JPWO2019176803A1 - Heat exchanger for refrigerator / freezer - Google Patents

Heat exchanger for refrigerator / freezer Download PDF

Info

Publication number
JPWO2019176803A1
JPWO2019176803A1 JP2020506481A JP2020506481A JPWO2019176803A1 JP WO2019176803 A1 JPWO2019176803 A1 JP WO2019176803A1 JP 2020506481 A JP2020506481 A JP 2020506481A JP 2020506481 A JP2020506481 A JP 2020506481A JP WO2019176803 A1 JPWO2019176803 A1 JP WO2019176803A1
Authority
JP
Japan
Prior art keywords
fin
heat exchanger
refrigerator
freezer
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020506481A
Other languages
Japanese (ja)
Other versions
JP7660371B2 (en
Inventor
上田 薫
薫 上田
加奈 伊藤
加奈 伊藤
貴彦 水田
貴彦 水田
木村 直樹
直樹 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Publication of JPWO2019176803A1 publication Critical patent/JPWO2019176803A1/en
Application granted granted Critical
Publication of JP7660371B2 publication Critical patent/JP7660371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

熱交換器内にフィンをより効率的に配置することにより、熱交換性能と着霜時間の両立ができる冷凍冷蔵庫用熱交換器を提供すること。フィン群(2)を複数段有し、複数段のフィン群(2)を被冷却流体の流通方向(矢印X方向)に所定間隔(C)を隔てて配列し、フィン群(2)におけるフィン(20)を順次貫通して蛇行形態を呈するように配置された金属配管(3)を有する。フィン(20)は、アルミニウムもしくはアルミニウム合金製の板からなる。被冷却流体の流通方向の最上流に位置するフィン群2(a)におけるフィンピッチ(Pb)、最下流に位置するフィン群(2(g))におけるフィンピッチ(Pt)、これらの間に位置するフィン群(2(m))におけるフィンピッチ(Pm)が、10mm≦Pb≦20mm、1.8mm≦Pt≦5.0mm、2.2≦Pm≦15mm、2≦Pb/Pt≦11.2、1≦Pm/Pt≦8.4の関係を有する。To provide a heat exchanger for a freezer / refrigerator that can achieve both heat exchange performance and frost formation time by arranging fins in the heat exchanger more efficiently. The fin group (2) has a plurality of stages, and the fin group (2) having a plurality of stages is arranged in the flow direction of the fluid to be cooled (arrow X direction) at a predetermined interval (C), and the fins in the fin group (2) are arranged. It has a metal pipe (3) arranged so as to sequentially penetrate (20) and exhibit a meandering form. The fin (20) is made of a plate made of aluminum or an aluminum alloy. The fin pitch (Pb) in the fin group 2 (a) located at the uppermost stream in the flow direction of the fluid to be cooled, the fin pitch (Pt) in the fin group (2 (g)) located at the most downstream, and the position between them. The fin pitch (Pm) in the fin group (2 (m)) is 10 mm ≦ Pb ≦ 20 mm, 1.8 mm ≦ Pt ≦ 5.0 mm, 2.2 ≦ Pm ≦ 15 mm, 2 ≦ Pb / Pt ≦ 11.2. It has a relationship of 1, 1 ≦ Pm / Pt ≦ 8.4.

Description

本発明は、冷凍冷蔵庫用熱交換器に関する。 The present invention relates to a heat exchanger for a freezer / refrigerator.

冷凍冷蔵庫に搭載される熱交換器としては、通常、サーペンタイン熱交換器が用いられる。サーペンタイン熱交換器は、互いに所定間隔を隔てて平行に1列に配された複数枚のプレートフィンと、これらのフィンを貫通する1本又は複数本の冷媒を流通させる金属配管とによって構成される。そして、1列に並んだ複数枚のフィンからなるフィン群を複数段並べ、そのフィン群の配列方向に被冷却流体である冷蔵庫内空気が流通し、複数段のフィン群を順次通過するように配置される。 As the heat exchanger mounted on the refrigerator / freezer, a serpentine heat exchanger is usually used. The serpentine heat exchanger is composed of a plurality of plate fins arranged in a row in parallel at predetermined intervals from each other, and a metal pipe for passing one or a plurality of refrigerants penetrating these fins. .. Then, a group of fins composed of a plurality of fins arranged in a row is arranged in a plurality of stages, and the air in the refrigerator, which is a fluid to be cooled, flows in the arrangement direction of the fin groups so as to sequentially pass through the fin groups in the plurality of stages. Be placed.

冷凍冷蔵庫においては、冷凍冷蔵性能を十分に維持しつつ、食品等を収容する内容積をできる限り大きくするために、熱交換器の小型化が求められる。一方、冷凍冷蔵庫内では、熱交換器の温度が0度を下回ることがあるため、空気中に含まれる水蒸気が熱交換器のフィンに付着して霜となる。このような特殊な使用環境において、冷凍冷蔵性能、つまり熱交換性能を向上させて小型化できる構成がどのような構成であるかは、未だ解明されていない。 In a refrigerator / freezer, it is required to reduce the size of the heat exchanger in order to maximize the internal volume for accommodating foods and the like while maintaining sufficient refrigerating / refrigerating performance. On the other hand, in the refrigerator / freezer, the temperature of the heat exchanger may be lower than 0 ° C., so that water vapor contained in the air adheres to the fins of the heat exchanger to form frost. In such a special usage environment, it has not yet been clarified what kind of configuration can be made smaller by improving the freezing / refrigerating performance, that is, the heat exchange performance.

例えば、特許文献1においては、空気入り口側の面、又は/及び冷媒入口の上側面の一部の熱交換フィンを切り取ることにより、その面の熱交換フィンの間隔を拡げ、霜閉塞を抑制し、除霜運転の間隔を延長させ、空間内の温度上昇を抑制しようとしている。しかしながら、上述したように霜が付着することを避けられない冷凍冷蔵庫用熱交換器においては、特許文献1の構成では十分に効果を得ることができない。 For example, in Patent Document 1, by cutting off a surface on the air inlet side and / or a part of the heat exchange fins on the upper surface of the refrigerant inlet, the distance between the heat exchange fins on that surface is widened and frost blockage is suppressed. , The interval of defrosting operation is extended to suppress the temperature rise in the space. However, in the heat exchanger for a freezer / refrigerator in which frost is unavoidably attached as described above, the configuration of Patent Document 1 cannot sufficiently obtain the effect.

特開2010−210140号公報Japanese Unexamined Patent Publication No. 2010-210140

本発明は、かかる背景に鑑みてなされたものであり、熱交換器内にフィンをより効率的に配置することにより、熱交換性能と着霜時間の両立ができる冷凍冷蔵庫用熱交換器を提供しようとするものである。 The present invention has been made in view of this background, and provides a heat exchanger for a freezer / refrigerator capable of achieving both heat exchange performance and frost formation time by arranging fins in the heat exchanger more efficiently. It is something to try.

本発明の一態様は、互いに所定間隔を隔てて平行に一列に配された複数枚のフィンからなるフィン群を複数段有し、当該複数段のフィン群を冷凍冷蔵庫内を流通する被冷却流体の流通方向に所定間隔を隔てて配列し、上記フィン群における上記フィンを順次貫通して蛇行形態を呈するように配置された1本または複数本の金属配管を有する冷凍冷蔵庫用熱交換器において、
上記フィンは、アルミニウムもしくはアルミニウム合金製の板からなり、
上記被冷却流体の流通方向の最上流に位置する上記フィン群におけるフィンピッチPb、最下流に位置する上記フィン群におけるフィンピッチPt、これらの間に位置する上記フィン群におけるフィンピッチPmが、
10mm≦Pb≦20mm、
1.8mm≦Pt≦5.0mm、
2.2≦Pm≦15mm、
2≦Pb/Pt≦11.2、
1≦Pm/Pt≦8.4
の関係を有することを特徴とする冷凍冷蔵庫用熱交換器にある。
One aspect of the present invention has a plurality of stages of fin groups composed of a plurality of fins arranged in a row in parallel with each other at predetermined intervals, and the plurality of stages of fin groups are circulated in a refrigerator / freezer. In a heat exchanger for a refrigerator / freezer having one or a plurality of metal pipes arranged so as to form a meandering shape by sequentially penetrating the fins in the fin group at predetermined intervals in the flow direction of the above.
The fins are made of aluminum or an aluminum alloy plate.
The fin pitch Pb in the fin group located at the most upstream in the flow direction of the fluid to be cooled, the fin pitch Pt in the fin group located at the most downstream, and the fin pitch Pm in the fin group located between them are
10 mm ≤ Pb ≤ 20 mm,
1.8 mm ≤ Pt ≤ 5.0 mm,
2.2 ≤ Pm ≤ 15 mm,
2 ≦ Pb / Pt ≦ 11.2,
1 ≦ Pm / Pt ≦ 8.4
It is in a heat exchanger for a freezer / refrigerator, which is characterized by having the above relationship.

上記冷凍冷蔵庫用熱交換器は、上記のごとく、冷凍冷蔵庫内を流通する被冷却流体の入側から出側に向かって、フィンピッチを狭くなるよう変化させる一方で、その具体的な寸法を上記特定の範囲に限定している。これにより、熱交換性能を維持しながら着霜時間を比較的長くすることができ、熱交換性能と着霜時間の両立を実現することができる。 As described above, the heat exchanger for the refrigerator / freezer changes the fin pitch from the inlet side to the outlet side of the fluid to be cooled flowing in the refrigerator / freezer so as to narrow the fin pitch, while adjusting the specific dimensions thereof. Limited to a specific range. As a result, the frost formation time can be relatively long while maintaining the heat exchange performance, and both the heat exchange performance and the frost formation time can be realized.

実施形態1における、冷凍冷蔵庫用熱交換器の構成を示す説明図。The explanatory view which shows the structure of the heat exchanger for a refrigerator / freezer in Embodiment 1. FIG.

上記フィンは、上述したごとく、アルミニウムもしくはアルミニウム合金製の板を用いる。より具体的には、JIS A1050,JIS A1100,JIS A1200,JIS A7072等の材質の板を用いることができる。 As the fin, as described above, a plate made of aluminum or an aluminum alloy is used. More specifically, plates made of materials such as JIS A1050, JIS A1100, JIS A1200, and JIS A7072 can be used.

また、上記フィンは、その厚さが0.08〜0.25mmであることが好ましい。フィンの厚さが0.08mm未満の場合には、放熱効率、すなわち、放熱面全体が熱源と同じ温度であった場合の放熱量と実際の放熱量との比率を表す「フィン効率」が低下するおそれがあり、一方、フィン厚さが0.25mmを超える場合には、フィン効率の向上効果が飽和し、かつ、全体重量の増大を招くおそれがある。 Further, the thickness of the fin is preferably 0.08 to 0.25 mm. When the thickness of the fin is less than 0.08 mm, the heat dissipation efficiency, that is, the "fin efficiency" which represents the ratio between the heat dissipation amount and the actual heat dissipation amount when the entire heat dissipation surface is at the same temperature as the heat source is lowered. On the other hand, if the fin thickness exceeds 0.25 mm, the effect of improving the fin efficiency may be saturated and the total weight may be increased.

また、上記フィン群における上記フィンの配列ピッチは、被冷却流体(空気)の入側は広く、出側にいくに従い、狭くする。つまり、上記被冷却流体の流通方向の最上流に位置する上記フィン群におけるフィンピッチPb、最下流に位置する上記フィン群におけるフィンピッチPt、これらの間に位置する上記フィン群におけるフィンピッチPmが、10mm≦Pb≦20mm、1.8mm≦Pt≦11.2、2.2≦Pm≦15mmの範囲となるように設定する。 Further, the arrangement pitch of the fins in the fin group is wide on the entry side of the fluid to be cooled (air) and narrows toward the exit side. That is, the fin pitch Pb in the fin group located at the uppermost stream in the flow direction of the fluid to be cooled, the fin pitch Pt in the fin group located at the most downstream, and the fin pitch Pm in the fin group located between them are Set so that the range is 10 mm ≦ Pb ≦ 20 mm, 1.8 mm ≦ Pt ≦ 11.2, 2.2 ≦ Pm ≦ 15 mm.

被冷却流体入側(最上流側)のフィンピッチPbが10mm未満であると、霜による閉塞が早く、早期に通風抵抗が高くなる。また、フィンピッチPbが20mmより広くなると、フィンの枚数が少なくなるため、熱交換性能への影響がある。 If the fin pitch Pb on the side where the fluid to be cooled (upstream side) is less than 10 mm, the blockage due to frost is quick and the ventilation resistance becomes high at an early stage. Further, when the fin pitch Pb is wider than 20 mm, the number of fins is reduced, which has an influence on the heat exchange performance.

被冷却流体入側(最上流側)から2段目以降のフィンピッチPmは、温度・湿度ともやや低くなることから、入側(最上流側)よりもフィンピッチを狭くし、フィンの枚数を増やすことで熱交換性能を向上させる必要がある。そのため、フィンピッチPmは15mm以下とする。一方、フィン間の空気の流れを考慮した場合、フィンピッチPmが2.2mm未満では熱交性能の向上は期待できず、通風抵抗があがることから、2.2mm以上とする。 Since the fin pitch Pm of the second and subsequent stages from the inlet side (upper stream side) of the fluid to be cooled is slightly lower in both temperature and humidity, the fin pitch is narrower than that of the inlet side (upper stream side) and the number of fins is reduced. It is necessary to improve the heat exchange performance by increasing the number. Therefore, the fin pitch Pm is set to 15 mm or less. On the other hand, when the air flow between the fins is taken into consideration, if the fin pitch Pm is less than 2.2 mm, improvement in heat exchange performance cannot be expected and ventilation resistance increases. Therefore, the fin pitch is set to 2.2 mm or more.

被冷却流体出側(最下流側)は、最も温度・湿度の低い空気が流れることから、できるだけフィン枚数を増やす必要がある。そのため、被冷却流体出側(最下流側)のフィンピッチPtは、5mm以下とする。一方、狭くしすぎると早期に霜が付着し、通風路の確保が困難になるという問題があるため、フィンピッチPtは、1.8mm以上とし、より好ましくは、2.2mm以上とするのがよい。 Since air with the lowest temperature and humidity flows on the side where the fluid to be cooled (the most downstream side) flows, it is necessary to increase the number of fins as much as possible. Therefore, the fin pitch Pt on the side where the fluid to be cooled (the most downstream side) is discharged is set to 5 mm or less. On the other hand, if it is made too narrow, there is a problem that frost adheres at an early stage and it becomes difficult to secure a ventilation path. Therefore, the fin pitch Pt is set to 1.8 mm or more, more preferably 2.2 mm or more. Good.

さらに、フィンピッチPb、フィンピッチPt、フィンピッチPmは、2≦Pb/Pt≦11.2、1≦Pm/Pt≦8.4の関係を満たすようにする。Pb/Ptが2未満の場合には、Pmがその中間になることから、フィンピッチの比率を変化させる効果を十分に発揮できなくなるおそれがあり、Pb/Ptが11.2を超える場合には、入側での空気の冷却が不十分となり、中段以降に早期に霜が付着するという不具合が生じるおそれがある。そのため、より好ましくは、Pb/Ptは5以下が良い。一方、Pm/Ptが1未満の場合には、中間部分に早期に霜が付着して通風抵抗が増加し、空気出側での熱交換面積が不足し熱交換性能も下がるという不具合が生じるおそれがあり、Pm/Ptが8.4を超える場合には、中間部分での空気の冷却が不十分となり、空気出側のフィンに早期に霜が付着するという不具合が生じるおそれがある。そのため、より好ましくは、Pm/Ptは6.8以下が良い。 Further, the fin pitch Pb, the fin pitch Pt, and the fin pitch Pm satisfy the relationship of 2 ≦ Pb / Pt ≦ 11.2 and 1 ≦ Pm / Pt ≦ 8.4. If Pb / Pt is less than 2, Pm is in the middle, so the effect of changing the fin pitch ratio may not be fully exerted. If Pb / Pt exceeds 11.2, it may not be fully exhibited. Insufficient cooling of the air on the entry side may cause a problem that frost adheres early after the middle stage. Therefore, more preferably, Pb / Pt is 5 or less. On the other hand, if Pm / Pt is less than 1, frost may adhere to the intermediate portion at an early stage to increase the ventilation resistance, resulting in a shortage of heat exchange area on the air outlet side and a decrease in heat exchange performance. If Pm / Pt exceeds 8.4, the air is not sufficiently cooled in the intermediate portion, and there is a possibility that frost may be attached to the fins on the air outlet side at an early stage. Therefore, more preferably, Pm / Pt is 6.8 or less.

また、フィンピッチPbとフィンピッチPmとの関係は、特に制限されるものではないが、0.3≦Pb/Pm≦20、好ましくは0.7≦Pb/Pm≦9.1、更に好ましくは1<Pb/Pm≦9.1である。これら関係に調整することで、熱交換性能と着霜時間との効果達成をより確実に行うことができる。これら範囲を逸脱すると、隣り合うフィン同士が接触し、冷媒の通路をふさぐため着霜しやすくなったり、熱交換性能が劣化する場合がある。 The relationship between the fin pitch Pb and the fin pitch Pm is not particularly limited, but is 0.3 ≦ Pb / Pm ≦ 20, preferably 0.7 ≦ Pb / Pm ≦ 9.1, and more preferably. 1 <Pb / Pm ≦ 9.1. By adjusting to these relationships, it is possible to more reliably achieve the effects of heat exchange performance and frost formation time. If it deviates from these ranges, adjacent fins may come into contact with each other and block the passage of the refrigerant, so that frost may easily form or the heat exchange performance may deteriorate.

また、上記金属配管は、銅又は銅合金製、あるいはアルミニウム又はアルミニウム合金製であることが好ましい。金属配管用のアルミニウム又はアルミニウム合金としては、例えば、JIS A1050、JIS A1100、JIS A1200、JIS A3003がある。また、金属配管用の銅又は銅合金としては、例えば、JIS H3300 C1220、JIS H3300 C5010がある。 Further, the metal pipe is preferably made of copper or a copper alloy, or aluminum or an aluminum alloy. Examples of aluminum or aluminum alloy for metal piping include JIS A1050, JIS A1100, JIS A1200, and JIS A3003. Further, examples of copper or copper alloy for metal piping include JIS H3300 C1220 and JIS H3300 C5010.

また、上記金属配管内を循環させる冷媒は、R134a、R600a、CO2のいずれかから選択することができる。これらの冷媒の中で、R600aが最も一般的であり環境負荷が低いため、冷凍冷蔵庫用熱交換器に利用するのに好適である。ただし、コスト面から、より安価なR134aを用いる場合もあり、また、環境負荷の低いCO2などを用いることもできる。Further, the refrigerant circulating in the metal pipe can be selected from any of R134a, R600a, and CO 2. Among these refrigerants, R600a is the most common and has a low environmental load, and is therefore suitable for use in heat exchangers for refrigerators and freezers. However, from the viewpoint of cost, cheaper R134a may be used, or CO2 or the like having a low environmental load can be used.

<実施形態1>
本願の実施例にかかる冷凍冷蔵庫用熱交換器1について、図1を用いて説明する。同図に示すごとく、冷凍冷蔵庫用熱交換器1は、互いに所定間隔を隔てて平行に一列に配された複数枚のフィン20からなるフィン群2を複数段有し、当該複数段のフィン群2と冷凍冷蔵庫内を流通する被冷却流体の流通方向(矢印X方向)に所定間隔Cを隔てて配列し、フィン群2におけるフィン20を順次貫通して蛇行形態を呈するように配置された1本ないし複数本の金属配管3を有する。
<Embodiment 1>
The heat exchanger 1 for a refrigerator / freezer according to the embodiment of the present application will be described with reference to FIG. As shown in the figure, the heat exchanger 1 for a refrigerator / freezer has a plurality of stages of fin groups 2 composed of a plurality of fins 20 arranged in a row in parallel at predetermined intervals from each other, and the fin group of the plurality of stages. 2 and the fluid to be cooled flowing in the refrigerator / freezer are arranged at a predetermined interval C in the flow direction (direction of arrow X), and are arranged so as to sequentially penetrate the fins 20 in the fin group 2 and exhibit a meandering form. It has one or a plurality of metal pipes 3.

フィン20は、長方形を呈するアルミニウムもしくはアルミニウム合金製の板からなる。そして、被冷却流体(空気)の流通方向(矢印X方向)の最上流に位置するフィン群2(a)におけるフィンピッチPb、最下流に位置するフィン群2(g)におけるフィンピッチPt、これらの間に位置するフィン群2(m)におけるフィンピッチPmが、10mm≦Pb≦20mm、1.8≦Pt≦5.0mm、2.2≦Pm≦15mm、2≦Pb/Pt≦11.2、1≦Pm/Pt≦8.4の関係を有する。以下、さらに詳説する。 The fin 20 is made of a rectangular aluminum or aluminum alloy plate. Then, the fin pitch Pb in the fin group 2 (a) located at the most upstream in the flow direction (arrow X direction) of the fluid to be cooled (air), the fin pitch Pt in the fin group 2 (g) located at the most downstream, and the like. The fin pitch Pm in the fin group 2 (m) located between the two is 10 mm ≦ Pb ≦ 20 mm, 1.8 ≦ Pt ≦ 5.0 mm, 2.2 ≦ Pm ≦ 15 mm, 2 ≦ Pb / Pt ≦ 11.2. It has a relationship of 1, 1 ≦ Pm / Pt ≦ 8.4. The details will be described below.

(実施例1)
実施例1の冷凍冷蔵庫用熱交換器1は、フィン20として、材質JIS A1050、厚さ0.20mmの板材からなるプレートフィンを有する。フィン20は、それぞれ、短辺21の長さHが20mm、長辺21の長さWが60mmの長方形形状を有している。そして、各フィン20は、2箇所の貫通穴25を有し、この貫通穴25に金属配管3がそれぞれ挿通されている。
(Example 1)
The heat exchanger 1 for a refrigerator / freezer according to the first embodiment has plate fins made of a material JIS A1050 and a plate material having a thickness of 0.20 mm as fins 20. Each of the fins 20 has a rectangular shape having a short side 21 having a length H of 20 mm and a long side 21 having a length W of 60 mm. Each fin 20 has two through holes 25, and the metal pipe 3 is inserted into each of the through holes 25.

フィン20における貫通穴25の内径dは8mmφであり、これは、金属配管3の外径に相当する寸法である。金属配管3としては、本例では、材質がJIS A3003からなり、外径φが8mmで、内周面に溝を有する内面溝付管を用いた。金属配管3は、溝底の部分の肉厚が0.65mm、溝深さ0.65mm、溝条数30である。 The inner diameter d of the through hole 25 in the fin 20 is 8 mmφ, which is a dimension corresponding to the outer diameter of the metal pipe 3. As the metal pipe 3, in this example, an inner grooved pipe having a material of JIS A3003, an outer diameter of 8 mm, and a groove on the inner peripheral surface was used. The metal pipe 3 has a groove bottom portion with a wall thickness of 0.65 mm, a groove depth of 0.65 mm, and a groove number of 30.

本例では、フィン20と金属配管3の接合は、外径が若干小さい金属配管3をフィン20の貫通穴25に挿通させた状態で、金属配管3を拡管させることによって行っている。金属配管3の拡管は、図示しないマンドレルを金属配管3の中に圧入して移動させる機械式拡管方法と、金属配管3の中に油を充填して加圧する油圧式拡管方法のいずれかを採用することによって実施することができる。 In this example, the fin 20 and the metal pipe 3 are joined by expanding the metal pipe 3 with the metal pipe 3 having a slightly smaller outer diameter inserted into the through hole 25 of the fin 20. For the expansion of the metal pipe 3, either a mechanical pipe expansion method in which a mandrel (not shown) is press-fitted into the metal pipe 3 to move the mandrel or a hydraulic pipe expansion method in which the metal pipe 3 is filled with oil and pressurized is adopted. It can be carried out by doing.

金属配管3は、図1に示すごとく、末端31(図1)から伸びて最も下流側(図1における最も上側)のフィン群2(g)を貫通した後、複数のU字状連結部35を介して順次上流側の複数段のフィン群2を貫通するよう蛇行して最も上流側(図1における最も下側)のフィン群2(a)を貫通し、さらに、U字状連結部35を介して再度フィン群2(a)を貫通した後、複数のU字状連結部35を介して順次下流側の複数段のフィン群2を貫通するよう蛇行して最も下流側(図1における最も上側)のフィン群2(g)を貫通して末端32に到達するように配置されている。冷凍冷蔵庫用熱交換器1の使用時には、末端31及び末端32に、図示しない圧縮機その他の冷凍機に必要な装置が接続されることとなる。 As shown in FIG. 1, the metal pipe 3 extends from the end 31 (FIG. 1), penetrates the fin group 2 (g) on the most downstream side (the uppermost side in FIG. 1), and then has a plurality of U-shaped connecting portions 35. It meanders through the fin group 2 of a plurality of stages on the upstream side sequentially through the fin group 2 (a) on the most upstream side (lowermost side in FIG. 1), and further, a U-shaped connecting portion 35. After penetrating the fin group 2 (a) again through the fin group 2, it meanders through the plurality of U-shaped connecting portions 35 so as to sequentially penetrate the fin group 2 in a plurality of stages on the downstream side, and is the most downstream side (in FIG. 1). It is arranged so as to penetrate the fin group 2 (g) on the uppermost side) and reach the terminal 32. When the heat exchanger 1 for a refrigerator / freezer is used, a compressor (not shown) or other equipment necessary for the refrigerator is connected to the terminal 31 and the terminal 32.

本例のフィン群2は、フィン群2(a)〜2(g)の7段の仕様とした。隣り合うフィン群2の間隔Cは、いずれも3.0mmとした。7段のフィン群2におけるフィン20の配列ピッチであるフィンピッチは、最上流のフィン群2(a)のフィンピッチPbは10.0mmと一番広く、最下流のフィン群2(g)のフィンピッチPtは2.2mmと一番狭く、これらの間のすべてのフィン群2(m)のフィンピッチPmは4.0mmにした。 The fin group 2 of this example has a 7-stage specification of fin groups 2 (a) to 2 (g). The distance C between the adjacent fin groups 2 was set to 3.0 mm. The fin pitch, which is the arrangement pitch of the fins 20 in the 7-stage fin group 2, is the widest, with the fin pitch Pb of the most upstream fin group 2 (a) being 10.0 mm, and that of the most downstream fin group 2 (g). The fin pitch Pt was the narrowest at 2.2 mm, and the fin pitch Pm of all the fin groups 2 (m) between them was set to 4.0 mm.

(比較例1、2)
比較例1は、基本構成は実施例1と同様とし、最上流から最下流の全てのフィン群2のフィンピッチPb、Pt、Pmを、2.2mmに揃えた例である。比較例2は、基本構成は実施例1と同様とし、最上流から最下流の全てのフィン群2のフィンピッチPb、Pt、Pmを、10.0mmに揃えた例である。
(Comparative Examples 1 and 2)
Comparative Example 1 is an example in which the basic configuration is the same as that of the first embodiment, and the fin pitches Pb, Pt, and Pm of all the fin groups 2 from the most upstream to the most downstream are aligned to 2.2 mm. Comparative Example 2 is an example in which the basic configuration is the same as that of the first embodiment, and the fin pitches Pb, Pt, and Pm of all the fin groups 2 from the most upstream to the most downstream are aligned to 10.0 mm.

(評価試験)
上述した実施例1、比較例1及び実施例2の熱交換器を、実際の冷凍冷蔵システムに組み込み、その性能を評価する実験を行った。具体的には、各熱交換器に膨張弁、圧縮機その他の必要部品を接続して公知の冷凍システムを構成し、所定条件で冷凍性能を評価した。
(Evaluation test)
An experiment was conducted in which the heat exchangers of Example 1, Comparative Example 1 and Example 2 described above were incorporated into an actual freezing and refrigerating system and their performance was evaluated. Specifically, a known refrigeration system was constructed by connecting an expansion valve, a compressor and other necessary parts to each heat exchanger, and the refrigeration performance was evaluated under predetermined conditions.

まず、図1における下側のフィン群2(a)の下面を熱交換器における被冷却媒体である空気の入口、同図の上側を出口とする。そして、入口に導入する空気の条件(空気側条件)については、その乾球温度を5.0℃、湿球温度を3.8℃、風速を0.5m/sとした。 First, the lower surface of the lower fin group 2 (a) in FIG. 1 is an inlet for air, which is a medium to be cooled in the heat exchanger, and the upper surface in the figure is an outlet. As for the conditions of the air introduced into the inlet (air side conditions), the dry-bulb temperature was 5.0 ° C, the wet-bulb temperature was 3.8 ° C, and the wind speed was 0.5 m / s.

また、金属配管3の入口に導入する冷媒の条件(冷媒側条件)については、図示しない膨張弁の入側の圧力を1.826MPa、膨張弁の入側の温度を25℃、熱交換器の出口における圧力を0.485MPa、熱交換器の出口における温度を−8℃とした。 Regarding the conditions of the refrigerant to be introduced into the inlet of the metal pipe 3 (refrigerant side conditions), the pressure on the inlet side of the expansion valve (not shown) is 1.826 MPa, the temperature on the inlet side of the expansion valve is 25 ° C., and the heat exchanger The pressure at the outlet was 0.485 MPa, and the temperature at the outlet of the heat exchanger was −8 ° C.

そして、被冷却流体である空気と冷媒を流通させ、約150分間における、熱交換器の入口及び出口の空気温度と、熱交換器の入口及び出口の冷媒の温度を測定した。そして、熱交換器の入口及び出口の空気の温度差から、空気を基準にした熱交換能力(空気側能力[W])を算出した。また、熱交換器の入口及び出口の冷媒の温度差から、冷媒を基準にした熱交換能力(冷媒側能力[W])を算出した。また、算出値としては、実験期間中の平均値と、瞬間的な最高値(瞬間値)の両方を求めた。 Then, the air and the refrigerant, which are the fluids to be cooled, were circulated, and the air temperature at the inlet and outlet of the heat exchanger and the temperature of the refrigerant at the inlet and outlet of the heat exchanger were measured for about 150 minutes. Then, the heat exchange capacity (air side capacity [W]) based on the air was calculated from the temperature difference between the air at the inlet and the outlet of the heat exchanger. Further, the heat exchange capacity (refrigerant side capacity [W]) based on the refrigerant was calculated from the temperature difference between the refrigerants at the inlet and outlet of the heat exchanger. Moreover, as the calculated value, both the average value during the experimental period and the instantaneous maximum value (instantaneous value) were obtained.

また、微差圧計により熱交換器(フィン群)の空気の入口と出口の差圧測定を行って、その値を通風抵抗(圧損)とした。そして、着霜時間は、評価開始から通風抵抗(圧損)が150Paに到達するまでの時間で評価した。 In addition, the differential pressure between the air inlet and outlet of the heat exchanger (fin group) was measured with a micro differential pressure gauge, and the value was used as the ventilation resistance (pressure loss). Then, the frost formation time was evaluated by the time from the start of the evaluation until the ventilation resistance (pressure loss) reached 150 Pa.

得られた最大熱交換能力、平均熱交換能力、及び着霜時間について、実施例1の結果を1とし、それに対する比率で比較例1及び比較例2を評価した。評価結果を表1に示す。 Regarding the obtained maximum heat exchange capacity, average heat exchange capacity, and frost formation time, the result of Example 1 was set to 1, and Comparative Example 1 and Comparative Example 2 were evaluated by the ratio to the result. The evaluation results are shown in Table 1.

Figure 2019176803
Figure 2019176803

表1に示すごとく、実施例1は、比較例1に比べて、最大熱交換能力及び平均熱交換能力は劣るものの、着霜時間については3倍以上に延長できた結果となった。また、実施例1は、比較例2に比べて、着霜時間は劣るものの、最大熱交換能力及び平均熱交換能力が大幅に向上する結果となった。これらの結果から、実施例1は、比較例1及び2と比較して、熱交換性能と着霜時間の両立ができるものといえる。 As shown in Table 1, although the maximum heat exchange capacity and the average heat exchange capacity of Example 1 were inferior to those of Comparative Example 1, the frost formation time could be extended more than three times. Further, in Example 1, although the frost formation time was inferior to that in Comparative Example 2, the maximum heat exchange capacity and the average heat exchange capacity were significantly improved. From these results, it can be said that Example 1 can achieve both heat exchange performance and frost formation time as compared with Comparative Examples 1 and 2.

<実施形態2>
実施形態1における図1に示す構成(実施例1の構成)を基準とし、表2に示すごとく、フィンピッチPb、Pt、Pmを変更した複数種類の異なる構成の熱交換器において、実施形態例1の評価試験の場合と同様の条件で、フィンピッチの組合せの許容範囲を評価した。
<Embodiment 2>
Based on the configuration shown in FIG. 1 in the first embodiment (the configuration of the first embodiment), as shown in Table 2, in a plurality of types of heat exchangers having different configurations in which the fin pitches Pb, Pt, and Pm are changed, an example of the embodiment. The allowable range of the fin pitch combination was evaluated under the same conditions as in the evaluation test of 1.

被冷却媒体である空気の出口温度については、−5.2℃以下となった場合に適正、それを超える場合を冷却性能不足と評価した。 The outlet temperature of the air, which is the medium to be cooled, was evaluated as appropriate when it was -5.2 ° C or lower, and as insufficient cooling performance when it exceeded it.

圧損(Pa)は、通風する流路において熱交換器(フィン群)の空気の入口と出口の差圧(圧損)を微差圧計により測定し、通風を開始してから1時間後の圧損を調べた。圧損が10Pa以下の場合を適正、それを超える場合を高圧損と評価した。 The pressure loss (Pa) is measured by measuring the differential pressure (pressure loss) between the air inlet and outlet of the heat exchanger (fin group) in the ventilation flow path with a micro differential pressure gauge, and the pressure loss 1 hour after the start of ventilation is measured. Examined. When the pressure loss was 10 Pa or less, it was evaluated as appropriate, and when it exceeded that, it was evaluated as high pressure loss.

着霜性能については、通風を開始してから48時間後の圧損を上記と同様に測定し、その時の圧損が10Pa以下の場合を着霜性能が適格、フィンの着霜により圧損が10Paを超える場合を着霜性能が不適格と評価した。評価結果を表2に示す。 Regarding the frost formation performance, the pressure loss 48 hours after the start of ventilation is measured in the same manner as above, and if the pressure loss at that time is 10 Pa or less, the frost formation performance is qualified, and the pressure loss exceeds 10 Pa due to frost on the fins. The case was evaluated as unsuitable for frost formation performance. The evaluation results are shown in Table 2.

Figure 2019176803
Figure 2019176803

表2からわかるように、フィンピッチPb、Pt及びPmが、10mm≦Pb≦20mm、1.8mm≦Pt≦5.0mm、2.2≦Pm≦15mm、2≦Pb/Pt≦11.2、1≦Pm/Pt≦8.4の関係を全て具備する構成E1、E4、E9〜E11、E13、及びE14については、全ての評価項目について適正又は合格となった。そのうち、さらに、Pt≧2.2mmであり、かつ、Pb/Pt≦5、Pm/Pt≦6.8の関係を有する構成E1及びE4は、特に圧損が小さく、バランスのよい優れた特性を示すことがわかる。 As can be seen from Table 2, the fin pitches Pb, Pt and Pm are 10 mm ≦ Pb ≦ 20 mm, 1.8 mm ≦ Pt ≦ 5.0 mm, 2.2 ≦ Pm ≦ 15 mm, 2 ≦ Pb / Pt ≦ 11.2, Regarding the configurations E1, E4, E9 to E11, E13, and E14 having all the relationships of 1 ≦ Pm / Pt ≦ 8.4, all the evaluation items were appropriate or passed. Among them, the configurations E1 and E4 having a relationship of Pt ≧ 2.2 mm and Pb / Pt ≦ 5 and Pm / Pt ≦ 6.8 have particularly small pressure loss and exhibit excellent well-balanced characteristics. You can see that.

一方、構成C2及びC3は、最上流におけるフィンピッチPbが狭すぎ、Pb/Ptの範囲も適正範囲を外れ、着霜が不合格となった。 On the other hand, in the configurations C2 and C3, the fin pitch Pb in the uppermost stream was too narrow, the range of Pb / Pt also deviated from the appropriate range, and the frost formation was rejected.

構成C5は、最上流におけるフィンピッチPbが広すぎ、冷却性能不足となった。 In the configuration C5, the fin pitch Pb in the uppermost stream was too wide, and the cooling performance was insufficient.

構成C6は、中間位置のフィンピッチPmが狭すぎ、Pm/Ptの範囲も適正範囲を外れ、圧損が高くなりすぎる結果になった。 In the configuration C6, the fin pitch Pm at the intermediate position was too narrow, the Pm / Pt range also deviated from the appropriate range, and the pressure loss became too high.

構成C7は、中間位置のフィンピッチPmが広すぎ、冷却性能不足となった。 In the configuration C7, the fin pitch Pm at the intermediate position was too wide, resulting in insufficient cooling performance.

構成C8は、最下流におけるフィンピッチPtが狭すぎ、Pb/Ptの範囲及びPm/Ptの範囲が適正範囲を外れ、圧損が高くなりすぎる結果になった。 In the configuration C8, the fin pitch Pt at the most downstream was too narrow, the Pb / Pt range and the Pm / Pt range were out of the appropriate range, resulting in an excessively high pressure loss.

構成C12は、最下流におけるフィンピッチPtが広すぎ、冷却性能不足となった。 In the configuration C12, the fin pitch Pt at the most downstream was too wide, resulting in insufficient cooling performance.

Claims (7)

互いに所定間隔を隔てて平行に一列に配された複数枚のフィンからなるフィン群を複数段有し、当該複数段のフィン群を冷凍冷蔵庫内を流通する被冷却流体の流通方向に所定間隔を隔てて配列し、上記フィン群における上記フィンを順次貫通して蛇行形態を呈するように配置された1本または複数本の金属配管を有する冷凍冷蔵庫用熱交換器において、
上記フィンは、アルミニウムもしくはアルミニウム合金製の板からなり、
上記被冷却流体の流通方向の最上流に位置する上記フィン群におけるフィンピッチPb、最下流に位置する上記フィン群におけるフィンピッチPt、これらの間に位置する上記フィン群におけるフィンピッチPmが、
10mm≦Pb≦20mm、
1.8mm≦Pt≦5.0mm、
2.2≦Pm≦15mm、
2≦Pb/Pt≦11.2、
1≦Pm/Pt≦8.4
の関係を有する、冷凍冷蔵庫用熱交換器。
It has a plurality of stages of fin groups consisting of a plurality of fins arranged in a row in parallel with each other at a predetermined interval, and the plurality of stages of fin groups are arranged at a predetermined interval in the flow direction of the fluid to be cooled flowing in the refrigerator / freezer. In a heat exchanger for a refrigerator / freezer having one or a plurality of metal pipes arranged apart from each other and sequentially penetrating the fins in the fin group to exhibit a meandering shape.
The fins are made of aluminum or an aluminum alloy plate.
The fin pitch Pb in the fin group located at the most upstream in the flow direction of the fluid to be cooled, the fin pitch Pt in the fin group located at the most downstream, and the fin pitch Pm in the fin group located between them are
10 mm ≤ Pb ≤ 20 mm,
1.8 mm ≤ Pt ≤ 5.0 mm,
2.2 ≤ Pm ≤ 15 mm,
2 ≦ Pb / Pt ≦ 11.2,
1 ≦ Pm / Pt ≦ 8.4
Heat exchanger for refrigerators and freezers.
上記フィンピッチPb、Pt及びPmは、
2.2mm≦Pt≦5.0mm、
2≦Pb/Pt≦5、
1≦Pm/Pt≦6.8
の関係を有する、請求項1に記載の冷凍冷蔵庫用熱交換器。
The fin pitches Pb, Pt and Pm are
2.2 mm ≤ Pt ≤ 5.0 mm,
2 ≦ Pb / Pt ≦ 5,
1 ≦ Pm / Pt ≦ 6.8
The heat exchanger for a refrigerator / freezer according to claim 1, which has the above-mentioned relationship.
上記金属配管が、外径φ5〜10mmの内面溝付管である請求項1又は2に記載の冷凍冷蔵庫用熱交換器。 The heat exchanger for a refrigerator / freezer according to claim 1 or 2, wherein the metal pipe is a pipe with an inner groove having an outer diameter of φ5 to 10 mm. 上記金属配管が銅または銅合金製、もしくはアルミニウムまたはアルミニウム合金製である請求項1〜3のいずれか1項に記載の冷凍冷蔵庫用熱交換器。 The heat exchanger for a refrigerator / freezer according to any one of claims 1 to 3, wherein the metal pipe is made of copper or a copper alloy, or aluminum or an aluminum alloy. 1枚の上記フィンに複数本の上記金属配管が貫通している請求項1〜4のいずれか1項に記載の冷凍冷蔵庫用熱交換器。 The heat exchanger for a refrigerator / freezer according to any one of claims 1 to 4, wherein a plurality of the metal pipes penetrate the one fin. 上記金属配管内を循環させる冷媒は、R134a、R600a、CO2のいずれかである、請求項1〜5のいずれか1項に記載の冷凍冷蔵庫用熱交換器。The heat exchanger for a refrigerator / freezer according to any one of claims 1 to 5, wherein the refrigerant circulating in the metal pipe is any of R134a, R600a, and CO 2. 上記金属配管と上記フィンが機械拡管または油圧拡管により組み付けられている請求項1〜6のいずれか1項に記載の冷凍冷蔵庫用熱交換器。 The heat exchanger for a refrigerator / freezer according to any one of claims 1 to 6, wherein the metal pipe and the fin are assembled by mechanical pipe expansion or hydraulic pipe expansion.
JP2020506481A 2018-03-12 2019-03-08 Heat exchangers for refrigerators and freezers Active JP7660371B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018044306 2018-03-12
JP2018044306 2018-03-12
PCT/JP2019/009473 WO2019176803A1 (en) 2018-03-12 2019-03-08 Heat exchanger for freezer refrigerator

Publications (2)

Publication Number Publication Date
JPWO2019176803A1 true JPWO2019176803A1 (en) 2021-03-11
JP7660371B2 JP7660371B2 (en) 2025-04-11

Family

ID=67906714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020506481A Active JP7660371B2 (en) 2018-03-12 2019-03-08 Heat exchangers for refrigerators and freezers

Country Status (3)

Country Link
JP (1) JP7660371B2 (en)
CN (1) CN111465812A (en)
WO (1) WO2019176803A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112113379A (en) * 2020-10-12 2020-12-22 珠海格力电器股份有限公司 Evaporating device, control method thereof and refrigeration display cabinet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217465A (en) * 1983-05-25 1984-12-07 株式会社日本アルミ Fin tube evaporator and manufacture thereof
JPS6179778U (en) * 1984-10-30 1986-05-28
CN1737470A (en) * 2005-07-21 2006-02-22 上海交通大学 Finned tube evaporator
JP2008014571A (en) * 2006-07-06 2008-01-24 Sumitomo Light Metal Ind Ltd Heat exchanger for refrigerator and its manufacturing method
JP2008064457A (en) * 2007-11-28 2008-03-21 Sharp Corp Heat exchanger
JP2009079807A (en) * 2007-09-26 2009-04-16 Mitsubishi Electric Corp Refrigerator
JP2009192148A (en) * 2008-02-14 2009-08-27 Sumitomo Light Metal Ind Ltd Fin and tube type heat exchanger
JP2010210140A (en) * 2009-03-10 2010-09-24 Sanyo Electric Co Ltd Evaporator
JP2013242104A (en) * 2012-05-22 2013-12-05 Mitsubishi Electric Corp Showcase
WO2017013743A1 (en) * 2015-07-21 2017-01-26 三菱電機株式会社 Refrigerator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0525969D0 (en) * 2005-12-21 2006-02-01 Hook Martin A heating module and controller that increases the efficiency of heat pumps for domestic hot water and under floor heating
CN201311135Y (en) * 2008-08-11 2009-09-16 宁波惠康实业有限公司 Fin heat exchanger
CN203629159U (en) * 2013-11-29 2014-06-04 珠海格力电器股份有限公司 Refrigerant flow dividing device, flat tube heat exchanger and air conditioner and heat pump water heater using same
CN204187896U (en) * 2014-10-16 2015-03-04 珠海格力电器股份有限公司 Evaporator and air cooler

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217465A (en) * 1983-05-25 1984-12-07 株式会社日本アルミ Fin tube evaporator and manufacture thereof
JPS6179778U (en) * 1984-10-30 1986-05-28
CN1737470A (en) * 2005-07-21 2006-02-22 上海交通大学 Finned tube evaporator
JP2008014571A (en) * 2006-07-06 2008-01-24 Sumitomo Light Metal Ind Ltd Heat exchanger for refrigerator and its manufacturing method
JP2009079807A (en) * 2007-09-26 2009-04-16 Mitsubishi Electric Corp Refrigerator
JP2008064457A (en) * 2007-11-28 2008-03-21 Sharp Corp Heat exchanger
JP2009192148A (en) * 2008-02-14 2009-08-27 Sumitomo Light Metal Ind Ltd Fin and tube type heat exchanger
JP2010210140A (en) * 2009-03-10 2010-09-24 Sanyo Electric Co Ltd Evaporator
JP2013242104A (en) * 2012-05-22 2013-12-05 Mitsubishi Electric Corp Showcase
WO2017013743A1 (en) * 2015-07-21 2017-01-26 三菱電機株式会社 Refrigerator

Also Published As

Publication number Publication date
JP7660371B2 (en) 2025-04-11
WO2019176803A1 (en) 2019-09-19
CN111465812A (en) 2020-07-28

Similar Documents

Publication Publication Date Title
US10627175B2 (en) Heat exchanger and refrigeration cycle apparatus
CN102200365B (en) Refrigerator
EP3021064B1 (en) Heat pump device
WO2014181400A1 (en) Heat exchanger and refrigeration cycle device
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
CN105823271B (en) Heat exchanger
WO2019159520A1 (en) Heat exchanger for refrigerator-freezer
JPWO2019176803A1 (en) Heat exchanger for refrigerator / freezer
JP5627635B2 (en) Air conditioner
JPWO2018185840A1 (en) Heat exchanger and refrigeration cycle apparatus
JP6415600B2 (en) Refrigeration cycle equipment
EP3524915B1 (en) Refrigeration cycle apparatus
WO2013094084A1 (en) Air conditioner
US20190093939A1 (en) Tube Pattern For A Refrigerator Evaporator
JP7112168B2 (en) Heat exchanger and refrigeration cycle equipment
CN113646597B (en) Refrigeration cycle device
JP2013096651A (en) Heat transfer tube with inner surface groove, heat exchanger including heat transfer tube with inner surface groove, and method of manufacturing the same
JP5020159B2 (en) Heat exchanger, refrigerator and air conditioner
JP6937915B2 (en) Heat exchanger, heat exchanger unit and refrigeration cycle equipment
JP2003279281A (en) Heat exchanger
JP2009228929A (en) Internally-grooved heat transfer pipe for evaporator
WO2020112426A1 (en) Tube pattern for a refrigerator evaporator
Park A Study on a Microchannel Condenser in a R410A A/C System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230810

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230828

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250401

R150 Certificate of patent or registration of utility model

Ref document number: 7660371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150