JP2012037092A - Heat exchanger, and air conditioner with the same - Google Patents

Heat exchanger, and air conditioner with the same Download PDF

Info

Publication number
JP2012037092A
JP2012037092A JP2010175524A JP2010175524A JP2012037092A JP 2012037092 A JP2012037092 A JP 2012037092A JP 2010175524 A JP2010175524 A JP 2010175524A JP 2010175524 A JP2010175524 A JP 2010175524A JP 2012037092 A JP2012037092 A JP 2012037092A
Authority
JP
Japan
Prior art keywords
heat exchanger
water
flat tubes
condensed water
corrugated fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010175524A
Other languages
Japanese (ja)
Inventor
Osamu Hamaguchi
理 浜口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010175524A priority Critical patent/JP2012037092A/en
Publication of JP2012037092A publication Critical patent/JP2012037092A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain superior drainage performance, even when a parallel flow type heat exchanger of a side flow method is arranged while a surface on a side where condensed water concentrates is inclined to face downward.SOLUTION: The heat exchanger 1 includes: two header pipes 2, 3 arranged in parallel to each other with a space; a plurality of flat tubes 4 arranged between the header pipes 2, 3 and making internal refrigerant passages 5 communicate with the header pipes 2, 3; and corrugated fins 6 arranged between the flat tubes 4. Ends of the corrugated fins 6 on a surface of the heat exchanger 1 where condensed water concentrates projects from ends of the flat tubes 4, and linear water-conducting members 10 are inserted in gaps G formed between the protrusions. The clearance between the water-conducting member 10 and the projecting end of the corrugated fin 6 located above it is set at a distance allowing surface tension of water to act between both of them. A drainage plate 11 for connecting the ends of the flat tubes 4 to one another is inserted on the surface on the side where the water-conducting members 10 are arranged.

Description

本発明はサイドフロー方式のパラレルフロー型熱交換器及びそれを搭載した空気調和機に関する。   The present invention relates to a side flow parallel flow heat exchanger and an air conditioner equipped with the heat exchanger.

複数のヘッダパイプの間に複数の偏平チューブを配置して偏平チューブ内部の複数の冷媒通路をヘッダパイプの内部に連通させるとともに、偏平チューブ間にコルゲートフィン等のフィンを配置したパラレルフロー型の熱交換器は、カーエアコンや建物用空気調和機の室外側ユニットなどに広く利用されている。   A parallel flow type heat in which a plurality of flat tubes are arranged between a plurality of header pipes so that a plurality of refrigerant passages in the flat tubes communicate with the inside of the header pipe, and fins such as corrugated fins are arranged between the flat tubes. Exchangers are widely used in outdoor units of car air conditioners and building air conditioners.

従来のサイドフロー方式パラレルフロー型熱交換器の一例を図7に示す。熱交換器1は、2本のヘッダパイプ2、3と、その間に配置される複数の偏平チューブ4を備える。図7では、ヘッダパイプ2、3は垂直方向に延び、水平方向に間隔を置いて平行に配置されており、偏平チューブ4は水平方向に延び、垂直方向に所定ピッチで配置されている。実際に機器に搭載する段階では、パラレルフロー型熱交換器1は設計の要請に従って様々な角度に据え付けられるものであり、厳密な「垂直」「水平」が当てはまらなくなるケースが多いことは言うまでもない。   An example of a conventional side flow parallel flow type heat exchanger is shown in FIG. The heat exchanger 1 includes two header pipes 2 and 3 and a plurality of flat tubes 4 arranged therebetween. In FIG. 7, the header pipes 2 and 3 extend in the vertical direction and are arranged in parallel in the horizontal direction at intervals, and the flat tubes 4 extend in the horizontal direction and are arranged at a predetermined pitch in the vertical direction. Needless to say, the parallel flow type heat exchanger 1 is installed at various angles in accordance with design requirements at the stage of actually mounting on equipment, and there are many cases where exact “vertical” and “horizontal” do not apply.

偏平チューブ4は金属を押出成型した細長い成型品であり、内部には冷媒を流通させる冷媒通路5が形成されている。偏平チューブ4は長手方向である押出成型方向を水平にする形で配置されるので、冷媒通路5の冷媒流通方向も水平になる。冷媒通路5は断面形状及び断面面積の等しいものが図7の奥行き方向に複数個並び、そのため偏平チューブ4の垂直断面はハーモニカ状を呈している。各冷媒通路5はヘッダパイプ2、3の内部に連通する。隣り合う偏平チューブ4同士の間にはコルゲートフィン6が配置される。   The flat tube 4 is an elongated molded product obtained by extruding a metal, and a refrigerant passage 5 through which a refrigerant flows is formed. Since the flat tube 4 is disposed so that the extrusion direction, which is the longitudinal direction, is horizontal, the refrigerant flow direction of the refrigerant passage 5 is also horizontal. A plurality of refrigerant passages 5 having the same cross-sectional shape and the same cross-sectional area are arranged in the depth direction of FIG. 7, so that the vertical cross section of the flat tube 4 has a harmonica shape. Each refrigerant passage 5 communicates with the inside of the header pipes 2 and 3. Corrugated fins 6 are arranged between the adjacent flat tubes 4.

ヘッダパイプ2と3、偏平チューブ4、及びコルゲートフィン6はいずれもアルミニウム等熱伝導の良い金属からなり、偏平チューブ4はヘッダパイプ2、3に対し、コルゲートフィン6は偏平チューブ4に対し、それぞれロウ付けまたは溶着で固定される。   The header pipes 2 and 3, the flat tube 4 and the corrugated fin 6 are all made of a metal having good heat conduction such as aluminum, the flat tube 4 is for the header pipes 2 and 3, and the corrugated fin 6 is for the flat tube 4. It is fixed by brazing or welding.

熱交換器1では、冷媒出入口7、8はヘッダパイプ3の側にのみ設けられている。ヘッダパイプ3の内部には上下方向に間隔を置いて2枚の仕切板9a、9cが設けられており、ヘッダパイプ2の内部には仕切板9a、9cの中間の高さのところに仕切板9bが設けられている。   In the heat exchanger 1, the refrigerant inlets and outlets 7 and 8 are provided only on the header pipe 3 side. Two partition plates 9a and 9c are provided in the header pipe 3 at intervals in the vertical direction. Inside the header pipe 2, the partition plates are located at a height intermediate between the partition plates 9a and 9c. 9b is provided.

熱交換器1を蒸発器として使用する場合、冷媒は図7に実線矢印で示すように下側の冷媒出入口7から流入する。冷媒出入口7から入った冷媒は、仕切板9aでせき止められて偏平チューブ4経由でヘッダパイプ2に向かう。この冷媒の流れが左向きのブロック矢印で表現されている。ヘッダパイプ2に入った冷媒は仕切板9bでせき止められて別の偏平チューブ4経由でヘッダパイプ3に向かう。この冷媒の流れが右向きのブロック矢印で表現されている。ヘッダパイプ3に入った冷媒は仕切板9cでせき止められてさらに別の偏平チューブ4経由で再びヘッダパイプ2に向かう。この冷媒の流れが左向きのブロック矢印で表現されている。ヘッダパイプ2に入った冷媒は折り返してさらに別の偏平チューブ4経由で再びヘッダパイプ3に向かう。この冷媒の流れが右向きのブロック矢印で表現されている。ヘッダパイプ3に入った冷媒は冷媒出入口8から流出する。このように、冷媒はジグザグの経路を辿って下から上に流れる。ここでは仕切板の数が3の場合を示したが、これは一例であり、仕切板の数と、その結果としてもたらされる冷媒流れの折り返し回数は、必要に応じ任意の数を設定することができる。   When the heat exchanger 1 is used as an evaporator, the refrigerant flows from the lower refrigerant inlet / outlet 7 as indicated by solid line arrows in FIG. The refrigerant entering from the refrigerant inlet / outlet 7 is blocked by the partition plate 9 a and travels toward the header pipe 2 via the flat tube 4. This refrigerant flow is represented by a left-pointing block arrow. The refrigerant that has entered the header pipe 2 is blocked by the partition plate 9 b and travels to the header pipe 3 via another flat tube 4. This refrigerant flow is represented by a right-pointing block arrow. The refrigerant that has entered the header pipe 3 is dammed up by the partition plate 9 c, and further travels toward the header pipe 2 via another flat tube 4. This refrigerant flow is represented by a left-pointing block arrow. The refrigerant that has entered the header pipe 2 is folded back and travels again to the header pipe 3 via another flat tube 4. This refrigerant flow is represented by a right-pointing block arrow. The refrigerant that has entered the header pipe 3 flows out from the refrigerant inlet / outlet 8. In this way, the refrigerant follows the zigzag path and flows from the bottom to the top. Although the case where the number of partition plates is 3 is shown here, this is only an example, and the number of partition plates and the number of times the resulting refrigerant flow may be folded may be set as desired. it can.

熱交換器1を凝縮器として使用する場合は、冷媒の流れが逆になる。すなわち冷媒は図7に点線矢印で示すように冷媒出入口8からヘッダパイプ3に入り、仕切板9cでせき止められて偏平チューブ4経由でヘッダパイプ2に向かい、ヘッダパイプ2では仕切板9bでせき止められて別の偏平チューブ4経由でヘッダパイプ3に向かい、ヘッダパイプ3では仕切板9aでせき止められてさらに別の偏平チューブ4経由で再びヘッダパイプ2に向かい、ヘッダパイプ2で折り返してさらに別の偏平チューブ4経由で再びヘッダパイプ3に向かい、冷媒出入口7から点線矢印のように流出するという、ジグザグの経路を辿って上から下に流れる。   When the heat exchanger 1 is used as a condenser, the refrigerant flow is reversed. That is, the refrigerant enters the header pipe 3 from the refrigerant inlet / outlet 8 as shown by the dotted arrow in FIG. 7, is dammed by the partition plate 9c and goes to the header pipe 2 via the flat tube 4, and is dammed by the partition plate 9b in the header pipe 2. It heads to the header pipe 3 via another flat tube 4, and the header pipe 3 is dammed by a partition plate 9 a, then goes to the header pipe 2 again via another flat tube 4, and is folded back by the header pipe 2 to make another flat It flows from the top to the bottom following the zigzag path in which it goes to the header pipe 3 again via the tube 4 and flows out from the refrigerant inlet / outlet 7 as indicated by the dotted line arrow.

熱交換器を蒸発器として用いた場合、低温となった熱交換器表面に大気中の水分が凝結して凝縮水が発生する。パラレルフロー型熱交換器では、偏平チューブやコルゲートフィンの表面に凝縮水が留まると空気流通路の断面積が水によって狭められてしまい、熱交換性能が低下する。   When the heat exchanger is used as an evaporator, moisture in the atmosphere condenses on the surface of the heat exchanger that has become a low temperature, and condensed water is generated. In the parallel flow type heat exchanger, when the condensed water stays on the surface of the flat tube or the corrugated fin, the cross-sectional area of the air flow passage is narrowed by the water, and the heat exchange performance is deteriorated.

凝縮水は、気温が低いと熱交換器の表面で霜と化す。霜が氷にまで進むこともある。本明細書では、そのような霜や氷が溶けた水、いわゆる除霜水も含めた意味で「凝縮水」の語を用いるものとする。   When the temperature is low, the condensed water turns into frost on the surface of the heat exchanger. Frost can travel to ice. In the present specification, the term “condensed water” is used to include water in which such frost and ice are melted, so-called defrosted water.

凝縮水の滞留は、特にサイドフロー方式のパラレルフロー型熱交換器において問題となる。特許文献1、2に、サイドフロー方式のパラレルフロー型熱交換器からの排水を促進する方策が提案されている。   Condensed water retention is a problem particularly in a side flow parallel flow heat exchanger. Patent Documents 1 and 2 propose measures for promoting drainage from a side flow parallel flow heat exchanger.

特許文献1記載の熱交換器では、凝縮水の結集側にコルゲートフィンと接触する排水ガイドを配置している。排水ガイドは線形部材からなり、偏平管に対して傾斜配置され、両端の少なくとも一つが熱交換器の下端側あるいは側端側に導かれている。   In the heat exchanger described in Patent Document 1, a drainage guide that comes into contact with the corrugated fins is disposed on the condensed water condensing side. The drainage guide is made of a linear member, is inclined with respect to the flat tube, and at least one of both ends is led to the lower end side or the side end side of the heat exchanger.

特許文献2記載の熱交換器では、ガイド板が、送風の下流側に、コルゲートフィンに接触して配置されている。熱交換器の表面に付着した露は、送風によって下流側に移動してガイド板に付着し、その重さによって自由落下する。   In the heat exchanger described in Patent Document 2, the guide plate is disposed in contact with the corrugated fin on the downstream side of the air blowing. The dew adhering to the surface of the heat exchanger moves downstream by blowing and adheres to the guide plate, and falls freely by its weight.

特開2007−285673号公報JP 2007-285673 A 特開2001−263861号公報Japanese Patent Laid-Open No. 2001-263861

特許文献1記載の熱交換器では、線形部材からなる排水ガイドを熱交換器に接触させて水を導く。しかしながら、熱交換器が傾いた状態で設置されているときや、排水ガイドに汚れが付着したときなど、水が排水ガイドを伝わらないで、水とび等の現象が発生することがある。特許文献2記載の熱交換器でも、傾いた状態で設置された場合には、フィン間でブリッジした水がもとになって水とびが発生する。   In the heat exchanger described in Patent Document 1, water is guided by bringing a drainage guide made of a linear member into contact with the heat exchanger. However, when the heat exchanger is installed in a tilted state or when dirt is attached to the drainage guide, a phenomenon such as water jumping may occur without water passing through the drainage guide. Even in the heat exchanger described in Patent Document 2, when installed in an inclined state, water jumps due to water bridged between the fins.

本発明は上記の点に鑑みなされたものであり、サイドフロー方式のパラレルフロー型熱交換器の凝縮水の排水性を改善するとともに、その効果が、凝縮水が結集する側の面が下を向くように熱交換器が傾いた状態で置かれたとしても発揮されるようにすることを目的とする。   The present invention has been made in view of the above points, and improves the drainage of the condensate water of the side flow type parallel flow heat exchanger, and the effect is that the surface on the side where the condensate collects is down. It is intended to be exerted even when the heat exchanger is placed in an inclined state so as to face.

本発明の好ましい実施形態によれば、間隔を置いて平行に配置された複数のヘッダパイプと、前記複数のヘッダパイプの間に複数配置され、内部に設けた冷媒通路を前記ヘッダパイプの内部に連通させた偏平チューブと、前記偏平チューブ同士の間に配置されたコルゲートフィンとを備えたサイドフロー方式のパラレルフロー型熱交換器において、凝縮水が結集する側の面における前記コルゲートフィンの端は前記偏平チューブの端からはみ出しており、当該コルゲートフィンのはみ出し端同士のなす隙間に線状の導水部材が挿入され、当該導水部材と、その上に位置する前記コルゲートフィンのはみ出し端との間隔は、両者間に水の表面張力が働き得る距離とされるとともに、前記導水部材が配置された側の面に、前記偏平チューブの端同士を連結する排水プレートが差し込まれる。   According to a preferred embodiment of the present invention, a plurality of header pipes arranged in parallel at intervals, and a plurality of refrigerant pipes arranged between the plurality of header pipes are provided inside the header pipes. In a parallel flow type heat exchanger of a side flow system comprising a flat tube connected to each other and a corrugated fin arranged between the flat tubes, the end of the corrugated fin on the surface where condensed water is concentrated is It protrudes from the end of the flat tube, a linear water guiding member is inserted into the gap formed by the protruding ends of the corrugated fins, and the distance between the water guiding member and the protruding end of the corrugated fin located thereon is And the distance at which the surface tension of water can work, and the end of the flat tube is the same as the surface on which the water guide member is disposed. Drain plate for coupling is inserted a.

本発明の好ましい実施形態によれば、上記構成の熱交換器において、前記排水プレートの一方の縁に前記偏平チューブの配置ピッチに等しいピッチで複数のノッチが形成され、前記ノッチに前記偏平チューブの端と前記導水部材が入り込む。   According to a preferred embodiment of the present invention, in the heat exchanger configured as described above, a plurality of notches are formed at one edge of the drainage plate at a pitch equal to the arrangement pitch of the flat tubes. The end and the water guide member enter.

本発明の好ましい実施形態によれば、上記構成の熱交換器において、複数の前記排水プレートが前記偏平チューブの長さ方向に沿って所定ピッチで配置される。   According to a preferred embodiment of the present invention, in the heat exchanger configured as described above, the plurality of drain plates are arranged at a predetermined pitch along the length direction of the flat tube.

本発明の好ましい実施形態によれば、空気調和機の室外機または室内機に上記構成の熱交換器が搭載される。   According to a preferred embodiment of the present invention, the heat exchanger configured as described above is mounted on an outdoor unit or an indoor unit of an air conditioner.

本発明によると、サイドフロー方式のパラレルフロー型熱交換器において、凝縮水が結集する側の面におけるコルゲートフィンの端は偏平チューブの端からはみ出しており、当該コルゲートフィンのはみ出し端同士のなす隙間に線状の導水部材が挿入され、当該導水部材と、その上に位置するコルゲートフィンのはみ出し端との間隔は、両者間に水の表面張力が働き得る距離とされるとともに、導水部材が配置された側の面に、偏平チューブの端同士を連結する排水プレートが差し込まれていることにより、凝縮水はコルゲートフィンから導水部材に移るばかりでなく、コルゲートフィンから排水プレートにも移り、排水プレートを伝って安定して流下するので、凝縮水が結集する側の面が下を向くように熱交換器が傾いた状態で置かれたとしても、凝縮水は熱交換器の下端まで流下し続け、途中で滴下するようなことはない。   According to the present invention, in the side flow type parallel flow heat exchanger, the end of the corrugated fin on the surface on the side where condensed water collects protrudes from the end of the flat tube, and the gap formed by the protruding ends of the corrugated fin A linear water guide member is inserted in the gap, and the distance between the water guide member and the protruding end of the corrugated fin located thereon is a distance at which the surface tension of water can work, and the water guide member is disposed. Since the drainage plate that connects the ends of the flat tubes is inserted into the surface on the side where the condensate is connected, the condensed water not only moves from the corrugated fins to the water guiding member, but also moves from the corrugated fins to the drainage plate. As the heat exchanger flows down stably, the heat exchanger is placed in an inclined state so that the surface on which the condensed water collects faces downward Even, condensed water continues to flow down to the lower end of the heat exchanger, it is not such as dropping in the middle.

本発明の実施形態に係る熱交換器の部分正面図である。It is a partial front view of the heat exchanger which concerns on embodiment of this invention. 実施形態に係る熱交換器の部分概略断面図である。It is a partial schematic sectional drawing of the heat exchanger which concerns on embodiment. 実施形態に係る熱交換器を、凝縮水が結集する側の面が下を向くように傾けて置いた状態を示す部分概略断面図である。It is a partial schematic sectional view which shows the state which inclined and placed the heat exchanger which concerns on embodiment so that the surface at the side where condensed water gathers may face downward. 本発明に係る熱交換器を搭載した空気調和機の室外機の概略断面図である。It is a schematic sectional drawing of the outdoor unit of the air conditioner carrying the heat exchanger which concerns on this invention. 本発明に係る熱交換器を搭載した空気調和機の概略構成図で、暖房運転時の状態を示すものである。It is a schematic block diagram of the air conditioner carrying the heat exchanger which concerns on this invention, and shows the state at the time of heating operation. 本発明に係る熱交換器を搭載した空気調和機の概略構成図で、冷房運転時の状態を示すものである。It is a schematic block diagram of the air conditioner carrying the heat exchanger which concerns on this invention, and shows the state at the time of air_conditionaing | cooling operation. 従来のサイドフロー方式パラレルフロー型熱交換器の概略構造を示す垂直断面図である。It is a vertical sectional view showing a schematic structure of a conventional side flow type parallel flow type heat exchanger. 従来のサイドフロー方式パラレルフロー型熱交換器の部分概略断面図である。It is a partial schematic sectional drawing of the conventional side flow type parallel flow type heat exchanger. 従来のサイドフロー方式パラレルフロー型熱交換器を、凝縮水が結集する側の面が下を向くように傾けて置いた状態を示す部分概略断面図である。It is a partial schematic sectional drawing which shows the state which inclined and placed the conventional side flow type parallel flow type heat exchanger so that the surface on the side where condensed water collects may face downward.

以下本発明の実施形態を、図1から図3までを参照しつつ説明する。なお、図7の従来構造と機能的に共通する構成要素には図7で用いたのと同じ符号を付し、説明は省略するものとする。   Embodiments of the present invention will be described below with reference to FIGS. 1 to 3. Components that are functionally common to the conventional structure of FIG. 7 are denoted by the same reference numerals as those used in FIG. 7, and description thereof is omitted.

サイドフロー方式のパラレルフロー型熱交換器1の排水性は、パラレルフロー型熱交換器1を図8に示す構造とすることにより改善できる。すなわちパラレルフロー型熱交換器において、凝縮水が結集する側の面におけるコルゲートフィン6の端を偏平チューブ4の端からはみ出させる。そのはみ出し部分同士のなす隙間Gに、導水部材10が挿入される。導水部材10と、その上に位置するコルゲートフィン6のはみ出し端との間隔は、両者間に水の表面張力が働き得る距離とする。   The drainage of the side flow type parallel flow heat exchanger 1 can be improved by making the parallel flow type heat exchanger 1 as shown in FIG. That is, in the parallel flow type heat exchanger, the end of the corrugated fin 6 on the surface on the side where condensed water collects is protruded from the end of the flat tube 4. The water guide member 10 is inserted into the gap G formed by the protruding portions. The distance between the water guide member 10 and the protruding end of the corrugated fin 6 positioned thereon is a distance at which the surface tension of water can work.

導水部材10としては、繊維(好ましくは合成繊維)の集合体、いわゆる紐であるとか、金属や合成樹脂の線材を二重らせんの形に巻いたもの、金属や合成樹脂の線材をコイルスプリングの形に巻いたもの、金属や合成樹脂の板材を襞ピッチの細かいコルゲート板としたもの、金属や合成樹脂のロッドの外周にらせん溝を刻んでドリルビットの形状としたもの、スポンジ等の多孔性物質(吸水性部材)、紐を三つ編みにしたもの、チェーンなど、様々な吸水性部材や非吸水性部材であって、凝縮水の表面張力を働かせ得るものを用いることができる。   The water guide member 10 is an aggregate of fibers (preferably synthetic fibers), a so-called string, or a metal or synthetic resin wire wound in a double helix, or a metal or synthetic resin wire made of a coil spring. Wrapped in shape, metal or synthetic resin plate with corrugated plate with fine pitch, metal or synthetic resin rod with spiral groove in the shape of drill bit, sponge or other porous material Various water-absorbing members and non-water-absorbing members, such as substances (water-absorbing members), braided braids, chains, etc., that can exert the surface tension of condensed water can be used.

コルゲートフィン6の端に凝縮水がたまると、水の表面張力により、コルゲートフィン6の端面にブリッジ現象(水の膜が張ること)が生じる。コルゲートフィン6の端面だけでなく、コルゲートフィン6の下に挿入された導水部材10とコルゲートフィン6の端との間にもブリッジ現象が生じる。また、導水部材10と、その下に位置するコルゲートフィン6の端にたまった凝縮水との間でもブリッジ現象が生じる。このようなブリッジ現象の連鎖により、上部から下部まで続く導水路が形成され、コルゲートフィン6の間にブリッジした凝縮水を流れ落ちさせることが可能となる。   When condensed water accumulates at the end of the corrugated fin 6, a bridge phenomenon (a film of water stretches) occurs on the end surface of the corrugated fin 6 due to the surface tension of the water. Not only the end face of the corrugated fin 6 but also a bridge phenomenon occurs between the water guide member 10 inserted under the corrugated fin 6 and the end of the corrugated fin 6. Further, a bridging phenomenon also occurs between the water guiding member 10 and the condensed water accumulated at the end of the corrugated fin 6 located below the water guiding member 10. Due to such a chain of bridging phenomena, a water conduit that extends from the upper part to the lower part is formed, and the condensed water bridged between the corrugated fins 6 can flow down.

しかしながら、図8に示すサイドフロー方式のパラレルフロー型熱交換器1は、排水の問題を完全に解決するものとは言えない。図8のパラレルフロー型熱交換器1を、図9に示す通り、凝縮水が結集する側の面が下を向くように傾けて置くと、コルゲートフィン6の端にたまった凝縮水が、表面張力で導水部材10に移る前にコルゲートフィン6の下方の角から滴下してしまう。熱交換器1が空気調和機の室内機に搭載され、熱交換器1の下にクロスフローファンが設置されていた場合など、クロスフローファンが吹き出す気流に混じって水滴が飛び散ることになり、使用者に不快感を与える。   However, the side flow type parallel flow heat exchanger 1 shown in FIG. 8 cannot be said to completely solve the problem of drainage. When the parallel flow type heat exchanger 1 of FIG. 8 is tilted so that the surface on which condensed water collects is directed downward as shown in FIG. 9, the condensed water accumulated at the end of the corrugated fin 6 Before moving to the water guide member 10 due to tension, the corrugated fin 6 is dropped from the lower corner. When the heat exchanger 1 is installed in an indoor unit of an air conditioner and a cross flow fan is installed under the heat exchanger 1, water drops will be scattered and mixed with the air flow blown out by the cross flow fan. Give people discomfort.

そこで本発明では、図8の構造にもう一工夫を加える。すなわち、導水部材10が配置された側の面に、図2に示す通り、偏平チューブ4の端同士を連結する排水プレート11を差し込む。排水プレート11は図1において垂直に、すなわち偏平チューブ4と直角に配置されている。排水プレート11の一方の縁には偏平チューブ4の配置ピッチに等しいピッチで複数のノッチ12が形成され、このノッチ12に偏平チューブ4の端と導水部材10が入り込む。排水プレート11の他方の縁は、コルゲートフィン6よりもさらに外側にはみ出す。   Therefore, in the present invention, another device is added to the structure of FIG. That is, as shown in FIG. 2, the drainage plate 11 that connects the ends of the flat tubes 4 is inserted into the surface on which the water guiding member 10 is disposed. The drain plate 11 is arranged vertically in FIG. 1, that is, at a right angle to the flat tube 4. A plurality of notches 12 are formed at one edge of the drain plate 11 at a pitch equal to the arrangement pitch of the flat tubes 4, and the ends of the flat tubes 4 and the water guide member 10 enter the notches 12. The other edge of the drainage plate 11 protrudes further outward than the corrugated fins 6.

排水プレート11はロウ付けまたは溶着で偏平チューブ4に固定される。排水プレート11の材料としては、コルゲートフィン6と同じ材質、同じ厚みの板材を使用するのがよい。図1に示す通り、排水プレート11は、複数のものが偏平チューブ4の長さ方向に沿って所定ピッチで配置される。排水プレート11のピッチは、コルゲートフィン6の山(谷)のピッチよりも広めに、例えばコルゲートフィン6の山(谷)のピッチの3倍程度に設定することができる。   The drain plate 11 is fixed to the flat tube 4 by brazing or welding. As a material for the drain plate 11, it is preferable to use a plate material having the same material and thickness as the corrugated fins 6. As shown in FIG. 1, a plurality of drain plates 11 are arranged at a predetermined pitch along the length direction of the flat tube 4. The pitch of the drain plates 11 can be set wider than the pitch of the peaks (valleys) of the corrugated fins 6, for example, about three times the pitch of the peaks (valleys) of the corrugated fins 6.

前述の通り、導水部材10としては様々な種類のものを用いることができるが、ここでは2本の針金を撚り合わせたものを用いる。針金には、電食を防ぐため、偏平チューブ4、コルゲートフィン6、及び排水プレート11と同じ材質のものを使用する。偏平チューブ4、コルゲートフィン6、及び排水プレート11がアルミニウム製であれば、針金もアルミニウムということになる。導水部材10の長さは偏平チューブ4の長さとほぼ同じである。   As described above, various kinds of water guide members 10 can be used, but here, a material obtained by twisting two wires is used. The wire is made of the same material as the flat tube 4, the corrugated fin 6, and the drain plate 11 in order to prevent electrolytic corrosion. If the flat tube 4, the corrugated fin 6, and the drain plate 11 are made of aluminum, the wire is also aluminum. The length of the water guide member 10 is substantially the same as the length of the flat tube 4.

熱交換器1を、凝縮水が結集する側の面が下を向くように傾けて置くと、図3のようになる。コルゲートフィン6の端に結集した凝縮水は、排水プレート11という排水経路が確保されているため、排水プレート11を伝って安定して流下する。凝縮水は熱交換器1の下端まで流下し続け、途中で滴下することはない。凝縮水の捕集と排水については、熱交換器1の最下部あるいはその少し上あたりのコルゲートフィン6についてのみ、水を受けて排水する仕組みを整えておきさえすればよい。   When the heat exchanger 1 is placed so that the surface on the side where condensed water is concentrated faces downward, the heat exchanger 1 is as shown in FIG. The condensed water gathered at the end of the corrugated fin 6 flows down stably through the drainage plate 11 because a drainage path called the drainage plate 11 is secured. Condensed water continues to flow down to the lower end of the heat exchanger 1 and does not drop in the middle. Regarding the collection and drainage of condensed water, it is only necessary to prepare a mechanism for receiving and draining water only for the lowermost part of the heat exchanger 1 or the corrugated fins 6 slightly above it.

本発明の構成によれば、最下部以外のコルゲートフィン6から凝縮水が滴下し、熱交換器1の下に配置されたクロスフローファンが吹き出す気流に混じって水滴が飛び散り、使用者に不快感を与えるといった事態を防ぐことができる。   According to the configuration of the present invention, condensed water is dripped from the corrugated fins 6 other than the lowermost part, and the water droplets are scattered by being mixed with the airflow blown out by the cross flow fan disposed under the heat exchanger 1, which makes the user uncomfortable. Can be prevented.

本実施形態では排水プレート11を垂直に、すなわち偏平チューブ4に対し直角をなすように配置したが、排水プレート11を偏平チューブ4に対し斜めに交差する形で挿入することも可能である。   In the present embodiment, the drain plate 11 is arranged vertically, that is, at a right angle to the flat tube 4, but the drain plate 11 can be inserted so as to obliquely intersect the flat tube 4.

熱交換器1は、セパレート型空気調和機の室外機または室内機に搭載することができる。図4には室外機への搭載例を示す。   The heat exchanger 1 can be mounted on an outdoor unit or an indoor unit of a separate air conditioner. FIG. 4 shows an example of mounting on an outdoor unit.

図4の室外機20は平面形状略矩形の板金製筐体20aを備え、筐体20aの長辺側を正面20F及び背面20Bとし、短辺側を左側面20L及び右側面20Rとしている。正面20Fには排気口21が形成され、背面20Bには背面吸気口22が形成され、左側面20Lには側面吸気口23が形成される。排気口21は複数の水平なスリット状開口の集合からなり、背面吸気口22と側面吸気口23は格子状の開口からなる。正面20F、背面20B、左側面20L、右側面20Rの4面の板金部材に図示しない天板と底板が加わって六面体形状の筐体20aが形成される。   The outdoor unit 20 shown in FIG. 4 includes a sheet metal housing 20a having a substantially rectangular planar shape. The long side of the housing 20a is a front surface 20F and a back surface 20B, and the short side is a left side surface 20L and a right side surface 20R. An exhaust port 21 is formed on the front surface 20F, a rear intake port 22 is formed on the rear surface 20B, and a side intake port 23 is formed on the left side surface 20L. The exhaust port 21 is made up of a set of a plurality of horizontal slit-like openings, and the rear intake port 22 and the side intake ports 23 are made up of lattice-like openings. A top plate and a bottom plate (not shown) are added to the four sheet metal members of the front surface 20F, the back surface 20B, the left side surface 20L, and the right side surface 20R to form a hexahedral-shaped housing 20a.

筐体20aの内部には、背面吸気口22及び側面吸気口23のすぐ内側に平面形状L字形の熱交換器1が配置される。熱交換器1と室外空気との間で強制的に熱交換を行わせるため、熱交換器1と排気口21の間に送風機24が配置される。送風機24は電動機24aにプロペラファン24bを組み合わせたものである。送風効率向上のため、筐体20aの正面20Fの内面にはプロペラファン24bを囲むベルマウス25が取り付けられる。筐体20aの右側面20Rの内側の空間は背面吸気口22から排気口21へと流れる空気流から隔壁26で隔離されており、ここに圧縮機27が収容されている。   Inside the housing 20a, a planar L-shaped heat exchanger 1 is disposed just inside the rear intake port 22 and the side intake port 23. In order to force heat exchange between the heat exchanger 1 and the outdoor air, a blower 24 is disposed between the heat exchanger 1 and the exhaust port 21. The blower 24 is a combination of an electric motor 24a and a propeller fan 24b. In order to improve the blowing efficiency, a bell mouth 25 surrounding the propeller fan 24b is attached to the inner surface of the front surface 20F of the housing 20a. A space inside the right side surface 20R of the housing 20a is isolated by a partition wall 26 from an air flow flowing from the rear intake port 22 to the exhaust port 21, and a compressor 27 is accommodated therein.

室外機20の熱交換器1に凝縮水が発生すると、空気流通路の面積が凝縮水で狭められることにより熱交換性能が低下するだけでなく、外気温が氷点下であったりした場合には、凝縮水が凍結して熱交換器1の破損を招くことすらある。そのため室外機20では、熱交換器1からの凝縮水の排水が重要な課題となる。   When condensed water is generated in the heat exchanger 1 of the outdoor unit 20, not only the heat exchange performance is reduced due to the area of the air flow passage being narrowed by the condensed water, but the outside air temperature is below freezing point, The condensed water may freeze and cause damage to the heat exchanger 1. Therefore, in the outdoor unit 20, the drainage of the condensed water from the heat exchanger 1 becomes an important issue.

室外機20では、熱交換器1の風上側が凝縮水の結集側となる。これは次の理由による。室外機20においては、熱交換器1を傾けることなく、ほぼ垂直に立てて設置している。熱交換器1を蒸発器として使用した場合(例えば暖房運転時がこれに該当する)、風下側よりも風上側で熱交換が盛んに行われ、そこに凝縮水が溜まる。そのため、風上側が凝縮水の結集側ということになるのである。   In the outdoor unit 20, the windward side of the heat exchanger 1 is the condensed water condensing side. This is due to the following reason. In the outdoor unit 20, the heat exchanger 1 is installed substantially vertically without being inclined. When the heat exchanger 1 is used as an evaporator (for example, the heating operation corresponds to this), heat exchange is actively performed on the windward side rather than the leeward side, and condensed water accumulates there. Therefore, the windward side is the condensed water condensing side.

風上側で結露した凝縮水は、風下側に流れることはあまりない。外気温が低い場合は、凝縮水は霜として熱交換器1に付着する。霜の量が増えれば除霜運転を余儀なくされるが、除霜運転中、送風機24は停止しているので、霜が溶けた水は風の影響を受けることなく専ら重力で下に流れ落ちる。これらのことから、風上側の面に本発明の構造を適用することにより、凝縮水を速やかに排水し、熱交換性能の低下を防ぐことができる。   Condensate condensed on the windward side does not flow to the leeward side. When the outside air temperature is low, the condensed water adheres to the heat exchanger 1 as frost. If the amount of frost increases, the defrosting operation is forced, but during the defrosting operation, the blower 24 is stopped, so that the water in which the frost has melted flows down by gravity without being affected by the wind. From these facts, by applying the structure of the present invention to the windward surface, the condensed water can be drained quickly, and deterioration of the heat exchange performance can be prevented.

図5及び図6には、セパレート型空気調和機の室内機に熱交換器1を搭載した例を示す。図5及び図6に示されるセパレート型空気調和機の室外機は圧縮機、四方弁、膨張弁、室外側熱交換器、室外側送風機などを含み、室内機は室内側熱交換器、室内側送風機などを含む。室外側熱交換器は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。室内側熱交換器は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。   5 and 6 show an example in which the heat exchanger 1 is mounted on an indoor unit of a separate type air conditioner. The outdoor unit of the separate type air conditioner shown in FIGS. 5 and 6 includes a compressor, a four-way valve, an expansion valve, an outdoor heat exchanger, an outdoor fan, etc., and the indoor unit is an indoor heat exchanger, an indoor side Includes a blower. The outdoor heat exchanger functions as an evaporator during heating operation and functions as a condenser during cooling operation. The indoor heat exchanger functions as a condenser during heating operation and functions as an evaporator during cooling operation.

図5には冷凍サイクルとしてヒートポンプサイクルを用いるセパレート型空気調和機の基本的構成が示されている。ヒートポンプサイクル101は、圧縮機102、四方弁103、室外側の熱交換器104、減圧膨張装置105、及び室内側の熱交換器106をループ状に接続したものである。圧縮機102、四方弁103、熱交換器104、及び減圧膨張装置105は室外機110の筐体に収容され、熱交換器106は室内機120の筐体に収容される。熱交換器104には室外側の送風機107が組み合わせられ、熱交換器106には室内側の送風機108が組み合わせられる。送風機107は吹出気流形成用のプロペラファン107aを含み、送風機108は吹出気流形成用のクロスフローファン108aを含む。クロスフローファン108aは熱交換器106の下に軸線を水平にして配置される。   FIG. 5 shows a basic configuration of a separate air conditioner that uses a heat pump cycle as a refrigeration cycle. The heat pump cycle 101 includes a compressor 102, a four-way valve 103, an outdoor heat exchanger 104, a decompression / expansion device 105, and an indoor heat exchanger 106 connected in a loop. The compressor 102, the four-way valve 103, the heat exchanger 104, and the decompression / expansion device 105 are accommodated in the casing of the outdoor unit 110, and the heat exchanger 106 is accommodated in the casing of the indoor unit 120. An outdoor fan 107 is combined with the heat exchanger 104, and an indoor fan 108 is combined with the heat exchanger 106. The blower 107 includes a propeller fan 107a for forming a blown airflow, and the blower 108 includes a cross flow fan 108a for forming a blown airflow. The cross flow fan 108a is disposed below the heat exchanger 106 with its axis line horizontal.

本発明に係る熱交換器1は、室内機の熱交換器106の構成要素として用いることができる。熱交換器106は、3個の熱交換器106A、106B、106Cを送風機108を覆う屋根のように組み合わせたものであり、熱交換器106A、106B、106Cのいずれかまたは全てを熱交換器1とすることができる。   The heat exchanger 1 which concerns on this invention can be used as a component of the heat exchanger 106 of an indoor unit. The heat exchanger 106 is a combination of three heat exchangers 106A, 106B, and 106C like a roof that covers the blower 108, and any or all of the heat exchangers 106A, 106B, and 106C are combined with the heat exchanger 1. It can be.

図5は暖房運転時の状態を示す。この時は、圧縮機102から吐出された高温高圧の冷媒は室内側の熱交換器106に入ってそこで放熱し、凝縮する。熱交換器106を出た冷媒は減圧膨張装置105から室外側の熱交換器104に入ってそこで膨張し、室外空気から熱を取り込んだ後、圧縮機102に戻る。室内側の送風機108によって生成された気流が熱交換器106からの放熱を促進し、室外側の送風機107によって生成された気流が熱交換器104の吸熱を促進する。   FIG. 5 shows a state during heating operation. At this time, the high-temperature and high-pressure refrigerant discharged from the compressor 102 enters the indoor heat exchanger 106 where it dissipates heat and condenses. The refrigerant exiting the heat exchanger 106 enters the outdoor heat exchanger 104 from the decompression / expansion device 105 and expands there, takes heat from the outdoor air, and returns to the compressor 102. The airflow generated by the indoor fan 108 promotes heat dissipation from the heat exchanger 106, and the airflow generated by the outdoor fan 107 accelerates heat absorption of the heat exchanger 104.

図6は冷房運転時あるいは除霜運転時の状態を示す。この時は四方弁103が切り換えられて暖房運転時と冷媒の流れが逆になる。すなわち、圧縮機102から吐出された高温高圧の冷媒は室外側の熱交換器104に入ってそこで放熱し、凝縮する。熱交換器104を出た冷媒は減圧膨張装置105から室内側の熱交換器106に入ってそこで膨張し、室内空気から熱を取り込んだ後、圧縮機102に戻る。室外側の送風機107によって生成された気流が熱交換器104からの放熱を促進し、室内側の送風機108によって生成された気流が熱交換器106の吸熱を促進する。   FIG. 6 shows a state during cooling operation or defrosting operation. At this time, the four-way valve 103 is switched so that the refrigerant flow is reversed from that during the heating operation. That is, the high-temperature and high-pressure refrigerant discharged from the compressor 102 enters the outdoor heat exchanger 104, where it dissipates heat and condenses. The refrigerant exiting the heat exchanger 104 enters the heat exchanger 106 on the indoor side from the decompression / expansion device 105 and expands there, takes heat from the indoor air, and returns to the compressor 102. The air flow generated by the outdoor air blower 107 promotes heat dissipation from the heat exchanger 104, and the air flow generated by the indoor air blower 108 promotes heat absorption of the heat exchanger 106.

本発明に係る熱交換器1を室内機の熱交換器106の構成要素として用いた場合、熱交換器1の風下側であり、熱交換器1の姿勢によっては下面側でもある面が凝縮水の結集側となる。導水部材10と排水プレート11はこの風下側の面に配置される。   When the heat exchanger 1 according to the present invention is used as a constituent element of the heat exchanger 106 of the indoor unit, the surface that is the leeward side of the heat exchanger 1 and also the lower surface side depending on the posture of the heat exchanger 1 is condensed water. The rally side. The water guide member 10 and the drain plate 11 are disposed on the leeward side surface.

本発明に係る熱交換器1を用いれば、風下側の面に凝縮水が結集しても、それがクロスフローファン108aに滴下したりするようなことはなく、水とびが発生しない。また、熱交換器1ではブリッジ現象を抑制することができ、通風抵抗の増加を抑えることが可能となる。   When the heat exchanger 1 according to the present invention is used, even if condensed water collects on the surface on the leeward side, it does not drop on the cross flow fan 108a, and water splash does not occur. Moreover, in the heat exchanger 1, a bridge phenomenon can be suppressed and an increase in ventilation resistance can be suppressed.

以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。   Although the embodiments of the present invention have been described above, the scope of the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention.

本発明はサイドフロー方式のパラレルフロー型熱交換器に広く利用可能である。   The present invention is widely applicable to side flow parallel flow heat exchangers.

1 熱交換器
2、3 ヘッダパイプ
4 偏平チューブ
5 冷媒通路
6 コルゲートフィン
G 隙間
7、8 冷媒出入口
10 導水部材
11 排水プレート
12 ノッチ
20 室外機
110 室外機
120 室内機
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2, 3 Header pipe 4 Flat tube 5 Refrigerant passage 6 Corrugated fin G Crevice 7, 8 Refrigerant inlet / outlet 10 Water guide member 11 Drain plate 12 Notch 20 Outdoor unit 110 Outdoor unit 120 Indoor unit 120 Indoor unit

Claims (4)

間隔を置いて平行に配置された複数のヘッダパイプと、前記複数のヘッダパイプの間に複数配置され、内部に設けた冷媒通路を前記ヘッダパイプの内部に連通させた偏平チューブと、前記偏平チューブ同士の間に配置されたコルゲートフィンとを備えたサイドフロー方式のパラレルフロー型熱交換器において、
凝縮水が結集する側の面における前記コルゲートフィンの端は前記偏平チューブの端からはみ出しており、当該コルゲートフィンのはみ出し端同士のなす隙間に線状の導水部材が挿入され、当該導水部材と、その上に位置する前記コルゲートフィンのはみ出し端との間隔は、両者間に水の表面張力が働き得る距離とされるとともに、
前記導水部材が配置された側の面に、前記偏平チューブの端同士を連結する排水プレートが差し込まれることを特徴とするパラレルフロー型熱交換器。
A plurality of header pipes arranged in parallel at intervals, a plurality of flat tubes arranged between the plurality of header pipes and having refrigerant passages provided therein communicated with the inside of the header pipes, and the flat tubes In the parallel flow type heat exchanger of the side flow type provided with corrugated fins arranged between each other,
The end of the corrugated fin on the surface on the side where condensed water collects protrudes from the end of the flat tube, a linear water guiding member is inserted into the gap formed by the protruding ends of the corrugated fin, and the water guiding member, The distance from the protruding end of the corrugated fin located thereon is a distance at which the surface tension of water can work,
A parallel flow heat exchanger, wherein a drainage plate for connecting ends of the flat tubes is inserted into a surface on which the water guide member is disposed.
前記排水プレートの一方の縁に前記偏平チューブの配置ピッチに等しいピッチで複数のノッチが形成され、前記ノッチに前記偏平チューブの端と前記導水部材が入り込むことを特徴とする請求項1に記載のパラレルフロー型熱交換器。   The plurality of notches are formed at one edge of the drainage plate at a pitch equal to the arrangement pitch of the flat tubes, and the ends of the flat tubes and the water guide member enter the notches. Parallel flow heat exchanger. 複数の前記排水プレートが前記偏平チューブの長さ方向に沿って所定ピッチで配置されることを特徴とする請求項1または2に記載のパラレルフロー型熱交換器。   The parallel flow heat exchanger according to claim 1 or 2, wherein the plurality of drain plates are arranged at a predetermined pitch along a length direction of the flat tube. 請求項1から3のいずれか1項に記載の熱交換器を室外機または室内機に搭載したことを特徴とする空気調和機。   An air conditioner comprising the heat exchanger according to any one of claims 1 to 3 mounted on an outdoor unit or an indoor unit.
JP2010175524A 2010-08-04 2010-08-04 Heat exchanger, and air conditioner with the same Pending JP2012037092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010175524A JP2012037092A (en) 2010-08-04 2010-08-04 Heat exchanger, and air conditioner with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010175524A JP2012037092A (en) 2010-08-04 2010-08-04 Heat exchanger, and air conditioner with the same

Publications (1)

Publication Number Publication Date
JP2012037092A true JP2012037092A (en) 2012-02-23

Family

ID=45849290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010175524A Pending JP2012037092A (en) 2010-08-04 2010-08-04 Heat exchanger, and air conditioner with the same

Country Status (1)

Country Link
JP (1) JP2012037092A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017814A1 (en) * 2015-07-29 2017-02-02 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
WO2018008134A1 (en) * 2016-07-07 2018-01-11 三菱電機株式会社 Heat exchanger
CN107860248A (en) * 2017-10-27 2018-03-30 珠海格力电器股份有限公司 Micro-channel heat exchanger and air conditioner
CN110220251A (en) * 2018-03-02 2019-09-10 日立江森自控空调有限公司 The manufacturing method of heat exchanger, outdoor unit, freezing cycle device and heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278197A (en) * 1991-03-04 1992-10-02 Asahi Chem Ind Co Ltd Pin fin heat exchanger equipped with water conducting means
JPH0590173U (en) * 1992-04-20 1993-12-07 住友軽金属工業株式会社 Fin tube heat exchanger
JP2001263861A (en) * 2000-03-17 2001-09-26 Sanyo Electric Co Ltd Heat exchanger
JP2007285673A (en) * 2006-04-20 2007-11-01 Yanmar Co Ltd Drain structure for corrugated type heat exchanger
JP4503682B1 (en) * 2009-04-22 2010-07-14 シャープ株式会社 Heat exchanger and air conditioner equipped with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278197A (en) * 1991-03-04 1992-10-02 Asahi Chem Ind Co Ltd Pin fin heat exchanger equipped with water conducting means
JPH0590173U (en) * 1992-04-20 1993-12-07 住友軽金属工業株式会社 Fin tube heat exchanger
JP2001263861A (en) * 2000-03-17 2001-09-26 Sanyo Electric Co Ltd Heat exchanger
JP2007285673A (en) * 2006-04-20 2007-11-01 Yanmar Co Ltd Drain structure for corrugated type heat exchanger
JP4503682B1 (en) * 2009-04-22 2010-07-14 シャープ株式会社 Heat exchanger and air conditioner equipped with the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017814A1 (en) * 2015-07-29 2017-02-02 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
JPWO2017017814A1 (en) * 2015-07-29 2018-02-01 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
US10801791B2 (en) 2015-07-29 2020-10-13 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
WO2018008134A1 (en) * 2016-07-07 2018-01-11 三菱電機株式会社 Heat exchanger
JPWO2018008134A1 (en) * 2016-07-07 2019-03-14 三菱電機株式会社 Heat exchanger
CN107860248A (en) * 2017-10-27 2018-03-30 珠海格力电器股份有限公司 Micro-channel heat exchanger and air conditioner
CN107860248B (en) * 2017-10-27 2023-12-22 珠海格力电器股份有限公司 Microchannel heat exchanger and air conditioner
CN110220251A (en) * 2018-03-02 2019-09-10 日立江森自控空调有限公司 The manufacturing method of heat exchanger, outdoor unit, freezing cycle device and heat exchanger
JP2019152372A (en) * 2018-03-02 2019-09-12 日立ジョンソンコントロールズ空調株式会社 Heat exchanger, outdoor unit, refrigeration cycle device, and manufacturing method of heat exchanger
US11035623B2 (en) 2018-03-02 2021-06-15 Hitachi-Johnson Conrols Air Conditioning, Inc. Heat exchanger, outdoor unit, refrigeration cycle device, and heat exchanger manufacturing method

Similar Documents

Publication Publication Date Title
JP4503682B1 (en) Heat exchanger and air conditioner equipped with the same
JP5009413B2 (en) Heat exchanger and air conditioner equipped with the same
JP5084707B2 (en) Air conditioner
JP5270732B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
JP2012037092A (en) Heat exchanger, and air conditioner with the same
JP5172772B2 (en) Heat exchanger and air conditioner equipped with the same
JP4988015B2 (en) Heat exchanger and air conditioner equipped with the same
JP4995308B2 (en) Air conditioner indoor unit
JP2014043985A (en) Parallel flow type heat exchanger and air conditioner mounted with the same
JP2010091145A (en) Heat exchanger
JP5331182B2 (en) Equipment with side flow parallel flow heat exchanger
JP5940895B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
JP5009409B2 (en) Heat exchanger and air conditioner equipped with the same
JP2015227754A (en) Heat exchanger
WO2012056790A1 (en) Heat exchanger and air conditioner having same installed therein
JP2012037099A (en) Indoor unit of air conditioner
JP2012093010A (en) Heat exchanger and air conditioner mounted with the same
JP2010127511A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150324