each other.

複数の板状フィン2は、各板状フィン2のカラー部2bが一方向に突出するように平行に配置され、複数の板状フィン2のうち、隣り合う板状フィン2の一方の板状フィン2のカラー部2bの端部は、他方の板状フィン2のカラー部2bが突出している面と反対側の面に接している(図3を参照)。   The plurality of plate-like fins 2 are arranged in parallel so that the collar portion 2 b of each plate-like fin 2 protrudes in one direction, and one of the plate-like fins 2 adjacent to each other is shaped like a plate. The end of the collar portion 2b of the fin 2 is in contact with the surface opposite to the surface from which the collar portion 2b of the other plate-like fin 2 protrudes (see FIG. 3).

このような構成により、板状フィン2の貫通穴2aに挿入した伝熱管3が露出することがないので、伝熱管3がドレン水で腐食されることを防止できるため、伝熱管3に耐腐食剤をコーティングする必要がない。   With such a configuration, since the heat transfer tube 3 inserted into the through hole 2a of the plate-like fin 2 is not exposed, it is possible to prevent the heat transfer tube 3 from being corroded by drain water. There is no need to coat the agent.

伝熱管3は、内部を冷媒が通過する管であり、各板状フィン2に設けられた貫通穴2aを貫通してカラー部2bと接し、熱交換器1の中央および両側で管板4により保持される。   The heat transfer tube 3 is a tube through which the refrigerant passes. The heat transfer tube 3 penetrates through the through holes 2 a provided in each plate-like fin 2 and comes into contact with the collar portion 2 b, and is formed by the tube plate 4 at the center and both sides of the heat exchanger 1. Retained.

冷媒としては、例えば、二酸化炭素冷媒が用いられる。二酸化炭素冷媒は、HFC冷媒に比べてガス密度が高く粘性も小さいため、乾き度が小さい状態でも管摩擦に起因する圧力損失が少ない。そのため、ガスを送る配管を細径化できる。   As the refrigerant, for example, a carbon dioxide refrigerant is used. Since the carbon dioxide refrigerant has a higher gas density and lower viscosity than the HFC refrigerant, there is little pressure loss due to pipe friction even in a low dryness state. Therefore, the diameter of the pipe for sending gas can be reduced.

また、伝熱管3には、例えば、高強度銅管が用いられる。これにより、伝熱管3をさらに細径化できるとともに、薄肉化により伝熱管3の内径を大きくすることができる。その結果、冷媒として用いる二酸化炭素の乾き度が大きくなり、その分だけ冷媒循環量が多くなった場合でも蒸発器内での圧力損失を抑えることができる。   In addition, for example, a high-strength copper pipe is used for the heat transfer pipe 3. As a result, the diameter of the heat transfer tube 3 can be further reduced, and the inner diameter of the heat transfer tube 3 can be increased by reducing the thickness. As a result, the degree of dryness of carbon dioxide used as the refrigerant increases, and the pressure loss in the evaporator can be suppressed even when the amount of refrigerant circulation increases accordingly.

本実施形態における熱交換器1では、板状フィン2の積層方向におけるフィンピッチFp(図3を参照)は10mm、フィン厚みFt(図3を参照)は0.25mm、熱交換器1の気体通過方向に沿った方向において隣接する伝熱管3の中心間距離である列ピッチLp(図2を参照)は72.8mm、熱交換器1の気体通過方向に対して直角である方向において隣接する伝熱管3の中心間距離である段ピッチDp(図2を参照)は21mm、伝熱管3の拡管後の外径Dは9.9mmである。   In the heat exchanger 1 in the present embodiment, the fin pitch Fp (see FIG. 3) in the stacking direction of the plate-like fins 2 is 10 mm, the fin thickness Ft (see FIG. 3) is 0.25 mm, and the gas in the heat exchanger 1 The row pitch Lp (see FIG. 2), which is the distance between the centers of the adjacent heat transfer tubes 3 in the direction along the passage direction, is 72.8 mm, and is adjacent in the direction perpendicular to the gas passage direction of the heat exchanger 1. The step pitch Dp (see FIG. 2) which is the distance between the centers of the heat transfer tubes 3 is 21 mm, and the outer diameter D of the heat transfer tubes 3 after expansion is 9.9 mm.

また、伝熱管3は、熱交換器1の入口で第1系統と第2系統に分岐され、熱交換器1の出口で合流する。また、図1に示したように、第1系統の伝熱管3により、板状フィン2の前方側に2列に渡って蛇行状に配管流路が構成され、第2系統の伝熱管3により、板状フィン2の後方側に2列に渡って蛇行状に配管流路が構成されている。そして、第1系統、第2系統の伝熱管3は、気体通過方向からみて千鳥状に配置されている。   Further, the heat transfer tube 3 is branched into a first system and a second system at the inlet of the heat exchanger 1 and merges at the outlet of the heat exchanger 1. Further, as shown in FIG. 1, the first system heat transfer tube 3 forms a meandering pipe flow path in two rows on the front side of the plate-like fin 2, and the second system heat transfer tube 3 A pipe flow path is formed in a meandering manner in two rows on the rear side of the plate-like fins 2. And the heat exchanger tube 3 of a 1st system and a 2nd system is arrange | positioned in zigzag form seeing from the gas passage direction.

熱交換器1の伝熱性能と通風抵抗について、上述した形状パラメータの定性的傾向について以下に説明する。   The qualitative tendency of the shape parameters described above will be described below with respect to the heat transfer performance and the ventilation resistance of the heat exchanger 1.

熱交換器1(蒸発器)の耐霜閉性を改善するためにはフィンピッチFpを拡大することが有効であると考えられ、フィンピッチFpを拡大すると通風抵抗が減少する。そのため、風量増加を図ることができるが、収容可能な板状フィン2の数が減少するため伝熱面積は減少する。一方、フィンピッチFpを縮小すると伝熱面積は増加するが、通風抵抗が増加し、風量増加を図ることができない。   In order to improve the frost resistance of the heat exchanger 1 (evaporator), it is considered effective to increase the fin pitch Fp. When the fin pitch Fp is increased, the ventilation resistance decreases. Therefore, the air volume can be increased, but the number of the plate-like fins 2 that can be accommodated is reduced, so that the heat transfer area is reduced. On the other hand, when the fin pitch Fp is reduced, the heat transfer area increases, but the ventilation resistance increases and the air volume cannot be increased.

同様に、列ピッチLp、段ピッチDpを拡大すると、フィン表面での熱伝達率は向上するが、伝熱管3の外周からフィン端部までの距離と伝熱との関係で定義されるフィン効率は低下する。また、通風抵抗が減少するため、風量増加を図ることができる。   Similarly, when the row pitch Lp and the step pitch Dp are increased, the heat transfer coefficient on the fin surface is improved, but the fin efficiency defined by the relationship between the distance from the outer periphery of the heat transfer tube 3 to the fin end and the heat transfer Will decline. Further, since the ventilation resistance is reduced, the air volume can be increased.

加えてフィン厚さFtを拡大すると、フィン効率は向上するが、通風抵抗は増加する。一方フィン厚さFtを縮小すると、フィン効率は低下するが、通風抵抗は減少する。   In addition, when the fin thickness Ft is increased, the fin efficiency is improved, but the ventilation resistance is increased. On the other hand, when the fin thickness Ft is reduced, the fin efficiency is reduced, but the ventilation resistance is reduced.

以上ように、上述した形状パラメータには各々最適値があり、これを定量的に評価するため、以下に述べる手法にて熱交換器1の伝熱性能と通風抵抗を算出する。   As described above, each of the above-described shape parameters has an optimum value, and in order to quantitatively evaluate this, the heat transfer performance and the ventilation resistance of the heat exchanger 1 are calculated by the method described below.

一般に、空気と板状フィンの間の熱伝達率α[w/m・k]は、次式で定義される。
α=Nu×λ/De
Re=U×De/ν
Nu=0.664×Re1/2×Pr1/3 (Re<3.2×10の場合)
Nu=0.037×Re0.8×Pr1/3 (Re>3.2×10の場合)
In general, the heat transfer coefficient α [w / m 2 · k] between air and the plate fin is defined by the following equation.
α = Nu × λ / De
Re = U × De / ν
Nu = 0.664 × Re 1/2 × Pr 1/3 (when Re <3.2 × 10 5 )
Nu = 0.037 × Re 0.8 × Pr 1/3 (when Re> 3.2 × 10 5 )

ここで、Reはレイノルズ数、Nuはヌッセルト数であり、これらの値は近似式により得られる。Prはプラントル数、λは空気の熱伝導率、νは空気の動粘性係数で、それぞれ常温常圧の場合に、Pr=0.72、λ=0.0261[w/m・k]、ν=0.000016[m/s]という値となる。 Here, Re is the Reynolds number, Nu is the Nusselt number, and these values are obtained by an approximate expression. Pr is the Prandtl number, λ is the thermal conductivity of air, ν is the kinematic viscosity coefficient of air, and Pr = 0.72, λ = 0.0261 [w / m · k], ν at room temperature and normal pressure, respectively. = 0.000016 [m 2 / s].

また、代表長さDe[m]を次式により定義する。
De=4×(Lp×Dp−π×D/4)×(Fp−Ft)/{2×(Lp×Dp−π×D/4)+π×D×(Fp−Ft)}
Further, the representative length De [m] is defined by the following equation.
De = 4 × (Lp × Dp -π × D 2/4) × (Fp-Ft) / {2 × (Lp × Dp-π × D 2/4) + π × D × (Fp-Ft)}

板状フィン間の自由通過体積基準の風速U[m/s]と、熱交換器の前面風速Uf[m/s]との間の関係は、以下の式で定義される。
U=Uf×Lp×Dp×Fp/{(Lp×Dp−π×D/4)×(Fp−Ft)}
The relationship between the free passage volume based wind speed U [m / s] between the plate fins and the front wind speed Uf [m / s] of the heat exchanger is defined by the following equation.
U = Uf × Lp × Dp × Fp / {(Lp × Dp-π × D 2/4) × (Fp-Ft)}

さらに、フィン効率ηは次式で定義される。
η=1/(1+ψ×α)
ψ={(4×Lp×Dp/π)0.5−D}×(4×Lp×Dp/π)0.5/D0.5/6/Ft/λf
ここで、λf[w/m・k]は、板状フィンの熱伝導率である。
Further, the fin efficiency η is defined by the following equation.
η = 1 / (1 + ψ × α)
ψ = {(4 × Lp × Dp / π) 0.5 −D} 2 × (4 × Lp × Dp / π) 0.5 / D 0.5 / 6 / Ft / λf
Here, λf [w / m · k] is the thermal conductivity of the plate fin.

一方、空気と板状フィンの間の通風抵抗ΔP[Pa]は次式で定義される。
ΔP=2×F×Lp×Ln×ρ×U/De
F=14.227/Re
ここで、Fは摩擦損失係数である。また、ρは空気の密度であり、常温常圧の場合には1.2[kg/m]程度の値となる。
On the other hand, the ventilation resistance ΔP [Pa] between the air and the plate fin is defined by the following equation.
ΔP = 2 × F × Lp × Ln × ρ × U 2 / De
F = 14.227 / Re
Here, F is a friction loss coefficient. Further, ρ is the density of air, and is about 1.2 [kg / m 3 ] in the case of normal temperature and pressure.

また、本実施形態における熱交換器1を空調冷凍装置に使用する場合、送風機の駆動力を低減することが重要となる。そのため、ここではさらに、送風機駆動力を考慮する。   Moreover, when using the heat exchanger 1 in this embodiment for an air-conditioning refrigerating apparatus, it becomes important to reduce the driving force of a fan. Therefore, the blower driving force is further considered here.

送風機駆動力Pf[w]は次式にて定義される。
Pf=ΔP×Q
ここで、Qは熱交換器を通過する空気流量[kg/s]である。
The blower driving force Pf [w] is defined by the following equation.
Pf = ΔP × Q
Here, Q is an air flow rate [kg / s] passing through the heat exchanger.

また、伝熱管長手方向の長さをW[m]、段数をDnとすると、これらと熱交換器の前面風速Uf[m/s]との間には、以下の関係がある。
Uf=Q/ρ/(W×Dp×Dn)
Further, assuming that the length in the longitudinal direction of the heat transfer tube is W [m] and the number of stages is Dn, the following relationship exists between these and the front wind speed Uf [m / s] of the heat exchanger.
Uf = Q / ρ / (W × Dp × Dn)

上述した空気流量Qは、段ピッチDp、列ピッチLp、フィンピッチFp、フィン厚さFt、伝熱管の外径DをそれぞれパラメータとしてΔPを計算し、送風機駆動力Pf一定の条件で決定することができる。   The air flow rate Q described above is determined under the condition that ΔP is calculated using the step pitch Dp, the row pitch Lp, the fin pitch Fp, the fin thickness Ft, and the outer diameter D of the heat transfer tube as parameters, and the fan driving force Pf is constant. Can do.

この場合、熱交換器1の単位温度差当たりの熱交換量E[w/k]は次式により算出される。
E=Q×H×ε
ε=1−exp(−T)
T=Ao×K/(Q×H)
K=1/(1/αo+Ao/Ai/αi)
αo=1/(Ao/(Ap+η×Af)/α)
Ao=Ap+Af
In this case, the heat exchange amount E [w / k] per unit temperature difference of the heat exchanger 1 is calculated by the following equation.
E = Q × H × ε
ε = 1−exp (−T)
T = Ao × K / (Q × H)
K = 1 / (1 / αo + Ao / Ai / αi)
αo = 1 / (Ao / (Ap + η × Af) / α)
Ao = Ap + Af

ここで、H[w/kg・k]は空気比熱、εは温度効率、K[w/m・k]は熱通過率、Ao[m]は熱交換器1の空気側全伝熱面積、Ap[m]は熱交換器1の空気側伝熱管伝熱面積、Af[m]は熱交換器1の空気側フィン伝熱面積、Ai[m]は熱交換器1の冷媒側伝熱面積である。これらの面積は、熱交換器1の形状に依存する寸法、段ピッチDp、列ピッチLp、フィンピッチFp、フィン厚さFt、伝熱管3の外径Dが決まれば、算出可能な値である。 Here, H [w / kg · k] is the specific heat of the air, ε is the temperature efficiency, K [w / m 2 · k] is the heat passage rate, and Ao [m 2 ] is the total heat transfer on the air side of the heat exchanger 1. Area, Ap [m 2 ] is the heat transfer area of the air side heat transfer tube of the heat exchanger 1, Af [m 2 ] is the heat transfer area of the air side fin of the heat exchanger 1, and Ai [m 2 ] is the heat transfer area of the heat exchanger 1. It is a refrigerant side heat transfer area. These areas are values that can be calculated if the dimensions depending on the shape of the heat exchanger 1, the step pitch Dp, the row pitch Lp, the fin pitch Fp, the fin thickness Ft, and the outer diameter D of the heat transfer tube 3 are determined. .

また、Lixin Chengらによる論文”New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes, International Journal of Heat Transfer,49,2006,p4082−4094”に記載されているように、熱交換器の管内を流れる流体の熱伝達率αi[w/m・k]は、管内を流れる冷媒の状態に応じ、以下の式で求めることができる。 Also, a paper by Lixin Cheng et al., “New flow boiling heat transfer model and flow pattern and carbon diverted in 70 minutes, which is described in“ New flow boiling heat transfer and carbon 40 ”. The heat transfer coefficient αi [w / m 2 · k] of the fluid flowing in the pipe of the vessel can be obtained by the following formula according to the state of the refrigerant flowing in the pipe.

αi={θdry×α+(2π−θdry)×αwet}
ここで、図4に示すように、θdryは管内壁全周で液冷媒が存在しない領域の角度である。また、α[w/m・k]はガス冷媒の熱伝達率、αwet[w/m・k]は液冷媒の熱伝達率である。
αi = {θ dry × α v + (2π−θ dry ) × α wet }
Here, as shown in FIG. 4, θ dry is an angle of a region where the liquid refrigerant does not exist around the entire inner wall of the tube. Α v [w / m 2 · k] is the heat transfer coefficient of the gas refrigerant, and α wet [w / m 2 · k] is the heat transfer coefficient of the liquid refrigerant.

さらに、ガス冷媒の熱伝達率α[w/m・k]、液冷媒の熱伝達率αwet[w/m・k]、核沸熱(nucleate boiling)伝達率αnb[w/m・k]、強制対流(convection boiling)熱伝達率αcb[w/m・k]は、以下の式で与えられる。 Furthermore, the heat transfer rate α v [w / m 2 · k] of the gas refrigerant, the heat transfer rate α wet [w / m 2 · k] of the liquid refrigerant, the nucleate boiling transfer rate α nb [w / m 2 · k], forced boiling heat transfer coefficient α cb [w / m 2 · k] is given by the following equation.

α=0.023×Re 0.8×Pr 0.4×(k/D)
αwet={(αnb+(αcb}1/3
αnb=131×Pr−0.0063×(−log10Pr)−0.55×M×q−0.58
αcb=0.0133×{4G(1−x)δ/μ(1−β)}0.69×Pr 0.4×(k/δ)
α v = 0.023 × Re v 0.8 × Pr v 0.4 × (k v / D)
α wet = {(α nb ) 3 + (α cb ) 3 } 1/3
α nb = 131 × Pr −0.0063 × ( −log 10 Pr) −0.55 × M × q −0.58
α cb = 0.0133 × {4G (1-x) δ / μ L (1-β)} 0.69 × Pr L 0.4 × (k L / δ)

ここで、Reはガス冷媒のレイノルズ数、Prはガス冷媒のプラントル数、k[w/m・k]はガス冷媒の熱伝導率である。また、G[kg/m・s]は冷媒2相流の速度、M[kg/kmol]は分子量、q[W/m]は熱流束、δ[m]は管内の液冷媒の液膜厚さ(図4を参照)、xは乾き度(vapor quality)、μ[N・s/m]は液冷媒の粘性係数、βは断面蒸気体積率(cross-sectional vapor void fraction)、Prは液冷媒のプラントル数、k[w/m・k]は液冷媒の熱伝導率である。ここで、βは、図6に示したガス冷媒の存在割合を示すパラメータである。 Here, Re v is the Reynolds number of the gas refrigerant, Pr v is Prandtl number of the gas refrigerant, k v [w / m · k] is the thermal conductivity of the gas refrigerant. G [kg / m 2 · s] is the speed of the refrigerant two-phase flow, M [kg / kmol] is the molecular weight, q [W / m 2 ] is the heat flux, and δ [m] is the liquid refrigerant liquid in the pipe. film thickness (see Figure 4), x is the dryness (vapor quality), μ L [ N · s / m 2] is the viscosity coefficient of the liquid refrigerant, beta sectional vapor volume ratio (cross-sectional vapor void fraction) , Pr L is the Prandtl number of the liquid refrigerant, and k L [w / m · k] is the thermal conductivity of the liquid refrigerant. Here, β is a parameter indicating the abundance ratio of the gas refrigerant shown in FIG.

図5は、列ピッチLpが72.8mm、段ピッチDpが21mmである場合に、上述した計算式を利用して算出した{冷凍能力/(空気側圧力損失×風速)}、管径、および、フィンピッチの間の関係を示す図である。   FIG. 5 shows that when the row pitch Lp is 72.8 mm and the step pitch Dp is 21 mm, {refrigeration capacity / (air side pressure loss × wind velocity)} calculated using the above-described formula, the pipe diameter, and It is a figure which shows the relationship between fin pitches.

ここでは、前面風速を1.1m/sと一定にし、管径とフィンピッチをパラメータとして変化させ、{冷凍能力/(空気側圧力損失×風速)}の値を算出している。また、板状フィン2の段方向の長さを84mm、列方向の長さを330mm、板状フィン2の厚さを0.25mmとした。   Here, the value of {refrigeration capacity / (air-side pressure loss × wind speed)} is calculated by making the front wind speed constant at 1.1 m / s and changing the pipe diameter and fin pitch as parameters. Moreover, the length of the plate-like fin 2 in the step direction was 84 mm, the length in the row direction was 330 mm, and the thickness of the plate-like fin 2 was 0.25 mm.

図5から、各フィンピッチにおいて、管径が大きくなるにつれ{冷凍能力/(空気側圧力損失×風速)}が大きくなり、ある管径で最大となり、その後小さくなることがわかる。   From FIG. 5, it can be seen that, at each fin pitch, {refrigeration capacity / (air-side pressure loss × wind speed)} increases as the tube diameter increases, reaches a maximum at a certain tube diameter, and then decreases.

フィンピッチを小さくすると、板状フィン2間を空気流が通過する際の通風抵抗、すなわち空気側圧力損失が増加するため、冷凍能力が低下する傾向となる。一方、フィンピッチを拡大すると、所定のフィンピッチまでは冷凍能力は増加する。しかし、フィンピッチが適正範囲を超えると通風抵抗、すなわち空気側圧力損失は減少するが、伝熱面積が減少するため、冷凍能力が低下する傾向となる。   When the fin pitch is made small, the ventilation resistance when the air flow passes between the plate-like fins 2, that is, the air-side pressure loss increases, so that the refrigeration capacity tends to decrease. On the other hand, when the fin pitch is increased, the refrigeration capacity increases up to a predetermined fin pitch. However, if the fin pitch exceeds the appropriate range, the ventilation resistance, that is, the air-side pressure loss is reduced, but the heat transfer area is reduced, so that the refrigerating capacity tends to be lowered.

図6は、管径とフィンピッチの適正範囲を示す図である。図6において四角で表される点は、図5に実線矢印で示した各フィンピッチのグラフのピーク値に対応する。例えば、図5におけるフィンピッチが10mmのグラフでは、ピーク値に対応する管径がおよそ10mmである。そのため、図6には、フィンピッチが10mm、管径がおよそ10mmの位置に四角で表される点が示されている。   FIG. 6 is a diagram showing an appropriate range of the pipe diameter and the fin pitch. The points represented by squares in FIG. 6 correspond to the peak values of the fin pitch graphs indicated by solid arrows in FIG. For example, in the graph in FIG. 5 where the fin pitch is 10 mm, the tube diameter corresponding to the peak value is approximately 10 mm. Therefore, FIG. 6 shows a point represented by a square at a position where the fin pitch is 10 mm and the tube diameter is approximately 10 mm.

また、三角で表される点は、図5に示した各グラフのピークよりも左側の点であって、各グラフのピーク値から15%減少した点(図5の点線矢印で示される点)に対応する。この点を超えない範囲では、グラフの値は緩やかに減少するため、性能を高く維持しつつ冷凍装置を運転することが可能である。   Further, the point represented by a triangle is a point on the left side of the peak of each graph shown in FIG. 5 and is a point reduced by 15% from the peak value of each graph (point indicated by a dotted arrow in FIG. 5). Corresponding to In a range not exceeding this point, the value of the graph gradually decreases, so that the refrigeration apparatus can be operated while maintaining high performance.

例えば、図5におけるフィンピッチが10mmのグラフでは、管径がおよそ5.6mmである場合に値がピーク値から15%減少する。そのため、図6には、フィンピッチが10mm、管径がおよそ5.6mmの位置に三角で表される点が示されている。   For example, in the graph with the fin pitch of 10 mm in FIG. 5, the value decreases by 15% from the peak value when the tube diameter is approximately 5.6 mm. Therefore, FIG. 6 shows a point represented by a triangle at a position where the fin pitch is 10 mm and the tube diameter is approximately 5.6 mm.

図6に示した四角で表される点を結んだ直線と、三角で表される点を結んだ直線との間の領域にある管径、および、フィンピッチを選択すれば、図5に示したグラフのピーク値における性能と比べて15%以内の性能が得られることになる。   If the pipe diameter and fin pitch in the region between the straight line connecting the points represented by the squares shown in FIG. 6 and the straight line connecting the points represented by the triangles are selected, the fin pitch is shown in FIG. The performance within 15% is obtained as compared with the performance at the peak value of the graph.

ここで、管径が7mmより小さくなると、製造技術的に板状フィン2に高さ8mmを超えるフィンカラー(伝熱管を挿入する穴とカラー)を形成することが難しくなる。一方、管径を10mmより大きくすると、耐圧強度を上げるために管の肉厚を増やす必要があり、伝熱管をヘアピン形状に曲げることが困難となる。   Here, when the tube diameter is smaller than 7 mm, it is difficult to form a fin collar (a hole and a collar into which the heat transfer tube is inserted) exceeding 8 mm in height in terms of manufacturing technology. On the other hand, when the tube diameter is larger than 10 mm, it is necessary to increase the thickness of the tube in order to increase the pressure resistance, and it is difficult to bend the heat transfer tube into a hairpin shape.

また、フィンピッチを8mmより小さくすると、前述のように、空気側圧力損失が増加するため、冷凍能力が低下する傾向となる。   Moreover, if the fin pitch is smaller than 8 mm, the air-side pressure loss increases as described above, so that the refrigerating capacity tends to decrease.

また、本実施形態の熱交換器1では、フィンピッチを12mm以上にするためにはフィンカラーの高さを12mm以上にする必要がある。しかしながら、製造技術的に板状フィン2に高さ12mmを超えるフィンカラーを形成することは難しい。   Moreover, in the heat exchanger 1 of this embodiment, in order to make a fin pitch 12 mm or more, it is necessary to make the height of a fin collar 12 mm or more. However, it is difficult to form a fin collar having a height exceeding 12 mm on the plate-like fin 2 in terms of manufacturing technology.

このようなことから、図6の点線で示した範囲、すなわち、管径Dが7mm以上10mm以下、フィンピッチFpが8mm以上12mm以下の範囲が望ましい範囲といえる。   Therefore, the range indicated by the dotted line in FIG. 6, that is, the range in which the tube diameter D is 7 mm to 10 mm and the fin pitch Fp is 8 mm to 12 mm is desirable.

図7は、列ピッチLpが65mm、段ピッチDpが19mmである場合の{冷凍能力/(空気側圧力損失×風速)}、管径、および、フィンピッチの間の関係を示す図である。また、図8は、この場合の管径とフィンピッチの適正範囲を示す図である。他の条件は、図5、図6の場合と同様である。   FIG. 7 is a diagram showing a relationship between {refrigeration capacity / (air side pressure loss × wind speed)}, tube diameter, and fin pitch when the row pitch Lp is 65 mm and the step pitch Dp is 19 mm. Moreover, FIG. 8 is a figure which shows the appropriate range of the pipe diameter and fin pitch in this case. Other conditions are the same as those in FIGS.

図6の場合と同様に、図8において四角で表される点は、図7に実線矢印で示した各フィンピッチのグラフのピーク値に対応する。また、三角で表される点は、図7に示した各グラフのピークよりも左側の点であって、各グラフのピーク値から15%減少した点(図7の点線矢印で示される点)に対応する。   As in the case of FIG. 6, the points represented by squares in FIG. 8 correspond to the peak values of the fin pitch graphs indicated by solid arrows in FIG. 7. Further, the point represented by a triangle is a point on the left side of the peak of each graph shown in FIG. 7 and a point reduced by 15% from the peak value of each graph (point indicated by a dotted arrow in FIG. 7). Corresponding to

この場合も、図6に示した場合と同様に、図8の点線で示した範囲、すなわち、管径Dが7mm以上10mm以下、フィンピッチFpが8mm以上12mm以下の範囲が望ましい範囲として選択できる。この範囲であれば、図7に示したグラフのピーク値における性能と比べて15%以内の性能が得られることになるためである。   In this case, similarly to the case shown in FIG. 6, the range indicated by the dotted line in FIG. 8, that is, the range where the tube diameter D is 7 mm or more and 10 mm or less and the fin pitch Fp is 8 mm or more and 12 mm or less can be selected as a desirable range. . This is because within this range, a performance within 15% of the performance at the peak value in the graph shown in FIG. 7 is obtained.

なお、図8の点線で示した範囲の一部が、四角で表される点を結んだ直線の上側にあるが、この領域内の管径、および、フィンピッチを選択した場合も、冷媒循環量や風速を最適化することで、図7に示したグラフのピーク値における性能と比べて15%以内の性能が得られる。   Note that a part of the range indicated by the dotted line in FIG. 8 is above the straight line connecting the points indicated by the squares. However, even when the pipe diameter and fin pitch in this region are selected, the refrigerant circulation By optimizing the amount and the wind speed, a performance within 15% can be obtained as compared with the performance at the peak value of the graph shown in FIG.

また、図9は、列ピッチLpが75mm、段ピッチDpが25mmである場合の{冷凍能力/(空気側圧力損失×風速)}、管径、および、フィンピッチの間の関係を示す図である。また、図10は、この場合の管径とフィンピッチの適正範囲を示す図である。他の条件は、図5、図6の場合と同様である。   FIG. 9 is a diagram showing the relationship between {refrigeration capacity / (air-side pressure loss × wind speed)}, tube diameter, and fin pitch when the row pitch Lp is 75 mm and the step pitch Dp is 25 mm. is there. Moreover, FIG. 10 is a figure which shows the appropriate range of the pipe diameter and fin pitch in this case. Other conditions are the same as those in FIGS.

図6の場合と同様に、図10において四角で表される点は、図9に実線矢印で示した各フィンピッチのグラフのピーク値に対応する。また、三角で表される点は、図9に示した各グラフのピークよりも左側の点であって、各グラフのピーク値から15%減少した点(図9の点線矢印で示される点)に対応する。   As in the case of FIG. 6, the points represented by squares in FIG. 10 correspond to the peak values of the graphs of the fin pitches indicated by solid arrows in FIG. Further, the point represented by a triangle is a point on the left side of the peak of each graph shown in FIG. 9 and a point reduced by 15% from the peak value of each graph (a point indicated by a dotted arrow in FIG. 9). Corresponding to

この場合も、図6に示した場合と同様に、図10の点線で示した範囲、すなわち、管径Dが7mm以上10mm以下、フィンピッチFpが8mm以上12mm以下の範囲が望ましい範囲として選択できる。   Also in this case, similarly to the case shown in FIG. 6, the range indicated by the dotted line in FIG. 10, that is, the range where the tube diameter D is 7 mm or more and 10 mm or less and the fin pitch Fp is 8 mm or more and 12 mm or less can be selected as a desirable range. .

なお、図10の点線で示した範囲の一部が、三角で表される点を結んだ直線の下側にあるが、この領域内の管径、および、フィンピッチを選択した場合も、冷媒循環量や風速を最適化することで、図9に示したグラフのピーク値における性能と比べて15%以内の性能が得られる。   Note that a part of the range indicated by the dotted line in FIG. 10 is below the straight line connecting the points indicated by the triangles. However, even when the pipe diameter and fin pitch in this region are selected, the refrigerant By optimizing the circulation amount and the wind speed, a performance within 15% can be obtained as compared with the performance at the peak value of the graph shown in FIG.

また、列ピッチLpは75mm以下、段ピッチDpは25mm以下であることが望ましい。列ピッチが75mm、段ピッチDpが25mmを越える場合は、熱交換器の配置容積を一定と考えたとき、板状フィン2の外形寸法に限度があるため、カラー部2bの数(貫通穴2aの数)を少なくする必要がある。しかし、カラー部2bの数を少なくすると、伝熱管3の内部を流れる冷媒循環量を増加させることが必要となる。その結果、伝熱管3の管内圧損が増大し、熱交換器1の性能を悪化させる。この管内圧損は、管径が小さくなるほど大きくなる。   Further, it is desirable that the row pitch Lp is 75 mm or less and the step pitch Dp is 25 mm or less. When the row pitch is 75 mm and the step pitch Dp is more than 25 mm, when the arrangement volume of the heat exchanger is considered to be constant, the outer dimensions of the plate-like fins 2 are limited, so the number of collar portions 2b (through holes 2a Need to be reduced. However, if the number of the collar portions 2b is reduced, it is necessary to increase the circulation amount of the refrigerant flowing inside the heat transfer tube 3. As a result, the in-tube pressure loss of the heat transfer tube 3 increases, and the performance of the heat exchanger 1 is deteriorated. This in-tube pressure loss increases as the tube diameter decreases.

一方、段ピッチDpが19mm、列ピッチLpが65mmより小さくなると、製造技術上、板状フィン2に高さ8mm以上のカラー部2bを形成することが難しい。このようなことから、段ピッチDpは19mm以上、列ピッチLpは65mm以上であることが望ましい。   On the other hand, if the step pitch Dp is less than 19 mm and the row pitch Lp is less than 65 mm, it is difficult to form the collar portion 2b having a height of 8 mm or more on the plate-like fin 2 due to manufacturing technology. For this reason, it is desirable that the step pitch Dp is 19 mm or more and the row pitch Lp is 65 mm or more.

上述してきたように、本発明によれば、伝熱管3の外径Dが7mm以上10mm以下の範囲で、フィンピッチが8mm以上12mm以下となるようカラー部2bの高さを高くすることにより、熱交換器1における冷却効率を向上させることができる。   As described above, according to the present invention, by increasing the height of the collar portion 2b so that the outer diameter D of the heat transfer tube 3 is in the range of 7 mm to 10 mm and the fin pitch is 8 mm to 12 mm, The cooling efficiency in the heat exchanger 1 can be improved.

また、隣り合う板状フィン2の一方の板状フィン2のカラー部2bの端部は、他方の板状フィン2のカラー部2bが突出している面と反対側の面に接していることから、熱交換器1の耐霜閉性を改善できる。また、係る構成とすることで、板状フィン2の貫通穴2aに挿入した伝熱管3の一部が露出することがなくなり、熱交換器1の耐腐食性が向上する。   Further, the end portion of the collar portion 2b of one plate-like fin 2 of the adjacent plate-like fins 2 is in contact with the surface opposite to the surface from which the collar portion 2b of the other plate-like fin 2 projects. The frost resistance of the heat exchanger 1 can be improved. Moreover, by setting it as such a structure, a part of heat exchanger tube 3 inserted in the through hole 2a of the plate-like fin 2 is not exposed, and the corrosion resistance of the heat exchanger 1 is improved.

本発明に係る熱交換器は、空調冷凍装置に用いるのに好適である。   The heat exchanger according to the present invention is suitable for use in an air conditioning refrigeration apparatus.

1 熱交換器
2 板状フィン
2a 貫通穴
2b カラー部
3 伝熱管
4 管板
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Plate-like fin 2a Through-hole 2b Collar part 3 Heat transfer tube 4 Tube sheet

Claims (2)

気体の流動方向と平行な列方向、および、前記気体の流動方向と直交する段方向に貫通穴が複数設けられ、各貫通穴の周囲に筒状のカラー部が設けられた複数の板状フィンと、
前記貫通穴を貫通して前記カラー部と接し、内部を冷媒が通過する伝熱管と、を備え、
前記伝熱管の外径Dは7mm以上10mm以下であり、前記複数の板状フィンのフィンピッチFpは8mm以上12mm以下であり、
前記複数の板状フィンは、各板状フィンのカラー部が一方向に突出するように平行に配置され、前記複数の板状フィンのうち、隣り合う板状フィンの一方の板状フィンのカラー部の端部は、いずれも、他方の板状フィンの前記カラー部が突出している面と反対側の面に接しており、
前記列方向における前記伝熱管の列ピッチLpは65mm以上75mm以下であり、前記段方向における前記伝熱管の段ピッチDpは19mm以上25mm以下であることを特徴とする熱交換器。
Plural plate-like fins in which a plurality of through holes are provided in a row direction parallel to the gas flow direction and a step direction orthogonal to the gas flow direction, and a cylindrical collar portion is provided around each through hole When,
A heat transfer tube through which the refrigerant passes through the through-hole and in contact with the collar portion;
The outer diameter D of the heat transfer tube is 7 mm or more and 10 mm or less, and the fin pitch Fp of the plurality of plate-like fins is 8 mm or more and 12 mm or less,
The plurality of plate fins are arranged in parallel so that the collar portion of each plate fin protrudes in one direction, and the color of one plate fin of the adjacent plate fins among the plurality of plate fins. The end of each part is in contact with the surface opposite to the surface from which the collar portion of the other plate-like fin protrudes ,
The heat exchanger according to claim 1 , wherein a row pitch Lp of the heat transfer tubes in the row direction is 65 mm or more and 75 mm or less, and a step pitch Dp of the heat transfer tubes in the step direction is 19 mm or more and 25 mm or less .
前記冷媒は二酸化炭素冷媒である請求項に記載の熱交換器。 The heat exchanger according to claim 1 , wherein the refrigerant is a carbon dioxide refrigerant.
JP2015014837A 2015-01-28 2015-01-28 Heat exchanger Active JP6575895B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015014837A JP6575895B2 (en) 2015-01-28 2015-01-28 Heat exchanger
CN201610040373.0A CN105823271B (en) 2015-01-28 2016-01-21 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015014837A JP6575895B2 (en) 2015-01-28 2015-01-28 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2016138726A JP2016138726A (en) 2016-08-04
JP6575895B2 true JP6575895B2 (en) 2019-09-18

Family

ID=56559088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015014837A Active JP6575895B2 (en) 2015-01-28 2015-01-28 Heat exchanger

Country Status (2)

Country Link
JP (1) JP6575895B2 (en)
CN (1) CN105823271B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119471A (en) * 2017-01-25 2018-08-02 いすゞ自動車株式会社 Exhaust emission control device and method for controlling the same
JP6534425B2 (en) * 2017-06-27 2019-06-26 三菱電機株式会社 Control device and control method for internal combustion engine
CN114174751B (en) * 2019-08-06 2023-10-13 三菱电机株式会社 Heat exchanger and refrigeration cycle device
CN212720029U (en) * 2020-06-10 2021-03-16 青岛海尔(胶州)空调器有限公司 Condenser, air condensing units and air conditioning system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497838U (en) * 1977-12-22 1979-07-10
JPH0842959A (en) * 1994-07-29 1996-02-16 Hitachi Ltd Refrigerator and evaporator used therefor
US5722485A (en) * 1994-11-17 1998-03-03 Lennox Industries Inc. Louvered fin heat exchanger
JP5405158B2 (en) * 2009-03-10 2014-02-05 三洋電機株式会社 Evaporator
EP2682704B1 (en) * 2011-03-01 2016-10-05 Mitsubishi Electric Corporation Heat exchanger, refrigerator with the heat exchanger, and air conditioner with the heat exchanger
CN203069029U (en) * 2011-11-25 2013-07-17 松下电器产业株式会社 Heat-conducting fins, finned-pipe-type heat exchanger and heat pump device

Also Published As

Publication number Publication date
CN105823271B (en) 2020-03-03
CN105823271A (en) 2016-08-03
JP2016138726A (en) 2016-08-04

Similar Documents

Publication Publication Date Title
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
EP3021064B1 (en) Heat pump device
JP5661202B2 (en) Plate fin tube type heat exchanger and refrigeration air conditioning system including the same
US10422588B2 (en) Heat exchanger coil with offset fins
JP6575895B2 (en) Heat exchanger
JP2009145009A (en) Air conditioner
WO2019077744A1 (en) Air conditioner
JP2015017738A (en) Heat exchanger
JP2018021756A (en) Heat transfer tube for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger
JP2010249374A (en) Fin tube type heat exchanger and air conditioning/refrigerating device
JP5627635B2 (en) Air conditioner
JP5591285B2 (en) Heat exchanger and air conditioner
JP2009192148A (en) Fin and tube type heat exchanger
JP2009127882A (en) Heat exchanger, indoor unit, and air conditioner
JP2008215737A (en) Fin tube type heat exchanger and refrigerating cycle
JP2015014397A (en) Heat exchanger
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
WO2019176803A1 (en) Heat exchanger for freezer refrigerator
JP2010230300A (en) Heat exchanger and air conditioner having the same
JP5020159B2 (en) Heat exchanger, refrigerator and air conditioner
JP6640500B2 (en) Air conditioner outdoor unit
US11965701B2 (en) Heat exchanger and refrigeration cycle apparatus
CN111556950A (en) Heat exchanger for refrigerator
JP5255249B2 (en) Heat transfer tube with internal fin
JP2001248990A (en) Inner surface grooved pipe for supercooling heat exchanger and heat exchanger

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190809

R150 Certificate of patent or registration of utility model

Ref document number: 6575895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150