WO2019176803A1 - Heat exchanger for freezer refrigerator - Google Patents

Heat exchanger for freezer refrigerator Download PDF

Info

Publication number
WO2019176803A1
WO2019176803A1 PCT/JP2019/009473 JP2019009473W WO2019176803A1 WO 2019176803 A1 WO2019176803 A1 WO 2019176803A1 JP 2019009473 W JP2019009473 W JP 2019009473W WO 2019176803 A1 WO2019176803 A1 WO 2019176803A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
heat exchanger
refrigerator
freezer
pitch
Prior art date
Application number
PCT/JP2019/009473
Other languages
French (fr)
Japanese (ja)
Inventor
上田 薫
加奈 伊藤
貴彦 水田
木村 直樹
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to JP2020506481A priority Critical patent/JPWO2019176803A1/en
Priority to CN201980006418.4A priority patent/CN111465812A/en
Publication of WO2019176803A1 publication Critical patent/WO2019176803A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Definitions

  • the present invention relates to a heat exchanger for a refrigerator-freezer.
  • a serpentine heat exchanger is usually used as a heat exchanger mounted in a refrigerator-freezer.
  • the serpentine heat exchanger is composed of a plurality of plate fins arranged in a row in parallel at predetermined intervals, and a metal pipe through which one or a plurality of refrigerants passing through these fins are circulated.
  • a plurality of fin groups composed of a plurality of fins arranged in a row are arranged in a plurality of stages so that the air in the refrigerator, which is a fluid to be cooled, flows in the arrangement direction of the fin groups and sequentially passes through the plurality of fin groups. Be placed.
  • interval of the heat exchange fin of the surface is expanded by cutting off the heat exchange fin of the surface by the side of an air inlet side, and / or the upper surface of a refrigerant
  • the defrosting operation interval is extended to suppress the temperature rise in the space.
  • the effect of the structure of patent document 1 cannot fully be acquired.
  • This invention is made
  • One embodiment of the present invention includes a plurality of fin groups each including a plurality of fins arranged in a row at a predetermined interval in parallel, and a fluid to be cooled that circulates in the refrigerator-freezer through the plurality of fin groups.
  • a heat exchanger for a refrigerator / freezer having one or a plurality of metal pipes arranged so as to meander in a meandering manner by sequentially passing through the fins in the fin group.
  • the fin is made of a plate made of aluminum or aluminum alloy,
  • the heat exchanger for the refrigerator-freezer changes the fin pitch from the inlet side to the outlet side of the fluid to be cooled that circulates in the refrigerator-freezer while narrowing the specific dimensions thereof. Limited to a specific range. Thereby, frost formation time can be made comparatively long, maintaining heat exchange performance, and coexistence of heat exchange performance and frost formation time can be realized.
  • the fin is made of aluminum or an aluminum alloy plate. More specifically, a plate made of JIS A1050, JIS A1100, JIS A1200, JIS A7072 or the like can be used.
  • the fin has a thickness of 0.08 to 0.25 mm.
  • the heat dissipation efficiency that is, the “fin efficiency” that represents the ratio of the heat dissipation amount when the entire heat dissipation surface is the same temperature as the heat source and the actual heat dissipation amount decreases.
  • the fin thickness exceeds 0.25 mm, the effect of improving fin efficiency is saturated, and the overall weight may be increased.
  • the fin pitch Pb on the cooled fluid inlet side is less than 10 mm, the blockage due to frost is quick and the ventilation resistance is increased early. Further, if the fin pitch Pb is larger than 20 mm, the number of fins is reduced, which has an influence on the heat exchange performance.
  • the fin pitch Pm after the second stage from the fluid input side is slightly lower in temperature and humidity, so the fin pitch is narrower than the inlet side (the most upstream side), and the number of fins is reduced. It is necessary to improve heat exchange performance by increasing. Therefore, the fin pitch Pm is set to 15 mm or less. On the other hand, considering the air flow between the fins, if the fin pitch Pm is less than 2.2 mm, the heat exchange performance cannot be expected and the ventilation resistance is increased.
  • the fin pitch Pt on the cooled fluid outlet side (downstream side) is set to 5 mm or less.
  • the fin pitch Pt is set to 1.8 mm or more, more preferably 2.2 mm or more. Good.
  • the fin pitch Pb, the fin pitch Pt, and the fin pitch Pm satisfy the relationship of 2 ⁇ Pb / Pt ⁇ 11.2 and 1 ⁇ Pm / Pt ⁇ 8.4. If Pb / Pt is less than 2, Pm will be in the middle, so there is a possibility that the effect of changing the fin pitch ratio may not be sufficiently exhibited. If Pb / Pt exceeds 11.2 The cooling of the air on the entry side becomes insufficient, and there is a risk that frost will adhere early after the middle stage. Therefore, more preferably, Pb / Pt is 5 or less.
  • Pm / Pt when Pm / Pt is less than 1, there is a risk that frost adheres to the intermediate portion at an early stage, the ventilation resistance increases, the heat exchange area on the air outlet side is insufficient, and the heat exchange performance is lowered.
  • Pm / Pt exceeds 8.4, the air is not sufficiently cooled at the intermediate portion, and there is a risk that frost will adhere to the fin on the air outlet side at an early stage. Therefore, more preferably, Pm / Pt is 6.8 or less.
  • the relationship between the fin pitch Pb and the fin pitch Pm is not particularly limited, but 0.3 ⁇ Pb / Pm ⁇ 20, preferably 0.7 ⁇ Pb / Pm ⁇ 9.1, more preferably 1 ⁇ Pb / Pm ⁇ 9.1.
  • the metal pipe is preferably made of copper or copper alloy, or aluminum or aluminum alloy.
  • aluminum or aluminum alloy for metal piping include JIS A1050, JIS A1100, JIS A1200, and JIS A3003.
  • copper or copper alloy for metal piping include JIS H3300 C1220 and JIS H3300 C5010.
  • the refrigerant circulating in the metal pipe may be selected R134a, R600a, from one of CO 2.
  • R600a is the most common and has a low environmental load, and is suitable for use in a heat exchanger for a refrigerator-freezer.
  • cheaper R134a may be used, and CO2 with a low environmental load may be used.
  • the refrigerator-freezer heat exchanger 1 has a plurality of fin groups 2 each composed of a plurality of fins 20 arranged in a row at a predetermined interval in parallel, and the plurality of fin groups. 1 and 2 are arranged at a predetermined interval C in the flow direction of the fluid to be cooled (flowing in the direction of the arrow X) flowing through the refrigerator-freezer, and sequentially arranged through the fins 20 in the fin group 2 so as to present a meandering form. It has one or more metal pipes 3.
  • the fin 20 is made of a rectangular aluminum or aluminum alloy plate. And the fin pitch Pb in the fin group 2 (a) located in the most upstream in the flow direction (arrow X direction) of the fluid to be cooled (air), the fin pitch Pt in the fin group 2 (g) located in the most downstream, these The fin pitch Pm in the fin group 2 (m) positioned between 10 mm ⁇ Pb ⁇ 20 mm, 1.8 ⁇ Pt ⁇ 5.0 mm, 2.2 ⁇ Pm ⁇ 15 mm, 2 ⁇ Pb / Pt ⁇ 11.2 1 ⁇ Pm / Pt ⁇ 8.4. Further details will be described below.
  • the heat exchanger 1 for a refrigerator-freezer of Example 1 has a plate fin made of a plate material of material JIS A1050 and thickness of 0.20 mm as the fin 20.
  • Each of the fins 20 has a rectangular shape in which the length H of the short side 21 is 20 mm and the length W of the long side 21 is 60 mm.
  • Each fin 20 has two through holes 25, and the metal pipes 3 are inserted through the through holes 25.
  • the inner diameter d of the through hole 25 in the fin 20 is 8 mm ⁇ , which is a dimension corresponding to the outer diameter of the metal pipe 3.
  • an inner grooved pipe made of JIS A3003, having an outer diameter ⁇ of 8 mm, and having a groove on the inner peripheral surface was used.
  • the metal pipe 3 has a groove bottom portion with a thickness of 0.65 mm, a groove depth of 0.65 mm, and a groove number of 30.
  • the fin 20 and the metal pipe 3 are joined by expanding the metal pipe 3 with the metal pipe 3 having a slightly smaller outer diameter inserted through the through hole 25 of the fin 20.
  • the expansion of the metal pipe 3 employs either a mechanical pipe expansion method in which a mandrel (not shown) is pressed into the metal pipe 3 and moved, or a hydraulic pipe expansion method in which the metal pipe 3 is filled with oil and pressurized. Can be implemented.
  • the metal pipe 3 extends from the end 31 (FIG. 1), passes through the fin group 2 (g) on the most downstream side (uppermost side in FIG. 1), and then has a plurality of U-shaped connecting portions 35.
  • the U-shaped connecting portion 35 Through the plurality of fin groups 2 on the upstream side in order to penetrate the fin group 2 (a) on the most upstream side (the lowermost side in FIG. 1), and further, the U-shaped connecting portion 35 Through the fin group 2 (a) again, and then meander through the plurality of U-shaped connecting portions 35 so as to sequentially pass through the plurality of fin groups 2 on the downstream side (in FIG. 1) It is arranged so as to penetrate the uppermost fin group 2 (g) and reach the end 32.
  • the terminal 31 and the terminal 32 are connected to a compressor and other devices necessary for the refrigerator not shown.
  • the fin group 2 in this example has a seven-stage specification of fin groups 2 (a) to 2 (g).
  • the interval C between adjacent fin groups 2 was set to 3.0 mm.
  • the fin pitch which is the arrangement pitch of the fins 20 in the seven-stage fin group 2, is the widest, the fin pitch Pb of the most upstream fin group 2 (a) is 10.0 mm, and the most downstream fin group 2 (g).
  • the fin pitch Pt was the narrowest at 2.2 mm, and the fin pitch Pm of all the fin groups 2 (m) between them was 4.0 mm.
  • Comparative Example 1 is an example in which the basic configuration is the same as that of Example 1, and the fin pitches Pb, Pt, and Pm of all the fin groups 2 from the most upstream to the most downstream are aligned to 2.2 mm.
  • Comparative Example 2 is an example in which the basic configuration is the same as in Example 1, and the fin pitches Pb, Pt, and Pm of all the fin groups 2 from the most upstream to the most downstream are aligned to 10.0 mm.
  • Example 1 The heat exchangers of Example 1, Comparative Example 1 and Example 2 described above were incorporated into an actual refrigeration system, and an experiment was conducted to evaluate the performance. Specifically, an expansion valve, a compressor, and other necessary parts were connected to each heat exchanger to configure a known refrigeration system, and the refrigeration performance was evaluated under predetermined conditions.
  • the lower surface of the lower fin group 2 (a) in FIG. 1 be an inlet for air that is a medium to be cooled in the heat exchanger, and let the upper side in FIG. And about the conditions (air side conditions) of the air introduce
  • the pressure on the inlet side of an expansion valve (not shown) is 1.826 MPa
  • the temperature on the inlet side of the expansion valve is 25 ° C.
  • the heat exchanger The pressure at the outlet was 0.485 MPa
  • the temperature at the outlet of the heat exchanger was ⁇ 8 ° C.
  • the differential pressure between the air inlet and outlet of the heat exchanger (fin group) was measured with a fine differential pressure gauge, and the value was taken as the wind resistance (pressure loss).
  • the frost formation time was evaluated by the time from the start of evaluation until the ventilation resistance (pressure loss) reached 150 Pa.
  • Example 1 For the obtained maximum heat exchange capacity, average heat exchange capacity, and frost formation time, the result of Example 1 was set to 1, and Comparative Example 1 and Comparative Example 2 were evaluated based on the ratio. The evaluation results are shown in Table 1.
  • Example 1 As shown in Table 1, although Example 1 was inferior to Comparative Example 1 in terms of maximum heat exchange capacity and average heat exchange capacity, the frost formation time could be extended more than three times. Moreover, although the frost formation time was inferior compared with the comparative example 2, Example 1 resulted in the maximum heat exchange capability and average heat exchange capability improving significantly. From these results, it can be said that Example 1 can achieve both heat exchange performance and frost formation time as compared with Comparative Examples 1 and 2.
  • the outlet temperature of the air that is the medium to be cooled was evaluated to be appropriate when it was ⁇ 5.2 ° C. or lower, and when it exceeded that, it was evaluated as insufficient cooling performance.
  • Pressure loss is measured by measuring the differential pressure (pressure loss) between the air inlet and outlet of the heat exchanger (fin group) with a micro differential pressure gauge in the air flow path, and the pressure loss after 1 hour from the start of ventilation. Examined. A case where the pressure loss was 10 Pa or less was evaluated as appropriate, and a case where the pressure loss exceeded that was evaluated as a high pressure loss.
  • the pressure loss after 48 hours from the start of ventilation is measured in the same manner as described above, and the frosting performance is qualified when the pressure loss at that time is 10 Pa or less, and the pressure loss exceeds 10 Pa due to the frosting of the fins.
  • the case was evaluated as ineligible for frosting performance. The evaluation results are shown in Table 2.
  • the fin pitches Pb, Pt and Pm are 10 mm ⁇ Pb ⁇ 20 mm, 1.8 mm ⁇ Pt ⁇ 5.0 mm, 2.2 ⁇ Pm ⁇ 15 mm, 2 ⁇ Pb / Pt ⁇ 11.2,
  • configurations E1, E4, E9 to E11, E13, and E14 having all the relationships of 1 ⁇ Pm / Pt ⁇ 8.4, all evaluation items were appropriate or passed.
  • the structures E1 and E4 having a relationship of Pt ⁇ 2.2 mm and Pb / Pt ⁇ 5 and Pm / Pt ⁇ 6.8 exhibit particularly excellent characteristics with a small pressure loss and a good balance. I understand that.
  • the fin pitch Pm at the intermediate position is too narrow, the range of Pm / Pt is also outside the appropriate range, and the pressure loss is too high.
  • the fin pitch Pt at the most downstream is too narrow, the range of Pb / Pt and the range of Pm / Pt are out of the proper ranges, and the pressure loss becomes too high.
  • the fin pitch Pt at the most downstream is too wide and the cooling performance is insufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The purpose of the invention is to provide a heat exchanger for a freezer refrigerator that can achieve a balance between heat exchanging performance and time for frost formation by way of more efficiently disposing fins inside the heat exchanger. This heat exchanger for a freezer refrigerator: has a plurality of levels of fin groups (2); arranges the plurality of levels of fin groups (2) in the flow direction of a fluid being cooled (direction of the X arrow) with a prescribed interval (C) therebetween; and has metal piping (3) disposed so as to exhibit a serpentine shape by sequentially passing through the fins (20) in the fin groups (2). The fins (20) are formed from an aluminum or aluminum alloy metal plate. The relationships between the fin pitch (Pb) of the fin group 2(a) located furthest upstream in the flow direction of the fluid being cooled, the fin pitch (Pt) of the fin group (2(g)) located furthest downstream, and the fin pitch (Pm) of the fin groups (2(m)) located between these are: 10 mm ≤ Pb ≤ 20 mm, 1.8 mm ≤ Pt ≤ 5.0 mm, 2.2 ≤ Pm ≤ 15 mm, 2 ≤ Pb/Pt ≤ 11.2, and 1 ≤ Pm/Pt ≤ 8.4.

Description

冷凍冷蔵庫用熱交換器Heat exchanger for refrigerator
 本発明は、冷凍冷蔵庫用熱交換器に関する。 The present invention relates to a heat exchanger for a refrigerator-freezer.
 冷凍冷蔵庫に搭載される熱交換器としては、通常、サーペンタイン熱交換器が用いられる。サーペンタイン熱交換器は、互いに所定間隔を隔てて平行に1列に配された複数枚のプレートフィンと、これらのフィンを貫通する1本又は複数本の冷媒を流通させる金属配管とによって構成される。そして、1列に並んだ複数枚のフィンからなるフィン群を複数段並べ、そのフィン群の配列方向に被冷却流体である冷蔵庫内空気が流通し、複数段のフィン群を順次通過するように配置される。 A serpentine heat exchanger is usually used as a heat exchanger mounted in a refrigerator-freezer. The serpentine heat exchanger is composed of a plurality of plate fins arranged in a row in parallel at predetermined intervals, and a metal pipe through which one or a plurality of refrigerants passing through these fins are circulated. . A plurality of fin groups composed of a plurality of fins arranged in a row are arranged in a plurality of stages so that the air in the refrigerator, which is a fluid to be cooled, flows in the arrangement direction of the fin groups and sequentially passes through the plurality of fin groups. Be placed.
 冷凍冷蔵庫においては、冷凍冷蔵性能を十分に維持しつつ、食品等を収容する内容積をできる限り大きくするために、熱交換器の小型化が求められる。一方、冷凍冷蔵庫内では、熱交換器の温度が0度を下回ることがあるため、空気中に含まれる水蒸気が熱交換器のフィンに付着して霜となる。このような特殊な使用環境において、冷凍冷蔵性能、つまり熱交換性能を向上させて小型化できる構成がどのような構成であるかは、未だ解明されていない。 In refrigerator-freezers, miniaturization of heat exchangers is required in order to maximize the internal volume that accommodates food and the like while maintaining sufficient freezing and refrigeration performance. On the other hand, in the refrigerator-freezer, since the temperature of the heat exchanger may be less than 0 degrees, water vapor contained in the air adheres to the fins of the heat exchanger and becomes frost. In such a special use environment, it is not yet elucidated what kind of configuration the size can be reduced by improving the freezing / refrigeration performance, that is, the heat exchange performance.
 例えば、特許文献1においては、空気入り口側の面、又は/及び冷媒入口の上側面の一部の熱交換フィンを切り取ることにより、その面の熱交換フィンの間隔を拡げ、霜閉塞を抑制し、除霜運転の間隔を延長させ、空間内の温度上昇を抑制しようとしている。しかしながら、上述したように霜が付着することを避けられない冷凍冷蔵庫用熱交換器においては、特許文献1の構成では十分に効果を得ることができない。 For example, in patent document 1, the space | interval of the heat exchange fin of the surface is expanded by cutting off the heat exchange fin of the surface by the side of an air inlet side, and / or the upper surface of a refrigerant | coolant inlet, and suppresses frost obstruction | occlusion. , The defrosting operation interval is extended to suppress the temperature rise in the space. However, in the heat exchanger for refrigerator-freezers in which it cannot be avoided that frost adheres as above-mentioned, the effect of the structure of patent document 1 cannot fully be acquired.
特開2010-210140号公報JP 2010-210140 A
 本発明は、かかる背景に鑑みてなされたものであり、熱交換器内にフィンをより効率的に配置することにより、熱交換性能と着霜時間の両立ができる冷凍冷蔵庫用熱交換器を提供しようとするものである。 This invention is made | formed in view of this background, and provides the heat exchanger for refrigerator-freezers which can make heat-exchange performance and frost formation time compatible by arrange | positioning a fin more efficiently in a heat exchanger. It is something to try.
 本発明の一態様は、互いに所定間隔を隔てて平行に一列に配された複数枚のフィンからなるフィン群を複数段有し、当該複数段のフィン群を冷凍冷蔵庫内を流通する被冷却流体の流通方向に所定間隔を隔てて配列し、上記フィン群における上記フィンを順次貫通して蛇行形態を呈するように配置された1本または複数本の金属配管を有する冷凍冷蔵庫用熱交換器において、
 上記フィンは、アルミニウムもしくはアルミニウム合金製の板からなり、
 上記被冷却流体の流通方向の最上流に位置する上記フィン群におけるフィンピッチPb、最下流に位置する上記フィン群におけるフィンピッチPt、これらの間に位置する上記フィン群におけるフィンピッチPmが、
 10mm≦Pb≦20mm、
 1.8mm≦Pt≦5.0mm、
 2.2≦Pm≦15mm、
 2≦Pb/Pt≦11.2、
 1≦Pm/Pt≦8.4
の関係を有することを特徴とする冷凍冷蔵庫用熱交換器にある。
One embodiment of the present invention includes a plurality of fin groups each including a plurality of fins arranged in a row at a predetermined interval in parallel, and a fluid to be cooled that circulates in the refrigerator-freezer through the plurality of fin groups. In a heat exchanger for a refrigerator / freezer having one or a plurality of metal pipes arranged so as to meander in a meandering manner by sequentially passing through the fins in the fin group.
The fin is made of a plate made of aluminum or aluminum alloy,
The fin pitch Pb in the fin group located at the most upstream in the flow direction of the fluid to be cooled, the fin pitch Pt in the fin group located at the most downstream, and the fin pitch Pm in the fin group located therebetween
10 mm ≦ Pb ≦ 20 mm,
1.8 mm ≦ Pt ≦ 5.0 mm,
2.2 ≦ Pm ≦ 15 mm,
2 ≦ Pb / Pt ≦ 11.2,
1 ≦ Pm / Pt ≦ 8.4
It is in the heat exchanger for refrigerator-freezers characterized by having these relationships.
 上記冷凍冷蔵庫用熱交換器は、上記のごとく、冷凍冷蔵庫内を流通する被冷却流体の入側から出側に向かって、フィンピッチを狭くなるよう変化させる一方で、その具体的な寸法を上記特定の範囲に限定している。これにより、熱交換性能を維持しながら着霜時間を比較的長くすることができ、熱交換性能と着霜時間の両立を実現することができる。 As described above, the heat exchanger for the refrigerator-freezer changes the fin pitch from the inlet side to the outlet side of the fluid to be cooled that circulates in the refrigerator-freezer while narrowing the specific dimensions thereof. Limited to a specific range. Thereby, frost formation time can be made comparatively long, maintaining heat exchange performance, and coexistence of heat exchange performance and frost formation time can be realized.
実施形態1における、冷凍冷蔵庫用熱交換器の構成を示す説明図。Explanatory drawing which shows the structure of the heat exchanger for refrigerator-freezers in Embodiment 1. FIG.
 上記フィンは、上述したごとく、アルミニウムもしくはアルミニウム合金製の板を用いる。より具体的には、JIS A1050,JIS A1100,JIS A1200,JIS A7072等の材質の板を用いることができる。 As described above, the fin is made of aluminum or an aluminum alloy plate. More specifically, a plate made of JIS A1050, JIS A1100, JIS A1200, JIS A7072 or the like can be used.
 また、上記フィンは、その厚さが0.08~0.25mmであることが好ましい。フィンの厚さが0.08mm未満の場合には、放熱効率、すなわち、放熱面全体が熱源と同じ温度であった場合の放熱量と実際の放熱量との比率を表す「フィン効率」が低下するおそれがあり、一方、フィン厚さが0.25mmを超える場合には、フィン効率の向上効果が飽和し、かつ、全体重量の増大を招くおそれがある。 Further, it is preferable that the fin has a thickness of 0.08 to 0.25 mm. When the fin thickness is less than 0.08 mm, the heat dissipation efficiency, that is, the “fin efficiency” that represents the ratio of the heat dissipation amount when the entire heat dissipation surface is the same temperature as the heat source and the actual heat dissipation amount decreases. On the other hand, if the fin thickness exceeds 0.25 mm, the effect of improving fin efficiency is saturated, and the overall weight may be increased.
 また、上記フィン群における上記フィンの配列ピッチは、被冷却流体(空気)の入側は広く、出側にいくに従い、狭くする。つまり、上記被冷却流体の流通方向の最上流に位置する上記フィン群におけるフィンピッチPb、最下流に位置する上記フィン群におけるフィンピッチPt、これらの間に位置する上記フィン群におけるフィンピッチPmが、10mm≦Pb≦20mm、1.8mm≦Pt≦11.2、2.2≦Pm≦15mmの範囲となるように設定する。 The arrangement pitch of the fins in the fin group is wide on the inlet side of the fluid to be cooled (air) and narrows as it goes to the outlet side. That is, the fin pitch Pb in the fin group located at the uppermost stream in the flow direction of the fluid to be cooled, the fin pitch Pt in the fin group located at the most downstream, and the fin pitch Pm in the fin group located between them. It sets so that it may become the range of 10 mm <= Pb <= 20mm, 1.8mm <= Pt <= 11.2, 2.2 <= Pm <= 15mm.
 被冷却流体入側(最上流側)のフィンピッチPbが10mm未満であると、霜による閉塞が早く、早期に通風抵抗が高くなる。また、フィンピッチPbが20mmより広くなると、フィンの枚数が少なくなるため、熱交換性能への影響がある。 If the fin pitch Pb on the cooled fluid inlet side (uppermost stream side) is less than 10 mm, the blockage due to frost is quick and the ventilation resistance is increased early. Further, if the fin pitch Pb is larger than 20 mm, the number of fins is reduced, which has an influence on the heat exchange performance.
 被冷却流体入側(最上流側)から2段目以降のフィンピッチPmは、温度・湿度ともやや低くなることから、入側(最上流側)よりもフィンピッチを狭くし、フィンの枚数を増やすことで熱交換性能を向上させる必要がある。そのため、フィンピッチPmは15mm以下とする。一方、フィン間の空気の流れを考慮した場合、フィンピッチPmが2.2mm未満では熱交性能の向上は期待できず、通風抵抗があがることから、2.2mm以上とする。 The fin pitch Pm after the second stage from the fluid input side (the most upstream side) is slightly lower in temperature and humidity, so the fin pitch is narrower than the inlet side (the most upstream side), and the number of fins is reduced. It is necessary to improve heat exchange performance by increasing. Therefore, the fin pitch Pm is set to 15 mm or less. On the other hand, considering the air flow between the fins, if the fin pitch Pm is less than 2.2 mm, the heat exchange performance cannot be expected and the ventilation resistance is increased.
 被冷却流体出側(最下流側)は、最も温度・湿度の低い空気が流れることから、できるだけフィン枚数を増やす必要がある。そのため、被冷却流体出側(最下流側)のフィンピッチPtは、5mm以下とする。一方、狭くしすぎると早期に霜が付着し、通風路の確保が困難になるという問題があるため、フィンピッチPtは、1.8mm以上とし、より好ましくは、2.2mm以上とするのがよい。 冷却 On the outlet side (downstream side) of the fluid to be cooled, air with the lowest temperature and humidity flows, so it is necessary to increase the number of fins as much as possible. Therefore, the fin pitch Pt on the cooled fluid outlet side (downstream side) is set to 5 mm or less. On the other hand, if it is too narrow, there is a problem that frost adheres at an early stage and it is difficult to secure a ventilation path. Therefore, the fin pitch Pt is set to 1.8 mm or more, more preferably 2.2 mm or more. Good.
 さらに、フィンピッチPb、フィンピッチPt、フィンピッチPmは、2≦Pb/Pt≦11.2、1≦Pm/Pt≦8.4の関係を満たすようにする。Pb/Ptが2未満の場合には、Pmがその中間になることから、フィンピッチの比率を変化させる効果を十分に発揮できなくなるおそれがあり、Pb/Ptが11.2を超える場合には、入側での空気の冷却が不十分となり、中段以降に早期に霜が付着するという不具合が生じるおそれがある。そのため、より好ましくは、Pb/Ptは5以下が良い。一方、Pm/Ptが1未満の場合には、中間部分に早期に霜が付着して通風抵抗が増加し、空気出側での熱交換面積が不足し熱交換性能も下がるという不具合が生じるおそれがあり、Pm/Ptが8.4を超える場合には、中間部分での空気の冷却が不十分となり、空気出側のフィンに早期に霜が付着するという不具合が生じるおそれがある。そのため、より好ましくは、Pm/Ptは6.8以下が良い。 Further, the fin pitch Pb, the fin pitch Pt, and the fin pitch Pm satisfy the relationship of 2 ≦ Pb / Pt ≦ 11.2 and 1 ≦ Pm / Pt ≦ 8.4. If Pb / Pt is less than 2, Pm will be in the middle, so there is a possibility that the effect of changing the fin pitch ratio may not be sufficiently exhibited. If Pb / Pt exceeds 11.2 The cooling of the air on the entry side becomes insufficient, and there is a risk that frost will adhere early after the middle stage. Therefore, more preferably, Pb / Pt is 5 or less. On the other hand, when Pm / Pt is less than 1, there is a risk that frost adheres to the intermediate portion at an early stage, the ventilation resistance increases, the heat exchange area on the air outlet side is insufficient, and the heat exchange performance is lowered. When Pm / Pt exceeds 8.4, the air is not sufficiently cooled at the intermediate portion, and there is a risk that frost will adhere to the fin on the air outlet side at an early stage. Therefore, more preferably, Pm / Pt is 6.8 or less.
 また、フィンピッチPbとフィンピッチPmとの関係は、特に制限されるものではないが、0.3≦Pb/Pm≦20、好ましくは0.7≦Pb/Pm≦9.1、更に好ましくは1<Pb/Pm≦9.1である。これら関係に調整することで、熱交換性能と着霜時間との効果達成をより確実に行うことができる。これら範囲を逸脱すると、隣り合うフィン同士が接触し、冷媒の通路をふさぐため着霜しやすくなったり、熱交換性能が劣化する場合がある。 The relationship between the fin pitch Pb and the fin pitch Pm is not particularly limited, but 0.3 ≦ Pb / Pm ≦ 20, preferably 0.7 ≦ Pb / Pm ≦ 9.1, more preferably 1 <Pb / Pm ≦ 9.1. By adjusting to these relationships, it is possible to more reliably achieve the effects of heat exchange performance and frost formation time. If it deviates from these ranges, adjacent fins come into contact with each other and block the refrigerant passage, so that frost formation may easily occur and heat exchange performance may deteriorate.
 また、上記金属配管は、銅又は銅合金製、あるいはアルミニウム又はアルミニウム合金製であることが好ましい。金属配管用のアルミニウム又はアルミニウム合金としては、例えば、JIS A1050、JIS A1100、JIS A1200、JIS A3003がある。また、金属配管用の銅又は銅合金としては、例えば、JIS H3300 C1220、JIS H3300 C5010がある。 The metal pipe is preferably made of copper or copper alloy, or aluminum or aluminum alloy. Examples of aluminum or aluminum alloy for metal piping include JIS A1050, JIS A1100, JIS A1200, and JIS A3003. Examples of copper or copper alloy for metal piping include JIS H3300 C1220 and JIS H3300 C5010.
 また、上記金属配管内を循環させる冷媒は、R134a、R600a、CO2のいずれかから選択することができる。これらの冷媒の中で、R600aが最も一般的であり環境負荷が低いため、冷凍冷蔵庫用熱交換器に利用するのに好適である。ただし、コスト面から、より安価なR134aを用いる場合もあり、また、環境負荷の低いCO2などを用いることもできる。 Further, the refrigerant circulating in the metal pipe may be selected R134a, R600a, from one of CO 2. Among these refrigerants, R600a is the most common and has a low environmental load, and is suitable for use in a heat exchanger for a refrigerator-freezer. However, in terms of cost, cheaper R134a may be used, and CO2 with a low environmental load may be used.
<実施形態1>
 本願の実施例にかかる冷凍冷蔵庫用熱交換器1について、図1を用いて説明する。同図に示すごとく、冷凍冷蔵庫用熱交換器1は、互いに所定間隔を隔てて平行に一列に配された複数枚のフィン20からなるフィン群2を複数段有し、当該複数段のフィン群2と冷凍冷蔵庫内を流通する被冷却流体の流通方向(矢印X方向)に所定間隔Cを隔てて配列し、フィン群2におけるフィン20を順次貫通して蛇行形態を呈するように配置された1本ないし複数本の金属配管3を有する。
<Embodiment 1>
The heat exchanger 1 for refrigerator-freezers concerning the Example of this application is demonstrated using FIG. As shown in the figure, the refrigerator-freezer heat exchanger 1 has a plurality of fin groups 2 each composed of a plurality of fins 20 arranged in a row at a predetermined interval in parallel, and the plurality of fin groups. 1 and 2 are arranged at a predetermined interval C in the flow direction of the fluid to be cooled (flowing in the direction of the arrow X) flowing through the refrigerator-freezer, and sequentially arranged through the fins 20 in the fin group 2 so as to present a meandering form. It has one or more metal pipes 3.
 フィン20は、長方形を呈するアルミニウムもしくはアルミニウム合金製の板からなる。そして、被冷却流体(空気)の流通方向(矢印X方向)の最上流に位置するフィン群2(a)におけるフィンピッチPb、最下流に位置するフィン群2(g)におけるフィンピッチPt、これらの間に位置するフィン群2(m)におけるフィンピッチPmが、10mm≦Pb≦20mm、1.8≦Pt≦5.0mm、2.2≦Pm≦15mm、2≦Pb/Pt≦11.2、1≦Pm/Pt≦8.4の関係を有する。以下、さらに詳説する。 The fin 20 is made of a rectangular aluminum or aluminum alloy plate. And the fin pitch Pb in the fin group 2 (a) located in the most upstream in the flow direction (arrow X direction) of the fluid to be cooled (air), the fin pitch Pt in the fin group 2 (g) located in the most downstream, these The fin pitch Pm in the fin group 2 (m) positioned between 10 mm ≦ Pb ≦ 20 mm, 1.8 ≦ Pt ≦ 5.0 mm, 2.2 ≦ Pm ≦ 15 mm, 2 ≦ Pb / Pt ≦ 11.2 1 ≦ Pm / Pt ≦ 8.4. Further details will be described below.
(実施例1)
 実施例1の冷凍冷蔵庫用熱交換器1は、フィン20として、材質JIS A1050、厚さ0.20mmの板材からなるプレートフィンを有する。フィン20は、それぞれ、短辺21の長さHが20mm、長辺21の長さWが60mmの長方形形状を有している。そして、各フィン20は、2箇所の貫通穴25を有し、この貫通穴25に金属配管3がそれぞれ挿通されている。
Example 1
The heat exchanger 1 for a refrigerator-freezer of Example 1 has a plate fin made of a plate material of material JIS A1050 and thickness of 0.20 mm as the fin 20. Each of the fins 20 has a rectangular shape in which the length H of the short side 21 is 20 mm and the length W of the long side 21 is 60 mm. Each fin 20 has two through holes 25, and the metal pipes 3 are inserted through the through holes 25.
 フィン20における貫通穴25の内径dは8mmφであり、これは、金属配管3の外径に相当する寸法である。金属配管3としては、本例では、材質がJIS A3003からなり、外径φが8mmで、内周面に溝を有する内面溝付管を用いた。金属配管3は、溝底の部分の肉厚が0.65mm、溝深さ0.65mm、溝条数30である。 The inner diameter d of the through hole 25 in the fin 20 is 8 mmφ, which is a dimension corresponding to the outer diameter of the metal pipe 3. As the metal pipe 3, in this example, an inner grooved pipe made of JIS A3003, having an outer diameter φ of 8 mm, and having a groove on the inner peripheral surface was used. The metal pipe 3 has a groove bottom portion with a thickness of 0.65 mm, a groove depth of 0.65 mm, and a groove number of 30.
 本例では、フィン20と金属配管3の接合は、外径が若干小さい金属配管3をフィン20の貫通穴25に挿通させた状態で、金属配管3を拡管させることによって行っている。金属配管3の拡管は、図示しないマンドレルを金属配管3の中に圧入して移動させる機械式拡管方法と、金属配管3の中に油を充填して加圧する油圧式拡管方法のいずれかを採用することによって実施することができる。 In this example, the fin 20 and the metal pipe 3 are joined by expanding the metal pipe 3 with the metal pipe 3 having a slightly smaller outer diameter inserted through the through hole 25 of the fin 20. The expansion of the metal pipe 3 employs either a mechanical pipe expansion method in which a mandrel (not shown) is pressed into the metal pipe 3 and moved, or a hydraulic pipe expansion method in which the metal pipe 3 is filled with oil and pressurized. Can be implemented.
 金属配管3は、図1に示すごとく、末端31(図1)から伸びて最も下流側(図1における最も上側)のフィン群2(g)を貫通した後、複数のU字状連結部35を介して順次上流側の複数段のフィン群2を貫通するよう蛇行して最も上流側(図1における最も下側)のフィン群2(a)を貫通し、さらに、U字状連結部35を介して再度フィン群2(a)を貫通した後、複数のU字状連結部35を介して順次下流側の複数段のフィン群2を貫通するよう蛇行して最も下流側(図1における最も上側)のフィン群2(g)を貫通して末端32に到達するように配置されている。冷凍冷蔵庫用熱交換器1の使用時には、末端31及び末端32に、図示しない圧縮機その他の冷凍機に必要な装置が接続されることとなる。 As shown in FIG. 1, the metal pipe 3 extends from the end 31 (FIG. 1), passes through the fin group 2 (g) on the most downstream side (uppermost side in FIG. 1), and then has a plurality of U-shaped connecting portions 35. Through the plurality of fin groups 2 on the upstream side in order to penetrate the fin group 2 (a) on the most upstream side (the lowermost side in FIG. 1), and further, the U-shaped connecting portion 35 Through the fin group 2 (a) again, and then meander through the plurality of U-shaped connecting portions 35 so as to sequentially pass through the plurality of fin groups 2 on the downstream side (in FIG. 1) It is arranged so as to penetrate the uppermost fin group 2 (g) and reach the end 32. When using the heat exchanger 1 for a refrigerator-freezer, the terminal 31 and the terminal 32 are connected to a compressor and other devices necessary for the refrigerator not shown.
 本例のフィン群2は、フィン群2(a)~2(g)の7段の仕様とした。隣り合うフィン群2の間隔Cは、いずれも3.0mmとした。7段のフィン群2におけるフィン20の配列ピッチであるフィンピッチは、最上流のフィン群2(a)のフィンピッチPbは10.0mmと一番広く、最下流のフィン群2(g)のフィンピッチPtは2.2mmと一番狭く、これらの間のすべてのフィン群2(m)のフィンピッチPmは4.0mmにした。 The fin group 2 in this example has a seven-stage specification of fin groups 2 (a) to 2 (g). The interval C between adjacent fin groups 2 was set to 3.0 mm. The fin pitch, which is the arrangement pitch of the fins 20 in the seven-stage fin group 2, is the widest, the fin pitch Pb of the most upstream fin group 2 (a) is 10.0 mm, and the most downstream fin group 2 (g). The fin pitch Pt was the narrowest at 2.2 mm, and the fin pitch Pm of all the fin groups 2 (m) between them was 4.0 mm.
(比較例1、2)
 比較例1は、基本構成は実施例1と同様とし、最上流から最下流の全てのフィン群2のフィンピッチPb、Pt、Pmを、2.2mmに揃えた例である。比較例2は、基本構成は実施例1と同様とし、最上流から最下流の全てのフィン群2のフィンピッチPb、Pt、Pmを、10.0mmに揃えた例である。
(Comparative Examples 1 and 2)
Comparative Example 1 is an example in which the basic configuration is the same as that of Example 1, and the fin pitches Pb, Pt, and Pm of all the fin groups 2 from the most upstream to the most downstream are aligned to 2.2 mm. Comparative Example 2 is an example in which the basic configuration is the same as in Example 1, and the fin pitches Pb, Pt, and Pm of all the fin groups 2 from the most upstream to the most downstream are aligned to 10.0 mm.
(評価試験)
 上述した実施例1、比較例1及び実施例2の熱交換器を、実際の冷凍冷蔵システムに組み込み、その性能を評価する実験を行った。具体的には、各熱交換器に膨張弁、圧縮機その他の必要部品を接続して公知の冷凍システムを構成し、所定条件で冷凍性能を評価した。
(Evaluation test)
The heat exchangers of Example 1, Comparative Example 1 and Example 2 described above were incorporated into an actual refrigeration system, and an experiment was conducted to evaluate the performance. Specifically, an expansion valve, a compressor, and other necessary parts were connected to each heat exchanger to configure a known refrigeration system, and the refrigeration performance was evaluated under predetermined conditions.
 まず、図1における下側のフィン群2(a)の下面を熱交換器における被冷却媒体である空気の入口、同図の上側を出口とする。そして、入口に導入する空気の条件(空気側条件)については、その乾球温度を5.0℃、湿球温度を3.8℃、風速を0.5m/sとした。 First, let the lower surface of the lower fin group 2 (a) in FIG. 1 be an inlet for air that is a medium to be cooled in the heat exchanger, and let the upper side in FIG. And about the conditions (air side conditions) of the air introduce | transduced into an inlet_port | entrance, the dry bulb temperature was 5.0 degreeC, the wet bulb temperature was 3.8 degreeC, and the wind speed was 0.5 m / s.
 また、金属配管3の入口に導入する冷媒の条件(冷媒側条件)については、図示しない膨張弁の入側の圧力を1.826MPa、膨張弁の入側の温度を25℃、熱交換器の出口における圧力を0.485MPa、熱交換器の出口における温度を-8℃とした。 In addition, regarding the condition of the refrigerant introduced to the inlet of the metal pipe 3 (refrigerant side condition), the pressure on the inlet side of an expansion valve (not shown) is 1.826 MPa, the temperature on the inlet side of the expansion valve is 25 ° C., and the heat exchanger The pressure at the outlet was 0.485 MPa, and the temperature at the outlet of the heat exchanger was −8 ° C.
 そして、被冷却流体である空気と冷媒を流通させ、約150分間における、熱交換器の入口及び出口の空気温度と、熱交換器の入口及び出口の冷媒の温度を測定した。そして、熱交換器の入口及び出口の空気の温度差から、空気を基準にした熱交換能力(空気側能力[W])を算出した。また、熱交換器の入口及び出口の冷媒の温度差から、冷媒を基準にした熱交換能力(冷媒側能力[W])を算出した。また、算出値としては、実験期間中の平均値と、瞬間的な最高値(瞬間値)の両方を求めた。 Then, air to be cooled and refrigerant were circulated, and the air temperature at the inlet and outlet of the heat exchanger and the temperature of the refrigerant at the inlet and outlet of the heat exchanger for about 150 minutes were measured. And the heat exchange capability (air side capability [W]) on the basis of air was computed from the temperature difference of the air of the entrance and exit of a heat exchanger. Further, the heat exchange capacity (refrigerant side capacity [W]) based on the refrigerant was calculated from the temperature difference between the refrigerant at the inlet and the outlet of the heat exchanger. As the calculated values, both the average value during the experiment and the instantaneous maximum value (instantaneous value) were obtained.
 また、微差圧計により熱交換器(フィン群)の空気の入口と出口の差圧測定を行って、その値を通風抵抗(圧損)とした。そして、着霜時間は、評価開始から通風抵抗(圧損)が150Paに到達するまでの時間で評価した。 In addition, the differential pressure between the air inlet and outlet of the heat exchanger (fin group) was measured with a fine differential pressure gauge, and the value was taken as the wind resistance (pressure loss). And the frost formation time was evaluated by the time from the start of evaluation until the ventilation resistance (pressure loss) reached 150 Pa.
 得られた最大熱交換能力、平均熱交換能力、及び着霜時間について、実施例1の結果を1とし、それに対する比率で比較例1及び比較例2を評価した。評価結果を表1に示す。 For the obtained maximum heat exchange capacity, average heat exchange capacity, and frost formation time, the result of Example 1 was set to 1, and Comparative Example 1 and Comparative Example 2 were evaluated based on the ratio. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すごとく、実施例1は、比較例1に比べて、最大熱交換能力及び平均熱交換能力は劣るものの、着霜時間については3倍以上に延長できた結果となった。また、実施例1は、比較例2に比べて、着霜時間は劣るものの、最大熱交換能力及び平均熱交換能力が大幅に向上する結果となった。これらの結果から、実施例1は、比較例1及び2と比較して、熱交換性能と着霜時間の両立ができるものといえる。 As shown in Table 1, although Example 1 was inferior to Comparative Example 1 in terms of maximum heat exchange capacity and average heat exchange capacity, the frost formation time could be extended more than three times. Moreover, although the frost formation time was inferior compared with the comparative example 2, Example 1 resulted in the maximum heat exchange capability and average heat exchange capability improving significantly. From these results, it can be said that Example 1 can achieve both heat exchange performance and frost formation time as compared with Comparative Examples 1 and 2.
<実施形態2>
 実施形態1における図1に示す構成(実施例1の構成)を基準とし、表2に示すごとく、フィンピッチPb、Pt、Pmを変更した複数種類の異なる構成の熱交換器において、実施形態例1の評価試験の場合と同様の条件で、フィンピッチの組合せの許容範囲を評価した。
<Embodiment 2>
In the heat exchanger having a plurality of types of different configurations in which the fin pitches Pb, Pt, and Pm are changed as shown in Table 2 with reference to the configuration shown in FIG. 1 in the first embodiment (the configuration of the first embodiment). The permissible range of fin pitch combinations was evaluated under the same conditions as in the case of the first evaluation test.
 被冷却媒体である空気の出口温度については、-5.2℃以下となった場合に適正、それを超える場合を冷却性能不足と評価した。 The outlet temperature of the air that is the medium to be cooled was evaluated to be appropriate when it was −5.2 ° C. or lower, and when it exceeded that, it was evaluated as insufficient cooling performance.
 圧損(Pa)は、通風する流路において熱交換器(フィン群)の空気の入口と出口の差圧(圧損)を微差圧計により測定し、通風を開始してから1時間後の圧損を調べた。圧損が10Pa以下の場合を適正、それを超える場合を高圧損と評価した。 Pressure loss (Pa) is measured by measuring the differential pressure (pressure loss) between the air inlet and outlet of the heat exchanger (fin group) with a micro differential pressure gauge in the air flow path, and the pressure loss after 1 hour from the start of ventilation. Examined. A case where the pressure loss was 10 Pa or less was evaluated as appropriate, and a case where the pressure loss exceeded that was evaluated as a high pressure loss.
 着霜性能については、通風を開始してから48時間後の圧損を上記と同様に測定し、その時の圧損が10Pa以下の場合を着霜性能が適格、フィンの着霜により圧損が10Paを超える場合を着霜性能が不適格と評価した。評価結果を表2に示す。 Regarding the frosting performance, the pressure loss after 48 hours from the start of ventilation is measured in the same manner as described above, and the frosting performance is qualified when the pressure loss at that time is 10 Pa or less, and the pressure loss exceeds 10 Pa due to the frosting of the fins. The case was evaluated as ineligible for frosting performance. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、フィンピッチPb、Pt及びPmが、10mm≦Pb≦20mm、1.8mm≦Pt≦5.0mm、2.2≦Pm≦15mm、2≦Pb/Pt≦11.2、1≦Pm/Pt≦8.4の関係を全て具備する構成E1、E4、E9~E11、E13、及びE14については、全ての評価項目について適正又は合格となった。そのうち、さらに、Pt≧2.2mmであり、かつ、Pb/Pt≦5、Pm/Pt≦6.8の関係を有する構成E1及びE4は、特に圧損が小さく、バランスのよい優れた特性を示すことがわかる。 As can be seen from Table 2, the fin pitches Pb, Pt and Pm are 10 mm ≦ Pb ≦ 20 mm, 1.8 mm ≦ Pt ≦ 5.0 mm, 2.2 ≦ Pm ≦ 15 mm, 2 ≦ Pb / Pt ≦ 11.2, Regarding configurations E1, E4, E9 to E11, E13, and E14 having all the relationships of 1 ≦ Pm / Pt ≦ 8.4, all evaluation items were appropriate or passed. Among them, the structures E1 and E4 having a relationship of Pt ≧ 2.2 mm and Pb / Pt ≦ 5 and Pm / Pt ≦ 6.8 exhibit particularly excellent characteristics with a small pressure loss and a good balance. I understand that.
 一方、構成C2及びC3は、最上流におけるフィンピッチPbが狭すぎ、Pb/Ptの範囲も適正範囲を外れ、着霜が不合格となった。 On the other hand, in the configurations C2 and C3, the fin pitch Pb in the uppermost stream was too narrow, the range of Pb / Pt was also outside the appropriate range, and frost formation was rejected.
 構成C5は、最上流におけるフィンピッチPbが広すぎ、冷却性能不足となった。 In configuration C5, the fin pitch Pb in the uppermost stream was too wide, resulting in insufficient cooling performance.
 構成C6は、中間位置のフィンピッチPmが狭すぎ、Pm/Ptの範囲も適正範囲を外れ、圧損が高くなりすぎる結果になった。 In the configuration C6, the fin pitch Pm at the intermediate position is too narrow, the range of Pm / Pt is also outside the appropriate range, and the pressure loss is too high.
 構成C7は、中間位置のフィンピッチPmが広すぎ、冷却性能不足となった。 In configuration C7, the fin pitch Pm at the intermediate position was too wide, resulting in insufficient cooling performance.
 構成C8は、最下流におけるフィンピッチPtが狭すぎ、Pb/Ptの範囲及びPm/Ptの範囲が適正範囲を外れ、圧損が高くなりすぎる結果になった。 In the configuration C8, the fin pitch Pt at the most downstream is too narrow, the range of Pb / Pt and the range of Pm / Pt are out of the proper ranges, and the pressure loss becomes too high.
 構成C12は、最下流におけるフィンピッチPtが広すぎ、冷却性能不足となった。 In the configuration C12, the fin pitch Pt at the most downstream is too wide and the cooling performance is insufficient.

Claims (7)

  1.  互いに所定間隔を隔てて平行に一列に配された複数枚のフィンからなるフィン群を複数段有し、当該複数段のフィン群を冷凍冷蔵庫内を流通する被冷却流体の流通方向に所定間隔を隔てて配列し、上記フィン群における上記フィンを順次貫通して蛇行形態を呈するように配置された1本または複数本の金属配管を有する冷凍冷蔵庫用熱交換器において、
     上記フィンは、アルミニウムもしくはアルミニウム合金製の板からなり、
     上記被冷却流体の流通方向の最上流に位置する上記フィン群におけるフィンピッチPb、最下流に位置する上記フィン群におけるフィンピッチPt、これらの間に位置する上記フィン群におけるフィンピッチPmが、
     10mm≦Pb≦20mm、
     1.8mm≦Pt≦5.0mm、
     2.2≦Pm≦15mm、
     2≦Pb/Pt≦11.2、
     1≦Pm/Pt≦8.4
    の関係を有する、冷凍冷蔵庫用熱交換器。
    There are a plurality of fin groups composed of a plurality of fins arranged in a row in parallel with each other at a predetermined interval, and the predetermined interval is set in the flow direction of the fluid to be cooled that circulates in the refrigerator-freezer through the plurality of fin groups. In the heat exchanger for a refrigerator / freezer having one or a plurality of metal pipes arranged to be spaced apart and arranged so as to sequentially pass through the fins in the fin group and exhibit a meandering form,
    The fin is made of a plate made of aluminum or aluminum alloy,
    The fin pitch Pb in the fin group located at the most upstream in the flow direction of the fluid to be cooled, the fin pitch Pt in the fin group located at the most downstream, and the fin pitch Pm in the fin group located therebetween
    10 mm ≦ Pb ≦ 20 mm,
    1.8 mm ≦ Pt ≦ 5.0 mm,
    2.2 ≦ Pm ≦ 15 mm,
    2 ≦ Pb / Pt ≦ 11.2,
    1 ≦ Pm / Pt ≦ 8.4
    A heat exchanger for a refrigerator-freezer having the relationship
  2.  上記フィンピッチPb、Pt及びPmは、
     2.2mm≦Pt≦5.0mm、
     2≦Pb/Pt≦5、
     1≦Pm/Pt≦6.8
    の関係を有する、請求項1に記載の冷凍冷蔵庫用熱交換器。
    The fin pitches Pb, Pt and Pm are
    2.2 mm ≦ Pt ≦ 5.0 mm,
    2 ≦ Pb / Pt ≦ 5,
    1 ≦ Pm / Pt ≦ 6.8
    The heat exchanger for refrigerator-freezers of Claim 1 which has the relationship of these.
  3.  上記金属配管が、外径φ5~10mmの内面溝付管である請求項1又は2に記載の冷凍冷蔵庫用熱交換器。 The heat exchanger for a refrigerator / freezer according to claim 1 or 2, wherein the metal pipe is an internally grooved pipe having an outer diameter of 5 to 10 mm.
  4.  上記金属配管が銅または銅合金製、もしくはアルミニウムまたはアルミニウム合金製である請求項1~3のいずれか1項に記載の冷凍冷蔵庫用熱交換器。 The heat exchanger for a refrigerator-freezer according to any one of claims 1 to 3, wherein the metal pipe is made of copper or a copper alloy, or aluminum or an aluminum alloy.
  5.  1枚の上記フィンに複数本の上記金属配管が貫通している請求項1~4のいずれか1項に記載の冷凍冷蔵庫用熱交換器。 The heat exchanger for a refrigerator-freezer according to any one of claims 1 to 4, wherein a plurality of the metal pipes pass through one fin.
  6.  上記金属配管内を循環させる冷媒は、R134a、R600a、CO2のいずれかである、請求項1~5のいずれか1項に記載の冷凍冷蔵庫用熱交換器。 The heat exchanger for a refrigerator-freezer according to any one of claims 1 to 5, wherein the refrigerant circulating in the metal pipe is any one of R134a, R600a, and CO 2 .
  7.  上記金属配管と上記フィンが機械拡管または油圧拡管により組み付けられている請求項1~6のいずれか1項に記載の冷凍冷蔵庫用熱交換器。 The heat exchanger for a refrigerator-freezer according to any one of claims 1 to 6, wherein the metal pipe and the fin are assembled by mechanical expansion or hydraulic expansion.
PCT/JP2019/009473 2018-03-12 2019-03-08 Heat exchanger for freezer refrigerator WO2019176803A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020506481A JPWO2019176803A1 (en) 2018-03-12 2019-03-08 Heat exchanger for refrigerator / freezer
CN201980006418.4A CN111465812A (en) 2018-03-12 2019-03-08 Heat exchanger for refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018044306 2018-03-12
JP2018-044306 2018-03-12

Publications (1)

Publication Number Publication Date
WO2019176803A1 true WO2019176803A1 (en) 2019-09-19

Family

ID=67906714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009473 WO2019176803A1 (en) 2018-03-12 2019-03-08 Heat exchanger for freezer refrigerator

Country Status (3)

Country Link
JP (1) JPWO2019176803A1 (en)
CN (1) CN111465812A (en)
WO (1) WO2019176803A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112113379A (en) * 2020-10-12 2020-12-22 珠海格力电器股份有限公司 Evaporating device, control method thereof and refrigeration display cabinet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217465A (en) * 1983-05-25 1984-12-07 株式会社日本アルミ Fin tube evaporator and manufacture thereof
JPS6179778U (en) * 1984-10-30 1986-05-28
CN1737470A (en) * 2005-07-21 2006-02-22 上海交通大学 Ribbed pipe type evaporator
JP2008014571A (en) * 2006-07-06 2008-01-24 Sumitomo Light Metal Ind Ltd Heat exchanger for refrigerator and its manufacturing method
JP2008064457A (en) * 2007-11-28 2008-03-21 Sharp Corp Heat exchanger
JP2009079807A (en) * 2007-09-26 2009-04-16 Mitsubishi Electric Corp Refrigerator
JP2009192148A (en) * 2008-02-14 2009-08-27 Sumitomo Light Metal Ind Ltd Fin and tube type heat exchanger
JP2013242104A (en) * 2012-05-22 2013-12-05 Mitsubishi Electric Corp Showcase
WO2017013743A1 (en) * 2015-07-21 2017-01-26 三菱電機株式会社 Refrigerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0525969D0 (en) * 2005-12-21 2006-02-01 Hook Martin A heating module and controller that increases the efficiency of heat pumps for domestic hot water and under floor heating
CN201311135Y (en) * 2008-08-11 2009-09-16 宁波惠康实业有限公司 Fin heat exchanger
JP5405158B2 (en) * 2009-03-10 2014-02-05 三洋電機株式会社 Evaporator
CN203629159U (en) * 2013-11-29 2014-06-04 珠海格力电器股份有限公司 Refrigerant distributing device, flat tube heat exchanger, and air conditioner and heat-pump water heater employing flat tube heat exchanger
CN204187896U (en) * 2014-10-16 2015-03-04 珠海格力电器股份有限公司 Evaporimeter and air-cooler

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217465A (en) * 1983-05-25 1984-12-07 株式会社日本アルミ Fin tube evaporator and manufacture thereof
JPS6179778U (en) * 1984-10-30 1986-05-28
CN1737470A (en) * 2005-07-21 2006-02-22 上海交通大学 Ribbed pipe type evaporator
JP2008014571A (en) * 2006-07-06 2008-01-24 Sumitomo Light Metal Ind Ltd Heat exchanger for refrigerator and its manufacturing method
JP2009079807A (en) * 2007-09-26 2009-04-16 Mitsubishi Electric Corp Refrigerator
JP2008064457A (en) * 2007-11-28 2008-03-21 Sharp Corp Heat exchanger
JP2009192148A (en) * 2008-02-14 2009-08-27 Sumitomo Light Metal Ind Ltd Fin and tube type heat exchanger
JP2013242104A (en) * 2012-05-22 2013-12-05 Mitsubishi Electric Corp Showcase
WO2017013743A1 (en) * 2015-07-21 2017-01-26 三菱電機株式会社 Refrigerator

Also Published As

Publication number Publication date
CN111465812A (en) 2020-07-28
JPWO2019176803A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
EP3021064B1 (en) Heat pump device
WO2014181400A1 (en) Heat exchanger and refrigeration cycle device
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
CN114641663A (en) Heat exchanger and refrigeration cycle device
JP6575895B2 (en) Heat exchanger
WO2019176803A1 (en) Heat exchanger for freezer refrigerator
JP5627635B2 (en) Air conditioner
JP6053693B2 (en) Air conditioner
JP2005201492A (en) Heat exchanger
WO2019159520A1 (en) Heat exchanger for refrigerator-freezer
EP3524915B1 (en) Refrigeration cycle apparatus
CN113646597B (en) Refrigeration cycle device
JP2015014397A (en) Heat exchanger
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
EP3115730B1 (en) Refrigeration cycle device
JP2002372340A (en) Condenser
JP7112168B2 (en) Heat exchanger and refrigeration cycle equipment
Li et al. Tube-fin Heat Exchanger Circuitry Optimization For Improved Performance Under Frosting Conditions.
JP7290396B2 (en) Heat exchanger
JP2011058771A (en) Heat exchanger, and refrigerator and air conditioner including the heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767883

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506481

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767883

Country of ref document: EP

Kind code of ref document: A1