WO2012056790A1 - Heat exchanger and air conditioner having same installed therein - Google Patents

Heat exchanger and air conditioner having same installed therein Download PDF

Info

Publication number
WO2012056790A1
WO2012056790A1 PCT/JP2011/068354 JP2011068354W WO2012056790A1 WO 2012056790 A1 WO2012056790 A1 WO 2012056790A1 JP 2011068354 W JP2011068354 W JP 2011068354W WO 2012056790 A1 WO2012056790 A1 WO 2012056790A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
flat tube
exchanger according
following configuration
fin
Prior art date
Application number
PCT/JP2011/068354
Other languages
French (fr)
Japanese (ja)
Inventor
良信 山崎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010239139A external-priority patent/JP2012093010A/en
Priority claimed from JP2010239135A external-priority patent/JP5009409B2/en
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201180051335.0A priority Critical patent/CN103180684B/en
Publication of WO2012056790A1 publication Critical patent/WO2012056790A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0443Combination of units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction

Definitions

  • the present invention relates to a side flow type parallel flow heat exchanger and an air conditioner equipped with the same.
  • a parallel flow type heat in which a plurality of flat tubes are arranged between a plurality of header pipes so that a plurality of refrigerant passages in the flat tubes communicate with the inside of the header pipe, and fins such as corrugated fins are arranged between the flat tubes.
  • Exchangers are widely used in outdoor units of car air conditioners and building air conditioners.
  • FIG. 11 An example of a conventional side flow type parallel flow type heat exchanger is shown in FIG.
  • the heat exchanger 1 includes two header pipes 2 and 3 and a plurality of flat tubes 4 arranged therebetween.
  • the header pipes 2 and 3 extend in the vertical direction and are arranged in parallel in the horizontal direction at intervals
  • the flat tubes 4 extend in the horizontal direction and are arranged at a predetermined pitch in the vertical direction.
  • the parallel flow type heat exchanger 1 is installed at various angles in accordance with design requirements at the stage of actually mounting on equipment, and there are many cases where exact “vertical” and “horizontal” do not apply.
  • the flat tube 4 is an elongated molded product obtained by extruding a metal, and a refrigerant passage 5 through which a refrigerant flows is formed. Since the flat tube 4 is disposed so that the extrusion direction, which is the longitudinal direction, is horizontal, the refrigerant flow direction of the refrigerant passage 5 is also horizontal. A plurality of refrigerant passages 5 having the same cross-sectional shape and cross-sectional area are arranged in the depth direction of FIG. 11, and therefore, the vertical cross section of the flat tube 4 has a harmonica shape. Each refrigerant passage 5 communicates with the inside of the header pipes 2 and 3. Fins 6 are arranged between adjacent flat tubes 4. Here, corrugated fins are used as the fins 6, but plate fins may be used.
  • the header pipes 2 and 3, the flat tubes 4, and the fins 6 are all made of a metal having good heat conductivity such as aluminum, the flat tubes 4 are brazed to the header pipes 2 and 3, and the fins 6 are brazed to the flat tubes 4. Or it is fixed by welding.
  • the refrigerant inlets and outlets 7 and 8 are provided only on the header pipe 3 side.
  • Two partition plates 9a and 9c are provided in the header pipe 3 at intervals in the vertical direction. Inside the header pipe 2, the partition plates are located at a height intermediate between the partition plates 9a and 9c. 9b is provided.
  • the refrigerant flows from the lower refrigerant inlet / outlet 7 as shown by the solid line arrows in FIG.
  • the refrigerant entering from the refrigerant inlet / outlet 7 is blocked by the partition plate 9 a and travels toward the header pipe 2 via the flat tube 4.
  • This refrigerant flow is represented by a left-pointing block arrow.
  • the refrigerant that has entered the header pipe 2 is blocked by the partition plate 9 b and travels to the header pipe 3 via another flat tube 4.
  • This refrigerant flow is represented by a right-pointing block arrow.
  • the refrigerant that has entered the header pipe 3 is blocked by the partition plate 9c, and further travels toward the header pipe 2 via another flat tube 4.
  • This refrigerant flow is represented by a left-pointing block arrow.
  • the refrigerant that has entered the header pipe 2 is folded back and travels again to the header pipe 3 via another flat tube 4.
  • This refrigerant flow is represented by a right-pointing block arrow.
  • the refrigerant that has entered the header pipe 3 flows out from the refrigerant inlet / outlet 8. In this way, the refrigerant follows the zigzag path and flows from the bottom to the top.
  • the number of partition plates is 3 is shown here, this is only an example, and the number of partition plates and the number of times the resulting refrigerant flow may be folded may be set as desired. it can.
  • the refrigerant flow is reversed. That is, the refrigerant enters the header pipe 3 from the refrigerant inlet / outlet 8 as shown by the dotted arrow in FIG. 11, is dammed by the partition plate 9c and goes to the header pipe 2 via the flat tube 4, and is dammed by the partition plate 9b in the header pipe 2.
  • Condensate turns into frost on the surface of the heat exchanger when the temperature is low. Frost can travel to ice.
  • the term “condensed water” is used to include water in which such frost and ice are melted, so-called defrosted water.
  • a drainage guide that comes into contact with the fins is disposed on the condensate condensing side.
  • the drainage guide is made of a linear member, is inclined with respect to the flat tube, and at least one of both ends is led to the lower end side or the side end side of the heat exchanger.
  • the guide plate is disposed in contact with the fins on the downstream side of the air blowing.
  • the dew adhering to the surface of the heat exchanger moves downstream by blowing and adheres to the guide plate, and falls freely by its weight.
  • JP 2007-285673 A Japanese Patent Laid-Open No. 2001-263861
  • the present invention has been made in view of the above points, and prevents the occurrence of water jumping even when the heat exchanger is placed in an inclined state so that the surface on which condensed water is collected faces downward. With the goal.
  • a plurality of header pipes arranged in parallel at intervals, and a plurality of flat pipes arranged between the plurality of header pipes and having a refrigerant passage provided therein communicated with the inside of the header pipe.
  • a side flow type parallel flow heat exchanger having a tube and a fin disposed between the flat tubes, a lower end of the fin is disposed at an end of the flat tube on a surface where condensed water is concentrated.
  • a blocking wall is formed to cover the outside from the outside.
  • the blocking wall is formed integrally with the flat tube, and the refrigerant passage is provided only in the flat tube portion and not provided in the blocking wall. .
  • the flat tube has a higher middle portion in the length direction than both ends.
  • the flat tube has a curved shape that is convex upward.
  • the flat tube is highest at the central portion in the length direction.
  • the flat tube is preferably narrower than the fin in the direction in which air passes through the heat exchanger.
  • the heat exchanger configured as described above is mounted on an indoor unit of an air conditioner.
  • the heat exchanger configured as described above is mounted on an outdoor unit of an air conditioner.
  • a blocking wall that covers the lower end of the fin from the outside is formed at the end of the flat tube on the surface on the side where the condensed water is concentrated.
  • the condensed water gathered is guided to the inside of the fin by the blocking wall and does not drip. As a result, it is possible to avoid a situation in which condensed water falls on the fan and a water jump occurs.
  • FIGS. 1 and 2 Constituent elements that are functionally common to the conventional structure of FIG. 11 are denoted by the same reference numerals as those used in FIG.
  • the blocking portion 10 is formed at the end of the flat tube 4 on the surface on the side where condensed water is collected.
  • the blocking portion 10 includes a base portion 11 that is an extension of the flat tube 4 and a blocking wall 12 that rises from the end of the base portion 11 and has an L-shaped cross section as a whole.
  • the blocking wall 12 covers the lower end of the fin 6 from the outside.
  • the blocking portion 10 may be molded separately from the flat tube 4 and may be joined to the flat tube 4 by brazing or welding, or may be integrally formed with the flat tube 4.
  • the material of the blocking portion 10 may be the same as that of the flat tube 4, but in that case, the blocking portion 10 itself is cooled and condensed, and the corner of the blocking portion 10 is formed. There is a possibility that condensed water will drip from the water. In order to prevent this, the blocking portion 10 may be molded from a material that is difficult to cool, such as a synthetic resin.
  • the blocking part 10 is provided with a drain hole (not shown) for promoting drainage.
  • the drainage hole is provided at a position where the drainage hole is transferred to the lower fin 6.
  • the blocking passage 10 is not provided with the refrigerant passage 5.
  • the blocking wall 12 which covers the lower end of the fin 6 from the outside is formed at the end of the flat tube 4 on the surface where condensed water is collected, the condensed water collected is blocked. Is guided into the inside of the fin 6 and does not drip. As a result, it is possible to avoid a situation in which condensed water falls on the fan and a water jump occurs.
  • FIG. 3 shows a second embodiment of the present invention.
  • the heat exchanger 1 of the second embodiment is obtained by adding the following modifications to the heat exchanger 1 of the first embodiment. That is, in the heat exchanger 1 of the second embodiment, the header pipes 2 and 3 are not the same height, and the header pipe 2 is lower than the header pipe 3.
  • the flat tube 4 and the fin 6 and the blocking portion 10 (not shown in FIG. 3) are also inclined so that the header pipe 2 side is lowered.
  • the condensed water causes the flat tube 4 and the blocking portion 10 to be lowered. Since it flows along the header pipe 2 and then flows down along the header pipe 2, an even better drainage effect can be obtained. For this reason, it is difficult for water jumps to occur.
  • FIG. 4 to 6 show a third embodiment of the present invention.
  • four refrigerant inlets / outlets 7 are provided in the header pipe 2
  • four refrigerant inlets / outlets 8 are provided in the header pipe 3.
  • the four refrigerant inlets / outlets 7 are combined into one by a flow divider (not shown), and the four refrigerant outlets / outlets 8 are also combined into one by a flow divider (not shown).
  • the characteristic feature of the heat exchanger 1 of the third embodiment is the shape of the flat tube 4. That is, when the heat exchanger 1 is arranged in such a manner that the header pipes 2 and 3 are vertical and the flat tube 4 is horizontal, the flat tube 4 is higher in the middle in the length direction than both ends.
  • the intermediate part of the length direction is made high by making the flat tube 4 into the curved shape which protruded upwards.
  • the height of the flat tube 4 is highest at the central portion in the length direction.
  • the flat shape of the flat tube 4 is linear as shown in FIG.
  • the heat exchanger 1 of the third embodiment also has a blocking portion 10 formed at the end of the flat tube 4 on the surface on the side where condensed water collects.
  • the stop wall 12 is not in close contact with the lower end of the fin 6, and a gap 13 is provided between the stop wall 12 and the fin 6.
  • the condensed water generated on the surface of the flat tube 4 or the fin 6 is directed toward the both ends of the flat tube 4. Flowing into. Therefore, even if a fan is placed under the heat exchanger 1, the condensed water can be guided and drained to both ends of the flat tube 4 where the vertical position does not overlap with the fan. It is possible to avoid a situation in which condensed water drops from an intermediate portion in the length direction and water jumps.
  • the flat tubes 4 are narrower than the fins disposed between them. Thereby, condensed water will flow along the edge of a flat tube, and drainage efficiency will improve.
  • the shape of the flat tube 4 is not limited to the curved shape convex upward. It may be a “he” -shaped bent shape. Moreover, the structure where the height of the flat tube 4 is the highest in the center part of a length direction is not essential. You may comprise so that the highest point may come to the place which is biased to the left or right instead of the center.
  • the flat tubes 4 may have the same shape.
  • the shape may be varied depending on the flat tube 4. For example, a configuration in which bending (bending) becomes deeper as the flat tube 4 positioned at the upper level, a configuration in which a bending tube and a bending tube are combined, and the like are possible.
  • a groove 14 extending in the length direction is formed on the upper surface of the flat tube 4.
  • the groove 14 is positioned substantially at the center of the flat tube 4 in a direction perpendicular to the length direction.
  • the depth of the groove 14 may be 10% or less of the entire thickness of the flat tube 4. Since the condensed water is guided to the both ends of the flat tube 4 through the groove 14, the drainage efficiency is improved.
  • FIG. 7 A reference structure of the heat exchanger 1 is shown in FIG.
  • the end of the fin 6 on the surface on the side where condensed water collects protrudes from the end of the flat tube 4, and the gap formed by the protruding portions of the fin 6 is at the end of the flat tube 4.
  • a flange 15 is formed to protrude from the bottom. The flange 15 extends in the length direction of the flat tube 4 and is located at the center of the gap in the vertical direction.
  • the flange 15 When the flange 15 is present, it is the same as a gap between the flat tube 4 and the fin 6, and the condensed water easily flows along the flat tube 4. Thereby, drainage efficiency improves. The lowering of the hydrophilicity of the fin 6 due to the adhesion of oil does not have to be taken care of much.
  • FIGS. 8 and 9 show an example in which the heat exchanger 1 is mounted on an indoor unit of a separate type air conditioner.
  • the outdoor unit of the separate type air conditioner shown in FIGS. 8 and 9 includes a compressor, a four-way valve, an expansion valve, an outdoor heat exchanger, an outdoor fan, etc., and the indoor unit is an indoor heat exchanger, an indoor side Includes a blower.
  • the outdoor heat exchanger functions as an evaporator during heating operation and functions as a condenser during cooling operation.
  • the indoor heat exchanger functions as a condenser during heating operation and functions as an evaporator during cooling operation.
  • FIG. 8 shows a basic configuration of a separate type air conditioner using a heat pump cycle as a refrigeration cycle.
  • the heat pump cycle 101 includes a compressor 102, a four-way valve 103, an outdoor heat exchanger 104, a decompression / expansion device 105, and an indoor heat exchanger 106 connected in a loop.
  • the compressor 102, the four-way valve 103, the heat exchanger 104, and the decompression / expansion device 105 are accommodated in the casing of the outdoor unit 110, and the heat exchanger 106 is accommodated in the casing of the indoor unit 120.
  • An outdoor fan 107 is combined with the heat exchanger 104, and an indoor fan 108 is combined with the heat exchanger 106.
  • the blower 107 includes a propeller fan 107a for forming a blown airflow
  • the blower 108 includes a cross flow fan 108a for forming a blown airflow.
  • the cross flow fan 108a is disposed below the heat exchanger 106 with its axis line horizontal.
  • the heat exchanger 1 can be used as a component of the heat exchanger 106 of the indoor unit.
  • the heat exchanger 106 is a combination of three heat exchangers 106A, 106B, and 106C like a roof that covers the blower 108, and any or all of the heat exchangers 106A, 106B, and 106C are combined with the heat exchanger 1. It can be.
  • Fig. 8 shows the state during heating operation.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 102 enters the indoor heat exchanger 106 where it dissipates heat and condenses.
  • the refrigerant exiting the heat exchanger 106 enters the outdoor heat exchanger 104 from the decompression / expansion device 105 and expands there, takes heat from the outdoor air, and returns to the compressor 102.
  • the airflow generated by the indoor fan 108 promotes heat dissipation from the heat exchanger 106, and the airflow generated by the outdoor fan 107 accelerates heat absorption of the heat exchanger 104.
  • FIG. 9 shows a state during cooling operation or defrosting operation.
  • the four-way valve 103 is switched so that the refrigerant flow is reversed from that during the heating operation. That is, the high-temperature and high-pressure refrigerant discharged from the compressor 102 enters the outdoor heat exchanger 104, where it dissipates heat and condenses.
  • the refrigerant exiting the heat exchanger 104 enters the heat exchanger 106 on the indoor side from the decompression / expansion device 105 and expands there, takes heat from the indoor air, and returns to the compressor 102.
  • the airflow generated by the outdoor fan 107 promotes heat dissipation from the heat exchanger 104, and the airflow generated by the indoor fan 108 promotes heat absorption of the heat exchanger 106.
  • the heat exchanger 1 according to the present invention When the heat exchanger 1 according to the present invention is used as a constituent element of the heat exchanger 106 of the indoor unit, the surface that is the leeward side of the heat exchanger 1 and also the lower surface side depending on the posture of the heat exchanger 1 is condensed water. The rally side.
  • the heat exchanger 1 according to the present invention even if condensed water collects on the surface on the leeward side, it does not drop on the cross flow fan 108a, and water splash does not occur.
  • a bridge phenomenon can be suppressed and an increase in ventilation resistance can be suppressed.
  • the heat exchanger 1 according to the present invention can be mounted not only on an indoor unit of a separate air conditioner but also on an outdoor unit.
  • FIG. 10 shows an example of mounting on an outdoor unit.
  • a sheet metal casing 20a having a substantially rectangular planar shape, and the long side of the casing 20a is a front face 20F and a back face 20B, and the short side is a left side face 20L and a right side face 20R.
  • An exhaust port 21 is formed on the front surface 20F, a rear intake port 22 is formed on the rear surface 20B, and a side intake port 23 is formed on the left side surface 20L.
  • the exhaust port 21 is made up of a set of a plurality of horizontal slit-like openings, and the rear intake port 22 and the side intake ports 23 are made up of lattice-like openings.
  • a top plate and a bottom plate are added to the four sheet metal members of the front surface 20F, the back surface 20B, the left side surface 20L, and the right side surface 20R to form a hexahedral-shaped housing 20a.
  • a heat exchanger 1 (any one of the first to third embodiments) having an L-shape in a planar shape just inside the rear intake port 22 and the side intake port 23. Be placed.
  • the heat exchanger 1 is arranged so that the surface on the right side in FIG. 1, that is, the surface where the upper flat tube 4 is overhanging the lower flat tube 4 is on the leeward side.
  • a blower 24 is disposed between the heat exchanger 1 and the exhaust port 21.
  • the blower 24 is a combination of an electric motor 24a and a propeller fan 24b.
  • a bell mouth 25 surrounding the propeller fan 24b is attached to the inner surface of the front surface 20F of the housing 20a.
  • a space inside the right side surface 20R of the housing 20a is isolated by a partition wall 26 from an air flow flowing from the rear intake port 22 to the exhaust port 21, and a compressor 27 is accommodated therein.
  • the heat exchanger 1 according to the first embodiment mounted on the outdoor unit 20 prevents water jumping due to the presence of the blocking wall 12 and also promotes drainage by tilting the overhanging surface. Contributes to skip reduction.
  • the present invention is widely applicable to side flow type parallel flow heat exchangers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger (1) is provided with: two header pipes (2, 3) disposed parallel to each other with a spacing therebetween; flat tubes (4) disposed between the header pipes and having therein refrigerant paths (5) connected to the insides of the header pipes; and fins (6) disposed between the flat tubes. Dam walls (12) for covering the lower ends of the fins from the outside are formed at ends of surfaces of the flat tubes, the surfaces being located on the side on which condensed water of the heat exchanger collects.

Description

熱交換器及びそれを搭載した空気調和機Heat exchanger and air conditioner equipped with the same
 本発明はサイドフロー方式のパラレルフロー型熱交換器及びそれを搭載した空気調和機に関する。 The present invention relates to a side flow type parallel flow heat exchanger and an air conditioner equipped with the same.
 複数のヘッダパイプの間に複数の偏平チューブを配置して偏平チューブ内部の複数の冷媒通路をヘッダパイプの内部に連通させるとともに、偏平チューブ間にコルゲートフィン等のフィンを配置したパラレルフロー型の熱交換器は、カーエアコンや建物用空気調和機の室外側ユニットなどに広く利用されている。 A parallel flow type heat in which a plurality of flat tubes are arranged between a plurality of header pipes so that a plurality of refrigerant passages in the flat tubes communicate with the inside of the header pipe, and fins such as corrugated fins are arranged between the flat tubes. Exchangers are widely used in outdoor units of car air conditioners and building air conditioners.
 従来のサイドフロー方式パラレルフロー型熱交換器の一例を図11に示す。熱交換器1は、2本のヘッダパイプ2、3と、その間に配置される複数の偏平チューブ4を備える。図11では、ヘッダパイプ2、3は垂直方向に延び、水平方向に間隔を置いて平行に配置されており、偏平チューブ4は水平方向に延び、垂直方向に所定ピッチで配置されている。実際に機器に搭載する段階では、パラレルフロー型熱交換器1は設計の要請に従って様々な角度に据え付けられるものであり、厳密な「垂直」「水平」が当てはまらなくなるケースが多いことは言うまでもない。 An example of a conventional side flow type parallel flow type heat exchanger is shown in FIG. The heat exchanger 1 includes two header pipes 2 and 3 and a plurality of flat tubes 4 arranged therebetween. In FIG. 11, the header pipes 2 and 3 extend in the vertical direction and are arranged in parallel in the horizontal direction at intervals, and the flat tubes 4 extend in the horizontal direction and are arranged at a predetermined pitch in the vertical direction. Needless to say, the parallel flow type heat exchanger 1 is installed at various angles in accordance with design requirements at the stage of actually mounting on equipment, and there are many cases where exact “vertical” and “horizontal” do not apply.
 偏平チューブ4は金属を押出成型した細長い成型品であり、内部には冷媒を流通させる冷媒通路5が形成されている。偏平チューブ4は長手方向である押出成型方向を水平にする形で配置されるので、冷媒通路5の冷媒流通方向も水平になる。冷媒通路5は断面形状及び断面面積の等しいものが図11の奥行き方向に複数個並び、そのため偏平チューブ4の垂直断面はハーモニカ状を呈している。各冷媒通路5はヘッダパイプ2、3の内部に連通する。隣り合う偏平チューブ4同士の間にはフィン6が配置される。フィン6として、ここではコルゲートフィンを用いているが、プレートフィンでも構わない。 The flat tube 4 is an elongated molded product obtained by extruding a metal, and a refrigerant passage 5 through which a refrigerant flows is formed. Since the flat tube 4 is disposed so that the extrusion direction, which is the longitudinal direction, is horizontal, the refrigerant flow direction of the refrigerant passage 5 is also horizontal. A plurality of refrigerant passages 5 having the same cross-sectional shape and cross-sectional area are arranged in the depth direction of FIG. 11, and therefore, the vertical cross section of the flat tube 4 has a harmonica shape. Each refrigerant passage 5 communicates with the inside of the header pipes 2 and 3. Fins 6 are arranged between adjacent flat tubes 4. Here, corrugated fins are used as the fins 6, but plate fins may be used.
 ヘッダパイプ2と3、偏平チューブ4、及びフィン6はいずれもアルミニウム等熱伝導の良い金属からなり、偏平チューブ4はヘッダパイプ2、3に対し、フィン6は偏平チューブ4に対し、それぞれロウ付けまたは溶着で固定される。 The header pipes 2 and 3, the flat tubes 4, and the fins 6 are all made of a metal having good heat conductivity such as aluminum, the flat tubes 4 are brazed to the header pipes 2 and 3, and the fins 6 are brazed to the flat tubes 4. Or it is fixed by welding.
 図11の熱交換器1では、冷媒出入口7、8はヘッダパイプ3の側にのみ設けられている。ヘッダパイプ3の内部には上下方向に間隔を置いて2枚の仕切板9a、9cが設けられており、ヘッダパイプ2の内部には仕切板9a、9cの中間の高さのところに仕切板9bが設けられている。 In the heat exchanger 1 of FIG. 11, the refrigerant inlets and outlets 7 and 8 are provided only on the header pipe 3 side. Two partition plates 9a and 9c are provided in the header pipe 3 at intervals in the vertical direction. Inside the header pipe 2, the partition plates are located at a height intermediate between the partition plates 9a and 9c. 9b is provided.
 熱交換器1を蒸発器として使用する場合、冷媒は図11に実線矢印で示すように下側の冷媒出入口7から流入する。冷媒出入口7から入った冷媒は、仕切板9aでせき止められて偏平チューブ4経由でヘッダパイプ2に向かう。この冷媒の流れが左向きのブロック矢印で表現されている。ヘッダパイプ2に入った冷媒は仕切板9bでせき止められて別の偏平チューブ4経由でヘッダパイプ3に向かう。この冷媒の流れが右向きのブロック矢印で表現されている。ヘッダパイプ3に入った冷媒は仕切板9cでせき止められてさらに別の偏平チューブ4経由で再びヘッダパイプ2に向かう。この冷媒の流れが左向きのブロック矢印で表現されている。ヘッダパイプ2に入った冷媒は折り返してさらに別の偏平チューブ4経由で再びヘッダパイプ3に向かう。この冷媒の流れが右向きのブロック矢印で表現されている。ヘッダパイプ3に入った冷媒は冷媒出入口8から流出する。このように、冷媒はジグザグの経路を辿って下から上に流れる。ここでは仕切板の数が3の場合を示したが、これは一例であり、仕切板の数と、その結果としてもたらされる冷媒流れの折り返し回数は、必要に応じ任意の数を設定することができる。 When the heat exchanger 1 is used as an evaporator, the refrigerant flows from the lower refrigerant inlet / outlet 7 as shown by the solid line arrows in FIG. The refrigerant entering from the refrigerant inlet / outlet 7 is blocked by the partition plate 9 a and travels toward the header pipe 2 via the flat tube 4. This refrigerant flow is represented by a left-pointing block arrow. The refrigerant that has entered the header pipe 2 is blocked by the partition plate 9 b and travels to the header pipe 3 via another flat tube 4. This refrigerant flow is represented by a right-pointing block arrow. The refrigerant that has entered the header pipe 3 is blocked by the partition plate 9c, and further travels toward the header pipe 2 via another flat tube 4. This refrigerant flow is represented by a left-pointing block arrow. The refrigerant that has entered the header pipe 2 is folded back and travels again to the header pipe 3 via another flat tube 4. This refrigerant flow is represented by a right-pointing block arrow. The refrigerant that has entered the header pipe 3 flows out from the refrigerant inlet / outlet 8. In this way, the refrigerant follows the zigzag path and flows from the bottom to the top. Although the case where the number of partition plates is 3 is shown here, this is only an example, and the number of partition plates and the number of times the resulting refrigerant flow may be folded may be set as desired. it can.
 熱交換器1を凝縮器として使用する場合は、冷媒の流れが逆になる。すなわち冷媒は図11に点線矢印で示すように冷媒出入口8からヘッダパイプ3に入り、仕切板9cでせき止められて偏平チューブ4経由でヘッダパイプ2に向かい、ヘッダパイプ2では仕切板9bでせき止められて別の偏平チューブ4経由でヘッダパイプ3に向かい、ヘッダパイプ3では仕切板9aでせき止められてさらに別の偏平チューブ4経由で再びヘッダパイプ2に向かい、ヘッダパイプ2で折り返してさらに別の偏平チューブ4経由で再びヘッダパイプ3に向かい、冷媒出入口7から点線矢印のように流出するという、ジグザグの経路を辿って上から下に流れる。 When the heat exchanger 1 is used as a condenser, the refrigerant flow is reversed. That is, the refrigerant enters the header pipe 3 from the refrigerant inlet / outlet 8 as shown by the dotted arrow in FIG. 11, is dammed by the partition plate 9c and goes to the header pipe 2 via the flat tube 4, and is dammed by the partition plate 9b in the header pipe 2. It heads to the header pipe 3 via another flat tube 4, and the header pipe 3 is dammed by a partition plate 9 a, then goes to the header pipe 2 again via another flat tube 4, and is folded back by the header pipe 2 to make another flat It flows from the top to the bottom following the zigzag path in which it goes to the header pipe 3 again via the tube 4 and flows out from the refrigerant inlet / outlet 7 as indicated by the dotted line arrow.
 熱交換器を蒸発器として用いた場合、低温となった熱交換器表面に大気中の水分が凝結して凝縮水が発生する。パラレルフロー型熱交換器では、偏平チューブやフィンの表面に凝縮水が留まると空気流通路の断面積が水によって狭められてしまい、熱交換性能が低下する。 When a heat exchanger is used as an evaporator, moisture in the atmosphere condenses on the heat exchanger surface that has become low temperature, and condensed water is generated. In the parallel flow type heat exchanger, when the condensed water stays on the surface of the flat tube or the fin, the cross-sectional area of the air flow passage is narrowed by the water, and the heat exchange performance is deteriorated.
 凝縮水は、気温が低いと熱交換器の表面で霜と化す。霜が氷にまで進むこともある。本明細書では、そのような霜や氷が溶けた水、いわゆる除霜水も含めた意味で「凝縮水」の語を用いるものとする。 Condensate turns into frost on the surface of the heat exchanger when the temperature is low. Frost can travel to ice. In the present specification, the term “condensed water” is used to include water in which such frost and ice are melted, so-called defrosted water.
 サイドフロー方式のパラレルフロー型熱交換器において凝縮水が発生し滞留すると、次のような問題が生じる。サイドフロー方式のパラレルフロー型熱交換器1を、図12に示す通り、凝縮水が結集する側の面が下を向くように傾けて置くと、フィン6の端にたまった凝縮水が、下の段のフィン6に乗り移る前にフィン6の角から滴下してしまう。熱交換器1が空気調和機の室内機に搭載され、熱交換器1の下にクロスフローファンが設置されている場合など、クロスフローファンが吹き出す気流に混じって水滴が飛び散る水とびが発生し、使用者に不快感を与える。 When the condensate is generated and stays in the side flow type parallel flow heat exchanger, the following problems occur. When the side flow type parallel flow heat exchanger 1 is tilted so that the surface on which condensed water is concentrated faces downward as shown in FIG. 12, the condensed water accumulated at the end of the fin 6 It drops from the corner of the fin 6 before it changes over to the fin 6 of the step. When the heat exchanger 1 is installed in an indoor unit of an air conditioner and a cross flow fan is installed under the heat exchanger 1, a water jump occurs in which water droplets are scattered by the air flow blown out by the cross flow fan. , Discomfort to the user.
 そこで、水とびが発生する前に凝縮水を排水する方策が種々提案されている。その例を特許文献1、2に見ることができる。 Therefore, various measures for draining condensed water before water jumps have been proposed. Examples thereof can be seen in Patent Documents 1 and 2.
 特許文献1記載の熱交換器では、凝縮水の結集側にフィンと接触する排水ガイドが配置されている。排水ガイドは線形部材からなり、偏平管に対して傾斜配置され、両端の少なくとも一つが熱交換器の下端側あるいは側端側に導かれている。 In the heat exchanger described in Patent Document 1, a drainage guide that comes into contact with the fins is disposed on the condensate condensing side. The drainage guide is made of a linear member, is inclined with respect to the flat tube, and at least one of both ends is led to the lower end side or the side end side of the heat exchanger.
 特許文献2記載の熱交換器では、ガイド板が、送風の下流側に、フィンに接触して配置されている。熱交換器の表面に付着した露は、送風によって下流側に移動してガイド板に付着し、その重さによって自由落下する。 In the heat exchanger described in Patent Document 2, the guide plate is disposed in contact with the fins on the downstream side of the air blowing. The dew adhering to the surface of the heat exchanger moves downstream by blowing and adheres to the guide plate, and falls freely by its weight.
特開2007-285673号公報JP 2007-285673 A 特開2001-263861号公報Japanese Patent Laid-Open No. 2001-263861
 特許文献1記載の熱交換器では、線形部材からなる排水ガイドを熱交換器に接触させて水を導く。しかしながら、熱交換器が傾いた状態で設置されているときや、排水ガイドに汚れが付着したときなど、水が排水ガイドを伝わらないで、水とび等の現象が発生することがある。特許文献2記載の熱交換器でも、傾いた状態で設置された場合には、フィン間でブリッジした水がもとになって水とびが発生する。 In the heat exchanger described in Patent Document 1, water is guided by bringing a drainage guide made of a linear member into contact with the heat exchanger. However, when the heat exchanger is installed in a tilted state or when dirt is attached to the drainage guide, a phenomenon such as water jumping may occur without water passing through the drainage guide. Even in the heat exchanger described in Patent Document 2, when installed in an inclined state, water jumps due to water bridged between the fins.
 本発明は上記の点に鑑みなされたものであり、凝縮水が結集する側の面が下を向くように熱交換器が傾いた状態で置かれたとしても水とびが発生しないようにすることを目的とする。 The present invention has been made in view of the above points, and prevents the occurrence of water jumping even when the heat exchanger is placed in an inclined state so that the surface on which condensed water is collected faces downward. With the goal.
 本発明によれば、間隔を置いて平行に配置された複数のヘッダパイプと、前記複数のヘッダパイプの間に複数配置され、内部に設けた冷媒通路を前記ヘッダパイプの内部に連通させた偏平チューブと、前記偏平チューブ同士の間に配置されたフィンとを備えたサイドフロー方式のパラレルフロー型熱交換器において、凝縮水が結集する側の面における前記偏平チューブの端に、前記フィンの下端を外側から覆う塞き止め壁が形成される。 According to the present invention, a plurality of header pipes arranged in parallel at intervals, and a plurality of flat pipes arranged between the plurality of header pipes and having a refrigerant passage provided therein communicated with the inside of the header pipe. In a side flow type parallel flow heat exchanger having a tube and a fin disposed between the flat tubes, a lower end of the fin is disposed at an end of the flat tube on a surface where condensed water is concentrated. A blocking wall is formed to cover the outside from the outside.
 上記構成の熱交換器において、前記塞き止め壁が前記偏平チューブと一体成型され、前記冷媒通路は、前記偏平チューブ部分に設けられるのみで、前記塞き止め壁には設けられないことが好ましい。 In the heat exchanger configured as described above, it is preferable that the blocking wall is formed integrally with the flat tube, and the refrigerant passage is provided only in the flat tube portion and not provided in the blocking wall. .
 上記構成の熱交換器において、前記偏平チューブは、両端に比べ長さ方向の中間部が高くなっていることが好ましい。 In the heat exchanger configured as described above, it is preferable that the flat tube has a higher middle portion in the length direction than both ends.
 上記構成の熱交換器において、前記偏平チューブは、上方に凸となった湾曲形状を備えることが好ましい。 In the heat exchanger configured as described above, it is preferable that the flat tube has a curved shape that is convex upward.
 上記構成の熱交換器において、前記偏平チューブは、長さ方向の中央部において最も高くなることが好ましい。 In the heat exchanger configured as described above, it is preferable that the flat tube is highest at the central portion in the length direction.
 上記構成の熱交換器において、当該熱交換器を空気が通り抜ける方向において、前記偏平チューブは前記フィンよりも幅が狭いことが好ましい。 In the heat exchanger configured as described above, the flat tube is preferably narrower than the fin in the direction in which air passes through the heat exchanger.
 本発明の好ましい実施形態によれば、空気調和機の室内機に上記構成の熱交換器が搭載される。 According to a preferred embodiment of the present invention, the heat exchanger configured as described above is mounted on an indoor unit of an air conditioner.
 本発明の好ましい実施形態によれば、空気調和機の室外機に上記構成の熱交換器が搭載される。 According to a preferred embodiment of the present invention, the heat exchanger configured as described above is mounted on an outdoor unit of an air conditioner.
 本発明によると、サイドフロー方式のパラレルフロー型熱交換器において、凝縮水が結集する側の面における偏平チューブの端に、フィンの下端を外側から覆う塞き止め壁が形成されているから、結集した凝縮水は塞き止め壁によってフィンの内部に導かれ、滴下しない。これにより、凝縮水がファンの上に落下して水とびが発生するという事態を避けることができる。 According to the present invention, in the parallel flow type heat exchanger of the side flow type, a blocking wall that covers the lower end of the fin from the outside is formed at the end of the flat tube on the surface on the side where the condensed water is concentrated. The condensed water gathered is guided to the inside of the fin by the blocking wall and does not drip. As a result, it is possible to avoid a situation in which condensed water falls on the fan and a water jump occurs.
本発明の第1実施形態に係る熱交換器の概略断面図である。It is a schematic sectional drawing of the heat exchanger which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る熱交換器の部分拡大断面図である。It is a partial expanded sectional view of the heat exchanger which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る熱交換器の概略断面図である。It is a schematic sectional drawing of the heat exchanger which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る熱交換器の正面図である。It is a front view of the heat exchanger which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る熱交換器の上面図である。It is a top view of the heat exchanger which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る熱交換器の部分拡大断面図である。It is a partial expanded sectional view of the heat exchanger which concerns on 3rd Embodiment of this invention. 熱交換器の参考構造を示す部分拡大断面図である。It is a partial expanded sectional view which shows the reference structure of a heat exchanger. 本発明に係る熱交換器を搭載した空気調和機の概略構成図で、暖房運転時の状態を示すものである。It is a schematic block diagram of the air conditioner carrying the heat exchanger which concerns on this invention, and shows the state at the time of heating operation. 本発明に係る熱交換器を搭載した空気調和機の概略構成図で、冷房運転時の状態を示すものである。It is a schematic block diagram of the air conditioner carrying the heat exchanger which concerns on this invention, and shows the state at the time of air_conditionaing | cooling operation. 本発明に係る熱交換器を搭載した空気調和機の室外機の概略断面図である。It is a schematic sectional drawing of the outdoor unit of the air conditioner carrying the heat exchanger which concerns on this invention. 従来のサイドフロー方式パラレルフロー型熱交換器の概略構造を示す垂直断面図である。It is a vertical sectional view showing a schematic structure of a conventional side flow type parallel flow type heat exchanger. 従来のサイドフロー方式パラレルフロー型熱交換器を、凝縮水が結集する側の面が下を向くように傾けて置いた状態を示す概略断面図である。It is a schematic sectional drawing which shows the state which inclined and placed the conventional side flow type parallel flow type heat exchanger so that the surface on the side where condensed water collects may face down.
 以下本発明の第1実施形態を、図1及び図2を参照しつつ説明する。図11の従来構造と機能的に共通する構成要素には図11で用いたのと同じ符号を付し、説明は省略する。 Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. Constituent elements that are functionally common to the conventional structure of FIG. 11 are denoted by the same reference numerals as those used in FIG.
 サイドフロー方式のパラレルフロー型熱交換器1に、次のような構造上の変更を施す。すなわち、凝縮水が結集する側の面における偏平チューブ4の端に塞き止め部10を形成する。塞き止め部10は、偏平チューブ4の延長部となるベース部11と、ベース部11の端から立ち上がる塞き止め壁12を有し、全体として断面L字形になっている。塞き止め壁12はフィン6の下端を外側から覆う。塞き止め部10は、偏平チューブ4とは別に成型しておいてそれをロウ付けまたは溶接で偏平チューブ4に接合してもよく、偏平チューブ4に一体成型してもよい。偏平チューブ4とは別に成型する場合、塞き止め部10の材料は偏平チューブ4と同じであってよいが、そうなると塞き止め部10自体が冷却されて結露し、塞き止め部10の角から凝縮水が滴下する可能性が出てくる。それを防ぐため、塞き止め部10を合成樹脂のような冷えにくい材料で成型することとしてもよい。 The following structural changes are made to the side flow parallel flow heat exchanger 1. That is, the blocking portion 10 is formed at the end of the flat tube 4 on the surface on the side where condensed water is collected. The blocking portion 10 includes a base portion 11 that is an extension of the flat tube 4 and a blocking wall 12 that rises from the end of the base portion 11 and has an L-shaped cross section as a whole. The blocking wall 12 covers the lower end of the fin 6 from the outside. The blocking portion 10 may be molded separately from the flat tube 4 and may be joined to the flat tube 4 by brazing or welding, or may be integrally formed with the flat tube 4. In the case of molding separately from the flat tube 4, the material of the blocking portion 10 may be the same as that of the flat tube 4, but in that case, the blocking portion 10 itself is cooled and condensed, and the corner of the blocking portion 10 is formed. There is a possibility that condensed water will drip from the water. In order to prevent this, the blocking portion 10 may be molded from a material that is difficult to cool, such as a synthetic resin.
 塞き止め部10には、排水を促すための排水孔(図示せず)が設けられている。この排水孔は、下の段のフィン6に乗り移る位置に設けられている。なお、塞き止め部10を偏平チューブ4と一体成型する場合、塞き止め部10には冷媒通路5は設けないようにする。このようにすることにより、塞き止め部10自身に結露して、その角から凝縮水が滴下するといった事態を避けることができる。 The blocking part 10 is provided with a drain hole (not shown) for promoting drainage. The drainage hole is provided at a position where the drainage hole is transferred to the lower fin 6. When the blocking portion 10 is integrally formed with the flat tube 4, the blocking passage 10 is not provided with the refrigerant passage 5. By doing in this way, it is possible to avoid a situation in which condensation occurs on the blocking portion 10 itself and condensed water drops from the corner.
 このように、凝縮水が結集する側の面における偏平チューブ4の端に、フィン6の下端を外側から覆う塞き止め壁12が形成されているから、結集した凝縮水は塞き止め壁12によってフィン6の内部に導かれ、滴下しない。これにより、凝縮水がファンの上に落下して水とびが発生するという事態を避けることができる。 Thus, since the blocking wall 12 which covers the lower end of the fin 6 from the outside is formed at the end of the flat tube 4 on the surface where condensed water is collected, the condensed water collected is blocked. Is guided into the inside of the fin 6 and does not drip. As a result, it is possible to avoid a situation in which condensed water falls on the fan and a water jump occurs.
 図3に本発明の第2実施形態を示す。第2実施形態の熱交換器1は、第1実施形態の熱交換器1に次のような改変を加えたものである。すなわち、第2実施形態の熱交換器1は、ヘッダパイプ2、3の高さが同一でなく、ヘッダパイプ2がヘッダパイプ3より下がっている。偏平チューブ4及びフィン6と、図3では図示されないが塞き止め部10も、ヘッダパイプ2の側が低くなるように傾斜している。 FIG. 3 shows a second embodiment of the present invention. The heat exchanger 1 of the second embodiment is obtained by adding the following modifications to the heat exchanger 1 of the first embodiment. That is, in the heat exchanger 1 of the second embodiment, the header pipes 2 and 3 are not the same height, and the header pipe 2 is lower than the header pipe 3. The flat tube 4 and the fin 6 and the blocking portion 10 (not shown in FIG. 3) are also inclined so that the header pipe 2 side is lowered.
 第2実施形態の熱交換器1は、偏平チューブ4と塞き止め部10が、ヘッダパイプ2の側が低くなるように傾斜しているから、凝縮水は偏平チューブ4と塞き止め部10を伝ってヘッダパイプ2の方に流れ、それからヘッダパイプ2を伝って流下するので、さらに良好な排水効果が得られる。このため、水とびが発生しにくい。 In the heat exchanger 1 of the second embodiment, since the flat tube 4 and the blocking portion 10 are inclined so that the header pipe 2 side is lowered, the condensed water causes the flat tube 4 and the blocking portion 10 to be lowered. Since it flows along the header pipe 2 and then flows down along the header pipe 2, an even better drainage effect can be obtained. For this reason, it is difficult for water jumps to occur.
 図4から図6に本発明の第3実施形態を示す。第3実施形態の熱交換器1は、ヘッダパイプ2に4本の冷媒出入口7が設けられ、ヘッダパイプ3に4本の冷媒出入口8が設けられている。4本の冷媒出入口7は分流器(図示せず)などにより1本にまとめられ、4本の冷媒出入口8も分流器(図示せず)などにより1本にまとめられる。 4 to 6 show a third embodiment of the present invention. In the heat exchanger 1 of the third embodiment, four refrigerant inlets / outlets 7 are provided in the header pipe 2, and four refrigerant inlets / outlets 8 are provided in the header pipe 3. The four refrigerant inlets / outlets 7 are combined into one by a flow divider (not shown), and the four refrigerant outlets / outlets 8 are also combined into one by a flow divider (not shown).
 第3実施形態の熱交換器1の特徴とする点は、偏平チューブ4の形状にある。すなわち、ヘッダパイプ2、3を垂直、偏平チューブ4を水平にする形で熱交換器1を配置したとき、偏平チューブ4は、両端に比べ長さ方向の中間部が高くなっている。第3実施形態では、偏平チューブ4を、上方に凸となった湾曲形状とすることにより長さ方向の中間部を高くしている。また、長さ方向の中央部において偏平チューブ4の高さが最も高くなるものとしている。偏平チューブ4の平面形状は、図5に示す通り、直線状である。 The characteristic feature of the heat exchanger 1 of the third embodiment is the shape of the flat tube 4. That is, when the heat exchanger 1 is arranged in such a manner that the header pipes 2 and 3 are vertical and the flat tube 4 is horizontal, the flat tube 4 is higher in the middle in the length direction than both ends. In 3rd Embodiment, the intermediate part of the length direction is made high by making the flat tube 4 into the curved shape which protruded upwards. In addition, the height of the flat tube 4 is highest at the central portion in the length direction. The flat shape of the flat tube 4 is linear as shown in FIG.
 図6に示す通り、第3実施形態の熱交換器1にも凝縮水が結集する側の面における偏平チューブ4の端に塞き止め部10を形成されているが、ベース部11と塞き止め壁12はフィン6の下端に密着することはなく、フィン6との間に間隙13が設けられている。 As shown in FIG. 6, the heat exchanger 1 of the third embodiment also has a blocking portion 10 formed at the end of the flat tube 4 on the surface on the side where condensed water collects. The stop wall 12 is not in close contact with the lower end of the fin 6, and a gap 13 is provided between the stop wall 12 and the fin 6.
 第3実施形態の熱交換器1では、偏平チューブ4の長さ方向の中間部を両端に比べ高くしたので、偏平チューブ4やフィン6の表面で発生した凝縮水は偏平チューブ4の両端の方に流れる。従って、熱交換器1の下にファンが置かれていたとしても、ファンと上下位置が重ならなくなる偏平チューブ4の両端部に凝縮水を誘導して排水することができるから、偏平チューブ4の長さ方向の中間部より凝縮水が滴下して水とびが発生するといった事態を避けることができる。 In the heat exchanger 1 of the third embodiment, since the intermediate portion in the length direction of the flat tube 4 is made higher than both ends, the condensed water generated on the surface of the flat tube 4 or the fin 6 is directed toward the both ends of the flat tube 4. Flowing into. Therefore, even if a fan is placed under the heat exchanger 1, the condensed water can be guided and drained to both ends of the flat tube 4 where the vertical position does not overlap with the fan. It is possible to avoid a situation in which condensed water drops from an intermediate portion in the length direction and water jumps.
 熱交換器1を空気が通り抜ける方向において、言い換えると長さ方向と直角且つ水平方向において、偏平チューブ4は、それら同士の間に配置されるフィンよりも幅が狭い。これにより、凝縮水は偏平チューブの縁に沿って流れることになり、排水効率が向上する。 In the direction in which air passes through the heat exchanger 1, in other words, in the direction perpendicular to the length direction and in the horizontal direction, the flat tubes 4 are narrower than the fins disposed between them. Thereby, condensed water will flow along the edge of a flat tube, and drainage efficiency will improve.
 偏平チューブ4の形状は、上方に凸となった湾曲形状に限定されない。「へ」の字形の屈曲形状であってもよい。また、長さ方向の中央部において偏平チューブ4の高さが最も高くなっている構成も、必須ではない。中央でなく左右どちらかに偏った箇所に最高ポイントが来るように構成してもよい。 The shape of the flat tube 4 is not limited to the curved shape convex upward. It may be a “he” -shaped bent shape. Moreover, the structure where the height of the flat tube 4 is the highest in the center part of a length direction is not essential. You may comprise so that the highest point may come to the place which is biased to the left or right instead of the center.
 複数の偏平チューブ4が全て同一形状である必要もない。偏平チューブ4によって形状を異ならせてもよい。例えば、上位に位置する偏平チューブ4ほど湾曲(屈曲)が深くなるといった構成や、湾曲チューブと屈曲チューブを組み合わせるといった構成などが可能である。 It is not necessary for all the flat tubes 4 to have the same shape. The shape may be varied depending on the flat tube 4. For example, a configuration in which bending (bending) becomes deeper as the flat tube 4 positioned at the upper level, a configuration in which a bending tube and a bending tube are combined, and the like are possible.
 第3実施形態の熱交換器1では、偏平チューブ4の上面に長さ方向に延びる溝14が形成されている。溝14は、長さ方向と直角の方向において、偏平チューブ4のほぼ中央に位置する。溝14の深さは、偏平チューブ4の全体の厚みの10%以下の深さがあればよい。凝縮水が溝14を伝って偏平チューブ4の両端に導かれることから、排水効率が向上する。 In the heat exchanger 1 of the third embodiment, a groove 14 extending in the length direction is formed on the upper surface of the flat tube 4. The groove 14 is positioned substantially at the center of the flat tube 4 in a direction perpendicular to the length direction. The depth of the groove 14 may be 10% or less of the entire thickness of the flat tube 4. Since the condensed water is guided to the both ends of the flat tube 4 through the groove 14, the drainage efficiency is improved.
 熱交換器1の参考構造を図7に示す。図7の熱交換器1では、凝縮水が結集する側の面におけるフィン6の端が偏平チューブ4の端からはみ出しており、偏平チューブ4の端には、フィン6のはみ出し部分同士のなす隙間に突き出すツバ15が形成されている。ツバ15は偏平チューブ4の長さ方向に延び、上下方向では隙間の中央に位置する。 A reference structure of the heat exchanger 1 is shown in FIG. In the heat exchanger 1 of FIG. 7, the end of the fin 6 on the surface on the side where condensed water collects protrudes from the end of the flat tube 4, and the gap formed by the protruding portions of the fin 6 is at the end of the flat tube 4. A flange 15 is formed to protrude from the bottom. The flange 15 extends in the length direction of the flat tube 4 and is located at the center of the gap in the vertical direction.
 ツバ15があると、偏平チューブ4とフィン6の間に隙間があるのと同じことになり、凝縮水が偏平チューブ4に沿って流れやすくなる。これにより、排水効率が向上する。油の付着によるフィン6の親水性低下もそれほど気にかけなくて済む。 When the flange 15 is present, it is the same as a gap between the flat tube 4 and the fin 6, and the condensed water easily flows along the flat tube 4. Thereby, drainage efficiency improves. The lowering of the hydrophilicity of the fin 6 due to the adhesion of oil does not have to be taken care of much.
 図8及び図9には、セパレート型空気調和機の室内機に熱交換器1を搭載した例を示す。図8及び図9に示されるセパレート型空気調和機の室外機は圧縮機、四方弁、膨張弁、室外側熱交換器、室外側送風機などを含み、室内機は室内側熱交換器、室内側送風機などを含む。室外側熱交換器は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。室内側熱交換器は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。 8 and 9 show an example in which the heat exchanger 1 is mounted on an indoor unit of a separate type air conditioner. The outdoor unit of the separate type air conditioner shown in FIGS. 8 and 9 includes a compressor, a four-way valve, an expansion valve, an outdoor heat exchanger, an outdoor fan, etc., and the indoor unit is an indoor heat exchanger, an indoor side Includes a blower. The outdoor heat exchanger functions as an evaporator during heating operation and functions as a condenser during cooling operation. The indoor heat exchanger functions as a condenser during heating operation and functions as an evaporator during cooling operation.
 図8には冷凍サイクルとしてヒートポンプサイクルを用いるセパレート型空気調和機の基本的構成が示されている。ヒートポンプサイクル101は、圧縮機102、四方弁103、室外側の熱交換器104、減圧膨張装置105、及び室内側の熱交換器106をループ状に接続したものである。圧縮機102、四方弁103、熱交換器104、及び減圧膨張装置105は室外機110の筐体に収容され、熱交換器106は室内機120の筐体に収容される。熱交換器104には室外側の送風機107が組み合わせられ、熱交換器106には室内側の送風機108が組み合わせられる。送風機107は吹出気流形成用のプロペラファン107aを含み、送風機108は吹出気流形成用のクロスフローファン108aを含む。クロスフローファン108aは熱交換器106の下に軸線を水平にして配置される。 FIG. 8 shows a basic configuration of a separate type air conditioner using a heat pump cycle as a refrigeration cycle. The heat pump cycle 101 includes a compressor 102, a four-way valve 103, an outdoor heat exchanger 104, a decompression / expansion device 105, and an indoor heat exchanger 106 connected in a loop. The compressor 102, the four-way valve 103, the heat exchanger 104, and the decompression / expansion device 105 are accommodated in the casing of the outdoor unit 110, and the heat exchanger 106 is accommodated in the casing of the indoor unit 120. An outdoor fan 107 is combined with the heat exchanger 104, and an indoor fan 108 is combined with the heat exchanger 106. The blower 107 includes a propeller fan 107a for forming a blown airflow, and the blower 108 includes a cross flow fan 108a for forming a blown airflow. The cross flow fan 108a is disposed below the heat exchanger 106 with its axis line horizontal.
 本発明に係る熱交換器1は、室内機の熱交換器106の構成要素として用いることができる。熱交換器106は、3個の熱交換器106A、106B、106Cを送風機108を覆う屋根のように組み合わせたものであり、熱交換器106A、106B、106Cのいずれかまたは全てを熱交換器1とすることができる。 The heat exchanger 1 according to the present invention can be used as a component of the heat exchanger 106 of the indoor unit. The heat exchanger 106 is a combination of three heat exchangers 106A, 106B, and 106C like a roof that covers the blower 108, and any or all of the heat exchangers 106A, 106B, and 106C are combined with the heat exchanger 1. It can be.
 図8は暖房運転時の状態を示す。この時は、圧縮機102から吐出された高温高圧の冷媒は室内側の熱交換器106に入ってそこで放熱し、凝縮する。熱交換器106を出た冷媒は減圧膨張装置105から室外側の熱交換器104に入ってそこで膨張し、室外空気から熱を取り込んだ後、圧縮機102に戻る。室内側の送風機108によって生成された気流が熱交換器106からの放熱を促進し、室外側の送風機107によって生成された気流が熱交換器104の吸熱を促進する。 Fig. 8 shows the state during heating operation. At this time, the high-temperature and high-pressure refrigerant discharged from the compressor 102 enters the indoor heat exchanger 106 where it dissipates heat and condenses. The refrigerant exiting the heat exchanger 106 enters the outdoor heat exchanger 104 from the decompression / expansion device 105 and expands there, takes heat from the outdoor air, and returns to the compressor 102. The airflow generated by the indoor fan 108 promotes heat dissipation from the heat exchanger 106, and the airflow generated by the outdoor fan 107 accelerates heat absorption of the heat exchanger 104.
 図9は冷房運転時あるいは除霜運転時の状態を示す。この時は四方弁103が切り換えられて暖房運転時と冷媒の流れが逆になる。すなわち、圧縮機102から吐出された高温高圧の冷媒は室外側の熱交換器104に入ってそこで放熱し、凝縮する。熱交換器104を出た冷媒は減圧膨張装置105から室内側の熱交換器106に入ってそこで膨張し、室内空気から熱を取り込んだ後、圧縮機102に戻る。室外側の送風機107によって生成された気流が熱交換器104からの放熱を促進し、室内側の送風機108によって生成された気流が熱交換器106の吸熱を促進する。 FIG. 9 shows a state during cooling operation or defrosting operation. At this time, the four-way valve 103 is switched so that the refrigerant flow is reversed from that during the heating operation. That is, the high-temperature and high-pressure refrigerant discharged from the compressor 102 enters the outdoor heat exchanger 104, where it dissipates heat and condenses. The refrigerant exiting the heat exchanger 104 enters the heat exchanger 106 on the indoor side from the decompression / expansion device 105 and expands there, takes heat from the indoor air, and returns to the compressor 102. The airflow generated by the outdoor fan 107 promotes heat dissipation from the heat exchanger 104, and the airflow generated by the indoor fan 108 promotes heat absorption of the heat exchanger 106.
 本発明に係る熱交換器1を室内機の熱交換器106の構成要素として用いた場合、熱交換器1の風下側であり、熱交換器1の姿勢によっては下面側でもある面が凝縮水の結集側となる。本発明に係る熱交換器1を用いれば、風下側の面に凝縮水が結集しても、それがクロスフローファン108aに滴下したりするようなことはなく、水とびが発生しない。また、熱交換器1ではブリッジ現象を抑制することができ、通風抵抗の増加を抑えることが可能となる。 When the heat exchanger 1 according to the present invention is used as a constituent element of the heat exchanger 106 of the indoor unit, the surface that is the leeward side of the heat exchanger 1 and also the lower surface side depending on the posture of the heat exchanger 1 is condensed water. The rally side. When the heat exchanger 1 according to the present invention is used, even if condensed water collects on the surface on the leeward side, it does not drop on the cross flow fan 108a, and water splash does not occur. Moreover, in the heat exchanger 1, a bridge phenomenon can be suppressed and an increase in ventilation resistance can be suppressed.
 本発明に係る熱交換器1は、セパレート型空気調和機の室内機のみならず、室外機にも搭載することができる。図10に室外機への搭載例を示す。 The heat exchanger 1 according to the present invention can be mounted not only on an indoor unit of a separate air conditioner but also on an outdoor unit. FIG. 10 shows an example of mounting on an outdoor unit.
 図10の室外機20は平面形状略矩形の板金製筐体20aを備え、筐体20aの長辺側を正面20F及び背面20Bとし、短辺側を左側面20L及び右側面20Rとしている。正面20Fには排気口21が形成され、背面20Bには背面吸気口22が形成され、左側面20Lには側面吸気口23が形成される。排気口21は複数の水平なスリット状開口の集合からなり、背面吸気口22と側面吸気口23は格子状の開口からなる。正面20F、背面20B、左側面20L、右側面20Rの4面の板金部材に図示しない天板と底板が加わって六面体形状の筐体20aが形成される。 10 includes a sheet metal casing 20a having a substantially rectangular planar shape, and the long side of the casing 20a is a front face 20F and a back face 20B, and the short side is a left side face 20L and a right side face 20R. An exhaust port 21 is formed on the front surface 20F, a rear intake port 22 is formed on the rear surface 20B, and a side intake port 23 is formed on the left side surface 20L. The exhaust port 21 is made up of a set of a plurality of horizontal slit-like openings, and the rear intake port 22 and the side intake ports 23 are made up of lattice-like openings. A top plate and a bottom plate (not shown) are added to the four sheet metal members of the front surface 20F, the back surface 20B, the left side surface 20L, and the right side surface 20R to form a hexahedral-shaped housing 20a.
 筐体20aの内部には、背面吸気口22及び側面吸気口23のすぐ内側に平面形状L字形とされた熱交換器1(第1実施形態から第3実施形態までのいずれかのもの)が配置される。熱交換器1は、図1で右側となった面、すなわち上段の偏平チューブ4が下段の偏平チューブ4に対しオーバーハングとなっている面が、風下側となるように配置される。 Inside the housing 20a, there is a heat exchanger 1 (any one of the first to third embodiments) having an L-shape in a planar shape just inside the rear intake port 22 and the side intake port 23. Be placed. The heat exchanger 1 is arranged so that the surface on the right side in FIG. 1, that is, the surface where the upper flat tube 4 is overhanging the lower flat tube 4 is on the leeward side.
 熱交換器1と室外空気との間で強制的に熱交換を行わせるため、熱交換器1と排気口21の間に送風機24が配置される。送風機24は電動機24aにプロペラファン24bを組み合わせたものである。送風効率向上のため、筐体20aの正面20Fの内面にはプロペラファン24bを囲むベルマウス25が取り付けられる。筐体20aの右側面20Rの内側の空間は背面吸気口22から排気口21へと流れる空気流から隔壁26で隔離されており、ここに圧縮機27が収容されている。 In order to forcibly perform heat exchange between the heat exchanger 1 and the outdoor air, a blower 24 is disposed between the heat exchanger 1 and the exhaust port 21. The blower 24 is a combination of an electric motor 24a and a propeller fan 24b. In order to improve the blowing efficiency, a bell mouth 25 surrounding the propeller fan 24b is attached to the inner surface of the front surface 20F of the housing 20a. A space inside the right side surface 20R of the housing 20a is isolated by a partition wall 26 from an air flow flowing from the rear intake port 22 to the exhaust port 21, and a compressor 27 is accommodated therein.
 室外機20に搭載された第1実施形態の熱交換器1は、塞き止め壁12の存在によって水とびが防止される上、オーバーハングとなっている面を傾けると排水も促進され、水とび低減に寄与する。 The heat exchanger 1 according to the first embodiment mounted on the outdoor unit 20 prevents water jumping due to the presence of the blocking wall 12 and also promotes drainage by tilting the overhanging surface. Contributes to skip reduction.
 室外機20に搭載された第2実施形態の熱交換器1は、塞き止め壁12の存在によって水とびが防止される上、偏平チューブ4と塞き止め部10が一方のヘッダパイプの側が低くなるように傾斜していて良好な排水効果が得られることも、水とび低減に寄与する。 In the heat exchanger 1 of the second embodiment mounted on the outdoor unit 20, water leakage is prevented by the presence of the blocking wall 12, and the flat tube 4 and the blocking portion 10 are arranged on one header pipe side. The fact that it is inclined so as to be low and a good drainage effect is obtained also contributes to the reduction of water jump.
 室外機20に搭載された第3実施形態の熱交換器1は、塞き止め壁12の存在によって水とびが防止される上、偏平チューブ4は両端に比べ長さ方向の中間部が高くなっていて良好な排水効果が得られることも、水とび低減に寄与する。 In the heat exchanger 1 of the third embodiment mounted on the outdoor unit 20, water leakage is prevented by the presence of the blocking wall 12, and the flat tube 4 has a higher middle portion in the length direction than both ends. Moreover, the fact that a good drainage effect is obtained also contributes to the reduction of water splash.
 以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。 The embodiment of the present invention has been described above, but the scope of the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention.
 本発明はサイドフロー方式のパラレルフロー型熱交換器に広く利用可能である。 The present invention is widely applicable to side flow type parallel flow heat exchangers.
   1  熱交換器
   2、3 ヘッダパイプ
   4  偏平チューブ
   5 冷媒通路
   6 フィン
   7、8 冷媒出入口
   10 塞き止め部
   11 ベース部
   12 塞き止め壁
   14 溝
   20 室外機
   110 室外機
   120 室内機
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2, 3 Header pipe 4 Flat tube 5 Refrigerant passage 6 Fin 7, 8 Refrigerant inlet / outlet 10 Blocking part 11 Base part 12 Blocking wall 14 Groove 20 Outdoor unit 110 Outdoor unit 120 Indoor unit

Claims (9)

  1. 以下の構成を備える熱交換器:
     間隔を置いて平行に配置された複数のヘッダパイプと、
     前記複数のヘッダパイプの間に複数配置され、内部に設けた冷媒通路を前記ヘッダパイプの内部に連通させた偏平チューブと、
     前記偏平チューブ同士の間に配置されたフィンと、を備え、
     サイドフロー方式のパラレルフロー型熱交換器として構成されており、
     凝縮水が結集する側の面における前記偏平チューブの端に、前記フィンの下端を外側から覆う塞き止め壁が形成される。
    A heat exchanger with the following configuration:
    A plurality of header pipes arranged in parallel at intervals;
    A flat tube disposed between the plurality of header pipes and having a refrigerant passage provided therein communicated with the inside of the header pipe;
    A fin disposed between the flat tubes,
    It is configured as a side flow parallel flow heat exchanger,
    A blocking wall that covers the lower end of the fin from the outside is formed at the end of the flat tube on the surface where condensed water is collected.
  2. 請求項1の熱交換器であって、以下の構成を備えるもの:
     前記塞き止め壁が前記偏平チューブと一体成型され、前記冷媒通路は、前記偏平チューブ部分に設けられるのみで、前記塞き止め壁には設けられない。
    The heat exchanger according to claim 1, comprising the following configuration:
    The blocking wall is integrally formed with the flat tube, and the refrigerant passage is provided only in the flat tube portion and not in the blocking wall.
  3. 請求項1の熱交換器であって、以下の構成を備えるもの:
     前記偏平チューブは、両端に比べ長さ方向の中間部が高くなっている。
    The heat exchanger according to claim 1, comprising the following configuration:
    The flat tube has a higher middle portion in the length direction than both ends.
  4. 請求項3の熱交換器であって、以下の構成を備えるもの:
     前記偏平チューブは、上方に凸となった湾曲形状を備える。
    A heat exchanger according to claim 3, comprising:
    The flat tube has a curved shape that is convex upward.
  5. 請求項3の熱交換器であって、以下の構成を備えるもの:
     前記偏平チューブは、長さ方向の中央部において最も高くなる。
    A heat exchanger according to claim 3, comprising:
    The flat tube is highest at the center in the length direction.
  6. 請求項1の熱交換器であって、以下の構成を備えるもの:
     当該熱交換器を空気が通り抜ける方向において、前記偏平チューブは前記フィンよりも幅が狭い。
    The heat exchanger according to claim 1, comprising the following configuration:
    In the direction that air passes through the heat exchanger, the flat tube is narrower than the fin.
  7. 請求項1の熱交換器であって、以下の構成を備えるもの:
     前記偏平チューブの上面には長さ方向に延びる溝が形成され、前記溝は長さ方向と直角の方向において前記偏平チューブのほぼ中央に位置する。
    The heat exchanger according to claim 1, comprising the following configuration:
    A groove extending in the length direction is formed on the upper surface of the flat tube, and the groove is positioned substantially at the center of the flat tube in a direction perpendicular to the length direction.
  8. 以下の構成を備える空気調和機の室内機:
     請求項1から7のいずれかの熱交換器を搭載している。
    Air conditioner indoor unit with the following configuration:
    The heat exchanger according to any one of claims 1 to 7 is mounted.
  9. 以下の構成を備える空気調和機の室外機:
     請求項1から7のいずれかの熱交換器を搭載している。
    An air conditioner outdoor unit having the following configuration:
    The heat exchanger according to any one of claims 1 to 7 is mounted.
PCT/JP2011/068354 2010-10-25 2011-08-11 Heat exchanger and air conditioner having same installed therein WO2012056790A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180051335.0A CN103180684B (en) 2010-10-25 2011-08-11 Heat exchanger and the air conditioner being provided with heat exchanger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-239139 2010-10-25
JP2010-239135 2010-10-25
JP2010239139A JP2012093010A (en) 2010-10-25 2010-10-25 Heat exchanger and air conditioner mounted with the same
JP2010239135A JP5009409B2 (en) 2010-10-25 2010-10-25 Heat exchanger and air conditioner equipped with the same

Publications (1)

Publication Number Publication Date
WO2012056790A1 true WO2012056790A1 (en) 2012-05-03

Family

ID=45993520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068354 WO2012056790A1 (en) 2010-10-25 2011-08-11 Heat exchanger and air conditioner having same installed therein

Country Status (2)

Country Link
CN (1) CN103180684B (en)
WO (1) WO2012056790A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107476U (en) * 1982-01-13 1983-07-21 株式会社ボッシュオートモーティブ システム Heat exchanger
JP2000241093A (en) * 1999-02-24 2000-09-08 Daikin Ind Ltd Air heat exchanger
JP2001059690A (en) * 1999-08-20 2001-03-06 Zexel Valeo Climate Control Corp Heat exchanger
JP2001174180A (en) * 1999-12-13 2001-06-29 Zexel Valeo Climate Control Corp Heat exchanger for cooling
JP2006242458A (en) * 2005-03-02 2006-09-14 Denso Corp Heat exchanger, heat exchanger core and method of manufacturing heat exchanger
WO2010106757A1 (en) * 2009-03-17 2010-09-23 日本軽金属株式会社 Drainage structure of corrugated fin-type heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004251556A (en) * 2003-02-20 2004-09-09 Matsushita Electric Ind Co Ltd Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107476U (en) * 1982-01-13 1983-07-21 株式会社ボッシュオートモーティブ システム Heat exchanger
JP2000241093A (en) * 1999-02-24 2000-09-08 Daikin Ind Ltd Air heat exchanger
JP2001059690A (en) * 1999-08-20 2001-03-06 Zexel Valeo Climate Control Corp Heat exchanger
JP2001174180A (en) * 1999-12-13 2001-06-29 Zexel Valeo Climate Control Corp Heat exchanger for cooling
JP2006242458A (en) * 2005-03-02 2006-09-14 Denso Corp Heat exchanger, heat exchanger core and method of manufacturing heat exchanger
WO2010106757A1 (en) * 2009-03-17 2010-09-23 日本軽金属株式会社 Drainage structure of corrugated fin-type heat exchanger

Also Published As

Publication number Publication date
CN103180684A (en) 2013-06-26
CN103180684B (en) 2015-12-16

Similar Documents

Publication Publication Date Title
US8887520B2 (en) Heat exchanger and air conditioner having the heat exchanger mounted therein
JP5009413B2 (en) Heat exchanger and air conditioner equipped with the same
JP5464207B2 (en) Refrigeration unit outdoor unit
JP5421859B2 (en) Heat exchanger
JP5084707B2 (en) Air conditioner
JP5336914B2 (en) Heat exchanger and air conditioner equipped with the same
JP5172772B2 (en) Heat exchanger and air conditioner equipped with the same
JP2012037092A (en) Heat exchanger, and air conditioner with the same
US9689618B2 (en) Heat exchanger and air conditioner equipped therewith with water guiding condensate notches and a linear member
JP4995308B2 (en) Air conditioner indoor unit
JP2014043985A (en) Parallel flow type heat exchanger and air conditioner mounted with the same
JP5009409B2 (en) Heat exchanger and air conditioner equipped with the same
JP5125344B2 (en) Heat exchanger
JP2008292083A (en) Refrigerant evaporator
JP5331182B2 (en) Equipment with side flow parallel flow heat exchanger
WO2012056790A1 (en) Heat exchanger and air conditioner having same installed therein
JP2012093010A (en) Heat exchanger and air conditioner mounted with the same
JP2015227754A (en) Heat exchanger
JP2004114782A (en) Air-conditioner for vehicle
JP2013228134A (en) Parallel flow type heat exchanger and air conditioner mounted with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835931

Country of ref document: EP

Kind code of ref document: A1