JP2008232600A - Heat exchanger and air conditioner equipped with the heat exchanger - Google Patents

Heat exchanger and air conditioner equipped with the heat exchanger Download PDF

Info

Publication number
JP2008232600A
JP2008232600A JP2007077250A JP2007077250A JP2008232600A JP 2008232600 A JP2008232600 A JP 2008232600A JP 2007077250 A JP2007077250 A JP 2007077250A JP 2007077250 A JP2007077250 A JP 2007077250A JP 2008232600 A JP2008232600 A JP 2008232600A
Authority
JP
Japan
Prior art keywords
heat transfer
heat exchanger
refrigerant flow
refrigerant
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007077250A
Other languages
Japanese (ja)
Other versions
JP4659779B2 (en
Inventor
Soubu Ri
相武 李
Akira Ishibashi
晃 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007077250A priority Critical patent/JP4659779B2/en
Publication of JP2008232600A publication Critical patent/JP2008232600A/en
Application granted granted Critical
Publication of JP4659779B2 publication Critical patent/JP4659779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger and an air conditioner equipped with the heat exchanger reducing ventilation resistance to increase heat exchange capacity by using a heat transfer tube having excellent heat transfer performance without increasing a pressure loss in the tube even if making a diameter small. <P>SOLUTION: The heat transfer tube 3 is formed in laterally symmetrical uneven shape on the outer peripheral surface and provided with a plurality of cylindrical refrigerant passages 32 in an axial direction at predetermined spaces in a longitudinal direction. This heat transfer tube 3 is inserted in a mounting hole 21 provided in parallel with the inflow direction A of air of a plurality of fins 2 juxtaposed along the inflow direction A of air. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱交換器及びこの熱交換器を備えた空気調和機に関するものである。   The present invention relates to a heat exchanger and an air conditioner equipped with the heat exchanger.

従来の空気調和機を構成する熱交換器に、フィンチューブ型熱交換器と呼ばれるものがある。この熱交換器は、一定の間隔で配置されてその間を気体(空気)が流れる板状フィンと、この板状フィンに直交して挿入され、内部に冷媒が流れる伝熱管とからなり、隣接する伝熱管の間に板状フィンに切り起こしによるスリット群を設けたものである。このスリット群は、スリットの側端部が風向きに対して対向するように設けられており、その側端部において空気流の速度境界層及び温度境界層を薄くすることにより、伝熱促進が行われ熱交換能力が増大するとされている(例えば、特許文献1参照)。   A heat exchanger constituting a conventional air conditioner is called a fin tube heat exchanger. This heat exchanger is composed of plate-like fins that are arranged at regular intervals and through which gas (air) flows, and heat transfer tubes that are inserted orthogonally to the plate-like fins and through which refrigerant flows, and are adjacent to each other. A slit group is formed by cutting and raising a plate-like fin between the heat transfer tubes. This slit group is provided so that the side end portion of the slit is opposed to the wind direction, and heat transfer is promoted by thinning the velocity boundary layer and the temperature boundary layer of the air flow at the side end portion. The crack heat exchange capacity is said to increase (see, for example, Patent Document 1).

特開平2−33595号公報(第3−4頁、図1−2)JP-A-2-33595 (page 3-4, FIG. 1-2)

特許文献1の熱交換器においては、伝熱管に円管を用いているため、伝熱管部における通風抵抗や伝熱管の後流側に生じる死水域を抑えることが難かしいという問題があった。
また、熱交換器の高性能化を目的として冷媒側では伝熱管内の溝形状をハインスリムすること、空気側ではフィン形状を工夫することで熱交換性能を改善しているが、さらに現状以上に高性能化するためには、伝熱管を細径化することが考えられる。しかしながら、伝熱管を細径化することにより、管内熱伝達率が増大するのに対して圧力損失が増大するため、これらを最適化することが必要になる。また、細径伝熱管は、伝熱性能的には有利であるが、伝熱管の製作費用が増大するという問題があった。
In the heat exchanger of patent document 1, since the circular tube was used for the heat exchanger tube, there existed a problem that it was difficult to suppress the ventilation resistance in a heat exchanger tube part, or the dead water area produced in the downstream of a heat exchanger tube.
In addition, the heat exchange performance has been improved by increasing the groove shape in the heat transfer tube on the refrigerant side and devising the fin shape on the air side for the purpose of improving the performance of the heat exchanger. In order to achieve high performance, it is conceivable to reduce the diameter of the heat transfer tube. However, by reducing the diameter of the heat transfer tube, the heat transfer coefficient in the tube increases, but the pressure loss increases. Therefore, it is necessary to optimize them. In addition, the small-diameter heat transfer tube is advantageous in terms of heat transfer performance, but has a problem that the manufacturing cost of the heat transfer tube increases.

本発明は、上記の課題を解決するためになされたもので、細径化しても管内圧力損失が増大せず、伝熱性能が優れた伝熱管を用いることにより、通風抵抗が減少し熱交換能力を増大することのできる熱交換器及びこの熱交換器を備えた空気調和機を提供することを目的としたものである。   The present invention has been made to solve the above-described problems. Even if the diameter is reduced, the pressure loss in the pipe does not increase, and the use of a heat transfer pipe with excellent heat transfer performance reduces the ventilation resistance and heat exchange. An object of the present invention is to provide a heat exchanger capable of increasing the capacity and an air conditioner equipped with the heat exchanger.

本発明に係る熱交換器は、外周面が左右対称の凹凸状に形成され、長手方向に所定の間隔で軸方向に複数の円筒状の冷媒流路が設けられた伝熱管を有し、該伝熱管を、空気の流入方向に沿って並設された複数のフィンの空気の流入方向と平行に設けた取付穴に挿入して一体に固定したものである。   The heat exchanger according to the present invention includes a heat transfer tube having an outer peripheral surface formed in a symmetrical uneven shape, and provided with a plurality of cylindrical refrigerant flow paths in the axial direction at predetermined intervals in the longitudinal direction, The heat transfer tube is inserted into a mounting hole provided in parallel with the air inflow direction of a plurality of fins arranged in parallel along the air inflow direction, and is fixed integrally.

また、本発明に係る空気調和機は、作動流体に冷媒を用い蒸発器及び凝縮器の両者又はいずれか一方に、上記の熱交換器を用いたものである。   Moreover, the air conditioner which concerns on this invention uses a refrigerant | coolant for a working fluid, and uses said heat exchanger for both or one of an evaporator and a condenser.

本発明によれば、管内圧力損失が増大することなく、伝熱性能が優れた細径化した伝熱管を用いたので、通風抵抗が減少し熱交換能力を増大することのできる熱交換器及びこの熱交換器を備えた空気調和機を得ることができる。   According to the present invention, since a heat transfer tube having a small diameter and excellent heat transfer performance is used without increasing the pressure loss in the tube, a heat exchanger capable of reducing the ventilation resistance and increasing the heat exchange capacity, and An air conditioner equipped with this heat exchanger can be obtained.

[実施の形態1]
図1は本発明の実施の形態1に係る熱交換器の正面図、図2は図1の伝熱管の斜視図である。
図1において、2は銅若しくは銅合金又はアルミニウム若しくはアルミニウム合金などの金属板からなる(他の実施の形態においても同様である)フィンで、空気の流入方向Aと平行に、かつ図の垂直方向(奥行方向)に所定の間隔で並設され、その上下方向にはフィン2と直交して、後述の伝熱管3が取付けられる複数の取付穴21が設けられている。この取付穴21は並設されたフィン2に直交して水平方向に貫設して設けられ、図3に示すように、取付穴21に臨むフィン2の端部は折曲げられて左右の間隔を保持している。
[Embodiment 1]
1 is a front view of a heat exchanger according to Embodiment 1 of the present invention, and FIG. 2 is a perspective view of the heat transfer tube of FIG.
In FIG. 1, 2 is a fin made of a metal plate such as copper or copper alloy, or aluminum or aluminum alloy (the same applies to other embodiments), parallel to the air inflow direction A and in the vertical direction of the figure. A plurality of mounting holes 21 to which heat transfer tubes 3 to be described later are mounted are provided in parallel in the depth direction at predetermined intervals, and perpendicular to the fins 2 in the vertical direction. The mounting holes 21 are provided so as to extend in the horizontal direction perpendicular to the fins 2 arranged side by side, and as shown in FIG. 3, the end portions of the fins 2 facing the mounting holes 21 are bent so Holding.

伝熱管3は、図2に示すように、銅若しくは銅合金又はアルミニウム若しくはアルミニウム合金などの金属材料からなり(他の実施の形態においても同様である)、空気の流入方向Aに沿って細長く形成され、外周面は後述の冷媒流路32の外形に対応した円弧状の曲面31を交互に連続させて、左右(図の上下)が対称の凹凸状に形成されており、軸方向の長さLは、並設されたフィン2の奥行方向の長さとほぼ等しいか、又はこれより若干長く形成されている。そして、長手方向(幅方向)には、所定の間隔で軸方向に複数の円筒状の冷媒流路32a,32b,32c,32d(以下、単に32と記すことがある)が平行に設けられている。なお、図には冷媒流路32を4本設けた場合を示したが、2本以上であればよい。   As shown in FIG. 2, the heat transfer tube 3 is made of a metal material such as copper, a copper alloy, aluminum, or an aluminum alloy (the same applies to other embodiments), and is elongated along the air inflow direction A. The outer peripheral surface is formed by alternately forming arcuate curved surfaces 31 corresponding to the outer shape of the refrigerant flow path 32, which will be described later, so that the left and right sides (upper and lower sides in the figure) are symmetrically uneven. L is formed to be approximately equal to or slightly longer than the length of the fins 2 arranged side by side in the depth direction. In the longitudinal direction (width direction), a plurality of cylindrical refrigerant flow paths 32a, 32b, 32c, 32d (hereinafter simply referred to as 32) are provided in parallel in the axial direction at predetermined intervals. Yes. In addition, although the figure showed the case where the four refrigerant | coolant flow paths 32 were provided, what is necessary is just two or more.

このような冷媒流路32の拡径後(後述)の内径dは1〜5mである(したがって、当初は、拡径を見込んでこれより小径に形成されている)。内径dが1mm未満であると、熱伝達率の増加量よりも圧力損失の増加量の方が大きくなり、結果として熱交換性能が低下する。また、内径dが5mmを超えると、熱交換性能が低下するばかりでなく、伝熱管3の幅(厚み)が大きくなって、空気流の圧力損失が増大する。よって、本実施の形態における冷媒流路32の拡径後の内径dを、1〜5mmとした(他の実施の形態においても同様である)。   The inner diameter d of the refrigerant flow path 32 after the diameter expansion (described later) is 1 to 5 m (therefore, initially, the diameter is expected to be larger and smaller than this). If the inner diameter d is less than 1 mm, the amount of increase in pressure loss is greater than the amount of increase in heat transfer coefficient, resulting in a decrease in heat exchange performance. When the inner diameter d exceeds 5 mm, not only the heat exchange performance is lowered, but also the width (thickness) of the heat transfer tube 3 is increased, and the pressure loss of the air flow is increased. Therefore, the inner diameter d after the diameter expansion of the refrigerant flow path 32 in the present embodiment is set to 1 to 5 mm (the same applies to other embodiments).

また、伝熱管3の隣接する冷媒流路32の間隔t2を、冷媒流路32の肉厚t1の1.5倍程度とした。これにより、伝熱管3の耐圧強度を高めることができる。
さらに、伝熱管3の外周の円弧状の曲面31の曲率半径rを、冷媒流路32の内径dの1/2より小さくした。これにより、冷媒流路32の拡径後のフィン2との接合が確実になり、接触熱抵抗の低減により熱交換効率を高めることができる。
Further, the interval t 2 between the refrigerant flow paths 32 adjacent to the heat transfer tubes 3 is set to about 1.5 times the wall thickness t 1 of the refrigerant flow path 32. Thereby, the pressure strength of the heat transfer tube 3 can be increased.
Further, the radius of curvature r of the arcuate curved surface 31 on the outer periphery of the heat transfer tube 3 was made smaller than ½ of the inner diameter d of the refrigerant flow path 32. Thereby, joining with the fin 2 after diameter expansion of the refrigerant | coolant flow path 32 becomes reliable, and heat exchange efficiency can be improved by reduction of contact thermal resistance.

このような伝熱管3は、図3に示すように、フィン2に設けた取付穴21に挿入され、図3(a)に示すように、超硬合金等の金属材料からなる拡管ビユレット玉41を用いた機械式拡管装置、あるいは、図3(b)に示すように、拡管ビユレット玉41を液体42により加圧する流体加圧式拡管装置により、冷媒流路32を拡径してフィン2に一体的に接合する。これにより、熱交換器1が構成される。   Such a heat transfer tube 3 is inserted into a mounting hole 21 provided in the fin 2 as shown in FIG. 3, and as shown in FIG. 3A, an expanded biuret ball 41 made of a metal material such as cemented carbide. As shown in FIG. 3B, the refrigerant flow passage 32 is expanded and the fin 2 is integrated with the fluid pressurization type pipe expansion apparatus that pressurizes the pipe expansion billet ball 41 with the liquid 42, as shown in FIG. Jointly. Thereby, the heat exchanger 1 is comprised.

上記のように構成した熱交換器1は、HC単一冷媒又はHCを含む混合冷媒、あるいは、R32、R410A、R407C、二酸化炭素等のいずれかの冷媒を使用する熱交換器として、蒸発器や凝縮器などに設けられる。   The heat exchanger 1 configured as described above is an HC single refrigerant or a mixed refrigerant containing HC, or a heat exchanger that uses any one of refrigerants such as R32, R410A, R407C, and carbon dioxide. It is provided in a condenser.

本実施の形態によれば、外周に曲面31の凹凸が連続して形成された左右対称形状の伝熱管3の長手方向に、所定の間隔で軸方向に複数の冷媒流路32を設けてフィン2の取付穴21に挿入し、一体的に接合したので、通風抵抗が減少し、また、冷媒流路32内の圧力損失が増大することなく、熱交換効率を向上させることのできる高効率の熱交換器1を得ることができる。   According to the present embodiment, a plurality of refrigerant flow paths 32 are provided in the longitudinal direction at predetermined intervals in the longitudinal direction of the symmetrical heat transfer tube 3 in which the irregularities of the curved surface 31 are continuously formed on the outer periphery. Since the air flow resistance is reduced and the pressure loss in the refrigerant flow path 32 is not increased, the heat exchange efficiency can be improved. The heat exchanger 1 can be obtained.

[実施の形態2]
図4は本発明の実施の形態2に係る熱交換器の伝熱管3の正面図である。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、説明を省略する。
本実施の形態は、内径dの各冷媒流路32a〜32dの内壁面に所定の間隔で、軸方向に平行して断面ほぼ四角形状の複数の突条33を延設したものである。この場合、突条33の高さh(突出長)は、0.05〜0.3mm程度とすることが望ましい。なお、突条33の断面形状は四角形状に限定するものではなく、三角形状、台形状、半円形状等、適宜の断面形状とすることができる。
[Embodiment 2]
FIG. 4 is a front view of the heat transfer tube 3 of the heat exchanger according to Embodiment 2 of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the present embodiment, a plurality of protrusions 33 having a substantially square cross section are extended in parallel to the axial direction at predetermined intervals on the inner wall surfaces of the respective refrigerant flow paths 32a to 32d having an inner diameter d. In this case, it is desirable that the height h (projection length) of the protrusion 33 is about 0.05 to 0.3 mm. In addition, the cross-sectional shape of the protrusion 33 is not limited to a quadrangular shape, and may be an appropriate cross-sectional shape such as a triangular shape, a trapezoidal shape, or a semicircular shape.

本実施の形態によれば、冷媒流路32の内壁面に複数の突条33を設けて冷媒との接触面積を増大し、かつ、突条33の高さhを0.05〜0.3mm程度としたので、流路内圧力が増大することなく、伝熱性能をより向上することができる。なお、本実施の形態に係る冷媒流路32を拡径する場合は、図3で説明した拡管ビユレット玉41の外周に、突条33に対応した溝を設ければよい。   According to the present embodiment, the plurality of protrusions 33 are provided on the inner wall surface of the refrigerant flow path 32 to increase the contact area with the refrigerant, and the height h of the protrusions 33 is 0.05 to 0.3 mm. Therefore, the heat transfer performance can be further improved without increasing the pressure in the flow path. In addition, what is necessary is just to provide the groove | channel corresponding to the protrusion 33 in the outer periphery of the pipe expansion billet ball 41 demonstrated in FIG. 3, when expanding the diameter of the refrigerant flow path 32 which concerns on this Embodiment.

[実施の形態3]
図5は本発明の実施の形態3に係る熱交換器の伝熱管の正面図である。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、説明を省略する。
本実施の形態は、伝熱管3の長手方向に設けた複数の冷媒流路32a〜32dのうち、空気の流入方向Aの下流側の冷媒流路32c,32dの内壁面に、実施の形態2の場合と同様に所定の間隔で軸方向に平行な複数の突条33を延設したものである。なお、突条33の高さhは、実施の形態2の場合と同様に、0.05〜0.3mm程度とすることが望ましい。
[Embodiment 3]
FIG. 5 is a front view of a heat transfer tube of a heat exchanger according to Embodiment 3 of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the present embodiment, among the plurality of refrigerant channels 32a to 32d provided in the longitudinal direction of the heat transfer tube 3, the inner wall surfaces of the refrigerant channels 32c and 32d on the downstream side in the air inflow direction A are arranged on the inner wall surface of the second embodiment. As in the case of the above, a plurality of protrusions 33 extending in the axial direction are extended at predetermined intervals. The height h of the ridge 33 is desirably about 0.05 to 0.3 mm as in the case of the second embodiment.

熱交換器においては、流入する空気の流入方向Aの上流側の空気と冷媒との温度差に比べて、下流側の空気と冷媒との温度差が小さくなるが、本実施の形態においては、下流側の冷媒流路32c,32dに複数の突条33を設けて冷媒との接触面積を大きくしたので、上流側の冷媒流路32a,32bとほぼ同様に熱交換効率を高めることができる。なお、図には、下流側の2本の冷媒流路32c,32dに突条33を設けた場合を示したが、最下流側の1本の冷媒流路32d、あるいは3本以上の冷媒流路(例えば、32b,32c,32d)に突条33を設けてもよい。   In the heat exchanger, the temperature difference between the downstream air and the refrigerant is smaller than the temperature difference between the upstream air and the refrigerant in the inflow direction A of the inflowing air. Since the plurality of protrusions 33 are provided in the downstream refrigerant flow paths 32c and 32d to increase the contact area with the refrigerant, the heat exchange efficiency can be increased in substantially the same manner as the upstream refrigerant flow paths 32a and 32b. Although the figure shows the case where the protrusions 33 are provided in the two downstream refrigerant flow paths 32c and 32d, the most downstream one refrigerant flow path 32d or three or more refrigerant flow paths are shown. The ridge 33 may be provided on the road (for example, 32b, 32c, 32d).

[実施の形態4]
図6は本発明の実施の形態4に係る熱交換器の伝熱管の正面図である。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、説明を省略する。
本実施の形態は、伝熱管3の長手方向に設けた複数の冷媒流路32a〜32dのうち、下流側の冷媒流路32c,32d(図には2本の冷媒流路32c,32dの場合を示してあるが、1本又は3本以上であってもよい)の内径d1を、上流側の冷媒流路32a,32bより小さく、d1<dに形成したものである。なお、本実施の形態においては、下流側の冷媒流路32c,32dを小径にしたが、伝熱管1の外周壁は上流側の冷媒流路32a,32bと同じ外周壁としたので、その分肉厚t1が厚くなり、冷媒流路32bと32c、32cと32dの間隔t2も若干大きくなる。
[Embodiment 4]
FIG. 6 is a front view of a heat transfer tube of a heat exchanger according to Embodiment 4 of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the present embodiment, among the plurality of refrigerant flow paths 32a to 32d provided in the longitudinal direction of the heat transfer tube 3, the downstream refrigerant flow paths 32c and 32d (in the case of two refrigerant flow paths 32c and 32d in the figure). While there is shown, the inner diameter d 1 of a may be) is one or three or more, the upstream side of the coolant channel 32a, less than 32b, is obtained by forming the d 1 <d. In the present embodiment, the downstream refrigerant flow paths 32c and 32d have a small diameter, but the outer peripheral wall of the heat transfer tube 1 is the same outer peripheral wall as the upstream refrigerant flow paths 32a and 32b. The wall thickness t 1 is increased, and the interval t 2 between the refrigerant flow paths 32b and 32c, and 32c and 32d is also slightly increased.

本実施の形態は、上記のように構成したので、下流側の冷媒流路32c,32dの冷媒循環量が、上流側の冷媒流路32a,32bの冷媒循環量に比べて少なくなるため、伝熱量3の出口側における気相と液相との質量比率をほぼ等しくすることができ、熱交換器全体の効率を高めることができる。   Since the present embodiment is configured as described above, the refrigerant circulation amount in the downstream refrigerant flow paths 32c and 32d is smaller than the refrigerant circulation amount in the upstream refrigerant flow paths 32a and 32b. The mass ratio of the gas phase and the liquid phase at the outlet side of the heat quantity 3 can be made substantially equal, and the efficiency of the entire heat exchanger can be increased.

図7は本実施の形態の伝熱管の他の例を示す正面図である。なお、実施の形態3及び図6の伝熱管と同じ部分には、これと同じ符号が付してある。
本例は、図6の伝熱管3と同様に、下流側の冷媒流路32c,32dの内径d1を、上流側の冷媒流路32a,32bの内径dより小さく、d1<dに形成すると共に、上流側の冷媒流路32a,32bの内周壁と、下流側の冷媒流路32c,32dの内周壁に、実施の形態3(図4)の場合と同様に、所定の間隔で軸方向に平行な複数の突条33,33aをそれぞれ設けたものである。この場合、下流側の冷媒流路32c,32dの突条33aの高さh1を、上流側の冷媒流路32a,32bの突条33の高さhより低く、h1<hとすることが望ましい。
上記のように構成した本例によれば、実施の形態3の伝熱管3の効果と、図6の伝熱管3の効果の両者を合わせた効果を得ることができる。
FIG. 7 is a front view showing another example of the heat transfer tube of the present embodiment. In addition, the same code | symbol is attached | subjected to the same part as Embodiment 3 and the heat exchanger tube of FIG.
In this example, the inner diameter d 1 of the downstream refrigerant flow paths 32c and 32d is smaller than the inner diameter d of the upstream refrigerant flow paths 32a and 32b and d 1 <d, as in the heat transfer tube 3 of FIG. In addition, the inner peripheral walls of the upstream refrigerant flow paths 32a and 32b and the inner peripheral walls of the downstream refrigerant flow paths 32c and 32d are axially spaced at predetermined intervals, as in the case of the third embodiment (FIG. 4). A plurality of protrusions 33, 33a parallel to the direction are provided. In this case, the height h 1 of the protrusion 33a of the downstream refrigerant flow paths 32c and 32d is lower than the height h of the protrusion 33 of the upstream refrigerant flow paths 32a and 32b, and h 1 <h. Is desirable.
According to this example configured as described above, it is possible to obtain an effect obtained by combining both the effect of the heat transfer tube 3 of the third embodiment and the effect of the heat transfer tube 3 of FIG.

図8は本実施の形態の伝熱管のさらに他の例を示す正面図である。
本例に係る伝熱管3は、図6の伝熱管3の下流側の小径の冷媒流路32c,32dの内周壁に、図7の伝熱管3の下流側の冷媒流路32c,32dの場合と同様に、所定の間隔で軸方向に平行な複数の突条33aを設けたものである。
本例においても、図6の伝熱管の場合と同様に、下流側の冷媒流路32c,32dの伝熱面積を大きくすることにより、より熱交換効率を高めることができる。
FIG. 8 is a front view showing still another example of the heat transfer tube of the present embodiment.
The heat transfer tube 3 according to this example is provided in the case of the refrigerant flow paths 32c and 32d on the downstream side of the heat transfer tube 3 in FIG. Similarly, a plurality of protrusions 33a parallel to the axial direction are provided at predetermined intervals.
Also in this example, as in the case of the heat transfer tube of FIG. 6, the heat exchange efficiency can be further increased by increasing the heat transfer area of the downstream refrigerant flow paths 32c and 32d.

[実施の形態5]
図9は本発明の実施の形態5に係る熱交換器の説明図、図10は図9の要部の説明図である。
横方向に所定の間隔で空気の流入方向Aに沿って並設された複数のフィン2には、これと直交して上下方向に4本の伝熱管3a,3b,3c,3dが設けられている。なお、図には、伝熱管3a〜3dにそれぞれ3本の冷媒流路32a〜32cを設けた場合が示してある。
[Embodiment 5]
FIG. 9 is an explanatory view of a heat exchanger according to Embodiment 5 of the present invention, and FIG. 10 is an explanatory view of a main part of FIG.
The plurality of fins 2 arranged in parallel along the air inflow direction A at predetermined intervals in the lateral direction are provided with four heat transfer tubes 3a, 3b, 3c, 3d in the vertical direction perpendicular to the fins 2. Yes. In addition, the figure has shown the case where the three refrigerant | coolant flow paths 32a-32c are provided in the heat exchanger tubes 3a-3d, respectively.

そして、上下方向の中間の隣接する伝熱管3b,3cは、銅若しくは銅合金又はアルミニウム若しくはアルミニウム合金などの金属材料からなるリターンベント管35により、冷媒の入口部と出口部である伝熱管3bの下流側の冷媒流路32cと伝熱管3cの上流側の冷媒流路32a、伝熱管3bの中間の冷媒流路32bと伝熱管3cの下流側の冷媒流路32c、伝熱管3bの上流側の冷媒流路32aと伝熱管3cの中間の冷媒流路32bをそれぞれ接続したものである。なお、上部に設けた伝熱管3aは例えば冷媒出口、下部に設けた伝熱管3dは冷媒入口として、それぞれ冷媒配管(図示せず)に接続される。   The adjacent heat transfer tubes 3b, 3c in the middle in the up-down direction are connected to the heat transfer tubes 3b, which are the inlet portion and the outlet portion of the refrigerant, by a return vent tube 35 made of a metal material such as copper, copper alloy, aluminum, or aluminum alloy. A downstream refrigerant flow path 32c and an upstream refrigerant flow path 32a of the heat transfer pipe 3c, an intermediate refrigerant flow path 32b of the heat transfer pipe 3b, a downstream refrigerant flow path 32c of the heat transfer pipe 3c, and an upstream side of the heat transfer pipe 3b. The refrigerant flow path 32b and the refrigerant flow path 32b in the middle of the heat transfer tube 3c are respectively connected. The heat transfer tube 3a provided in the upper part is connected to a refrigerant pipe (not shown), for example, as a refrigerant outlet, and the heat transfer pipe 3d provided in the lower part is used as a refrigerant inlet.

上記のように構成したことにより、空気の流入方向Aの上流側の熱交換能力と、下流側の熱交換能力とのバランスをとることができるので、高能率の熱交換器を得ることができる。   By configuring as described above, it is possible to balance the heat exchange capacity on the upstream side in the air inflow direction A and the heat exchange capacity on the downstream side, so that a highly efficient heat exchanger can be obtained. .

図11は本実施の形態に係る熱交換器の他の例を示す説明図、図12は図11の要部の説明図である。
本例は、フィン2の上下方向の中間に設けた隣接する伝熱管3bと3cの、冷媒の入口部と出口部である対向する上流側の冷媒流路32aと32a、中間の冷媒流路32bと32b、下流側の冷媒流路32cと32cを、それぞれリターンベント管35で接続したものである。
FIG. 11 is an explanatory view showing another example of the heat exchanger according to the present embodiment, and FIG. 12 is an explanatory view of a main part of FIG.
In this example, the refrigerant flow passages 32a and 32a on the upstream side, which are the inlet portion and the outlet portion of the refrigerant, of the adjacent heat transfer tubes 3b and 3c provided in the middle in the vertical direction of the fin 2, and the intermediate refrigerant flow passage 32b. And 32b, and downstream refrigerant flow paths 32c and 32c are connected by a return vent pipe 35, respectively.

このように構成したことにより、出口側の伝熱管(例えば3a)の冷媒流路32a〜32cの出口側における気相と液相との質量比率がほぼ等しくなって、他段方向の熱交換器の伝熱管3dの冷媒入口に流入するので、伝熱管3の上流側の熱交換能力と下流側の熱交換能力とのバランスをとることができるので、高能力の熱交換器を得ることができる。   By comprising in this way, the mass ratio of the gaseous phase and liquid phase in the exit side of the refrigerant flow paths 32a-32c of the heat exchanger tube (for example, 3a) of an exit side becomes substantially equal, The heat exchanger of the other stage direction Since it flows into the refrigerant inlet of the heat transfer tube 3d, the heat exchange capacity on the upstream side and the heat exchange capacity on the downstream side of the heat transfer tube 3 can be balanced, so that a high capacity heat exchanger can be obtained. .

次に本発明に係る熱交換器の実施例について説明する。
実施の形態1の熱交換器において、冷媒流路32の内径dが5mmで肉厚t1が0.2mm、内径dが3mmで肉厚t1が0.2mm、内径dが2mmで肉厚t1が0.2mm、内径dが1mmで肉厚t1が0.2mmの伝熱管3をそれぞれ製作し、また、内径dが7mmで肉厚t1が0.25mm、内径dが0.6mmで肉厚t1が0.25mmの伝熱管3を製作した。
Next, examples of the heat exchanger according to the present invention will be described.
In the heat exchanger of the first embodiment, the refrigerant flow path 32 has an inner diameter d of 5 mm and a wall thickness t 1 of 0.2 mm, an inner diameter d of 3 mm, a wall thickness t 1 of 0.2 mm, and an inner diameter d of 2 mm. Heat transfer tubes 3 each having t 1 of 0.2 mm, an inner diameter d of 1 mm, and a wall thickness t 1 of 0.2 mm are manufactured, and an inner diameter d of 7 mm, a wall thickness t 1 of 0.25 mm, and an inner diameter d of 0.1 mm. A heat transfer tube 3 having a thickness t 1 of 0.25 mm and a thickness of 6 mm was manufactured.

図13は上記のそれぞれの伝熱管3の冷媒流路32の内径dをパラメータとしたサイクルの成績係数COP(熱交換器能力/圧縮機入力)を示す線図である。図に示すように、冷媒流路32の内径dが、約1.5〜2mmの場合にCOPが最大値になり、内径dが約0.8mmから約5mmの範囲内であればCOPの最大値に対して5%以内であって、確実に目標値が得られて熱交換能力が十分大きいことがわかった。なお、冷媒流路32の内径dが1mm未満ではCOPは急激に低下し、5mmを超えると徐々に低下する。
このようなことから、本発明においては、伝熱管3の冷媒流路32の内径を、前述のように1〜5mmとした。
FIG. 13 is a diagram showing a coefficient of performance COP (heat exchanger capacity / compressor input) of a cycle using the inner diameter d of the refrigerant flow path 32 of each of the heat transfer tubes 3 as a parameter. As shown in the figure, when the inner diameter d of the refrigerant flow path 32 is about 1.5 to 2 mm, the COP becomes the maximum value, and when the inner diameter d is in the range of about 0.8 mm to about 5 mm, the maximum COP is obtained. It was within 5% of the value, and it was found that the target value was reliably obtained and the heat exchange capacity was sufficiently large. In addition, COP falls rapidly when the internal diameter d of the refrigerant flow path 32 is less than 1 mm, and will fall gradually when it exceeds 5 mm.
For this reason, in the present invention, the inner diameter of the refrigerant flow path 32 of the heat transfer tube 3 is set to 1 to 5 mm as described above.

[実施の形態6]
図14は本発明の実施の形態6に係る空気調和機の空気調和サイクルの説明図、図15は本発明に係る空気調和機の室内機の説明図で、本発明に係る熱交換器が設けられた蒸発器及び凝縮器を備えたものである。
[Embodiment 6]
FIG. 14 is an explanatory diagram of an air conditioner cycle of an air conditioner according to Embodiment 6 of the present invention, and FIG. 15 is an explanatory diagram of an indoor unit of the air conditioner according to the present invention, which is provided with a heat exchanger according to the present invention. Provided with an evaporator and a condenser.

本実施の形態に係る空気調和機の空気調和サイクルは、図14に示すように、冷凍機油を含有し、本発明に係る熱交換器1の伝熱管3の冷媒流路32を流れる低温の冷媒を蒸発させ、その際の気化熱により空気や水などを冷却する蒸発器51と、蒸発器51から吐出された冷媒を圧縮し、高温、高圧にして凝縮器53へ供給する圧縮機52と、本発明に係る熱交換器1の伝熱管3の冷媒流路32に流入して高温の冷媒の熱により空気や水などを加熱する凝縮器53と、凝縮器53から吐出された冷媒を膨張させ、低温にして蒸発器51へ供給する膨張弁54とからなっている。   As shown in FIG. 14, the air-conditioning cycle of the air conditioner according to the present embodiment contains refrigeration oil and flows through the refrigerant flow path 32 of the heat transfer tube 3 of the heat exchanger 1 according to the present invention. An evaporator 51 that cools air, water, and the like by vaporization heat at that time, a compressor 52 that compresses the refrigerant discharged from the evaporator 51 and supplies the refrigerant 53 to a condenser 53 at a high temperature and a high pressure, A condenser 53 that flows into the refrigerant flow path 32 of the heat transfer tube 3 of the heat exchanger 1 according to the present invention and heats air, water, or the like by the heat of the high-temperature refrigerant, and expands the refrigerant discharged from the condenser 53. The expansion valve 54 is supplied to the evaporator 51 at a low temperature.

空気調和機が駆動され、室内域の送風機61により前面パネルに設けた吸気口62から吸込まれた室内空気は、図15に示すように、吸気口62の下流側に設けた本発明に係る熱交換器1a,1b,1cからなる蒸発器51により熱交換され、温風又は冷風となってダクト63とケーシング64によって形成された吹出し口65から室内に吹出される。   As shown in FIG. 15, the indoor air sucked from the air inlet 62 provided in the front panel by the air blower 61 in the indoor area is driven by the heat according to the present invention provided on the downstream side of the air inlet 62. Heat is exchanged by the evaporator 51 including the exchangers 1a, 1b, and 1c, and the air is blown into the room from the blowout port 65 formed by the duct 63 and the casing 64 as hot air or cold air.

本実施の形態によれば、本発明に係る熱交換器1を蒸発器51及び凝縮器53に設けたので、空気調和能力に優れた空気調和機を得ることができる。なお、本発明に係る熱交換器1を備えた空気調和機の室内機は、図示の構造に限定するものではなく、他の構造のものであってもよい。また、蒸発器51と凝縮器53の両者に本発明に係る熱交換器1を設けた場合を示したが、いずれか一方のみにこの熱交換器を設け、他方には構造の異なる熱交換器を設けてもよい。   According to this Embodiment, since the heat exchanger 1 which concerns on this invention was provided in the evaporator 51 and the condenser 53, the air conditioner excellent in the air conditioning capability can be obtained. In addition, the indoor unit of the air conditioner provided with the heat exchanger 1 according to the present invention is not limited to the illustrated structure, and may have another structure. Moreover, although the case where the heat exchanger 1 which concerns on this invention was provided in both the evaporator 51 and the condenser 53 was shown, this heat exchanger is provided only in any one, and the heat exchanger from which the structure differs in the other May be provided.

本発明の実施の形態1に係る熱交換器の正面図である。It is a front view of the heat exchanger which concerns on Embodiment 1 of this invention. 図1の伝熱管の斜視図である。It is a perspective view of the heat exchanger tube of FIG. 図2の伝熱管の冷媒流路の拡径手段の説明図である。It is explanatory drawing of the diameter expansion means of the refrigerant flow path of the heat exchanger tube of FIG. 本発明の実施の形態2に係る熱交換器の伝熱管の正面図である。It is a front view of the heat exchanger tube of the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る熱交換器の伝熱管の正面図である。It is a front view of the heat exchanger tube of the heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る熱交換器の伝熱管の正面図である。It is a front view of the heat exchanger tube of the heat exchanger which concerns on Embodiment 4 of this invention. 実施の形態4の伝熱管の他の例を示す説明図である。It is explanatory drawing which shows the other example of the heat exchanger tube of Embodiment 4. FIG. 実施の形態4の伝熱管の他の例を示す説明図である。It is explanatory drawing which shows the other example of the heat exchanger tube of Embodiment 4. FIG. 本発明の実施の形態5に係る熱交換器の説明図である。It is explanatory drawing of the heat exchanger which concerns on Embodiment 5 of this invention. 図9の要部の説明図である。It is explanatory drawing of the principal part of FIG. 実施の形態5に係る熱交換器の他の例の説明図である。It is explanatory drawing of the other example of the heat exchanger which concerns on Embodiment 5. FIG. 図11の要部の説明図である。It is explanatory drawing of the principal part of FIG. 伝熱管の冷媒流路の内径とCOPとの関係を示す線図である。It is a diagram which shows the relationship between the internal diameter of the refrigerant flow path of a heat exchanger tube, and COP. 本発明の実施の形態6に係る空気調和機の空気調和サイクルの説明図である。It is explanatory drawing of the air conditioning cycle of the air conditioner which concerns on Embodiment 6 of this invention. 本発明に係る空気調和機の室内機の説明図である。It is explanatory drawing of the indoor unit of the air conditioner which concerns on this invention.

符号の説明Explanation of symbols

1 熱交換器、2 フィン、3 伝熱管、32 冷媒流路、33 突条、35 リターンベント管、41 拡管ビユレット玉、51 蒸発器、52 圧縮機、53 凝縮器、54 膨張弁。   DESCRIPTION OF SYMBOLS 1 Heat exchanger, 2 fins, 3 heat exchanger tubes, 32 refrigerant | coolant flow path, 33 protrusion, 35 return vent pipe, 41 expanded pipette ballet, 51 evaporator, 52 compressor, 53 condenser, 54 expansion valve.

Claims (13)

外周面が左右対称の凹凸状に形成され、長手方向に所定の間隔で軸方向に複数の円筒状の冷媒流路が設けられた伝熱管を有し、該伝熱管を、空気の流入方向に沿って並設された複数のフィンの空気の流入方向と平行に設けた取付穴に挿入して一体に固定したことを特徴とする熱交換器。   The outer peripheral surface has a heat transfer tube that is formed in a symmetric uneven shape and is provided with a plurality of cylindrical refrigerant channels in the axial direction at predetermined intervals in the longitudinal direction, and the heat transfer tube is arranged in the air inflow direction. A heat exchanger characterized by being inserted into a mounting hole provided in parallel with the air inflow direction of a plurality of fins arranged side by side and fixed integrally. 前記伝熱管の冷媒流路を、機械式拡管装置又は液体加圧式拡管装置により拡径して、前記フィンに接合し固定したことを特徴とする請求項1記載の熱交換器。   The heat exchanger according to claim 1, wherein the refrigerant flow path of the heat transfer tube is expanded by a mechanical tube expansion device or a liquid pressurization tube expansion device, and is joined and fixed to the fin. 前記伝熱管に設けた冷媒流路の内周壁に、所定の間隔で軸方向に平行に延設された複数の突条を設けたことを特徴とする請求項1又は2記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein a plurality of ridges extending in parallel in the axial direction at predetermined intervals are provided on an inner peripheral wall of a refrigerant flow path provided in the heat transfer tube. 前記伝熱管に設けた複数の冷媒流路のうち、空気の流入方向の下流側の冷媒流路に前記突条を設けたことを特徴とする請求項3記載の熱交換器。   4. The heat exchanger according to claim 3, wherein the protrusion is provided in a refrigerant flow path downstream in an air inflow direction among the plurality of refrigerant flow paths provided in the heat transfer tube. 前記伝熱管に設けた複数の冷媒流路のうち、空気の流入方向の下流側の冷媒流路を、上流側の冷媒流路より小径に形成したことを特徴とする請求項1又は2記載の熱交換器。   3. The refrigerant flow path on the downstream side in the air inflow direction among the plurality of refrigerant flow paths provided in the heat transfer tube is formed to have a smaller diameter than the refrigerant flow path on the upstream side. Heat exchanger. 前記伝熱管の上流側に設けた冷媒流路と下流側に設けた冷媒流路の内周壁に、所定の間隔で軸方向に平行に延設された複数の突条を設けたことを特徴とする請求項5記載の熱交換器。   A plurality of ridges extending in parallel in the axial direction at predetermined intervals are provided on the inner peripheral wall of the refrigerant flow path provided on the upstream side of the heat transfer tube and the refrigerant flow path provided on the downstream side. The heat exchanger according to claim 5. 前記伝熱管の下流側の冷媒流路に設けた突条の高さを、上流側の冷媒流路に設けた突条の高さより低く形成したことを特徴とする請求項6記載の熱交換器。   7. The heat exchanger according to claim 6, wherein the height of the protrusion provided in the refrigerant flow path on the downstream side of the heat transfer tube is lower than the height of the protrusion provided in the refrigerant flow path on the upstream side. . 前記伝熱管に設けた下流側の小径の冷媒流路の内周壁に、所定の間隔で軸方向に平行に延設された複数の突条を設けたことを特徴とする請求項5記載の熱交換器。   6. The heat according to claim 5, wherein a plurality of ridges extending in parallel in the axial direction at predetermined intervals are provided on an inner peripheral wall of a downstream small-diameter refrigerant channel provided in the heat transfer tube. Exchanger. 前記伝熱管に設けた複数の冷媒流路の拡径後の内径を1〜5mmとしたことを特徴とする請求項1〜8のいずれかに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 8, wherein an inner diameter of each of the plurality of refrigerant channels provided in the heat transfer tube after being expanded is 1 to 5 mm. 前記並設された複数のフィンの上下方向に、該フィンと直交して複数の伝熱管を設け、隣接する一方の伝熱管の下流側の冷媒流路の冷媒入口部と、他方の伝熱管の上流側の冷媒流路の冷媒出口部とをリターンベント管でそれぞれ接続したことを特徴とする請求項1〜9のいずれかに記載の熱交換器。   In the vertical direction of the plurality of fins arranged side by side, a plurality of heat transfer tubes are provided orthogonal to the fins, the refrigerant inlet portion of the refrigerant flow path on the downstream side of one adjacent heat transfer tube, and the other heat transfer tube The heat exchanger according to any one of claims 1 to 9, wherein a return vent pipe is connected to the refrigerant outlet portion of the upstream refrigerant flow path. 前記並設された複数のフィンの上下方向に、該フィンと直交して複数の伝熱管を設け、隣接する伝熱管の対向する冷媒流路をリターンベント管でそれぞれ接続したことを特徴とする請求項1〜9のいずれかに記載の熱交換器。   A plurality of heat transfer tubes are provided in the vertical direction of the plurality of fins arranged side by side perpendicularly to the fins, and the refrigerant flow paths facing the adjacent heat transfer tubes are respectively connected by return vent tubes. Item 10. The heat exchanger according to any one of Items 1 to 9. 作動流体に冷媒を用い、蒸発器及び凝縮器の両者又はいずれか一方に、前記請求項1〜請求項11のいずれかの熱交換器を用いたことを特徴とする空気調和機。   An air conditioner using a refrigerant as a working fluid and using the heat exchanger according to any one of claims 1 to 11 for both or one of an evaporator and a condenser. 前記冷媒に、HC単一冷媒若しくはHCを含む混合冷媒、又はR32、R410A、R407C、二酸化炭素のいずれかを用いたことを特徴とする請求項12記載の空気調和機。   The air conditioner according to claim 12, wherein any one of HC single refrigerant, a mixed refrigerant containing HC, R32, R410A, R407C, and carbon dioxide is used as the refrigerant.
JP2007077250A 2007-03-23 2007-03-23 Heat exchanger and air conditioner equipped with the heat exchanger Active JP4659779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007077250A JP4659779B2 (en) 2007-03-23 2007-03-23 Heat exchanger and air conditioner equipped with the heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007077250A JP4659779B2 (en) 2007-03-23 2007-03-23 Heat exchanger and air conditioner equipped with the heat exchanger

Publications (2)

Publication Number Publication Date
JP2008232600A true JP2008232600A (en) 2008-10-02
JP4659779B2 JP4659779B2 (en) 2011-03-30

Family

ID=39905601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007077250A Active JP4659779B2 (en) 2007-03-23 2007-03-23 Heat exchanger and air conditioner equipped with the heat exchanger

Country Status (1)

Country Link
JP (1) JP4659779B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133570A (en) * 2008-12-02 2010-06-17 Mitsubishi Electric Corp Heat exchanger and air conditioner including the heat exchanger
JP2010214404A (en) * 2009-03-16 2010-09-30 Mitsubishi Electric Corp Method for manufacturing heat exchanger, and air-conditioner using the heat exchanger
JP2010230300A (en) * 2009-03-30 2010-10-14 Mitsubishi Electric Corp Heat exchanger and air conditioner having the same
JP2012047414A (en) * 2010-08-27 2012-03-08 Sanyo Electric Co Ltd Auger type ice-making machine
WO2013051233A1 (en) * 2011-10-05 2013-04-11 日野自動車株式会社 Heat exchanger tube
JP2015175574A (en) * 2014-03-17 2015-10-05 株式会社コベルコ マテリアル銅管 Return bend pipe for heat exchanger, heat transfer tube for heat exchanger, heat exchanger and process of manufacturing heat exchanger
WO2019058514A1 (en) * 2017-09-22 2019-03-28 三菱電機株式会社 Heat exchanger, refrigeration cycle device, and method for manufacturing heat exchanger
CN110017705A (en) * 2017-12-21 2019-07-16 翰昂汽车零部件有限公司 Heat exchanger
JP2020076535A (en) * 2018-11-07 2020-05-21 ダイキン工業株式会社 Heat exchanger and method of manufacturing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176854U (en) * 1974-12-13 1976-06-17
JPH03251688A (en) * 1990-03-01 1991-11-11 Showa Alum Corp Manufacture of tube member for heat exchanger
JPH05215482A (en) * 1991-12-09 1993-08-24 Nippondenso Co Ltd Heat exchanger
JP2000111290A (en) * 1998-10-01 2000-04-18 Behr Gmbh & Co Multi-pass flat pipe
JP2001133075A (en) * 1999-11-09 2001-05-18 Sanden Corp Heat exchanger in refrigerating circuit
JP2003080331A (en) * 2001-09-07 2003-03-18 Kobe Steel Ltd Tool and method for expanding tube
JP2003240457A (en) * 2002-02-08 2003-08-27 Toyo Radiator Co Ltd Heat exchanger for hot-water supply
JP2005201491A (en) * 2004-01-14 2005-07-28 Matsushita Electric Ind Co Ltd Heat exchanger
WO2006025465A1 (en) * 2004-08-31 2006-03-09 Gac Corporation Flat perforated pipe and heat exchanger
JP2006142811A (en) * 2004-10-21 2006-06-08 Calsonic Kansei Corp Manufacturing method for heat exchanger and heat exchanger manufactured by the method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176854U (en) * 1974-12-13 1976-06-17
JPH03251688A (en) * 1990-03-01 1991-11-11 Showa Alum Corp Manufacture of tube member for heat exchanger
JPH05215482A (en) * 1991-12-09 1993-08-24 Nippondenso Co Ltd Heat exchanger
JP2000111290A (en) * 1998-10-01 2000-04-18 Behr Gmbh & Co Multi-pass flat pipe
JP2001133075A (en) * 1999-11-09 2001-05-18 Sanden Corp Heat exchanger in refrigerating circuit
JP2003080331A (en) * 2001-09-07 2003-03-18 Kobe Steel Ltd Tool and method for expanding tube
JP2003240457A (en) * 2002-02-08 2003-08-27 Toyo Radiator Co Ltd Heat exchanger for hot-water supply
JP2005201491A (en) * 2004-01-14 2005-07-28 Matsushita Electric Ind Co Ltd Heat exchanger
WO2006025465A1 (en) * 2004-08-31 2006-03-09 Gac Corporation Flat perforated pipe and heat exchanger
JP2006142811A (en) * 2004-10-21 2006-06-08 Calsonic Kansei Corp Manufacturing method for heat exchanger and heat exchanger manufactured by the method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133570A (en) * 2008-12-02 2010-06-17 Mitsubishi Electric Corp Heat exchanger and air conditioner including the heat exchanger
JP2010214404A (en) * 2009-03-16 2010-09-30 Mitsubishi Electric Corp Method for manufacturing heat exchanger, and air-conditioner using the heat exchanger
JP2010230300A (en) * 2009-03-30 2010-10-14 Mitsubishi Electric Corp Heat exchanger and air conditioner having the same
JP2012047414A (en) * 2010-08-27 2012-03-08 Sanyo Electric Co Ltd Auger type ice-making machine
US10422589B2 (en) 2011-10-05 2019-09-24 Hino Motors, Ltd. Heat exchanger tube
JP2013079779A (en) * 2011-10-05 2013-05-02 Hino Motors Ltd Heat exchanger tube
WO2013051233A1 (en) * 2011-10-05 2013-04-11 日野自動車株式会社 Heat exchanger tube
JP2015175574A (en) * 2014-03-17 2015-10-05 株式会社コベルコ マテリアル銅管 Return bend pipe for heat exchanger, heat transfer tube for heat exchanger, heat exchanger and process of manufacturing heat exchanger
WO2019058514A1 (en) * 2017-09-22 2019-03-28 三菱電機株式会社 Heat exchanger, refrigeration cycle device, and method for manufacturing heat exchanger
JPWO2019058514A1 (en) * 2017-09-22 2020-10-15 三菱電機株式会社 How to make a heat exchanger
CN110017705A (en) * 2017-12-21 2019-07-16 翰昂汽车零部件有限公司 Heat exchanger
CN110017705B (en) * 2017-12-21 2021-05-11 翰昂汽车零部件有限公司 Heat exchanger
JP2020076535A (en) * 2018-11-07 2020-05-21 ダイキン工業株式会社 Heat exchanger and method of manufacturing the same

Also Published As

Publication number Publication date
JP4659779B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP4671985B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP4659779B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP4836996B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP5617935B2 (en) Heat exchanger and air conditioner
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
JP4749373B2 (en) Air conditioner
US20130306285A1 (en) Heat exchanger and air conditioner
JP2009133500A (en) Air conditioner
EP3021064B1 (en) Heat pump device
JP2015049008A (en) Air conditioner, and heat exchanger for air conditioner
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
WO2014068687A1 (en) Parallel flow heat exchanger and air conditioner using same
JP2006284133A (en) Heat exchanger
JP2007255785A (en) Heat exchanger with fin and air conditioner
JP5627635B2 (en) Air conditioner
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP5646257B2 (en) Refrigeration cycle equipment
JP5084304B2 (en) Finned tube heat exchanger and refrigeration cycle
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
JP2009127882A (en) Heat exchanger, indoor unit, and air conditioner
JP2010230300A (en) Heat exchanger and air conditioner having the same
JP6316458B2 (en) Air conditioner
JP4874320B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP2010078256A (en) Fin tube type heat exchanger, and refrigerating cycle device and air conditioner using the same
JP2012220069A (en) Heat exchanger, refrigeration cycle device, refrigerator, and aid conditioning apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4659779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250