WO2006025465A1 - Flat perforated pipe and heat exchanger - Google Patents

Flat perforated pipe and heat exchanger Download PDF

Info

Publication number
WO2006025465A1
WO2006025465A1 PCT/JP2005/015940 JP2005015940W WO2006025465A1 WO 2006025465 A1 WO2006025465 A1 WO 2006025465A1 JP 2005015940 W JP2005015940 W JP 2005015940W WO 2006025465 A1 WO2006025465 A1 WO 2006025465A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
flat multi
hole
partition wall
pressure
Prior art date
Application number
PCT/JP2005/015940
Other languages
French (fr)
Japanese (ja)
Inventor
Takahide Maezawa
Yasuhiro Kawatsu
Original Assignee
Gac Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gac Corporation filed Critical Gac Corporation
Priority to EP05781541A priority Critical patent/EP1795848A1/en
Priority to US11/660,918 priority patent/US20080087408A1/en
Priority to JP2006532761A priority patent/JP4664918B2/en
Publication of WO2006025465A1 publication Critical patent/WO2006025465A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to a structure of a flat multi-hole tube used for heat exchange.
  • plate fins As heat exchange ⁇ used in refrigeration equipment, radiators, etc., plate fins arranged in parallel at regular intervals and a plurality of tubes (tubes) arranged so as to penetrate these fins
  • a plate fin type heat exchanger having One method for producing this plate fin type heat exchange is to join the pipe and the fin by expanding or expanding the pipe after the pipe is assembled so as to penetrate the fin.
  • insert a rigid rod or expander inside the tubes To expand these tubes, insert a rigid rod or expander inside the tubes and push the tubes inwardly. By expanding the tube, the tube and the fin come into contact.
  • Japanese Patent Application Laid-Open No. 62-19691 discloses a conduit having an elliptical or rectangular cross section. This conduit is pressed against the cooling fins by expansion of the surface of the conduit between each pair of joints. As the conduit expands, the joint flattens the initial chevron shape and prevents the conduit wall from contracting to its original position.
  • One embodiment of the present invention is a flat multi-hole tube having a flat outer tube and a plurality of partition walls that divide the inside of the outer tube into a plurality of flow paths.
  • Each partition wall has a thickness ti, has a cross-sectional shape bent into two chevrons with one side length a, and is arranged so that the distance between the partition wall surfaces on the inner surface of the outer tube is a distance Li.
  • the thickness to of the outer tube satisfies the condition (1) shown in the following formula.
  • a flat multi-hole tube having an outer tube with a thickness that satisfies the above condition (1) the outer wall that is a portion between the partition walls of the outer tube is not deformed in a pressure range that changes the inclination of the partition wall. . Therefore, a flat multi-hole tube that satisfies the above condition (1) can prevent deformation of the outer wall until the partition wall is fully extended. Therefore, this flat multi-hole tube can be expanded in a state where the outer surface of the tube is prevented from being deformed into corrugations or irregularities due to the internal pressure within the range in which the inclination of the partition wall is deformed.
  • the deformation amount of the partition wall inclination varies depending on the tolerance of the flat multi-hole tube and the fluctuation of the applied pressure. For this reason, it is preferable to expand the tube with the maximum pressure (internal pressure) within the range where the inclination of the partition wall is deformed or higher. By expanding the tube at such a pressure, it is possible to expand the tube to a state where the inclination of the partition wall is substantially extended. Therefore, when expanding the tube, the flat multi-hole tube can be expanded to a desired state without performing fine pressure control. Conversely, if the outer tube thickness to falls outside the range of condition (1) and the outer tube thickness to decreases, deformation of the outer tube may begin before the bulkhead extends.
  • Another embodiment of the present invention includes a plurality of flat multi-hole tubes satisfying the above condition (1), and a plurality of fins attached in a state in which the plurality of flat multi-hole tubes penetrate. And a heat exchanger.
  • a flat multi-hole tube satisfying the condition (1) can be applied to a partition wall while suppressing deformation of the outer wall, regardless of whether it is a pressure expansion using a fluid or a tube expansion using a tube expander. Can be stretched. For this reason, after the pipe expansion, the contact efficiency between the plurality of flat multi-hole pipes and the plate fins attached in a state in which they are penetrated can be increased. Therefore, the heat exchange efficiency in the heat exchanger can be improved.
  • a pressurized expanded tube using fluid is suitable for expanding almost all of the fine flow paths of a flat multi-hole tube that does not require insertion of a tube expander.
  • Another embodiment of the present invention is a flat multi-hole tube in which, in addition to the above condition (1), the thickness of the outer tube further satisfies the following condition (2).
  • Increasing the thickness of the outer tube of a flat multi-hole tube having a plurality of partition walls up to the thickness of the outer tube required for a flat tube not having a partition wall is a reduction in product size and weight. It is not economical from the viewpoint of traps.
  • One of the merits of using a flat multi-hole tube is that the strength of the flat tube can be secured by installing a partition wall inside, so that the outer wall or the outer tube can be made thinner.
  • Another embodiment of the present invention is a flat multi-hole tube in which, in addition to the above condition (1), the thickness of the outer tube further satisfies the following condition (3).
  • Equation 3 A pressure higher than the pressure at the time of expanding does not become a normal pressure in the flat multi-hole tube. If such pressure is constantly applied, the flat multi-hole tube may be further deformed. No counting is done. Therefore, the pressure when expanding the tube becomes the upper limit or higher of the pressure resistance condition in normal use. Furthermore, the pressure at the time of expanding the tube is such that the partition wall is in a stretched state, and is not set to a pressure at which tensile deformation accompanied by thinning is started. For this reason, it is economical to set the thickness of the outer tube so that the outer wall is also deformed at the pressure at which tensile deformation accompanied by thinning occurs, and the thinner the outer tube, the better the heat transfer coefficient.
  • condition (3) when an excessive internal pressure is applied such that the partition wall is tensilely deformed when expanding the pressure, the outer wall expands and the outer surface of the tube is deformed.
  • the condition of the outer surface of the pipe can be an element for checking the pressure condition when the pipe is expanded.
  • FIG. 1 shows an outline of heat exchange.
  • FIG. 2 Shows the state where the flat multi-hole tube and fins of the heat exchanger shown in Fig. 1 are joined.
  • FIG. 3 shows the state of the flat multi-hole tube before expansion in a cross section in the major axis direction
  • Fig. 4 shows the state of the flat multi-hole tube after expansion in a cross-section in the long axis direction
  • Fig. 4 (b) shows the end of the flat multi-hole tube in a cross-section in the short axis direction
  • Figure 4 (c) shows the other part of the flat multi-hole tube in a cross section in the minor axis direction.
  • FIG. 5 (a) shows a state in which the partition wall undergoes angular deformation
  • FIG. 5 (b) shows a state in which the partition wall undergoes tensile deformation.
  • FIG. 6 shows an enlarged cross section of a flat multi-hole tube.
  • FIG. 7 shows changes in the inner diameter of the flat multi-hole tube when the internal pressure is increased.
  • Fig. 8 shows how the amount of expansion of flat multi-hole tubes varies due to tolerances.
  • FIG. 9 shows an example of the upper and lower limits of the thickness of the outer tube of a flat multi-hole tube.
  • FIG. 1 schematically shows a heat exchanger using a flat multi-hole tube.
  • FIG. 2 is an enlarged perspective view showing a state where the flat multi-hole tube is expanded.
  • the heat exchanger 1 is a plate fin type heat exchanger, and a plurality of plate-like fins arranged in parallel at regular intervals. 2 and a plurality of flat multi-hole tubes 3 which are joined in parallel to the fins 2 and arranged in parallel.
  • These flat multi-hole tubes 3 are tubes in which the inside of the flat outer tube 21 is divided into a plurality of parallel flow paths 14 by a plurality of partition walls 15.
  • the ends 4 on both sides of the flat multi-hole tube 3 are connected to joint holes 19 formed in the side walls 9 of the headers 6 and 7 located on the left and right of the heat exchange.
  • the heat medium (internal fluid) introduced from the supply port 11 of the header 6 is guided to the output port 12 of the header 7 through the flow path 14 of the flat multi-hole tube 3.
  • an external fluid such as air
  • the external fluid B comes into contact with the flat multi-hole tube 3 and the fin 2, and heat is exchanged between the heat medium and the external fluid.
  • the fluid is cooled or heated.
  • FIG. 3 (a) shows a state before the flat multi-hole tube 3 is expanded.
  • the flat multi-hole tube 3 is inserted into the burring hole 18 provided in advance in the fin 2, and the fin 2 and the flat multi-hole tube 3 are temporarily assembled.
  • FIG. 3 (b) shows an enlarged cross section of the flat multi-hole tube 3.
  • the outer tube 21 of the flat multi-hole tube 3 includes an outer wall 21w facing up and down.
  • the flat multi-hole tube 3 is a flat tube formed such that the outer wall 21 w constituting the upper wall or the top wall of the outer tube 21 and the outer wall 21 w constituting the lower wall or the bottom wall are substantially parallel to each other. It is a tube.
  • This flat multi-hole tube 3 is provided with a plurality of partition walls 15 connected to the upper and lower outer walls 21w inside thereof, each of which has a mountain shape and is bent in the major axis direction X of the cross-section of the flat multi-hole tube 3. Yes. By these partition walls 15, the inside of the flat multi-hole tube 3 is divided to form a plurality of parallel flow paths 14.
  • the end 4 of the flat multi-hole tube 3 temporarily assembled so as to penetrate the fin 2 is inserted into a joint hole 19 provided in the headers 6 and 7. These ends 4 are joined to headers 6 and 7 by brazing or other suitable method.
  • the parallel flow paths 14 of each flat multi-hole tube 3 communicate with each other via headers 6 and 7 to form an in-tube circuit through which a heat medium flows.
  • FIGS. 4 (a), 4 (b) and 4 (c) show the state of the flat multi-hole tube 3 after pressure expansion by a cross section.
  • FIGS. 5 (a) and 5 (b) show how the partition wall 15 of the flat multi-hole tube 3 is extended.
  • the compressed fluid can be supplied to the flat multi-hole tube 3 through the headers 6 and 7.
  • the internal pressure of the parallel flow path 14 can be increased by the compressed fluid, and the flat multi-hole tube 3 can be expanded (pressurized expansion).
  • the partition wall 15 of the flat multi-hole tube 3 used for heat exchange has a thickness ti, and one of the two sides forming the chevron has a length a.
  • the distance between the partition walls 15 between the inner surfaces of the outer wall 21w of the outer tube 21 is the distance Li. Further, the thickness to of the outer tube 21 satisfies the condition of the following formula (1).
  • the subsequent deformation is assumed to be a deformation (tensile deformation) due to tension in which the wall thickness of the partition 15 decreases, as shown in FIG. 5 (b). Therefore, the deformation mechanism of the partition wall 15 changes depending on the applied internal pressure. For this reason, it is considered that the partition wall 15 can be stably deformed until it is almost stretched by adjusting the pressure in the range from the end of the angular deformation to the start of the tensile deformation. It is done.
  • FIG. 7 shows the results of actual measurement of the relationship between the inner height (inner diameter or inner dimension in the minor axis direction Y) Hi and the inner pressure (pressurizing pressure) of the tube.
  • the solid line A1 shown in FIG. 7 is a measurement value when the plate thickness ti of the partition wall 15 is 0.19 mm
  • the alternate long and short dash line A2 is a measured value force of the bent angle ⁇ of the partition wall 15 as tangent It is a calculated value.
  • the bulkhead 15 When the thickness ti is 0.19 mm, the tube height Hi suddenly increases and the partition wall 15 is angularly deformed when the internal pressure exceeds approximately 2 MPa.
  • the target value for the height Hi when expanding the tube is set to the position where the angular deformation has been completed, such as H3 in the figure, the internal pressure during the expansion will be changed as indicated by P3 in the figure. It can be set to the value of the pressure to end or higher. Therefore, regardless of the tolerance of individual tubes, it can be expanded at the same height H by expanding at the same pressure. Accordingly, since the dimensional accuracy of the tube 3 after the tube expansion is stabilized, the yield and quality of the heat exchanger 1 employing the flat multi-hole tube 3 is improved.
  • the force (internal pressure) required for the angular deformation of the partition wall 15 can be calculated from the force applied when the partition wall 15 shown in FIG. 6 is extended.
  • One condition is that at least the outer wall 21w of the outer tube 21 is not significantly deformed when the internal pressure is applied.
  • the length of one side 27 of the partition wall 15 is a, the inclination (tilt angle) is 0, the distance between the surfaces of the partition wall 15 on the inner surface of the outer wall portion 21w of the outer tube 21 (the surface facing the partition wall 15)
  • the outer wall when the internal pressure P is applied where Li is the distance between the two surfaces and Li is the height of the flat multi-hole tube (tube) 3 (the inner diameter or inner dimension of the outer tube 21 in the short axis direction X).
  • the stress ⁇ ⁇ generated in the part 21w is as follows.
  • the outer wall 21w can be regarded as a fixed beam at both ends that receives an evenly distributed load of pressure ⁇ at the partition wall distance Li, the maximum bending moment Mmax and the section modulus Z can be expressed by equations (4) and (5), respectively. It becomes. Therefore, the maximum stress ⁇ ⁇ applied to the outer wall 21w is given by equation (6).
  • Equation 9 The maximum bending moment when the partition wall 15 is angularly deformed is expressed by Equation (9).
  • the maximum stress a i generated in the partition wall 15 is as shown in equation (11).
  • the stress is obtained in one dimension.
  • the outer wall 21 is in a pressure range in which the partition wall 15 is angularly deformed. If w does not deform, it is good. Therefore, when the minimum pressure Pmin for pipe expansion is applied to the flat multi-hole pipe 3, the limit stress ⁇ ⁇ of the metal material including the outer wall 21 w and the partition wall 15 such as aluminum or copper is obtained.
  • the equation (12) may be established between the maximum stress ai when the partition wall 15 is angularly deformed and the maximum stress ⁇ ⁇ applied to the outer wall 2 lw.
  • One advantage of the flat multi-hole tube is that the strength of the flat tube can be ensured by the partition wall installed inside, so that the outer wall 21w, that is, the outer tube 21, can be thinned.
  • the maximum stress ⁇ o generated in the outer wall 21 w when the internal pressure P is applied is expressed by Equation (6).
  • Equation (6) the maximum stress ⁇ o generated in the outer wall 21 w when the internal pressure P is applied.
  • the thickness to of the outer tube 21 may be a value that deforms at a pressure at which the partition wall 15 undergoes tensile deformation. Furthermore, if the outer wall 21w is deformed when a pressure P is applied that causes the partition wall 15 to be tensilely deformed, the appearance force of the flat multi-hole tube 3 is clearly increased because the excessive pressure is applied. It can be used as one of the judgment factors for confirming the quality of the hole tube 3 and heat exchange using it.
  • the outer wall 21w may be deformed before the partition wall 15 undergoes tensile deformation. Therefore, when the maximum pressure Pmax for pipe expansion is applied to the flat multi-hole tube 3, the limit stress ⁇ lim of the material of the flat multi-hole tube 3, the stress ⁇ s when the partition wall 15 undergoes tensile deformation, and the outer wall Equation (15) may hold between the maximum stress ⁇ ⁇ applied to 21w.
  • the force of this equation (15) can also lead to the condition (3), and the thickness to of the outer wall 21w more preferably satisfies this condition.
  • Fig. 9 shows the thickness to of the outer wall 21 w of the flat multi-hole tube 3 where the target value of the inner dimension Hi when expanding the tube is 1.5 mm with respect to the distance Li between the partition walls and the partition plate thickness ti. It is shown.
  • the surface Cu shown in FIG. 9 shows the upper limit of the thickness to by the condition (3), and the surface C1 shows the lower limit of the thickness to by the condition (1).
  • a flat multi-hole tube 3 with an outer tube 21 with a thickness to within this range is shown in Fig. 8. It is possible to set the appropriate pressure P3 for expanding the tube, and the tube can be expanded with a high yield.
  • the shape of the force fins is not limited to the plate shape, but may be a corrugated fin having a waveform. good.
  • a heat exchanger that uses corrugated fins it is not necessary to expand the portion connected to the fins that is good just by expanding the portion attached to the header in the flat multi-hole tube.
  • a method of extending the partition wall by injecting a fluid and increasing the internal pressure is suitable.
  • the partition wall can be used regardless of whether it is a method of increasing the internal pressure (sometimes referred to as pressure expansion) or expansion by a tube.
  • pressure expansion sometimes referred to as pressure expansion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A flat perforated pipe, comprising a flat outer pipe and a plurality of partition walls partitioning the inside of the outer pipe into a plurality of flow passages. The partition walls of the flat perforated pipe are formed in a cross sectional shape with a thickness of (ti) in a chevron form comprising two of a side with a length of (a), and disposed so that face-to-face distances between the partition walls on the inner surface of the outer pipe are (Li). The thickness (to) of the outer pipe meets the following requirement. By properly selecting a pressure to expand the flat perforated pipe, the outer surface of the pipe can be prevented from being deformed in a waveform shape or an irregular shape.

Description

扁平多穴管および熱交換器  Flat multi-hole tube and heat exchanger
技術分野  Technical field
[0001] 本発明は、熱交^^に用いられる扁平多穴管の構造に関するものである。  [0001] The present invention relates to a structure of a flat multi-hole tube used for heat exchange.
背景技術  Background art
[0002] 冷凍装置やラジェータなどに用いられる熱交^^として、一定の間隔をあけて並行 に配置されたプレートフィンと、これらのフィンを貫通するように配置された複数の管( チューブ)とを有するプレートフィン型熱交換器が知られている。このプレートフィン型 熱交 を製造する際の 1つの方法は、管がフィンを貫通するように組み立てた後に 、管を拡管または拡張することにより、管とフィンとを接合させるものである。これらの 管を拡張するために、管の内部に剛体棒または拡管子を挿入し、管を内側力 押し 広げる。管を拡張することにより管とフィンとが接触する。  [0002] As heat exchange ^^ used in refrigeration equipment, radiators, etc., plate fins arranged in parallel at regular intervals and a plurality of tubes (tubes) arranged so as to penetrate these fins There is known a plate fin type heat exchanger having One method for producing this plate fin type heat exchange is to join the pipe and the fin by expanding or expanding the pipe after the pipe is assembled so as to penetrate the fin. To expand these tubes, insert a rigid rod or expander inside the tubes and push the tubes inwardly. By expanding the tube, the tube and the fin come into contact.
[0003] 熱交換器において、内部に複数の隔壁を有し、それらにより管内が複数の平行した 流路に分割された扁平多穴管を用いることが知られている。  [0003] In heat exchangers, it is known to use a flat multi-hole tube having a plurality of partition walls inside and divided into a plurality of parallel flow paths by using them.
[0004] 特開昭 62— 19691号公報には、楕円形か矩形かの横断面を有する導管が開示さ れている。この導管は、各対の継手の間の導管の表面の膨張により冷却用のひれに 対して押圧しているものである。導管が膨張すると、継手は、初期の山形の形状が平 らになり、導管の壁がその原位置へ収縮するのを防止する。  [0004] Japanese Patent Application Laid-Open No. 62-19691 discloses a conduit having an elliptical or rectangular cross section. This conduit is pressed against the cooling fins by expansion of the surface of the conduit between each pair of joints. As the conduit expands, the joint flattens the initial chevron shape and prevents the conduit wall from contracting to its original position.
発明の開示  Disclosure of the invention
[0005] 本発明の一つの形態は、扁平な外管と、その外管の内部を複数の流路に分割する 複数の隔壁とを有する扁平多穴管である。それぞれの隔壁は、厚さ tiで、一辺の長さ aの 2つの辺力 なる山形に屈曲した断面形状を備え、外管の内面における隔壁の 面間が距離 Liになるように配置されており、外管の厚み toは、以下の式に示す条件( 1)を満たす。  One embodiment of the present invention is a flat multi-hole tube having a flat outer tube and a plurality of partition walls that divide the inside of the outer tube into a plurality of flow paths. Each partition wall has a thickness ti, has a cross-sectional shape bent into two chevrons with one side length a, and is arranged so that the distance between the partition wall surfaces on the inner surface of the outer tube is a distance Li. The thickness to of the outer tube satisfies the condition (1) shown in the following formula.
[0006] [数 1]  [0006] [Equation 1]
Li'ti a^-ti [0007] 扁平多穴管の流路に拡管子を挿入して拡張する方法がある。その他に、扁平多穴 管 (チューブ)に流体を注入し、内圧を高めることにより隔壁を伸ばすことが検討され ている。このチューブの内圧を高める方法 (以下では、加圧拡管と称する場合もある。 )であっても、拡管子による拡張であっても、それにより隔壁と隔壁との間の外管(以 降では外壁)が膨張し、管外面が波形あるいは凹凸に変形することは好ましくない。 管外面とフィンとの接触面積が減少し、伝熱性能が低下する。し力しながら、隔壁が 所望のサイズまで伸びる以前に拡張を停止すると所望の性能が得られない。 Li'ti a ^ -ti There is a method of expanding by inserting a tube expander into a flow path of a flat multi-hole tube. In addition, it has been studied to extend the partition wall by injecting fluid into a flat multi-hole tube (tube) and increasing the internal pressure. Whether this is a method for increasing the internal pressure of the tube (hereinafter, sometimes referred to as “pressure expansion”) or expansion by a tube expander, the outer tube between the partition walls (hereinafter referred to as the expansion tube) It is not preferable that the outer wall) expands and the outer surface of the tube is deformed into corrugations or irregularities. The contact area between the pipe outer surface and the fin is reduced, and the heat transfer performance is reduced. However, if the expansion is stopped before the partition wall extends to the desired size, the desired performance cannot be obtained.
[0008] 山形(日本語の平仮名の「く」の字状)に屈曲された隔壁が伸びる現象を考えたとき 、当初は、隔壁の両端力 作用する引張力により、山形を構成する 2辺の間の角度が 開く(大きくなる)ように変形する。そして、 2辺のなす角度がある程度の大きさに達す ると、角度が大きくなる変形 (隔壁の傾きが変わる変形)は殆どなくなり、隔壁の傾きは 変わらなくなる (伸びきつた状態)。そして、隔壁の両端力 作用する引張力により、隔 壁の厚みが減肉する変形(引張変形と称する)になる。隔壁の傾きを変えるための応 力と、隔壁を引張変形させて、減肉を引き起こす応力は異なり、隔壁の傾きを変える 応力の方が小さい。  [0008] When considering the phenomenon that a partition bent into a Yamagata ("K" shape in Japanese hiragana) extends, initially, the two sides of the Yamagata are formed by the tensile force acting on both ends of the partition. Deforms so that the angle between them opens (becomes larger). When the angle formed by the two sides reaches a certain size, the deformation that increases the angle (the deformation that changes the inclination of the partition wall) is almost eliminated, and the inclination of the partition wall is not changed (the state of stretching). Then, due to the tensile force acting on both ends of the partition wall, the thickness of the partition wall is reduced (called tensile deformation). The stress that changes the slope of the bulkhead is different from the stress that causes the wall thickness to be reduced by tensile deformation of the bulkhead, and the stress that changes the slope of the bulkhead is smaller.
[0009] 上記の条件(1)を満たす厚みを備えた外管を有する扁平多穴管は、隔壁の傾きを 変える程度の圧力範囲では、外管の隔壁の間の部分である外壁は変形しない。した がって、上記条件(1)を満足する扁平多穴管は、隔壁が伸びきるまでは外壁の変形 を防止できる。そのため、この扁平多穴管は、隔壁の傾きが変形する範囲の内圧によ り、管外面が波形あるいは凹凸に変形することを防止した状態で拡管できる。  [0009] In a flat multi-hole tube having an outer tube with a thickness that satisfies the above condition (1), the outer wall that is a portion between the partition walls of the outer tube is not deformed in a pressure range that changes the inclination of the partition wall. . Therefore, a flat multi-hole tube that satisfies the above condition (1) can prevent deformation of the outer wall until the partition wall is fully extended. Therefore, this flat multi-hole tube can be expanded in a state where the outer surface of the tube is prevented from being deformed into corrugations or irregularities due to the internal pressure within the range in which the inclination of the partition wall is deformed.
[0010] 隔壁の傾きの変形量は、扁平多穴管の公差や加圧力のノ ラツキの影響を受けて 変動する。このため、隔壁の傾きが変形する範囲における最大の圧力(内圧)、ある いはそれ以上の圧力により拡管することが好ま 、。そのような圧力で拡管することに より、隔壁の傾きをほぼ伸びきつた状態まで拡管できる。したがって、拡管するときに 、細力な圧力制御を行わずに、扁平多穴管を所望の状態まで拡張できる。逆に、外 管の厚み toが条件(1)の範囲を外れて、外管の厚み toが小さくなると、隔壁が伸びき る前に外管の変形が開始される可能性がある。したがって、拡管するときの圧力制御 が難しい。 [0011] 本発明の他の一つの形態は、上記の条件(1)を満足する複数の扁平多穴管と、そ れら複数の扁平多穴管が貫通した状態で取り付けられた複数のフィンとを有する熱 交換器である。上述したように、条件(1)を満たす扁平多穴管であれば、流体を用い た加圧拡管であっても、拡管子による拡管であっても、外壁の変形を抑制しながら、 隔壁を伸ばすことができる。このため、拡管後において、複数の扁平多穴管と、それ らが貫通した状態で取り付けられるプレートフィンとの接触効率を上げられる。したが つて、熱交換器における熱交換効率を向上できる。特に、流体を用いた加圧拡管で あれば、拡管子を挿入しなくて良ぐ扁平多穴管の微細な流路の全てをほぼ均等に 拡張するのに適している。 [0010] The deformation amount of the partition wall inclination varies depending on the tolerance of the flat multi-hole tube and the fluctuation of the applied pressure. For this reason, it is preferable to expand the tube with the maximum pressure (internal pressure) within the range where the inclination of the partition wall is deformed or higher. By expanding the tube at such a pressure, it is possible to expand the tube to a state where the inclination of the partition wall is substantially extended. Therefore, when expanding the tube, the flat multi-hole tube can be expanded to a desired state without performing fine pressure control. Conversely, if the outer tube thickness to falls outside the range of condition (1) and the outer tube thickness to decreases, deformation of the outer tube may begin before the bulkhead extends. Therefore, it is difficult to control the pressure when expanding the pipe. [0011] Another embodiment of the present invention includes a plurality of flat multi-hole tubes satisfying the above condition (1), and a plurality of fins attached in a state in which the plurality of flat multi-hole tubes penetrate. And a heat exchanger. As described above, a flat multi-hole tube satisfying the condition (1) can be applied to a partition wall while suppressing deformation of the outer wall, regardless of whether it is a pressure expansion using a fluid or a tube expansion using a tube expander. Can be stretched. For this reason, after the pipe expansion, the contact efficiency between the plurality of flat multi-hole pipes and the plate fins attached in a state in which they are penetrated can be increased. Therefore, the heat exchange efficiency in the heat exchanger can be improved. In particular, a pressurized expanded tube using fluid is suitable for expanding almost all of the fine flow paths of a flat multi-hole tube that does not require insertion of a tube expander.
[0012] 本発明の他の一つの形態は、上記条件(1)に加えて、外管の厚み toが、さらに以 下の条件 (2)を満たす扁平多穴管である。  Another embodiment of the present invention is a flat multi-hole tube in which, in addition to the above condition (1), the thickness of the outer tube further satisfies the following condition (2).
[0013] [数 2]
Figure imgf000005_0001
[0013] [Equation 2]
Figure imgf000005_0001
[0014] 複数の隔壁を備えた扁平多穴管の外管の厚みを、隔壁を備えていない扁平管に 対して要求される外管の厚みまで大きくすることは、製品の小型化および軽量ィ匕など の点から経済的ではない。扁平多穴管を用いるメリットの一つは、内部に隔壁を設置 したことにより扁平管の強度が確保できるので、外壁または外管を薄肉化できること である。 [0014] Increasing the thickness of the outer tube of a flat multi-hole tube having a plurality of partition walls up to the thickness of the outer tube required for a flat tube not having a partition wall is a reduction in product size and weight. It is not economical from the viewpoint of traps. One of the merits of using a flat multi-hole tube is that the strength of the flat tube can be secured by installing a partition wall inside, so that the outer wall or the outer tube can be made thinner.
[0015] 本発明の他の一つの形態は、上記条件(1)に加えて、外管の厚み toが、さらに以 下の条件 (3)を満たす扁平多穴管である。  [0015] Another embodiment of the present invention is a flat multi-hole tube in which, in addition to the above condition (1), the thickness of the outer tube further satisfies the following condition (3).
[0016] [数 3]
Figure imgf000005_0002
拡管するときの圧力以上の圧力が、扁平多穴管に常用圧力となることはない。その ような圧力が常時加わると、扁平多穴管がさらに変形する可能性があり、そのような設 計は行われない。したがって、拡管するときの圧力は、常用における耐圧条件の上限 あるいはそれ以上になる。さらに、拡管するときの圧力は、それにより隔壁が伸びきつ た状態になる程度であり、減肉を伴う引張変形を開始するような圧力には設定しない 。このため、減肉を伴う引張変形を開始する圧力では外壁も変形するように外管の厚 みを設定することが経済的であり、外管は薄い方が熱伝達率も向上する。
[0016] [Equation 3]
Figure imgf000005_0002
A pressure higher than the pressure at the time of expanding does not become a normal pressure in the flat multi-hole tube. If such pressure is constantly applied, the flat multi-hole tube may be further deformed. No counting is done. Therefore, the pressure when expanding the tube becomes the upper limit or higher of the pressure resistance condition in normal use. Furthermore, the pressure at the time of expanding the tube is such that the partition wall is in a stretched state, and is not set to a pressure at which tensile deformation accompanied by thinning is started. For this reason, it is economical to set the thickness of the outer tube so that the outer wall is also deformed at the pressure at which tensile deformation accompanied by thinning occurs, and the thinner the outer tube, the better the heat transfer coefficient.
[0018] さらに、条件 (3)を満たす扁平多穴管であると、加圧拡管するときに、隔壁が引張 変形するような過大な内圧が加えられると、外壁も膨張して管外面が変形する可能性 がある。したがって、管外面の状態が、拡管したときの圧力状態をチェックする一つの 要素となりえる。  [0018] Further, in the case of a flat multi-hole tube satisfying the condition (3), when an excessive internal pressure is applied such that the partition wall is tensilely deformed when expanding the pressure, the outer wall expands and the outer surface of the tube is deformed. there's a possibility that. Therefore, the condition of the outer surface of the pipe can be an element for checking the pressure condition when the pipe is expanded.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]図 1は、熱交翻の概略を示す。 [0019] FIG. 1 shows an outline of heat exchange.
[図 2]図 1に示す熱交^^の扁平多穴管とフィンとが接合された状態を示す。  [Fig. 2] Shows the state where the flat multi-hole tube and fins of the heat exchanger shown in Fig. 1 are joined.
[図 3]図 3 (a)は拡管前の扁平多穴管の状態を長軸方向の断面で示し、図 3 (b)はそ の短軸方向の断面で示す。  [FIG. 3] FIG. 3 (a) shows the state of the flat multi-hole tube before expansion in a cross section in the major axis direction, and FIG.
[図 4]図 4 (a)は拡管後の扁平多穴管の状態を長軸方向の断面で示し、図 4 (b)はそ の扁平多穴管の端部を短軸方向の断面で示し、図 4 (c)はその扁平多穴管の他の 部分を短軸方向の断面で示す。  [Fig. 4] Fig. 4 (a) shows the state of the flat multi-hole tube after expansion in a cross-section in the long axis direction, and Fig. 4 (b) shows the end of the flat multi-hole tube in a cross-section in the short axis direction. Figure 4 (c) shows the other part of the flat multi-hole tube in a cross section in the minor axis direction.
[図 5]図 5 (a)は隔壁が角度変形する様子を示し、図 5 (b)は隔壁が引張変形する様 子を示す。  [FIG. 5] FIG. 5 (a) shows a state in which the partition wall undergoes angular deformation, and FIG. 5 (b) shows a state in which the partition wall undergoes tensile deformation.
[図 6]図 6は、扁平多穴管の断面を拡大して示す。  FIG. 6 shows an enlarged cross section of a flat multi-hole tube.
[図 7]図 7は、内圧を高めていったときの扁平多穴管の内径の変化を示す。  [FIG. 7] FIG. 7 shows changes in the inner diameter of the flat multi-hole tube when the internal pressure is increased.
[図 8]図 8は、公差などにより扁平多穴管の拡管量にバラツキが発生する様子を示す  [Fig. 8] Fig. 8 shows how the amount of expansion of flat multi-hole tubes varies due to tolerances.
[図 9]図 9は、扁平多穴管の外管の厚みの上限および下限の一例を示す。 FIG. 9 shows an example of the upper and lower limits of the thickness of the outer tube of a flat multi-hole tube.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 図 1に、扁平多穴管を用いた熱交換器の概略を示してある。また、図 2に、扁平多 穴管が拡管された状態を斜視図により拡大して示してある。熱交換器 1は、プレート フィン型熱交換器であり、一定の間隔で並行に配置された複数のプレート状のフィン 2と、これらのフィン 2に対して貫通した状態で接合され、並列になった複数本の扁平 多穴管 3とを有している。これらの扁平多穴管 3は、扁平な外管 21の内部が、複数の 隔壁 15により複数の平行な流路 14に分割されたチューブである。扁平多穴管 3の両 側の端部 4は、熱交 の左右に位置するヘッダ 6および 7の側壁 9に形成された 接合穴 19に接続されている。ヘッダ 6の供給口 11から導入された熱媒体(内部流体 )は、扁平多穴管 3の流路 14を通ってヘッダ 7の出力口 12へ導かれる。熱交換器 1 に、空気などの外部流体を通すと、扁平多穴管 3およびフィン 2に外部流体 Bが接触 し、熱媒体と外部流体との間で熱交換され、熱媒体および Zまたは外部流体が冷却 または加熱される。 FIG. 1 schematically shows a heat exchanger using a flat multi-hole tube. FIG. 2 is an enlarged perspective view showing a state where the flat multi-hole tube is expanded. The heat exchanger 1 is a plate fin type heat exchanger, and a plurality of plate-like fins arranged in parallel at regular intervals. 2 and a plurality of flat multi-hole tubes 3 which are joined in parallel to the fins 2 and arranged in parallel. These flat multi-hole tubes 3 are tubes in which the inside of the flat outer tube 21 is divided into a plurality of parallel flow paths 14 by a plurality of partition walls 15. The ends 4 on both sides of the flat multi-hole tube 3 are connected to joint holes 19 formed in the side walls 9 of the headers 6 and 7 located on the left and right of the heat exchange. The heat medium (internal fluid) introduced from the supply port 11 of the header 6 is guided to the output port 12 of the header 7 through the flow path 14 of the flat multi-hole tube 3. When an external fluid such as air is passed through the heat exchanger 1, the external fluid B comes into contact with the flat multi-hole tube 3 and the fin 2, and heat is exchanged between the heat medium and the external fluid. The fluid is cooled or heated.
[0021] 図 3 (a)は、扁平多穴管 3が拡管される前の状態を示している。熱交換器 1を製造す る際は、フィン 2に予め設けられたバーリング穴 18に扁平多穴管 3を挿入し、フィン 2 と扁平多穴管 3とを仮組する。  FIG. 3 (a) shows a state before the flat multi-hole tube 3 is expanded. When manufacturing the heat exchanger 1, the flat multi-hole tube 3 is inserted into the burring hole 18 provided in advance in the fin 2, and the fin 2 and the flat multi-hole tube 3 are temporarily assembled.
[0022] 図 3 (b)に扁平多穴管 3の断面を拡大して示す。扁平多穴管 3の外管 21は、上下 に対面する外壁 21wを備えている。扁平多穴管 3は、外管 21の上壁または天壁を構 成する外壁 21 wと、下壁または底壁を構成する外壁 21 wとがほぼ平行となるように成 形された扁平なチューブである。この扁平多穴管 3は、その内部に、上下の外壁 21w を接続し、それぞれの断面形状が山形に、扁平多穴管 3の断面の長軸方向 Xに屈曲 した複数の隔壁 15を備えている。これらの隔壁 15により、扁平多穴管 3の内部が分 割され、複数の平行流路 14が形成されている。  FIG. 3 (b) shows an enlarged cross section of the flat multi-hole tube 3. The outer tube 21 of the flat multi-hole tube 3 includes an outer wall 21w facing up and down. The flat multi-hole tube 3 is a flat tube formed such that the outer wall 21 w constituting the upper wall or the top wall of the outer tube 21 and the outer wall 21 w constituting the lower wall or the bottom wall are substantially parallel to each other. It is a tube. This flat multi-hole tube 3 is provided with a plurality of partition walls 15 connected to the upper and lower outer walls 21w inside thereof, each of which has a mountain shape and is bent in the major axis direction X of the cross-section of the flat multi-hole tube 3. Yes. By these partition walls 15, the inside of the flat multi-hole tube 3 is divided to form a plurality of parallel flow paths 14.
[0023] フィン 2を貫通するように仮組された扁平多穴管 3の端部 4は、ヘッダ 6および 7に設 けられた接合穴 19に挿入される。これらの端部 4は、ろう付け、あるいは他の適当な 方法によりヘッダ 6および 7に接合される。各々の扁平多穴管 3の平行流路 14は、へ ッダ 6および 7を介して連通し、熱媒体が流れる管内回路が形成される。  The end 4 of the flat multi-hole tube 3 temporarily assembled so as to penetrate the fin 2 is inserted into a joint hole 19 provided in the headers 6 and 7. These ends 4 are joined to headers 6 and 7 by brazing or other suitable method. The parallel flow paths 14 of each flat multi-hole tube 3 communicate with each other via headers 6 and 7 to form an in-tube circuit through which a heat medium flows.
[0024] 図 4 (a)、図 4 (b)および図 4 (c)は、加圧拡管後の扁平多穴管 3の状態を断面によ り示す。また、図 5 (a)および図 5 (b)は、扁平多穴管 3の隔壁 15が伸ばされる様子を 示す。ヘッダ 6および 7を介して圧縮流体を扁平多穴管 3に供給できる。圧縮流体に より、平行流路 14の内圧を高めることができ、扁平多穴管 3を拡管 (加圧拡管)できる 。拡管することにより、図 4 (a)に示すように、扁平多穴管 3と各々のフィン 2とが密着 する。熱交^^ 1では、ヘッダ 6および 7と扁平多穴管 3の端部 4とを前もって接合し ている。このため、図 4 (b)に示すように、端部 4においては屈曲した隔壁 15は伸ばさ れない。フィン 2を貫通する部分を含む他の部分においては、図 4 (c)に示すように、 屈曲した隔壁 15が伸ばされる。 [0024] FIGS. 4 (a), 4 (b) and 4 (c) show the state of the flat multi-hole tube 3 after pressure expansion by a cross section. FIGS. 5 (a) and 5 (b) show how the partition wall 15 of the flat multi-hole tube 3 is extended. The compressed fluid can be supplied to the flat multi-hole tube 3 through the headers 6 and 7. The internal pressure of the parallel flow path 14 can be increased by the compressed fluid, and the flat multi-hole tube 3 can be expanded (pressurized expansion). By expanding the tube, as shown in Fig. 4 (a), the flat multi-hole tube 3 and each fin 2 are in close contact with each other. To do. In heat exchange ^^ 1, headers 6 and 7 and end 4 of flat multi-hole tube 3 are joined in advance. For this reason, as shown in FIG. 4B, the bent partition 15 is not extended at the end 4. In other parts including the part penetrating the fin 2, the bent partition wall 15 is extended as shown in FIG. 4 (c).
[0025] 熱交 に使用されている扁平多穴管 3の隔壁 15は、厚さ tiを備え、山形を成す 2辺の内の一辺は長さ aを備えている。外管 21の外壁 21wの内面における隔壁 15の 間(面間)は距離 Liである。また、外管 21の厚み toは以下の式(1)の条件を満たす。  [0025] The partition wall 15 of the flat multi-hole tube 3 used for heat exchange has a thickness ti, and one of the two sides forming the chevron has a length a. The distance between the partition walls 15 between the inner surfaces of the outer wall 21w of the outer tube 21 is the distance Li. Further, the thickness to of the outer tube 21 satisfies the condition of the following formula (1).
[0026] [数 1]  [0026] [Equation 1]
Li.t a - ti一 …ひ) Li.t a-ti one… hi)
3a  3a
[0027] 一辺の長さ aの 2つ辺 27が角度 2 Θで山形に屈曲した断面形状の隔壁 15を備えた 扁平多穴管 3を拡管することを検討する。図 5 (a)に示したように、内圧を高めると、外 管 21の壁 21wに働く力により、山形に屈曲した隔壁 15は上下方向に引っ張られ、一 方の辺 27の傾き角度 Θが 90度に近づくように変形する。この変形を、隔壁の傾きが 変わる変形、あるいは角度変形と称する。この角度変形は、隔壁 15が外管 21の壁 2 lwに接続した部分の角(根元) 26と、山形を形成する 2つの辺 27が交差した頂点 25 とが、ほぼ隔壁 15の厚み tiだけオフセットした状態で伸びきつた状態となり、終了する と想定される。その状態を図 6に示してある。 [0027] Consider expanding the flat multi-hole tube 3 including the partition wall 15 having a cross-sectional shape in which two sides 27 having a length a on one side are bent in a mountain shape at an angle 2Θ. As shown in Fig. 5 (a), when the internal pressure is increased, due to the force acting on the wall 21w of the outer pipe 21, the partition wall 15 bent in a mountain shape is pulled up and down, and the inclination angle Θ of one side 27 is Deforms to approach 90 degrees. This deformation is called deformation in which the inclination of the partition wall changes or angular deformation. In this angular deformation, the corner (root) 26 where the partition 15 is connected to the wall 2 lw of the outer tube 21 and the apex 25 where the two sides 27 forming the chevron intersect are approximately the thickness ti of the partition 15. It is assumed that it will end in an offset state and will end. This state is shown in FIG.
[0028] この後の変形は、図 5 (b)に示したように、隔壁 15の肉厚が減少する引張りによる変 形(引張変形)になると想定される。したがって、加えられる内圧により、隔壁 15の変 形のメカニズムが変わる。このため、角度変形が終了してから、引張変形が開始され るまでの範囲の圧力をカ卩えることにより、隔壁 15をほぼ伸びきつた状態まで、安定し て変形させることができると考免られる。  [0028] The subsequent deformation is assumed to be a deformation (tensile deformation) due to tension in which the wall thickness of the partition 15 decreases, as shown in FIG. 5 (b). Therefore, the deformation mechanism of the partition wall 15 changes depending on the applied internal pressure. For this reason, it is considered that the partition wall 15 can be stably deformed until it is almost stretched by adjusting the pressure in the range from the end of the angular deformation to the start of the tensile deformation. It is done.
[0029] 図 7は、チューブの内側の高さ(短軸方向 Yの内径または内寸) Hiと内圧 (加圧圧 力)との関係を実測した結果を示している。この図 7に示した実線 A1は、隔壁 15の板 厚 tiを 0. 19mmとしたときの測定値であり、一点鎖線 A2は、隔壁 15の屈曲した角度 Θの測定値力も正接 (tan)を計算した値である。実線 A1から分かるように、隔壁 15 の厚み tiが 0. 19mmであると、内圧がほぼ 2MPaを超えたあたりから、チューブ高さ Hiが急激に増大し、隔壁 15が角度変形している。内圧が 7. 2MPaの近傍で、隔壁 15の変形量が少なくなりはじめ、内圧が 7. 5MPa程度で、隔壁 15の変形はほとんど なくなる。 7. 5MPa程度の圧力をカ卩えることにより、隔壁 15が伸びきつた状態になり、 それ以上の圧力を加えても隔壁 15の変形は進まず、隔壁 15の角度変形が終了して いると考えられる。 [0029] FIG. 7 shows the results of actual measurement of the relationship between the inner height (inner diameter or inner dimension in the minor axis direction Y) Hi and the inner pressure (pressurizing pressure) of the tube. The solid line A1 shown in FIG. 7 is a measurement value when the plate thickness ti of the partition wall 15 is 0.19 mm, and the alternate long and short dash line A2 is a measured value force of the bent angle Θ of the partition wall 15 as tangent It is a calculated value. As can be seen from the solid line A1, the bulkhead 15 When the thickness ti is 0.19 mm, the tube height Hi suddenly increases and the partition wall 15 is angularly deformed when the internal pressure exceeds approximately 2 MPa. When the internal pressure is around 7.2 MPa, the deformation amount of the partition wall 15 starts to decrease, and when the internal pressure is about 7.5 MPa, the deformation of the partition wall 15 is almost eliminated. 7. When the pressure of about 5 MPa is applied, the partition wall 15 is in a stretched state. Even if a higher pressure is applied, the deformation of the partition wall 15 does not progress, and the angular deformation of the partition wall 15 is completed. Conceivable.
[0030] 図 7に、一点鎖線 A2で示した計算値と、実線 A1で示した測定値とを比較すると、 図内に示してあるように、 rtan Q =HiZ (2ti)」のポイントで、チューブの角度変形は 略終了している。これより、上述したように、隔壁 15の頂点 25が、根元部分 26から隔 壁 15の厚さ tiだけずれた位置になったときに、隔壁 15は伸びきつた状態となって角 度変形が終了していることが推測される。測定値 A1から判断すると、角度変形が終 了するのは、内圧が 7〜8MPa程度の場合である。したがって、拡管するときの圧力 を 7〜8MPa程度ある 、はそれより上に設定できれば、隔壁 15を伸びきつた状態に することができる。  [0030] In FIG. 7, when the calculated value indicated by the one-dot chain line A2 and the measured value indicated by the solid line A1 are compared, as shown in the figure, at the point of rtan Q = HiZ (2ti), The angular deformation of the tube is almost complete. Thus, as described above, when the apex 25 of the partition wall 15 is shifted from the root portion 26 by the thickness ti of the partition wall 15, the partition wall 15 is stretched and angular deformation occurs. It is guessed that it has ended. Judging from the measured value A1, the angular deformation ends when the internal pressure is about 7-8 MPa. Therefore, if the pressure when expanding the tube is about 7 to 8 MPa, if the pressure can be set higher than that, the partition wall 15 can be stretched.
[0031] 図 8に示すように、隔壁 15の厚み tiなどには公差がある。その公差により、内圧 Pに 対する変形量 (チューブの高さ) Hiの関係は変化する。拡管する際の高さ Hiの目標 値を、図中の H2のような、角度変形が終了していない位置に設定すると、高さ Hiが 目標値 H2になるように個々のチューブにより内圧 Pを制御しなくてはならない。その ような拡管作業は、経済的ではなぐまた、拡管後の寸法精度が低下するので、扁平 多穴管を採用した熱交^^の歩留まりも低下する。これに対し、拡管する際の高さ Hi の目標値を図中の H3のような、角度変形が終了した位置に設定すると、拡管する際 の内圧を図中の P3のような、角度変形が終了する圧力の値、あるいはそれ以上の値 にセットすることができる。このため、個々のチューブの公差に係らず、同じ圧力で拡 管することにより、同じ高さ Hほで拡管できる。したがって、拡管後のチューブ 3の寸 法精度が安定するので、扁平多穴管 3を採用した熱交換器 1の歩留まりおよび品質 が向上する。  As shown in FIG. 8, there is a tolerance in the thickness ti of the partition wall 15. Due to the tolerance, the relationship of deformation (tube height) Hi to the internal pressure P changes. If the target value of height Hi when expanding the tube is set to a position where angular deformation has not been completed, such as H2 in the figure, the internal pressure P is set by individual tubes so that the height Hi becomes the target value H2. It must be controlled. Such pipe expansion work is not economical, and the dimensional accuracy after pipe expansion decreases, so the heat exchange yield using flat multi-hole pipes also decreases. On the other hand, if the target value for the height Hi when expanding the tube is set to the position where the angular deformation has been completed, such as H3 in the figure, the internal pressure during the expansion will be changed as indicated by P3 in the figure. It can be set to the value of the pressure to end or higher. Therefore, regardless of the tolerance of individual tubes, it can be expanded at the same height H by expanding at the same pressure. Accordingly, since the dimensional accuracy of the tube 3 after the tube expansion is stabilized, the yield and quality of the heat exchanger 1 employing the flat multi-hole tube 3 is improved.
[0032] このように、扁平多穴管 3においては、隔壁 15が伸びきつた状態、すなわち、図 8に 示す目標値 H3になるまで拡管することにより、安定した拡管が可能となる。そのよう な拡管を行なうために必要な圧力は、図 8に示した圧力 P3であり、その圧力 P3では 、殆ど管外面には変形が見られないように外管 21の外壁部分 21wの厚み toを決定 する。 [0032] Thus, in the flat multi-hole tube 3, by expanding the tube 15 until the partition wall 15 is stretched, that is, until the target value H3 shown in FIG. 8 is reached, stable tube expansion is possible. Like that The pressure P3 shown in Fig. 8 is the pressure required to perform proper pipe expansion. At this pressure P3, the thickness to of the outer wall portion 21w of the outer pipe 21 is determined so that almost no deformation is seen on the outer surface of the pipe. To do.
[0033] 隔壁 15が角度変形するために必要な力(内圧)は、図 6に示した隔壁 15が伸びき る状態のときに加えられる力から算出できる。その内圧が加えられたときに、少なくと も外管 21の外壁 21wが有意に変形しないことが 1つの条件となる。図 6において、隔 壁 15の一辺 27の長さを a、その傾き(倒れ角)を 0、外管 21の外壁部分 21wの内面 における隔壁 15の面間距離 (隔壁 15の対畤する面と面との間の距離)を Li、扁平多 穴管(チューブ) 3の高さ(外管 21の短軸方向 Xの内径または内寸)を Hiとすると、内 圧 Pが作用したときの外壁部分 21wに発生する応力 σ οは以下のようになる。まず、 外壁 21wは、隔壁間距離 Liに圧力 Ρの等分布荷重を受ける両端固定ばりと見なすこ とができるので、最大曲げモーメント Mmaxおよび断面係数 Zは、それぞれ式 (4)お よび(5)となる。したがって、外壁 21wに加わる最大応力 σ οは式 (6)となる。  [0033] The force (internal pressure) required for the angular deformation of the partition wall 15 can be calculated from the force applied when the partition wall 15 shown in FIG. 6 is extended. One condition is that at least the outer wall 21w of the outer tube 21 is not significantly deformed when the internal pressure is applied. In FIG. 6, the length of one side 27 of the partition wall 15 is a, the inclination (tilt angle) is 0, the distance between the surfaces of the partition wall 15 on the inner surface of the outer wall portion 21w of the outer tube 21 (the surface facing the partition wall 15) The outer wall when the internal pressure P is applied, where Li is the distance between the two surfaces and Li is the height of the flat multi-hole tube (tube) 3 (the inner diameter or inner dimension of the outer tube 21 in the short axis direction X). The stress σ ο generated in the part 21w is as follows. First, since the outer wall 21w can be regarded as a fixed beam at both ends that receives an evenly distributed load of pressure に at the partition wall distance Li, the maximum bending moment Mmax and the section modulus Z can be expressed by equations (4) and (5), respectively. It becomes. Therefore, the maximum stress σ ο applied to the outer wall 21w is given by equation (6).
[0034] [数 4] λ P-Li2 [0034] [Equation 4] λ / Γ P-Li 2
Mmax = ·  Mmax = ·
[0035] [数 5] to [0035] [Equation 5] to
•(5)  •(Five)
[0036] [数 6] [0036] [Equation 6]
Mmax P-Li P-Li Mmax P-Li P-Li
σ o = = •(6)  σ o = = • (6)
Z 12 to 2to2 隔壁 15は根元 26に生じる力により上下に引っ張られる。根元 26は内圧 Pにより、力 (荷重) W(W=加圧力 P X受圧面長さ Li)を受ける。隔壁 15は、根元 26および 2つ の辺 27が接続した中央頂点部分 25に曲げモーメントが発生して変形すると考えられ る。このとき、隔壁 15は、中央 25に集中荷重 W'を受ける、実長 2a、高さ tiの両端固 定ばりとしてモデルィ匕できる。隔壁 15に加わる集中荷重 ま、力 Wが一定であれば tan Θが最大のときに、最小となるので、集中荷重 Wが最小値のときに角度変形が 行われる条件で計算を進める。 tan Θが最大となる場合は、隔壁 15の角度変形が終 了した伸びきつた状態であり、傾き Θは式(7)で表すことができる。したがって、集中 荷重 は式(8)のように求まる。 Z 12 to 2to 2 bulkhead 15 is pulled up and down by the force generated at root 26. The base 26 receives a force (load) W (W = applied pressure PX pressure receiving surface length Li) by the internal pressure P. It is considered that the bulkhead 15 is deformed by generating a bending moment at the central vertex portion 25 where the root 26 and the two sides 27 are connected. At this time, the bulkhead 15 receives the concentrated load W ′ at the center 25 and is fixed at both ends with an actual length of 2a and a height of ti. Can be modeled as a constant beam. Concentrated load applied to bulkhead 15 If force W is constant, tan Θ is the minimum when maximal, and the calculation proceeds under the condition that angular deformation is performed when concentrated load W is minimum. When tan Θ is maximized, it is a state in which the angular deformation of the partition wall 15 has been completed, and the inclination Θ can be expressed by Equation (7). Therefore, the concentrated load is obtained as shown in Equation (8).
[0038] [数 7]
Figure imgf000011_0001
[0038] [Equation 7]
Figure imgf000011_0001
[0039] [数 8]
Figure imgf000011_0002
[0039] [Equation 8]
Figure imgf000011_0002
[0040] 隔壁 15が角度変形するときの最大曲げモーメントは式(9)のようになる。式(10)の 断面係数 Zを用いることにより、隔壁 15に生じる最大応力 a iは式(11)のようになる。 なお、扁平多穴管の断面形状に基づきモデル化するために、 1次元で応力を求めて いる。 [0040] The maximum bending moment when the partition wall 15 is angularly deformed is expressed by Equation (9). By using the section modulus Z of equation (10), the maximum stress a i generated in the partition wall 15 is as shown in equation (11). In order to model based on the cross-sectional shape of a flat multi-hole tube, the stress is obtained in one dimension.
[0041] [数 9]  [0041] [Equation 9]
W'-2a 2ti · P · Li '2 I if + ti2 ti · P · Li^i I if + tiW'-2a 2ti · P · Li '2 I if + ti 2 ti · P · Li ^ i I if + ti
Mmax (9) Mmax (9)
8Hi 2Hi  8Hi 2Hi
[0042] [数 10] [0042] [Equation 10]
Z =— - "(10) Z = —-"(10)
[0043] [数 11] [0043] [Equation 11]
Mmax ti-P-Li ^(m/ 2f + ti2 6 — 3P'Li f/2)2 + ti σ l: fi •(11) Mmax ti-P-Li ^ (m / 2f + ti 2 6 — 3P'Li f / 2) 2 + ti σ l: fi • (11)
Z 2Hi ti Hi-ti  Z 2Hi ti Hi-ti
[0044] 上述した条件で拡管するためには、隔壁 15が角度変形する圧力範囲では外壁 21 wが変形しなければ良い。したがって、拡管用の最小の圧力 Pminが扁平多穴管 3に 加えられたときに、外壁 21 wおよび隔壁 15を構成する材料、例えばアルミニウムある いは銅などを含む金属材料の限界応力 σ ΐίπιと、隔壁 15が角度変形するときの最大 応力 a iと、外壁 2 lwにカ卩わる最大応力 σ οとの間に式(12)が成立すれば良い。 In order to expand the tube under the above-described conditions, the outer wall 21 is in a pressure range in which the partition wall 15 is angularly deformed. If w does not deform, it is good. Therefore, when the minimum pressure Pmin for pipe expansion is applied to the flat multi-hole pipe 3, the limit stress σ ΐίπι of the metal material including the outer wall 21 w and the partition wall 15 such as aluminum or copper is obtained. The equation (12) may be established between the maximum stress ai when the partition wall 15 is angularly deformed and the maximum stress σ ο applied to the outer wall 2 lw.
[0045] [数 12] σ o≥ alim σ ι· · *Γι ) [0045] [Equation 12] σ o≥ alim σ ι · · * Γι)
[0046] 式(12)により、上記条件(1)を導くことができる。なお、隔壁 15の一辺 27の長さ aは 以下の式(13)のように表される。 [0046] The above condition (1) can be derived from the equation (12). Note that the length a of the side 27 of the partition wall 15 is expressed by the following equation (13).
[0047] [数 13] a = 7(Hi/2)2 + ti2- - -(13) [0047] [Equation 13] a = 7 (Hi / 2) 2 + ti 2 ---(13)
[0048] 扁平多穴管の 1つのメリットは、内部に設置された隔壁により扁平管の強度を確保 できるので、外壁 21w、すなわち外管 21を薄くできることである。ここで、扁平多穴管 の最小単位である 2つの流路 14を備えた二穴管を考える。内圧 Pが加わると外壁 21 wに発生する最大応力 σ oは、上述したように式 (6)となる。二穴管と同じ管内断面積 を備えた扁平管、すなわち、隔壁間が距離 2Li、チューブ内寸 (高さ) Hiの扁平管の 場合、二穴管と同等の強度を得るためには、外壁 21wの厚さ toを 2倍にする必要が ある。このため、外壁 21wの厚さが、式(1)で求められた最小値の 2倍を超えると、扁 平多穴管の、この 1つのメリットが失われる。したがって、外壁 21wの厚み toは、条件 (2)を満足することが望ましい。 [0048] One advantage of the flat multi-hole tube is that the strength of the flat tube can be ensured by the partition wall installed inside, so that the outer wall 21w, that is, the outer tube 21, can be thinned. Here, consider a two-hole tube with two flow paths 14, which is the smallest unit of a flat multi-hole tube. As described above, the maximum stress σ o generated in the outer wall 21 w when the internal pressure P is applied is expressed by Equation (6). In the case of a flat tube with the same cross-sectional area as the two-hole tube, i.e., a flat tube with a distance of 2 Li between the partition walls and a tube inner dimension (height) of Hi, The 21w thickness to needs to be doubled. For this reason, if the thickness of the outer wall 21w exceeds twice the minimum value obtained by Equation (1), this one advantage of the flat multi-hole tube is lost. Therefore, it is desirable that the thickness to of the outer wall 21w satisfies the condition (2).
[0049] [数 2] つ Li-ti- a2 - 1 、+[0049] [Equation 2] two Li-ti- a 2 - 1, +ヽ
2、 ≤to ...(2)  2, ≤to ... (2)
V 3a  V 3a
[0050] 一方、図 8において、さらに圧力 Pを高くすると、隔壁 15が引張変形し、隔壁 15が 減肉されながら伸ばされ続ける。この場合、隔壁 15が破断するタイミングを判断する ことは容易ではない。このため、引張変形が始まるような圧力 Pを用いて拡管すること は望ましくない。また、拡管するときの圧力は、扁平多穴管の耐圧の上限またはそれ 以上であり、引張変形が始まるような圧力 Pに対して、外管 21の外壁 21wが変形せ ずに耐えられる必要はない。さらに、経済的および熱交換効率の観点から、外管 21 の厚み toは薄いことが好ましい。したがって、外管 21の厚み toは、隔壁 15が引張変 形するような圧力では変形する値で良い。さらに、隔壁 15が引張変形するような圧力 Pが加わったときに外壁 21wが変形すれば、過剰な圧力が加わったことが、扁平多 穴管 3の外観力 明瞭にわ力るので、扁平多穴管 3およびそれを用いた熱交 の品質を確認するための判断要素の 1つとして利用できる。 On the other hand, in FIG. 8, when the pressure P is further increased, the partition wall 15 is pulled and deformed, and the partition wall 15 is continuously stretched while being thinned. In this case, it is not easy to determine the timing at which the partition wall 15 breaks. For this reason, it is not desirable to expand the pipe using a pressure P that initiates tensile deformation. The pressure when expanding the pipe is the upper limit of the pressure resistance of the flat multi-hole tube or Thus, the outer wall 21w of the outer tube 21 does not need to be able to withstand the pressure P at which tensile deformation starts, without deformation. Further, from the viewpoint of economy and heat exchange efficiency, it is preferable that the thickness to of the outer tube 21 is thin. Therefore, the thickness to of the outer tube 21 may be a value that deforms at a pressure at which the partition wall 15 undergoes tensile deformation. Furthermore, if the outer wall 21w is deformed when a pressure P is applied that causes the partition wall 15 to be tensilely deformed, the appearance force of the flat multi-hole tube 3 is clearly increased because the excessive pressure is applied. It can be used as one of the judgment factors for confirming the quality of the hole tube 3 and heat exchange using it.
[0051] 隔壁 15が引張変形されるときに、隔壁 15に働く引張応力 a sは式(14)のようにな る。 [0051] When the partition wall 15 is subjected to tensile deformation, the tensile stress a s acting on the partition wall 15 is expressed by Equation (14).
[0052] [数 14] ti  [0052] [Equation 14] ti
[0053] 隔壁 15が引張変形する前に外壁 21wは変形して良いと考えられる。したがって、 拡管用の最大の圧力 Pmaxが扁平多穴管 3に加えられたときに、扁平多穴管 3の材料 の限界応力 σ limと、隔壁 15が引張変形するときの応力 σ sと、外壁 21wに加わる最 大応力 σ οとの間に式(15)が成立して良い。 [0053] It is considered that the outer wall 21w may be deformed before the partition wall 15 undergoes tensile deformation. Therefore, when the maximum pressure Pmax for pipe expansion is applied to the flat multi-hole tube 3, the limit stress σ lim of the material of the flat multi-hole tube 3, the stress σ s when the partition wall 15 undergoes tensile deformation, and the outer wall Equation (15) may hold between the maximum stress σ ο applied to 21w.
[0054] [数 15] σ s≥ alim σ ο· · ·<Ί5)  [0054] [Equation 15] σ s≥ alim σ ο ··· <Ί5)
[0055] この式(15)力も条件(3)を導くことができ、外壁 21wの厚み toは、この条件を満足 することがさらに望ましい。 [0055] The force of this equation (15) can also lead to the condition (3), and the thickness to of the outer wall 21w more preferably satisfies this condition.
[0056] [数 3] [0056] [Equation 3]
Li'ti、 ,、 Li'ti,,,
^|^≥to ...(3)  ^ | ^ ≥to ... (3)
[0057] 図 9は、拡管するときの内寸 Hiの目標値が 1. 5mmである、扁平多穴管 3の外壁 21 wの厚さ toを、隔壁間距離 Liおよび隔壁板厚 tiに対して示してある。図 9に示した面 Cuは、条件(3)による厚み toの上限を示し、面 C1は、条件(1)による厚み toの下限 を示している。この範囲の厚み toの外管 21を備えた扁平多穴管 3であれば、図 8に 示した、拡管するのに適当な圧力 P3を設定することができ、歩留まり良く拡管するこ とができる。さらに、拡管したときに外壁 21wの変形を防止でき、安定した外形形状の 扁平多穴管 3によりフィン 2との間で十分な接触面積を備えた、熱交換効率の高い熱 交翻1を歩留まり良く製造することができる。隔壁 15が引張変形を起こさずに、角 度変形の範囲で、内寸 Hiを所望の目標値に達するまで拡管するのに適した圧力 P3 の具体的な値は、扁平多穴管 3を構成する材料の限界応力 σ limに基づき設定でき る。式(12)および式(15)を参照すれば、以下の範囲で拡管用の圧力 P3を設定す ることが好ま U、ことが分かる。 [0057] Fig. 9 shows the thickness to of the outer wall 21 w of the flat multi-hole tube 3 where the target value of the inner dimension Hi when expanding the tube is 1.5 mm with respect to the distance Li between the partition walls and the partition plate thickness ti. It is shown. The surface Cu shown in FIG. 9 shows the upper limit of the thickness to by the condition (3), and the surface C1 shows the lower limit of the thickness to by the condition (1). A flat multi-hole tube 3 with an outer tube 21 with a thickness to within this range is shown in Fig. 8. It is possible to set the appropriate pressure P3 for expanding the tube, and the tube can be expanded with a high yield. In addition, deformation of the outer wall 21w can be prevented when the pipe is expanded, and the heat exchange 1 with high heat exchange efficiency, which has a sufficient contact area with the fin 2 by the flat multi-hole pipe 3 with a stable outer shape, is obtained. Can be manufactured well. The specific value of pressure P3 suitable for expanding the inner dimension Hi until the desired target value is reached within the range of angular deformation without causing the bulkhead 15 to undergo tensile deformation is the flat multi-hole tube 3. It can be set based on the critical stress σ lim of the material to be used. Referring to Equation (12) and Equation (15), it can be seen that it is preferable to set the pressure P3 for pipe expansion within the following range.
[0058] [数 16] [0058] [Equation 16]
[0059] なお、上記では、プレート状のフィン 2を持つ熱交換器 1を製造する過程を説明した 力 フィンの形状はプレート状に限定されずに、波形をしているコルゲートフィンであ つても良い。コルゲートフィンを用いた熱交換器においては、扁平多穴管の内、へッ ダに取り付けられた部分を拡げるだけで良ぐフィンと接続する部分は拡げる必要は 基本的にはない。し力しながら、フィンを接合した後に、扁平多穴管を拡管して接触 面積を増加することは可能である。扁平多穴管の管内が複数の隔壁により微細な流 路に区切られている場合は、それぞれの流路の断面積は小さいので、拡管子を挿入 して拡張する方法よりも、扁平多穴管に流体を注入し、内圧を高めることにより隔壁を 伸ばす方法が適している。上述した条件(1)を満たす扁平多穴管を採用することによ り、内圧を高める方法 (加圧拡管と称する場合もある)であっても、拡管子による拡張 であっても、隔壁が所望のサイズまで伸びる以前に、流体または拡管子による内圧に より、外管の外壁が変形して、外壁の外側が波打ったような状態に変形することを防 止できる。すなわち、加圧拡管などにより、内圧により扁平多穴管を拡張するときに、 管外壁の変形を抑えながら、隔壁を伸ばすことができ、扁平多穴管が所望のサイズ になるまで、管の外形を制御できる。意図しない形状に管外壁が変形するのを防止 することにより、管外面とフィンとの間で十分な接触面積を確保でき、伝熱性能を向 上できる。したがって、熱交換効率が高ぐ信頼性の高い熱交換器を提供できる。 [0059] In the above description, the process of manufacturing the heat exchanger 1 having the plate-like fins 2 has been described. The shape of the force fins is not limited to the plate shape, but may be a corrugated fin having a waveform. good. In a heat exchanger that uses corrugated fins, it is not necessary to expand the portion connected to the fins that is good just by expanding the portion attached to the header in the flat multi-hole tube. However, it is possible to increase the contact area by expanding the flat multi-hole tube after joining the fins. When the inside of a flat multi-hole pipe is divided into fine flow paths by a plurality of partition walls, the cross-sectional area of each flow path is small. A method of extending the partition wall by injecting a fluid and increasing the internal pressure is suitable. By adopting a flat multi-hole tube that satisfies the above-mentioned condition (1), the partition wall can be used regardless of whether it is a method of increasing the internal pressure (sometimes referred to as pressure expansion) or expansion by a tube. Before extending to the desired size, it is possible to prevent the outer wall of the outer tube from being deformed by the internal pressure of the fluid or the expander, and the outer wall of the outer wall from being deformed into a wavy state. That is, when a flat multi-hole tube is expanded by internal pressure, such as by pressure expansion, the bulkhead can be stretched while suppressing deformation of the outer wall of the tube, and the outer shape of the tube is increased until the flat multi-hole tube reaches a desired size. Can be controlled. By preventing the outer wall of the tube from being deformed into an unintended shape, a sufficient contact area can be secured between the outer surface of the tube and the fins, improving heat transfer performance. I can go up. Therefore, a highly reliable heat exchanger with high heat exchange efficiency can be provided.

Claims

請求の範囲 The scope of the claims
扁平な外管と、  A flat outer tube,
その外管の内部を複数の流路に分割する複数の隔壁とを有し、  Having a plurality of partition walls dividing the inside of the outer tube into a plurality of flow paths;
それぞれの隔壁は、厚さ tiで、一辺の長さ aの 2つの辺力 なる山形に屈曲した断面 形状を備え、前記外管の内面における隔壁の面間が距離 Liとなるように配置されて おり、前記外管の厚み toは、以下の条件を満たす、扁平多穴管。  Each partition wall has a thickness ti, has a cross-sectional shape bent into two chevrons with one side length a, and is arranged so that the distance between the partition walls on the inner surface of the outer tube is a distance Li. The thickness of the outer tube is a flat multi-hole tube satisfying the following conditions.
[数 1] [Number 1]
Figure imgf000016_0001
Figure imgf000016_0001
[2] 前前記記外外管管のの厚厚みみ ttooはは以以下下のの条条件件をを、、ささららにに満満たたすす、、請請求求項項 11のの扁扁平平多多穴穴管管。。  [2] Thickness of the outer tube mentioned above ttoo will satisfy the following conditions more and more fully, and the flatness of claim 11 Flat multi-hole tube. .
[[数数 22]] [[Number 22]]
Figure imgf000016_0002
前記外管の厚み toは以下の条件を、さらに満たす、請求項 1の扁平多穴管。
Figure imgf000016_0002
The flat multi-hole tube according to claim 1, wherein the thickness to of the outer tube further satisfies the following conditions.
[数 3] [Equation 3]
Figure imgf000016_0003
複数の請求項 1に記載の扁平多穴管と、
Figure imgf000016_0003
A plurality of flat multi-hole tubes according to claim 1;
前記複数の扁平多穴管が貫通した状態で取り付けられた複数のフィンとを有する 熱交換器。  A heat exchanger having a plurality of fins attached in a state where the plurality of flat multi-hole tubes are penetrated.
PCT/JP2005/015940 2004-08-31 2005-08-31 Flat perforated pipe and heat exchanger WO2006025465A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05781541A EP1795848A1 (en) 2004-08-31 2005-08-31 Flat perforated pipe and heat exchanger
US11/660,918 US20080087408A1 (en) 2004-08-31 2005-08-31 Multi -Channeled Flat Tube And Heat Exchanger
JP2006532761A JP4664918B2 (en) 2004-08-31 2005-08-31 Flat multi-hole tube and heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-252671 2004-08-31
JP2004252671 2004-08-31

Publications (1)

Publication Number Publication Date
WO2006025465A1 true WO2006025465A1 (en) 2006-03-09

Family

ID=36000114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015940 WO2006025465A1 (en) 2004-08-31 2005-08-31 Flat perforated pipe and heat exchanger

Country Status (5)

Country Link
US (1) US20080087408A1 (en)
EP (1) EP1795848A1 (en)
JP (1) JP4664918B2 (en)
CN (1) CN100516755C (en)
WO (1) WO2006025465A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232600A (en) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the heat exchanger
JP2008261518A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Heat exchanger and air conditioner comprising the same
JP2009281693A (en) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP2010256004A (en) * 2009-04-21 2010-11-11 Hamilton Sundstrand Corp Microchannel heat exchanger and thermal energy extracting method
JP2011153823A (en) * 2008-04-24 2011-08-11 Mitsubishi Electric Corp Heat exchanger and air conditioner using the same
WO2015041065A1 (en) * 2013-09-19 2015-03-26 三菱重工オートモーティブサーマルシステムズ株式会社 Flat heat-exchanging tube, heat medium heating device using same, and vehicular air-conditioning device
JP2016159693A (en) * 2015-02-27 2016-09-05 三菱重工オートモーティブサーマルシステムズ株式会社 Manufacturing method of heat medium heating device
JP2019525244A (en) * 2016-07-27 2019-09-05 深▲せん▼光峰科技股▲分▼有限公司Appotronics Corporation Limited Color wheel device and projector

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2229970T3 (en) 2009-03-16 2012-09-10 Hoffmann La Roche Bubble trap system for an infusion pump device
KR101086917B1 (en) * 2009-04-20 2011-11-29 주식회사 경동나비엔 Heat exchanger
CN101995115B (en) * 2009-08-07 2014-07-23 江森自控科技公司 Multi-channel heat exchanger fins
CN101844184B (en) * 2010-03-31 2012-05-23 华南理工大学 Phase-change non-destructive pipe expanding method for inner finned tube
US20120031601A1 (en) * 2010-08-03 2012-02-09 Johnson Controls Technology Company Multichannel tubes with deformable webs
EP2906896A4 (en) * 2012-06-28 2016-07-27 Cooper Standard Automotive Inc Heat exchanger
DE102020216059A1 (en) * 2020-12-16 2022-06-23 Mahle International Gmbh Process for manufacturing a heat exchanger
US12044484B2 (en) * 2022-03-31 2024-07-23 Deere & Company Heat tube for heat exchanger
CN116379826B (en) * 2023-06-02 2024-04-16 广东美的暖通设备有限公司 Heat exchange assembly, assembling method thereof, micro-channel heat exchanger and heating ventilation equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268985A (en) * 1985-05-24 1986-11-28 Matsushita Refrig Co Heat exchanger
JPH01127175A (en) * 1987-11-11 1989-05-19 Hitachi Ltd Structure for fitting pipe to pipe plate
JP2003148889A (en) * 2001-11-09 2003-05-21 Gac Corp Heat exchanger and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164995A (en) * 1982-03-25 1983-09-29 Kobe Steel Ltd Heat exchanger and manufacture thereof
JPS6219691A (en) * 1985-07-19 1987-01-28 ペドロ・マンチン・ベルテイ Nonshrinkable expansible conduit for heat exchanger or similar article
DE3730117C1 (en) * 1987-09-08 1988-06-01 Norsk Hydro As Method for producing a heat exchanger, in particular a motor vehicle radiator and tube profile for use in such a method
JPH11320005A (en) * 1998-05-13 1999-11-24 Showa Alum Corp Heat exchanger and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268985A (en) * 1985-05-24 1986-11-28 Matsushita Refrig Co Heat exchanger
JPH01127175A (en) * 1987-11-11 1989-05-19 Hitachi Ltd Structure for fitting pipe to pipe plate
JP2003148889A (en) * 2001-11-09 2003-05-21 Gac Corp Heat exchanger and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232600A (en) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the heat exchanger
JP2008261518A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Heat exchanger and air conditioner comprising the same
JP2011153823A (en) * 2008-04-24 2011-08-11 Mitsubishi Electric Corp Heat exchanger and air conditioner using the same
JPWO2009131072A1 (en) * 2008-04-24 2011-08-18 三菱電機株式会社 Heat exchanger and air conditioner using this heat exchanger
US8037699B2 (en) 2008-04-24 2011-10-18 Mitsubishi Electric Corporation Heat exchanger and air conditioner using the same
JP2009281693A (en) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP2010256004A (en) * 2009-04-21 2010-11-11 Hamilton Sundstrand Corp Microchannel heat exchanger and thermal energy extracting method
WO2015041065A1 (en) * 2013-09-19 2015-03-26 三菱重工オートモーティブサーマルシステムズ株式会社 Flat heat-exchanging tube, heat medium heating device using same, and vehicular air-conditioning device
JP2016159693A (en) * 2015-02-27 2016-09-05 三菱重工オートモーティブサーマルシステムズ株式会社 Manufacturing method of heat medium heating device
JP2019525244A (en) * 2016-07-27 2019-09-05 深▲せん▼光峰科技股▲分▼有限公司Appotronics Corporation Limited Color wheel device and projector

Also Published As

Publication number Publication date
CN100516755C (en) 2009-07-22
JP4664918B2 (en) 2011-04-06
CN101010552A (en) 2007-08-01
US20080087408A1 (en) 2008-04-17
EP1795848A1 (en) 2007-06-13
JPWO2006025465A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
WO2006025465A1 (en) Flat perforated pipe and heat exchanger
JP4109444B2 (en) Heat exchanger and manufacturing method thereof
JP3125834B2 (en) Heat exchanger and method of manufacturing the same
US6591900B1 (en) Heat exchanger, tube for heat exchanger, and method of manufacturing the heat exchanger and the tube
JP2007139417A (en) Metal plate for producing flat tube, flat tube, and its manufacturing method
JP4751662B2 (en) Plate for manufacturing flat tube, method for manufacturing flat tube, and method for manufacturing heat exchanger
JP2916451B2 (en) Heat exchanger manufacturing method
JP2002213889A (en) Improved pipe used for serpentine fin heat exchanger
JP4501286B2 (en) Heat exchanger
CA2704057C (en) A non-plain carbon steel header for a heat exchanger
US20200088470A1 (en) Heat exchanger, heat exchanger manufacturing method, and air-conditioner including heat exchanger
WO2019203115A1 (en) Flat multi-hole tube, heat exchanger, and method for manufacturing heat exchanger
JP2018124034A (en) Tube for heat exchanger
WO2020095797A1 (en) Heat exchanger and method for manufacturing heat exchanger
JP5063765B2 (en) Heat exchanger, heat exchanger manufacturing method, refrigerator, and air conditioner
JP5167930B2 (en) Heat exchanger
WO2006068262A1 (en) Heat exchanger
JP2000190043A (en) Manufacture of heat exchanger
JP4467106B2 (en) Tube for heat exchanger and manufacturing method thereof
WO2001014817A1 (en) Heat exchanger tube
US8839846B2 (en) Mechanical joint for CuZnFe alloy heat exchanger and method
KR101369546B1 (en) Flat tube and Heat exchanger comprising in the same
JP2002364995A (en) Heat exchanger
JP2001059691A (en) Heat exchanger
JP2009085468A (en) Fin tube-type heat exchanger and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006532761

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11660918

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005781541

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580029119.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005781541

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11660918

Country of ref document: US