WO2018008134A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2018008134A1
WO2018008134A1 PCT/JP2016/070185 JP2016070185W WO2018008134A1 WO 2018008134 A1 WO2018008134 A1 WO 2018008134A1 JP 2016070185 W JP2016070185 W JP 2016070185W WO 2018008134 A1 WO2018008134 A1 WO 2018008134A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
fin
transfer tube
heat transfer
rib
Prior art date
Application number
PCT/JP2016/070185
Other languages
French (fr)
Japanese (ja)
Inventor
佑太 小宮
伊東 大輔
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP16908178.3A priority Critical patent/EP3483544B1/en
Priority to JP2018525900A priority patent/JP6771557B2/en
Priority to PCT/JP2016/070185 priority patent/WO2018008134A1/en
Publication of WO2018008134A1 publication Critical patent/WO2018008134A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/006Preventing deposits of ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/22Safety or protection arrangements; Arrangements for preventing malfunction for draining

Definitions

  • This invention relates to a heat exchanger having corrugated fins.
  • heat exchangers having corrugated fins are known.
  • FIG. 1 As an example of a conventional heat exchanger, a parallel flow heat exchanger in which heat is exchanged between a refrigerant flowing in a flat tube and air outside the flat tube is well known.
  • a plurality of flat tubes oriented in the vertical direction are arranged in parallel in the horizontal direction. Headers are provided at both ends of the flat tube in the vertical direction.
  • Corrugated fins are provided between the plurality of flat tubes.
  • a heat exchanger incorporated in an air conditioner in particular, a heat exchanger incorporated in an indoor unit of a separate type air conditioner is disposed so as to surround the cross flow fan inside the indoor unit (for example, Patent Document 1: Japanese Patent Application Laid-Open No. 2011-47600). Also when incorporating in the indoor unit using the parallel flow heat exchanger described above, the heat exchanger is disposed so as to surround the cross flow fan.
  • the temperature of the flat tube and the surface of the fin is lower than the temperature of air. For this reason, when air passes through the heat exchanger, moisture in the air is condensed on the surfaces of the flat tubes and the fins, and condensed water is generated.
  • Condensed water generated on the fin surface of the heat exchanger includes gravity, the force given by the air passing through the heat exchanger, the surface tension between the flat tube and the condensed water, and the surface tension between the fin and the condensed water. , Act. Due to the above-described force relationship, the dew condensation water flows down the flat tube to the lower part of the heat exchanger, drops from the heat exchanger to the leeward side, or is held and retained between the fins. Take.
  • a drain pan is generally disposed below the heat exchanger. Condensed water flowing down from the lower part of the heat exchanger is received by the drain pan and discharged outside the room. However, the condensed water dripping from the heat exchanger to the leeward side is not received by the drain pan and may be discharged from the inside of the indoor unit to the outside of the indoor unit (for example, indoors).
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-177082
  • Patent Document 3 Japanese Patent Laid-Open No. 7-190661.
  • JP2011-47600A JP 2004-177082 A Japanese Patent Laid-Open No. 7-190661
  • the dew condensation water generated on the fin surface of the heat exchanger may flow in the leeward direction along the fin surface due to gravity and the force given by the air passing through the heat exchanger.
  • the condensed water flows down the fin surface in the leeward direction between the flat tubes arranged in parallel, not along the side surface portion or the fin curved surface portion of the flat tube, the condensed water is drained from the flat tube, or Spatter to the leeward side without obtaining the effect of drainage.
  • the scattered condensed water may be discharged from the inside of the indoor unit to the outside (indoor).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat exchanger that does not scatter the condensed water generated on the fin surface to the leeward side.
  • the heat exchanger includes at least one heat transfer tube and fins.
  • the heat transfer tube is provided so as to extend along one direction, and the refrigerant circulates therein.
  • the fin is connected to at least one heat transfer tube.
  • the fin includes a first end portion, a planar portion, and a second end portion.
  • the first end is connected to the heat transfer tube.
  • the flat surface portion is continuous with the first end portion.
  • the second end portion is connected to the flat portion, and is located on the opposite side of the first end portion as viewed from the flat portion.
  • the planar portion has at least one linear rib projecting from the planar portion.
  • the at least one rib includes a rib center portion located in the center between the first end portion and the second end portion.
  • the at least one rib includes a portion continuous with the rib central portion.
  • the said part is formed so that it may approach either one of a 1st end part and a 2nd end part as it goes to the downstream of the distribution direction of air.
  • the fin when the dew condensation water generated on the flat portion of the fin moves to the downstream side (downward side) in the air flow direction, the fin contacts the rib and is guided by the rib. It flows in the direction of either the end or the second end. As a result, the condensed water flows to the surface of the heat transfer tube through the first end portion or flows along the second end portion of the fin, and finally the surface of the heat transfer tube and the second end portion of the fin It is collected in a drain pan. Therefore, it is possible to reduce the possibility that the condensed water flows as it is on the flat portion of the fin and is scattered on the leeward side.
  • FIG. 1 is a schematic perspective view showing a heat exchanger according to Embodiment 1.
  • FIG. 3 is a schematic side view showing the heat exchanger according to Embodiment 1.
  • FIG. 3 is a schematic perspective view of a main part of the heat exchanger according to Embodiment 1. It is a principal part longitudinal cross-section schematic diagram of the heat exchanger which has a U-shaped rib which concerns on Embodiment 1.
  • FIG. 3 is an enlarged schematic diagram of a U-shaped rib according to Embodiment 1.
  • FIG. FIG. 6 is a schematic cross-sectional view taken along line VI-VI in FIG. 5. 6 is a schematic cross-sectional view of a modification of the U-shaped rib according to Embodiment 1.
  • FIG. 3 is a schematic side view showing the heat exchanger according to Embodiment 1.
  • FIG. 3 is a schematic perspective view of a main part of the heat exchanger according to Embodiment 1. It is a principal part longitudinal cross-section schematic diagram of the heat exchange
  • FIG. 3 is a schematic cross-sectional view of condensed water adhering to the heat exchanger according to Embodiment 1.
  • FIG. 3 is an enlarged schematic diagram of a V-shaped rib according to Embodiment 1.
  • FIG. 3 is a schematic vertical sectional view of a main part of a heat exchanger having linear ribs according to Embodiment 1.
  • FIG. 3 is an enlarged schematic view of a linear rib according to Embodiment 1.
  • FIG. It is a summary perspective schematic diagram of the heat exchanger according to the second embodiment.
  • 6 is a schematic perspective schematic view of a heat exchanger according to Embodiment 3.
  • FIG. 6 is a summary perspective schematic diagram of a heat exchanger according to Embodiment 4.
  • FIG. 9 is a summary perspective schematic view of a heat exchanger according to Embodiment 5.
  • FIG. 1 is a schematic perspective view showing a heat exchanger according to the present embodiment.
  • FIG. 2 is a schematic side view showing the heat exchanger according to the present embodiment.
  • FIG. 3 is a schematic perspective view of an essential part of the heat exchanger shown in FIGS. 1 and 2.
  • 4 is a schematic vertical sectional view of an essential part of the heat exchanger shown in FIG. 2 and
  • FIG. 5 is an enlarged schematic view of the rib shown in FIG. 6 is a schematic sectional view taken along line VI-VI in FIG.
  • FIG. 7 is a schematic sectional view of a modification of the rib shown in FIG. FIG.
  • FIG. 8 is a schematic cross-sectional view of an indoor unit of an air conditioner to which the heat exchanger according to the present embodiment is applied.
  • FIG. 9 is a schematic vertical cross-sectional view for explaining the condensed water adhering to the heat exchanger.
  • FIG. 10 is a schematic cross-sectional view for explaining the condensed water adhering to the heat exchanger. The configuration of the heat exchanger according to the present embodiment will be described with reference to FIGS.
  • the heat exchanger 1 includes a heat transfer tube 2 that is a plurality of flat tubes that are arranged to extend in the vertical direction and are arranged in parallel in the horizontal direction, and a plate.
  • a fin 3 which is a corrugated fin formed of a member and disposed between the heat transfer tubes 2, and an inlet side header 4a and an outlet side header 4b which are disposed so as to extend horizontally and are connected to both ends of the heat transfer tube 2.
  • the heat transfer tube 2 is formed with one or a plurality of flow paths 5 through which a refrigerant flows.
  • a plurality of flow paths 5 are arranged in parallel.
  • the heat transfer tube 2 is a flat tube whose cross-sectional shape is not circular but rectangular.
  • the fin 3 is configured as a corrugated fin in which the flat surface portions 3a and the curved surface portions 3b are alternately arranged by bending the plate-like member, and the plurality of flat surface portions 3a are arranged substantially in parallel at predetermined intervals. is doing.
  • the refrigerant flows from the refrigerant inlet / outlet 6 into the inlet header 4a.
  • the refrigerant flowing into the inlet header 4a flows into the outlet header 4b through the flow path 5 inside the pipe.
  • the refrigerant that has flowed into the outlet header 4b flows out of the refrigerant inlet / outlet 6 of the outlet header 4b.
  • coolant is not limited to this, A reverse direction may be sufficient.
  • the heat transfer tube 2 and the fin 3 are brazed between the side surface portion 2 a of the outer wall of the heat transfer tube 2 and the curved surface portion 3 b of the fin 3. Air passes through the space between the adjacent flat portions 3 a in the fin 3. With such a configuration, in the heat exchanger 1, the refrigerant flowing through the flow path 5 inside the heat transfer tube 2 and the air passing between the fins 3 exchange heat.
  • the heat exchanger 1 (see FIG. 1) according to the present embodiment includes at least one linear rib 15 (hereinafter referred to as “vertical upward”) projecting vertically on the flat portion 3 a of the fin 3.
  • Rib 15 is formed so as to straddle the center line of the space between the heat transfer tubes 2 arranged in parallel, that is, the center line of the flat portion 3 a of the fin 3.
  • the rib 15 includes a rib central portion 15b disposed at a position overlapping the center line of the flat surface portion 3a, and a linear portion 15a at least at a part connected to the rib central portion 15b.
  • the straight portion 15a of the rib 15 is formed to be inclined from the leeward direction indicated by the arrow in FIG. 5 toward the side surface portion 2a.
  • a louver 16 may be formed on the flat surface portion 3 a of the fin 3.
  • the linear rib 15 is a straight portion 15a, and the planar shape may be a U-shaped rib (also referred to as a U-shaped rib).
  • the central portion (rib central portion 15 b) connecting the linear portions 15 a at both ends is located on the windward side from the linear portion 15 a.
  • the straight portion 15a is formed by being inclined by an angle ⁇ from the leeward direction toward the side surface portion 2a (see FIG. 3). From a different point of view, the straight portion 15 a is inclined by an angle ⁇ with respect to the center line of the flat portion 3 a of the fin 3.
  • the angle ⁇ which is the inclination angle of the straight portion 15a with respect to the leeward direction or the center line of the plane portion 3a, may be, for example, 10 ° to 80 °.
  • the lower limit of the angle ⁇ may be 20 ° or 30 °.
  • the upper limit of the angle ⁇ may be 70 ° or 60 °.
  • the cross-sectional shape of the rib 15 may be triangular. Moreover, as shown in FIG. 7, the cross-sectional shape of the rib 15 may be semicircular. In addition, the cross-sectional shape of the rib 15 is not limited to the shape shown in FIGS. 6 and 7, and any shape that can form a convex portion protruding from the surface of the flat portion 3 a can be employed.
  • FIG. 8 shows a case where the heat exchanger 1 of the present embodiment is applied to an indoor unit 7 of a separate type air conditioner used in a general household.
  • the indoor unit 7 includes a casing 8 that forms an outer shell, a heat exchanger 1 disposed inside the casing 8, and a cross flow fan 12.
  • the casing 8 is provided with an inlet 9 and an outlet 10.
  • two suction ports 9 are formed, but the number of the suction ports 9 may be three or more.
  • An air passage 11 is formed from the inlet 9 to the outlet 10.
  • the air taken in from the suction port 9 is heat-exchanged by the heat exchanger 1.
  • the heat-exchanged air is discharged into the room from the air outlet 10.
  • the heat exchanger 1 is used as an evaporator during heat exchange of air, moisture of air passing between the fins 3 adheres to the surface of the heat transfer tube 2 and the surface of the fin 3 as dew. There are things to do. Therefore, the indoor unit 7 includes a drain pan 13 for receiving dew condensation water generated in the heat exchanger 1.
  • the heat exchanger 1 may be arranged to be inclined from the vertical direction toward the cross flow fan 12 so as to surround the upper part of the cross flow fan 12.
  • the heat exchanger 1 is installed in a state where the inlet header 4a is disposed on the lower side and the outlet header 4b is disposed on the upper side.
  • the arrangement of the inlet header 4a and the outlet header 4b may be reversed.
  • the heat exchanger 1 is inclined and arranged toward the crossflow fan 12
  • the condensed water generated in the heat exchanger 1 has a force acting in the leeward direction given from the air passing through the heat exchanger 1, and The force given by gravity acts. Therefore, it is conceivable that the dew condensation water drops on the cross flow fan located on the leeward side of the heat exchanger 1 and is discharged into the room from the air outlet 10.
  • the condensed water adhering to the fin 3 can be classified into three types depending on the adhering location. That is, the dew condensation water is the dew condensation water 14a that contacts the side surface 2a of the heat transfer tube 2, the dew condensation water 14b that contacts the curved surface portion 3b of the fin 3, the side surface 2a of the heat transfer tube 2, and the curved surface portion 3b of the fin 3. And dew condensation water 14c that is in contact with only the flat surface portion 3a of the fin 3 can be classified.
  • a configuration is considered in which the heat exchanger 1 is disposed to be inclined from the vertical direction toward the cross flow fan 12 so as to surround the upper part of the cross flow fan 12.
  • a force Fa given from the air passing through the heat exchanger 1 and a force Fg given by a gravitational force in the direction along the plane portion 3a act in the leeward direction on the dew condensation water.
  • the surface tension F1 between the condensed water and the flat portion 3a of the fin acts in the windward direction.
  • the surface tension F2 between the dew condensation water 14a and the side surface part 2a acts on the dew condensation water 14a in contact with the side surface part 2a in the windward direction.
  • the surface tension F3 between the condensed water 14b and the curved surface portion 3b of the fin acts on the condensed water 14b in contact with the curved surface portion 3b of the fin in the windward direction.
  • the total force acting in the leeward direction is f1
  • the total force acting in the leeward direction is f2.
  • the condensed water 14c when f1> f2c, the condensed water 14c flows down in the leeward direction. And the dew condensation water 14c collides with the linear rib 15 which protruded perpendicularly upwards shown in FIG. 4 and FIG. The dew condensation water 14c that has collided with the linear rib 15 flows along the linear portion 15a of the rib 15 along the extending direction of the linear portion 15a. For this reason, the said dew condensation water 14c contacts with the side part 2a of the heat exchanger tube 2, or the curved surface part 3b of the fin 3, and becomes dew condensation water 14a or dew condensation water 14b.
  • f1> f2a in the condensed water 14a that is, when the condensed water 14a flows down in the leeward direction
  • the condensed water 14a flows down in the leeward direction through the side surface portion 2a of the heat transfer tube 2.
  • f1> f2b in the condensed water 14b that is, when the condensed water 14b flows down in the leeward direction
  • the condensed water 14b flows down in the leeward direction along the curved surface portion 3b of the fin 3.
  • the front portion 2b (hereinafter also referred to as a tube front portion) of the outer wall surface of the heat transfer tube 2 shown in FIG. Available. For this reason, the dew condensation water 14 a flows down to the lower part of the heat exchanger 1 through the front part 2 b (drainage channel) of the heat transfer tube 2. Moreover, also when the dew condensation water 14b flows down in the leeward direction along the curved surface part 3b of the fin 3, it similarly passes along the front part 2b (drainage channel) of the heat exchanger tube 2 adjacent to the curved surface part 3b. Condensed water 14b flows downward.
  • the heat exchanger 1 includes at least one heat transfer tube 2 and fins 3.
  • the heat transfer tube 2 is provided so as to extend along one direction as shown in FIGS. 1 and 2. One direction is, for example, the direction of gravity.
  • the heat transfer tube 2 includes a flow path 5 through which a refrigerant flows.
  • the fin 3 is connected to at least one heat transfer tube 2.
  • the fin 3 includes a first end (a portion joined to the heat transfer tube 2 in the curved surface portion 3b of the fin 3 in contact with the condensed water 14a in FIG. 9), a flat portion 3a, and a second end (in FIG. 9).
  • the first end is connected to the heat transfer tube 2.
  • the flat surface portion 3a is continuous with the first end portion.
  • the second end portion (curved surface portion 3b) is located on the opposite side to the first end portion when viewed from the plane portion 3a.
  • the flat portion 3a has at least one linear rib 15 protruding from the flat portion 3a.
  • At least one rib 15 includes a rib center portion 15b located at the center between the first end portion and the second end portion (curved surface portion 3b).
  • the at least one rib 15 is connected to the rib central portion 15b and is formed so as to approach either the first end portion or the second end portion (curved surface portion 3b) toward the downstream side in the air flow direction.
  • Part (the part from the rib center part 15b to the end part of the rib 15).
  • the said part contains the linear part 15a.
  • the part formed so that either one of the said 1st end part and a 2nd end part may be made into the shape which does not include the linear part 15a shown in FIG. 5 in the planar shape.
  • the planar shape of the entire part may be curved. More specifically, the planar shape of the entire portion may be a curved shape that is convex toward the leeward side, or may be a curved shape that is convex toward the leeward side.
  • the shape may be an arbitrary combination of convex curves and straight lines. That is, if the said part is extended so that it may approach either one of a 1st end part and a 2nd end as it goes to the leeward side from the rib center part 15b, arbitrary plane shapes can be employ
  • a virtual straight line 15c from the rib central portion 15b toward the end of the rib 15 is inclined from the leeward direction to the heat transfer tube 2 side.
  • the rib 15 is formed so that the virtual straight line 15c approaches either the first end or the second end as it goes downstream in the air flow direction.
  • a part of the at least one rib 15 (rib central portion 15b) is located at the center of the plane portion 3a in the direction intersecting with the air flow direction.
  • At least one rib 15 includes a straight portion 15a.
  • the straight portion 15a is inclined by an angle ⁇ with respect to the flow direction so as to approach either one of the first end portion and the second end portion (curved surface portion 3b) as it goes downstream in the air flow direction. Yes.
  • the at least one heat transfer tube 2 includes a first heat transfer tube (heat transfer tube 2 located on the right side in FIG. 4) and a second heat transfer tube (heat transfer tube 2 located on the left side in FIG. 4).
  • the first heat transfer tube and the second heat transfer tube are arranged so as to sandwich the fin 3 therebetween.
  • the first heat transfer tube and the second heat transfer tube are arranged to extend in parallel to each other.
  • the first end of the fin 3 is connected to the first heat transfer tube.
  • the outer peripheral surface of the second end portion (curved surface portion 3b) of the fin 3 is connected to the second heat transfer tube.
  • the condensed water 14c adhering to the flat portion 3a of the fin 3 flows down to the leeward side, the condensed water 14c collides with the rib 15 and the flow direction thereof is changed, and the side surface portion of the heat transfer tube 2 is changed. It flows to the 2a side or the curved surface portion 3b side of the fin 3.
  • the dew condensation water 14c comes into contact with the side surface part 2a of the heat transfer tube 2 or the curved surface part 3b of the fin 3, and becomes the dew condensation water 14a or the dew condensation water 14b shown in FIG.
  • the ratio of the dew condensation water 14a and 14b remaining in the heat exchanger 1 can be increased, the possibility that the dew condensation water is scattered on the downstream side of the heat exchanger 1 can be reduced.
  • FIG. 11 is a schematic cross-sectional view of an essential part showing a first modification of the heat exchanger shown in FIGS. 1 to 10, and FIG. 12 is an enlarged schematic view of a rib of the heat exchanger shown in FIG.
  • the heat exchanger shown in FIGS. 11 and 12 basically has the same configuration as the heat exchanger shown in FIGS. 1 to 10, except that the planar shape of the rib 15 is the same as that shown in FIGS. It is different from the exchanger.
  • the linear rib 15 is a rib 15 having a V-shaped planar shape having a straight portion 15 a at least partially.
  • the straight portion 15a included in the V-shaped rib 15 is formed so as to be inclined by an angle ⁇ from the leeward direction toward the side surface portion 2a of the heat transfer tube 2. Even with the heat exchanger having such a configuration, the same effects as those of the heat exchanger shown in FIGS. 1 to 10 can be obtained.
  • FIG. 13 is a schematic cross-sectional view of an essential part showing a second modification of the heat exchanger shown in FIGS. 1 to 10, and FIG. 14 is an enlarged schematic view of a rib of the heat exchanger shown in FIG.
  • the heat exchanger shown in FIG. 13 and FIG. 14 basically has the same configuration as the heat exchanger shown in FIG. 1 to FIG. 10, but the planar shape of the rib 15 is the heat shown in FIG. 1 to FIG. It is different from the exchanger.
  • the linear rib 15 is a rib 15 having a linear planar shape.
  • the linear rib 15 is formed so as to be inclined by an angle ⁇ from the leeward direction toward the side surface portion 2 a of the heat transfer tube 2.
  • the plurality of linear ribs 15 are formed so that the inclination directions with respect to the center line of the flat surface portion 3a are different from each other. As shown in FIG. 13, the ribs 15 are formed so that the inclination directions with respect to the center line of the plane portion 3 a are alternately reversed with respect to the plurality of linear ribs 15 formed from the windward side toward the leeward side. May be. Even with the heat exchanger having such a configuration, the same effects as those of the heat exchanger shown in FIGS. 1 to 10 can be obtained.
  • FIG. 15 is a schematic perspective view of a main part of the heat exchanger 1 according to the present embodiment.
  • the heat exchanger shown in FIG. 15 basically has the same configuration as the heat exchanger shown in FIGS. 1 to 10, except that the leeward front portion 2b of the heat transfer tube 2 is the end of the fin 3 on the leeward side.
  • the heat exchanger shown in FIGS. 1 to 10 is different from the heat exchanger shown in FIGS. If it says from a different viewpoint, the at least 1 heat exchanger tube 2 will contain the downstream edge part (part located in the downstream of the fin 3 in the heat exchanger tube 2) located in the downstream of the fin 3 in the distribution direction of air.
  • FIG. 16 is a schematic perspective view of an essential part of the heat exchanger 1 according to the present embodiment.
  • the heat exchanger shown in FIG. 16 basically has the same configuration as the heat exchanger shown in FIG. 15, but the portion (drainage channel) located on the leeward side of the fin 3 in the side surface portion 2 a of the heat transfer tube 2. 15 is different from the heat exchanger shown in FIG. 15 in that a recess 2c is formed in a region functioning as 17).
  • the recess 2 c is formed so as to extend along the extending direction of the heat transfer tube 2.
  • the drainage channel 17 it can be used as the drainage channel 17. That is, the area of the portion that can be used as the drainage channel 17 is wider than that of the heat exchanger shown in FIG. 15 by forming the recess 2c. Therefore, even when the amount of dew condensation water 14a to 14c generated in the heat exchanger 1 is larger than when the heat exchanger shown in FIG.
  • the heat transfer tube 2 and the curved surface portion 3b of the fin 3 are transmitted.
  • the dew condensation water that has flowed into the drainage channel 17 can flow down to the lower part of the heat exchanger 1. For this reason, the amount of condensed water scattered on the leeward side of the heat exchanger 1 can be reduced.
  • FIG. 17 is a schematic perspective view of a main part of the heat exchanger 1 according to the present embodiment.
  • the heat exchanger shown in FIG. 17 basically has the same configuration as that of the heat exchanger shown in FIG. 16, but the portion (drainage channel) located on the leeward side of the fin 3 in the side surface portion 2 a of the heat transfer tube 2.
  • 16 is different from the heat exchanger shown in FIG. 16 in that a convex portion 2d is further formed on the downstream side of the concave portion 2c.
  • the convex portion 2 d is formed so as to extend along the extending direction of the heat transfer tube 2.
  • the front portion 2 b can be used as the drainage channel 17. That is, the area of the portion that can be used as the drainage channel 17 is further increased by forming the convex portion 2d as compared with the heat exchanger shown in FIG. Therefore, even when the amount of condensed water 14a to 14c generated in the heat exchanger 1 is larger than when the heat exchanger shown in FIG.
  • the heat transfer pipe 2 and the curved surface portion 3b of the fin 3 are transmitted.
  • the dew condensation water that has flowed into the drainage channel 17 can flow down to the lower part of the heat exchanger 1. For this reason, the amount of condensed water scattered on the leeward side of the heat exchanger 1 can be reduced.
  • FIG. 18 is a schematic perspective view of a main part of the heat exchanger 1 according to the present embodiment.
  • the heat exchanger shown in FIG. 18 basically has the same configuration as the heat exchanger shown in FIG. 15, but the portion (drainage channel) located on the leeward side of the fin 3 in the side surface portion 2 a of the heat transfer tube 2. 15 is different from the heat exchanger shown in FIG. 15 in that the water absorbing member 18 is disposed in the area functioning as The water absorbing member 18 is fixed to the side surface portion 2 a of the heat transfer tube 2.
  • the water absorbing member 18 is formed so as to extend along the extending direction of the heat transfer tube 2.
  • any material can be used as the material of the water absorbing member 18 as long as it is a material having water absorption.
  • a sponge-like resin or a porous material can be used.
  • the water absorption member 18 is arrange
  • channel may be formed in the said side part 2a and the water absorption member 18 may be arrange
  • the height at which the water absorbing member 18 protrudes into the air flow passage can be reduced, an increase in air flow resistance due to the water absorbing member 18 can be suppressed.
  • the present invention is effectively used for a parallel flow heat exchanger and an air conditioner equipped with the parallel flow heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

Provided is a heat exchanger, which prevents condensation on the surface of a fin from being dispersed downwind. This heat exchanger comprises at least one heat exchanger tube (2) and a fin (3). The heat exchanger tube (2) includes flow paths (5) therein through which a refrigerant is circulated. The fin (3) is connected to the heat exchanger tube (2). The fin (3) includes a first end, a flat portion (3a), and a second end (3b). The flat portion (3a) has at least one linear rib (15) protruding from the flat portion (3a). The rib (15) includes a rib central portion (15b) and a part that has a straight portion (15a). The rib central portion (15b) is located at the center between the first end and the second end. The aforementioned part is continuous with the rib central portion (15b), and is formed so as to approach the first end or the second end towards the downstream side in the air circulation direction.

Description

熱交換器Heat exchanger
 この発明は、コルゲートフィンを有する熱交換器に関する。 This invention relates to a heat exchanger having corrugated fins.
 従来、コルゲートフィン(以下、フィンとも呼ぶ)を有する熱交換器が知られている。たとえば、図1に示すように、従来の熱交換器の一例としては、扁平管内を流れる冷媒と扁平管外部の空気とが熱交換するパラレルフロー熱交換器が良く知られている。図1に示した熱交換器では、鉛直方向に向けられた複数の扁平管が、水平方向に並列に配置されている。扁平管の上下方向の両端にはヘッダが設けられる。複数の扁平管の間にはコルゲートフィンが設けられる。 Conventionally, heat exchangers having corrugated fins (hereinafter also referred to as fins) are known. For example, as shown in FIG. 1, as an example of a conventional heat exchanger, a parallel flow heat exchanger in which heat is exchanged between a refrigerant flowing in a flat tube and air outside the flat tube is well known. In the heat exchanger shown in FIG. 1, a plurality of flat tubes oriented in the vertical direction are arranged in parallel in the horizontal direction. Headers are provided at both ends of the flat tube in the vertical direction. Corrugated fins are provided between the plurality of flat tubes.
 ここで、従来、空気調和機に組み込まれる熱交換器、特にセパレート型空気調和機の室内機に組込まれる熱交換器は、当該室内機の内部においてクロスフローファンを囲むように配置される(例えば特許文献1:特開2011-47600号公報参照)。上述したパラレルフロー熱交換器を用いた上記室内機に組込む場合も、当該熱交換器はクロスフローファンを囲むように配置される。 Here, conventionally, a heat exchanger incorporated in an air conditioner, in particular, a heat exchanger incorporated in an indoor unit of a separate type air conditioner is disposed so as to surround the cross flow fan inside the indoor unit (for example, Patent Document 1: Japanese Patent Application Laid-Open No. 2011-47600). Also when incorporating in the indoor unit using the parallel flow heat exchanger described above, the heat exchanger is disposed so as to surround the cross flow fan.
 上述した熱交換器を蒸発器として使用した場合、扁平管およびフィンの表面の温度は空気の温度に比べて低くなる。このため、熱交換器を空気が通過する際に、空気中の水分が扁平管およびフィンの表面で凝縮し結露水が発生する。 When the heat exchanger described above is used as an evaporator, the temperature of the flat tube and the surface of the fin is lower than the temperature of air. For this reason, when air passes through the heat exchanger, moisture in the air is condensed on the surfaces of the flat tubes and the fins, and condensed water is generated.
 熱交換器のフィン表面に発生した結露水には、重力と、熱交換器を通過する空気により与えられる力と、扁平管と結露水間の表面張力と、フィンと結露水間の表面張力と、が作用する。上記の力の関係により、結露水は、扁平管を伝って熱交換器下部に流下する、または熱交換器から風下側に滴下する、またはフィン間で保持され滞留する、といったいずれかの態様をとる。 Condensed water generated on the fin surface of the heat exchanger includes gravity, the force given by the air passing through the heat exchanger, the surface tension between the flat tube and the condensed water, and the surface tension between the fin and the condensed water. , Act. Due to the above-described force relationship, the dew condensation water flows down the flat tube to the lower part of the heat exchanger, drops from the heat exchanger to the leeward side, or is held and retained between the fins. Take.
 上述した室内機などでは、熱交換器の下方にはドレンパンが配置されるのが一般的である。熱交換器の下部から流下した結露水は、ドレンパンに受け止められ室外へ放出される。しかし、熱交換器から風下側へ滴下する結露水は、ドレンパンで受け止められず、室内機の内部から室内機の外部(たとえば室内)に放出されることがある。 In the indoor unit described above, a drain pan is generally disposed below the heat exchanger. Condensed water flowing down from the lower part of the heat exchanger is received by the drain pan and discharged outside the room. However, the condensed water dripping from the heat exchanger to the leeward side is not received by the drain pan and may be discharged from the inside of the indoor unit to the outside of the indoor unit (for example, indoors).
 このような室内への結露水の放出を防止するため、従来、扁平管の前後一方の端面をコルゲートフィン端部より突出させ、当該突出した部分を排水路とする構成が提案されている(たとえば特許文献2:特開2004-177082号公報参照)。また、扁平管に排水溝を設ける構成も提案されている(たとえば特許文献3:特開平7-190661号公報参照)。このような構成により、熱交換器における結露水の排水を促進することができるとされている。 In order to prevent the release of condensed water into the room, a configuration has been proposed in which one end surface of the flat tube is protruded from the end portion of the corrugated fin and the protruding portion is a drainage channel (for example, Patent Document 2: Japanese Patent Application Laid-Open No. 2004-177082). A configuration in which a drainage groove is provided in a flat tube has also been proposed (see, for example, Patent Document 3: Japanese Patent Laid-Open No. 7-190661). With such a configuration, it is supposed that drainage of condensed water in the heat exchanger can be promoted.
特開2011-47600号公報JP2011-47600A 特開2004-177082号公報JP 2004-177082 A 特開平7-190661号公報Japanese Patent Laid-Open No. 7-190661
 ここで、熱交換器のフィン表面に発生した結露水は、重力と、熱交換器を通過する空気により与えられる力とによりフィン表面を伝って風下方向に流れる可能性がある。また、扁平管の側面部またはフィン曲面部に沿わず、並列に配置された扁平管の間においてフィン表面を風下方向に結露水が流下する場合、当該結露水は、扁平管の排水路、または排水溝による効果を得ることなく風下側に飛散する。この結果、飛散した結露水が室内機の内部から外部(室内)に放出される可能性がある。 Here, the dew condensation water generated on the fin surface of the heat exchanger may flow in the leeward direction along the fin surface due to gravity and the force given by the air passing through the heat exchanger. In addition, when condensed water flows down the fin surface in the leeward direction between the flat tubes arranged in parallel, not along the side surface portion or the fin curved surface portion of the flat tube, the condensed water is drained from the flat tube, or Spatter to the leeward side without obtaining the effect of drainage. As a result, the scattered condensed water may be discharged from the inside of the indoor unit to the outside (indoor).
 本発明は上記のような課題を解決するためになされたものであり、この発明の目的は、フィン表面に発生した結露水を風下側に飛散させない熱交換器を提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat exchanger that does not scatter the condensed water generated on the fin surface to the leeward side.
 本実施形態に係る熱交換器は、少なくとも1つの伝熱管と、フィンとを備える。伝熱管は、1方向に沿って延びるように設けられており、かつ内部に冷媒が流通する。フィンは、少なくとも1つの伝熱管と接続される。フィンは、第1端部と平面部と第2端部とを含む。第1端部は伝熱管と接続される。平面部は第1端部に連なる。第2端部は、平面部に連なり、平面部から見て第1端部と反対側に位置する。平面部は、平面部から突出する線形状の少なくとも1つのリブを有する。少なくとも1つのリブは、第1端部と第2端部との間の中央に位置するリブ中央部を含む。少なくとも1つのリブは、リブ中央部と連なる部分を含む。当該部分は、空気の流通方向の下流側に向かうにつれて、第1端部および第2端部のいずれか一方に近づくように形成されている。 The heat exchanger according to this embodiment includes at least one heat transfer tube and fins. The heat transfer tube is provided so as to extend along one direction, and the refrigerant circulates therein. The fin is connected to at least one heat transfer tube. The fin includes a first end portion, a planar portion, and a second end portion. The first end is connected to the heat transfer tube. The flat surface portion is continuous with the first end portion. The second end portion is connected to the flat portion, and is located on the opposite side of the first end portion as viewed from the flat portion. The planar portion has at least one linear rib projecting from the planar portion. The at least one rib includes a rib center portion located in the center between the first end portion and the second end portion. The at least one rib includes a portion continuous with the rib central portion. The said part is formed so that it may approach either one of a 1st end part and a 2nd end part as it goes to the downstream of the distribution direction of air.
 本発明に係る熱交換器では、フィンの平面部に生じた結露水が空気の流通方向の下流側(風下側)に移動するときに、リブに接触して当該リブにガイドされフィンの第1端部または第2端部のいずれかの方向へ流れる。この結果、当該結露水は第1端部を介して伝熱管の表面に流れたり、フィンの第2端部に沿って流れたりし、最終的に伝熱管の表面やフィンの第2端部を介してドレンパンなどに回収される。したがって、当該結露水がフィンの平面部をそのまま流れて風下側に飛散する可能性を低減できる。 In the heat exchanger according to the present invention, when the dew condensation water generated on the flat portion of the fin moves to the downstream side (downward side) in the air flow direction, the fin contacts the rib and is guided by the rib. It flows in the direction of either the end or the second end. As a result, the condensed water flows to the surface of the heat transfer tube through the first end portion or flows along the second end portion of the fin, and finally the surface of the heat transfer tube and the second end portion of the fin It is collected in a drain pan. Therefore, it is possible to reduce the possibility that the condensed water flows as it is on the flat portion of the fin and is scattered on the leeward side.
実施の形態1に係る熱交換器を示す斜視模式図である。1 is a schematic perspective view showing a heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る熱交換器を示す側面模式図である。3 is a schematic side view showing the heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る熱交換器の要部斜視模式図である。FIG. 3 is a schematic perspective view of a main part of the heat exchanger according to Embodiment 1. 実施の形態1に係るU字状リブを有する熱交換器の要部縦断面模式図である。It is a principal part longitudinal cross-section schematic diagram of the heat exchanger which has a U-shaped rib which concerns on Embodiment 1. FIG. 実施の形態1に係るU字状リブの拡大模式図である。3 is an enlarged schematic diagram of a U-shaped rib according to Embodiment 1. FIG. 図5の線分VI-VIにおける断面模式図である。FIG. 6 is a schematic cross-sectional view taken along line VI-VI in FIG. 5. 実施の形態1に係るU字状リブの変形例の断面模式図である。6 is a schematic cross-sectional view of a modification of the U-shaped rib according to Embodiment 1. FIG. 実施の形態1に係るセパレート型空気調和機の室内機の横断面模式図である。It is a cross-sectional schematic diagram of the indoor unit of the separate type air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器に付着する結露水の縦断面模式図である。It is a longitudinal cross-sectional schematic diagram of the dew condensation water adhering to the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器に付着する結露水の横断面模式図である。3 is a schematic cross-sectional view of condensed water adhering to the heat exchanger according to Embodiment 1. FIG. 実施の形態1に係るV字状リブを有する熱交換器の要部縦断面模式図である。It is a principal part longitudinal cross-section schematic diagram of the heat exchanger which has a V-shaped rib which concerns on Embodiment 1. FIG. 実施の形態1に係るV字状リブの拡大模式図である。3 is an enlarged schematic diagram of a V-shaped rib according to Embodiment 1. FIG. 実施の形態1に係る直線状リブを有する熱交換器の要部縦断面模式図である。3 is a schematic vertical sectional view of a main part of a heat exchanger having linear ribs according to Embodiment 1. FIG. 実施の形態1に係る直線状リブの拡大模式図である。3 is an enlarged schematic view of a linear rib according to Embodiment 1. FIG. 実施の形態2に係る熱交換器の要約斜視模式図である。It is a summary perspective schematic diagram of the heat exchanger according to the second embodiment. 実施の形態3に係る熱交換器の要約斜視模式図である。6 is a schematic perspective schematic view of a heat exchanger according to Embodiment 3. FIG. 実施の形態4に係る熱交換器の要約斜視模式図である。FIG. 6 is a summary perspective schematic diagram of a heat exchanger according to Embodiment 4. 実施の形態5に係る熱交換器の要約斜視模式図である。FIG. 9 is a summary perspective schematic view of a heat exchanger according to Embodiment 5.
 以下、図面を参照しながら本発明の実施の形態について説明する。以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated. Moreover, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
 実施の形態1.
 <熱交換器の構成>
 図1は、本実施形態に係る熱交換器を示す斜視模式図である。図2は、本実施形態に係る熱交換器を示す側面模式図である。図3は、図1および図2に示した熱交換器の要部斜視模式図である。図4は、図および図2に示した熱交換器の要部縦断面模式図である。図5、は図4に示したリブの拡大模式図である。図6は図5の線分VI-VIにおける断面模式図である。図7は図6に示したリブの変形例の断面模式図である。図8は、本実施形態に係る熱交換器を適用した空気調和機の室内機の断面模式図である。図9は熱交換器に付着する結露水を説明するための縦断面模式図である。図10は熱交換器に付着する結露水を説明するための横断面模式図である。図1~図10を参照しながら、本実施形態に係る熱交換器の構成を説明する。
Embodiment 1 FIG.
<Configuration of heat exchanger>
FIG. 1 is a schematic perspective view showing a heat exchanger according to the present embodiment. FIG. 2 is a schematic side view showing the heat exchanger according to the present embodiment. FIG. 3 is a schematic perspective view of an essential part of the heat exchanger shown in FIGS. 1 and 2. 4 is a schematic vertical sectional view of an essential part of the heat exchanger shown in FIG. 2 and FIG. FIG. 5 is an enlarged schematic view of the rib shown in FIG. 6 is a schematic sectional view taken along line VI-VI in FIG. FIG. 7 is a schematic sectional view of a modification of the rib shown in FIG. FIG. 8 is a schematic cross-sectional view of an indoor unit of an air conditioner to which the heat exchanger according to the present embodiment is applied. FIG. 9 is a schematic vertical cross-sectional view for explaining the condensed water adhering to the heat exchanger. FIG. 10 is a schematic cross-sectional view for explaining the condensed water adhering to the heat exchanger. The configuration of the heat exchanger according to the present embodiment will be described with reference to FIGS.
 図1~図3に示すように、本実施形態に係る熱交換器1は、鉛直方向に延びるように配置され、水平方向に並列に配置された複数の扁平管である伝熱管2と、板状部材で形成され伝熱管2の間に配置されたコルゲートフィンであるフィン3と、水平に伸びるように配置され伝熱管2の両端に接続された入口側ヘッダ4aおよび出口側ヘッダ4bと、を備える。 As shown in FIGS. 1 to 3, the heat exchanger 1 according to the present embodiment includes a heat transfer tube 2 that is a plurality of flat tubes that are arranged to extend in the vertical direction and are arranged in parallel in the horizontal direction, and a plate. A fin 3 which is a corrugated fin formed of a member and disposed between the heat transfer tubes 2, and an inlet side header 4a and an outlet side header 4b which are disposed so as to extend horizontally and are connected to both ends of the heat transfer tube 2. Prepare.
 伝熱管2には、内部に冷媒が流れる1つまたは複数の流路5が形成されている。伝熱管2では、複数の流路5が平行に並ぶように配置されている。このため、伝熱管2は断面形状が円形状ではなく長方形状となっている扁平管である。また、フィン3は、板状部材を折り曲げることにより、平面部3aと曲面部3bとが交互に配置され、複数の平面部3aが所定の間隔を隔ててほぼ平行に配置されたコルゲートフィンを構成している。 The heat transfer tube 2 is formed with one or a plurality of flow paths 5 through which a refrigerant flows. In the heat transfer tube 2, a plurality of flow paths 5 are arranged in parallel. For this reason, the heat transfer tube 2 is a flat tube whose cross-sectional shape is not circular but rectangular. Further, the fin 3 is configured as a corrugated fin in which the flat surface portions 3a and the curved surface portions 3b are alternately arranged by bending the plate-like member, and the plurality of flat surface portions 3a are arranged substantially in parallel at predetermined intervals. is doing.
 例えば、入口側ヘッダ4aには冷媒出入口6から冷媒が流入する。入口側ヘッダ4aに流入した冷媒は、管内部の流路5を通って,出口側ヘッダ4bに流入する。出口側ヘッダ4bに流入した冷媒は、出口側ヘッダ4bの冷媒出入口6から流出する。なお、冷媒の流通方向はこれに限定されず逆向きでも良い。 For example, the refrigerant flows from the refrigerant inlet / outlet 6 into the inlet header 4a. The refrigerant flowing into the inlet header 4a flows into the outlet header 4b through the flow path 5 inside the pipe. The refrigerant that has flowed into the outlet header 4b flows out of the refrigerant inlet / outlet 6 of the outlet header 4b. In addition, the distribution direction of a refrigerant | coolant is not limited to this, A reverse direction may be sufficient.
 伝熱管2とフィン3は、伝熱管2の外壁の側面部2aとフィン3の曲面部3bとの間でロウ付けされている。フィン3において隣接する平面部3aの間の空間を空気が通過する。このような構成により、熱交換器1では、伝熱管2の内部の流路5を流れる冷媒と、フィン3の間を通過する空気が熱交換する。 The heat transfer tube 2 and the fin 3 are brazed between the side surface portion 2 a of the outer wall of the heat transfer tube 2 and the curved surface portion 3 b of the fin 3. Air passes through the space between the adjacent flat portions 3 a in the fin 3. With such a configuration, in the heat exchanger 1, the refrigerant flowing through the flow path 5 inside the heat transfer tube 2 and the air passing between the fins 3 exchange heat.
 図4および図5に示すように、本実施形態に係る熱交換器1(図1参照)は、フィン3の平面部3aに少なくとも1つ、たとえば鉛直上向きに突出した線形状リブ15(以下、リブ15とも呼ぶ)が、並列に配置された伝熱管2の間の空間の中心線、すなわちフィン3の平面部3aの中心線を跨ぐように形成されている。リブ15は、平面部3aの中心線と重なる位置に配置されたリブ中央部15bと、当該リブ中央部15bと連なる部分の少なくとも一部に直線部15aを有する。リブ15の直線部15aは、図5の矢印で示される風下方向から側面部2a方向に向けて傾いて形成されている。また、フィン3の平面部3aには、ルーバ16が形成されていても良い。 As shown in FIGS. 4 and 5, the heat exchanger 1 (see FIG. 1) according to the present embodiment includes at least one linear rib 15 (hereinafter referred to as “vertical upward”) projecting vertically on the flat portion 3 a of the fin 3. Rib 15) is formed so as to straddle the center line of the space between the heat transfer tubes 2 arranged in parallel, that is, the center line of the flat portion 3 a of the fin 3. The rib 15 includes a rib central portion 15b disposed at a position overlapping the center line of the flat surface portion 3a, and a linear portion 15a at least at a part connected to the rib central portion 15b. The straight portion 15a of the rib 15 is formed to be inclined from the leeward direction indicated by the arrow in FIG. 5 toward the side surface portion 2a. A louver 16 may be formed on the flat surface portion 3 a of the fin 3.
 図4および図5に示すように、線形状のリブ15は、少なくとも一部が直線部15aとなっており、平面形状がU字状のリブ(U字状リブとも呼ぶ)であっても良い。U字状のリブ15では、図4および図5に示すように両端の直線部15aを繋ぐ中央部(リブ中央部15b)が当該直線部15aより風上側に位置している。直線部15aは風下方向から側面部2a(図3参照)に向かって角度θだけ傾けて成形されている。また、異なる観点から言えば、直線部15aはフィン3の平面部3aの中心線に対して角度θだけ傾いている。 As shown in FIGS. 4 and 5, at least a part of the linear rib 15 is a straight portion 15a, and the planar shape may be a U-shaped rib (also referred to as a U-shaped rib). . In the U-shaped rib 15, as shown in FIGS. 4 and 5, the central portion (rib central portion 15 b) connecting the linear portions 15 a at both ends is located on the windward side from the linear portion 15 a. The straight portion 15a is formed by being inclined by an angle θ from the leeward direction toward the side surface portion 2a (see FIG. 3). From a different point of view, the straight portion 15 a is inclined by an angle θ with respect to the center line of the flat portion 3 a of the fin 3.
 風下方向または平面部3aの中心線に対する直線部15aの傾き角である角度θは、たとえば10°以上80°以下としてもよい。角度θの下限は20°でもよく、30°でもよい。また、角度θの上限は、70°でもよく60°でもよい。 The angle θ, which is the inclination angle of the straight portion 15a with respect to the leeward direction or the center line of the plane portion 3a, may be, for example, 10 ° to 80 °. The lower limit of the angle θ may be 20 ° or 30 °. Further, the upper limit of the angle θ may be 70 ° or 60 °.
 図6に示すように、リブ15の断面形状は三角形状であってもよい。また、図7に示すように、リブ15の断面形状は半円状であってもよい。なお、リブ15の断面形状は、図6や図7に示した形状に限らず、平面部3aの表面から突出するような凸部を形成できる任意の形状を採用できる。 As shown in FIG. 6, the cross-sectional shape of the rib 15 may be triangular. Moreover, as shown in FIG. 7, the cross-sectional shape of the rib 15 may be semicircular. In addition, the cross-sectional shape of the rib 15 is not limited to the shape shown in FIGS. 6 and 7, and any shape that can form a convex portion protruding from the surface of the flat portion 3 a can be employed.
 <熱交換器を適用した空気調和機の構成>
 図8は、本実施形態の熱交換器1を、一般家庭で使用されるセパレート型空気調和機の室内機7に適用した場合を示している。図8に示すように、室内機7は、外殻を形成するケーシング8と、その内部に配置された熱交換器1と、クロスフローファン12とを備える。ケーシング8には、吸込口9と吹出口10とが設けられている。図8に示した室内機7では吸込口9は2つ形成されているが、吸込口9の数は3以上であってもよい。吸込口9から吹出口10にかけて送風路11が形成されている。また、室内機7では、吸込口9から取り入れた空気を熱交換器1で熱交換する。クロスフローファン12が駆動することにより、熱交換された空気が吹出口10から室内に放出される。例えば、空気の熱交換の際に熱交換器1が蒸発器として使用された場合、フィン3の間を通過する空気の水分が、伝熱管2の表面とフィン3の表面に露となって付着することがある。そのため、室内機7は、熱交換器1で発生した結露水を受け止めるためのドレンパン13を備える。
<Configuration of air conditioner to which heat exchanger is applied>
FIG. 8 shows a case where the heat exchanger 1 of the present embodiment is applied to an indoor unit 7 of a separate type air conditioner used in a general household. As shown in FIG. 8, the indoor unit 7 includes a casing 8 that forms an outer shell, a heat exchanger 1 disposed inside the casing 8, and a cross flow fan 12. The casing 8 is provided with an inlet 9 and an outlet 10. In the indoor unit 7 shown in FIG. 8, two suction ports 9 are formed, but the number of the suction ports 9 may be three or more. An air passage 11 is formed from the inlet 9 to the outlet 10. In the indoor unit 7, the air taken in from the suction port 9 is heat-exchanged by the heat exchanger 1. When the cross flow fan 12 is driven, the heat-exchanged air is discharged into the room from the air outlet 10. For example, when the heat exchanger 1 is used as an evaporator during heat exchange of air, moisture of air passing between the fins 3 adheres to the surface of the heat transfer tube 2 and the surface of the fin 3 as dew. There are things to do. Therefore, the indoor unit 7 includes a drain pan 13 for receiving dew condensation water generated in the heat exchanger 1.
 図8に示すように、熱交換器1は、クロスフローファン12の上部を囲むように、鉛直方向からクロスフローファン12に向かって傾けて配置される場合がある。熱交換器1は、下側に入口側ヘッダ4aが配置され、上側に出口側ヘッダ4bが配置された状態で設置されている。なお、入口側ヘッダ4aと出口側ヘッダ4bとの配置は逆であってもよい。クロスフローファン12に向かって熱交換器1が傾けて配置される場合、熱交換器1で発生する結露水には、熱交換器1を通過する空気から与えられる風下方向に作用する力と、重力により与えられる力が作用する。そのため、結露水は熱交換器1の風下側に位置するクロスフローファンに滴下し、吹出口10から室内に放出されることが考えられる。 As shown in FIG. 8, the heat exchanger 1 may be arranged to be inclined from the vertical direction toward the cross flow fan 12 so as to surround the upper part of the cross flow fan 12. The heat exchanger 1 is installed in a state where the inlet header 4a is disposed on the lower side and the outlet header 4b is disposed on the upper side. The arrangement of the inlet header 4a and the outlet header 4b may be reversed. When the heat exchanger 1 is inclined and arranged toward the crossflow fan 12, the condensed water generated in the heat exchanger 1 has a force acting in the leeward direction given from the air passing through the heat exchanger 1, and The force given by gravity acts. Therefore, it is conceivable that the dew condensation water drops on the cross flow fan located on the leeward side of the heat exchanger 1 and is discharged into the room from the air outlet 10.
 <熱交換器における結露水の挙動>
 図9および図10に示すように、フィン3(図4参照)に付着した結露水は、その付着場所により3種類に区分できる。すなわち、結露水は、伝熱管2の側面部2aと接触する結露水14aと、フィン3の曲面部3bと接触する結露水14bと、伝熱管2の側面部2aとフィン3の曲面部3bとに接触せずフィン3の平面部3aのみに接触している結露水14cとに分類できる。
<Condensation water behavior in heat exchangers>
As shown in FIGS. 9 and 10, the condensed water adhering to the fin 3 (see FIG. 4) can be classified into three types depending on the adhering location. That is, the dew condensation water is the dew condensation water 14a that contacts the side surface 2a of the heat transfer tube 2, the dew condensation water 14b that contacts the curved surface portion 3b of the fin 3, the side surface 2a of the heat transfer tube 2, and the curved surface portion 3b of the fin 3. And dew condensation water 14c that is in contact with only the flat surface portion 3a of the fin 3 can be classified.
 図8に示すように、熱交換器1が、クロスフローファン12の上部を囲むように、鉛直方向からクロスフローファン12に向かって傾けて配置される構成を考える。この場合、結露水には、熱交換器1を通過する空気から与えられる力Faと、平面部3aに沿った方向における重力の分力により与えられる力Fgとが風下方向に作用する。一方、結露水とフィンの平面部3a間の表面張力F1が風上方向に作用する。また、側面部2aと接触する結露水14aには、結露水14aと側面部2aとの間の表面張力F2が風上方向に作用する。また、フィンの曲面部3bと接触する結露水14bには、結露水14bとフィンの曲面部3bとの間の表面張力F3が風上方向に作用する。 As shown in FIG. 8, a configuration is considered in which the heat exchanger 1 is disposed to be inclined from the vertical direction toward the cross flow fan 12 so as to surround the upper part of the cross flow fan 12. In this case, a force Fa given from the air passing through the heat exchanger 1 and a force Fg given by a gravitational force in the direction along the plane portion 3a act in the leeward direction on the dew condensation water. On the other hand, the surface tension F1 between the condensed water and the flat portion 3a of the fin acts in the windward direction. Moreover, the surface tension F2 between the dew condensation water 14a and the side surface part 2a acts on the dew condensation water 14a in contact with the side surface part 2a in the windward direction. Further, the surface tension F3 between the condensed water 14b and the curved surface portion 3b of the fin acts on the condensed water 14b in contact with the curved surface portion 3b of the fin in the windward direction.
 結露水14a~14cにおいて、風下方向に作用する力の総和をf1、風上方向に作用する力の総和をf2とする。 In the condensed water 14a to 14c, the total force acting in the leeward direction is f1, and the total force acting in the leeward direction is f2.
 f1>f2の場合(風上方向に作用する力よりも風下方向に作用する力が大きい場合)、結露水14a~14cはフィン3の表面などを伝って風下方向に流下し、熱交換器1の風下側に飛散することがある。 When f1> f2 (when the force acting in the leeward direction is larger than the force acting in the leeward direction), the dew condensation waters 14a to 14c flow down the leeward direction along the surfaces of the fins 3 and the like, and the heat exchanger 1 May scatter to the leeward side.
 f1≦f2の場合(風下方向に作用する力よりも風上方向に作用する力が大きい場合)、結露水14a~14cはフィン3の表面に滞留し、熱交換器1の風下側には飛散しない。 When f1 ≦ f2 (when the force acting in the windward direction is larger than the force acting in the leeward direction), the dew condensation water 14a to 14c stays on the surface of the fin 3 and is scattered on the leeward side of the heat exchanger 1. do not do.
 以下、結露水14a~14cについて、上記力の総和f1、f2は以下のような式により表される。 Hereinafter, for the condensed water 14a to 14c, the total sums f1 and f2 of the forces are expressed by the following equations.
 結露水14a~14cについて風下方向に作用する力の総和f1=Fa+Fg
 結露水14aについての風上方向に作用する力の総和f2a=F1+F2
 結露水14bについての風上方向に作用する力の総和f2b=F1+F3
 結露水14cについての風上方向に作用する力の総和f2c=F1
 上記の式から明らかなように、f2a>f2c、f2b>f2cの関係が成り立つ。そのため、結露水14cは、結露水14a、14bよりも風下方向に流下しやすく、風下側に飛散しやすい。
Sum of forces acting in the leeward direction on the condensed water 14a to 14c f1 = Fa + Fg
Total force f2a = F1 + F2 acting in the windward direction on the condensed water 14a
Total force f2b = F1 + F3 acting in the windward direction on the condensed water 14b
Total force f2c = F1 acting in the windward direction on the condensed water 14c
As is clear from the above formula, the relations f2a> f2c and f2b> f2c are established. Therefore, the dew condensation water 14c is more likely to flow down in the leeward direction than the dew condensation waters 14a and 14b, and is likely to be scattered on the leeward side.
 結露水14cにおいて、f1>f2cの場合、結露水14cは風下方向に流下する。そして、図4および図5に示す、鉛直上向きに突出した線形状のリブ15に結露水14cは衝突する。線形状のリブ15に衝突した結露水14cは、リブ15の直線部15aを伝い直線部15aの延在方向に沿って流れる。このため、当該結露水14cは伝熱管2の側面部2aまたはフィン3の曲面部3bと接触し、結露水14aまたは結露水14bになる。すなわち、結露水14cが、線形状のリブ15に導水された後、結露水14aまたは結露水14bになることにより、結露水において風上方向に作用する力の総和f2は、f2c(=F1)からf2a(=F1+F2)またはf2b(=F1+F3)と増大する。このように、結露水に対して風上方向に作用する力の総和が相対的に大きな結露水14a、14bの割合が増加するので、フィン3間に滞留する結露水の割合が増加し、熱交換器1の風下側に結露水が飛散し難くなる。 In the condensed water 14c, when f1> f2c, the condensed water 14c flows down in the leeward direction. And the dew condensation water 14c collides with the linear rib 15 which protruded perpendicularly upwards shown in FIG. 4 and FIG. The dew condensation water 14c that has collided with the linear rib 15 flows along the linear portion 15a of the rib 15 along the extending direction of the linear portion 15a. For this reason, the said dew condensation water 14c contacts with the side part 2a of the heat exchanger tube 2, or the curved surface part 3b of the fin 3, and becomes dew condensation water 14a or dew condensation water 14b. That is, after the condensed water 14c is guided to the linear rib 15, it becomes the condensed water 14a or the condensed water 14b, so that the total force f2 acting in the windward direction on the condensed water is f2c (= F1). To f2a (= F1 + F2) or f2b (= F1 + F3). Thus, since the ratio of the condensed water 14a, 14b having a relatively large sum of the forces acting on the condensed water in the windward direction increases, the ratio of the condensed water staying between the fins 3 increases, Condensed water is less likely to scatter on the leeward side of the exchanger 1.
 なお、結露水14aにおいて、f1>f2aの場合、すなわち結露水14aが風下方向に流下する場合、結露水14aは伝熱管2の側面部2aを伝って風下方向に流下する。また、結露水14bにおいて、f1>f2bの場合、すなわち結露水14bが風下方向に流下する場合、結露水14bはフィン3の曲面部3bを伝って風下方向に流下する。 In the case of f1> f2a in the condensed water 14a, that is, when the condensed water 14a flows down in the leeward direction, the condensed water 14a flows down in the leeward direction through the side surface portion 2a of the heat transfer tube 2. In the case of f1> f2b in the condensed water 14b, that is, when the condensed water 14b flows down in the leeward direction, the condensed water 14b flows down in the leeward direction along the curved surface portion 3b of the fin 3.
 結露水14aが、伝熱管2の側面部2aを伝って風下方向に流下した場合、図3に示す伝熱管2の外壁面の正面部2b(以下、管正面部とも記載する)を排水路として利用できる。このため、結露水14aは伝熱管2の正面部2b(排水路)を伝って熱交換器1の下部に流下する。また、結露水14bがフィン3の曲面部3bを伝って風下方向に流下した場合も、同様に曲面部3bに隣接する伝熱管2の正面部2b(排水路)を伝って熱交換器1の下部に結露水14bは流下する。 When the dew condensation water 14a flows down in the leeward direction along the side surface portion 2a of the heat transfer tube 2, the front portion 2b (hereinafter also referred to as a tube front portion) of the outer wall surface of the heat transfer tube 2 shown in FIG. Available. For this reason, the dew condensation water 14 a flows down to the lower part of the heat exchanger 1 through the front part 2 b (drainage channel) of the heat transfer tube 2. Moreover, also when the dew condensation water 14b flows down in the leeward direction along the curved surface part 3b of the fin 3, it similarly passes along the front part 2b (drainage channel) of the heat exchanger tube 2 adjacent to the curved surface part 3b. Condensed water 14b flows downward.
 <熱交換器の作用効果>
 上述した熱交換器1の構成を異なる観点から言えば、熱交換器1は、少なくとも1つの伝熱管2と、フィン3とを備える。伝熱管2は、図1および図2に示すように1方向に沿って延びるように設けられている。一方向とは、たとえば重力方向である。伝熱管2は内部に冷媒が流通する流路5を含む。フィン3は、少なくとも1つの伝熱管2と接続される。フィン3は、第1端部(図9の結露水14aが接触しているフィン3の曲面部3bのうち伝熱管2と接合された部分)と平面部3aと第2端部(図9の結露水14bが接触しているフィン3の曲面部3b)とを含む。第1端部は伝熱管2と接続される。平面部3aは第1端部に連なる。第2端部(曲面部3b)は、平面部3aから見て第1端部と反対側に位置する。平面部3aは、平面部3aから突出する線形状の少なくとも1つのリブ15を有する。少なくとも1つのリブ15は、第1端部と第2端部(曲面部3b)との間の中央に位置するリブ中央部15bを含む。また、少なくとも1つのリブ15は、リブ中央部15bと連なり、空気の流通方向の下流側に向かうにつれて、第1端部および第2端部(曲面部3b)のいずれか一方に近づくように形成された部分(リブ中央部15bからリブ15の端部までの部分)を含む。当該部分は、直線部15aを含む。
<Effects of heat exchanger>
Speaking from a different point of view, the heat exchanger 1 includes at least one heat transfer tube 2 and fins 3. The heat transfer tube 2 is provided so as to extend along one direction as shown in FIGS. 1 and 2. One direction is, for example, the direction of gravity. The heat transfer tube 2 includes a flow path 5 through which a refrigerant flows. The fin 3 is connected to at least one heat transfer tube 2. The fin 3 includes a first end (a portion joined to the heat transfer tube 2 in the curved surface portion 3b of the fin 3 in contact with the condensed water 14a in FIG. 9), a flat portion 3a, and a second end (in FIG. 9). And the curved surface portion 3b) of the fin 3 in contact with the condensed water 14b. The first end is connected to the heat transfer tube 2. The flat surface portion 3a is continuous with the first end portion. The second end portion (curved surface portion 3b) is located on the opposite side to the first end portion when viewed from the plane portion 3a. The flat portion 3a has at least one linear rib 15 protruding from the flat portion 3a. At least one rib 15 includes a rib center portion 15b located at the center between the first end portion and the second end portion (curved surface portion 3b). The at least one rib 15 is connected to the rib central portion 15b and is formed so as to approach either the first end portion or the second end portion (curved surface portion 3b) toward the downstream side in the air flow direction. Part (the part from the rib center part 15b to the end part of the rib 15). The said part contains the linear part 15a.
 なお、リブ15において、上記第1端部および第2端部のいずれか一方に近づくように形成された部分は、その平面形状において図5に示した直線部15aを含まない形状としてもよい。たとえば、当該部分全体の平面形状が曲線状となっていてもよい。より具体的には、当該部分全体の平面形状が風下側に凸の曲線状であってもよく、風上側に凸の曲線状であってもよく、当該風下側に凸の曲線と風上側に凸の曲線と直線とを任意に組み合わせた形状であってもよい。つまり、当該部分はリブ中央部15bから風下側に向かうほど、第1端部および第2端部のいずれか一方に近づくように延びていれば任意の平面形状を採用し得る。 In addition, in the rib 15, the part formed so that either one of the said 1st end part and a 2nd end part may be made into the shape which does not include the linear part 15a shown in FIG. 5 in the planar shape. For example, the planar shape of the entire part may be curved. More specifically, the planar shape of the entire portion may be a curved shape that is convex toward the leeward side, or may be a curved shape that is convex toward the leeward side. The shape may be an arbitrary combination of convex curves and straight lines. That is, if the said part is extended so that it may approach either one of a 1st end part and a 2nd end as it goes to the leeward side from the rib center part 15b, arbitrary plane shapes can be employ | adopted.
 また、異なる観点から言えば、図5に示すようにリブ中央部15bからリブ15の端部に向かう仮想直線15cが、風下方向から伝熱管2側に傾いている。また異なる観点から言えば、当該仮想直線15cが、空気の流通方向の下流側に向かうにつれて第1端部および第2端部のいずれか一方に近づくように、リブ15は形成されている。また異なる観点から言えば、少なくとも1つのリブ15の一部分(リブ中央部15b)は、空気の流通方向と交差する方向における平面部3aの中央に位置する。少なくとも1つのリブ15は、直線部15aを含む。直線部15aは、空気の流通方向の下流側に向かうにつれて、第1端部および第2端部(曲面部3b)のいずれか一方に近づくように、流通方向に対して角度θだけ傾斜している。 Further, from a different point of view, as shown in FIG. 5, a virtual straight line 15c from the rib central portion 15b toward the end of the rib 15 is inclined from the leeward direction to the heat transfer tube 2 side. From a different point of view, the rib 15 is formed so that the virtual straight line 15c approaches either the first end or the second end as it goes downstream in the air flow direction. From another point of view, a part of the at least one rib 15 (rib central portion 15b) is located at the center of the plane portion 3a in the direction intersecting with the air flow direction. At least one rib 15 includes a straight portion 15a. The straight portion 15a is inclined by an angle θ with respect to the flow direction so as to approach either one of the first end portion and the second end portion (curved surface portion 3b) as it goes downstream in the air flow direction. Yes.
 また、少なくとも1つの伝熱管2は、第1の伝熱管(図4の右側に位置する伝熱管2)と第2の伝熱管(図4の左側に位置する伝熱管2)とを含む。第1の伝熱管と第2の伝熱管とは、フィン3を間に挟むように配置される。第1の伝熱管と第2の伝熱管とは互いに平行に延びるように配置される。フィン3の第1端部は、第1の伝熱管に接続される。フィン3の第2端部(曲面部3b)の外周表面は、第2の伝熱管に接続される。 The at least one heat transfer tube 2 includes a first heat transfer tube (heat transfer tube 2 located on the right side in FIG. 4) and a second heat transfer tube (heat transfer tube 2 located on the left side in FIG. 4). The first heat transfer tube and the second heat transfer tube are arranged so as to sandwich the fin 3 therebetween. The first heat transfer tube and the second heat transfer tube are arranged to extend in parallel to each other. The first end of the fin 3 is connected to the first heat transfer tube. The outer peripheral surface of the second end portion (curved surface portion 3b) of the fin 3 is connected to the second heat transfer tube.
 このようにすれば、フィン3の平面部3aに付着した結露水14cが風下側に流下するときに、結露水14cがリブ15に衝突してその流れる方向が変更され、伝熱管2の側面部2a側またはフィン3の曲面部3b側に流れる。この結果、結露水14cは伝熱管2の側面部2aまたはフィン3の曲面部3bに接触し、図9に示した結露水14aまたは結露水14bとなる。この結果、熱交換器1の内部に留まる結露水14a、14bの割合を高くできるので、熱交換器1の下流側に結露水が飛散する可能性を低減できる。 In this way, when the condensed water 14c adhering to the flat portion 3a of the fin 3 flows down to the leeward side, the condensed water 14c collides with the rib 15 and the flow direction thereof is changed, and the side surface portion of the heat transfer tube 2 is changed. It flows to the 2a side or the curved surface portion 3b side of the fin 3. As a result, the dew condensation water 14c comes into contact with the side surface part 2a of the heat transfer tube 2 or the curved surface part 3b of the fin 3, and becomes the dew condensation water 14a or the dew condensation water 14b shown in FIG. As a result, since the ratio of the dew condensation water 14a and 14b remaining in the heat exchanger 1 can be increased, the possibility that the dew condensation water is scattered on the downstream side of the heat exchanger 1 can be reduced.
 <熱交換器の変形例>
 図11は図1~図10に示した熱交換器の第1の変形例を示す要部断面模式図であり、図12は図11に示した熱交換器のリブの拡大模式図である。図11および図12に示した熱交換器は、基本的に図1~図10に示した熱交換器と同様の構成を備えるが、リブ15の平面形状が図1~図10に示した熱交換器と異なっている。具体的には、図12に示すように、線形状のリブ15は少なくとも一部に直線部15aを有する平面形状がV字状のリブ15である。図11および図12に示したV字状のリブ15は、両端の直線部15aを繋ぐ中央部が当該直線部15aより風上側に位置している。V字状のリブ15に含まれる直線部15aは、風下方向から伝熱管2の側面部2aに向かって角度θだけ傾けて成形されている。このような構成の熱交換器によっても、図1~図10に示した熱交換器と同様の効果を得ることができる。
<Modification of heat exchanger>
FIG. 11 is a schematic cross-sectional view of an essential part showing a first modification of the heat exchanger shown in FIGS. 1 to 10, and FIG. 12 is an enlarged schematic view of a rib of the heat exchanger shown in FIG. The heat exchanger shown in FIGS. 11 and 12 basically has the same configuration as the heat exchanger shown in FIGS. 1 to 10, except that the planar shape of the rib 15 is the same as that shown in FIGS. It is different from the exchanger. Specifically, as shown in FIG. 12, the linear rib 15 is a rib 15 having a V-shaped planar shape having a straight portion 15 a at least partially. The V-shaped rib 15 shown in FIGS. 11 and 12 has a central portion connecting the straight portions 15a at both ends positioned on the windward side of the straight portions 15a. The straight portion 15a included in the V-shaped rib 15 is formed so as to be inclined by an angle θ from the leeward direction toward the side surface portion 2a of the heat transfer tube 2. Even with the heat exchanger having such a configuration, the same effects as those of the heat exchanger shown in FIGS. 1 to 10 can be obtained.
 図13は図1~図10に示した熱交換器の第2の変形例を示す要部断面模式図であり、図14は図13に示した熱交換器のリブの拡大模式図である。図13および図14に示した熱交換器は、基本的に図1~図10に示した熱交換器と同様の構成を備えるが、リブ15の平面形状が図1~図10に示した熱交換器と異なっている。具体的には、図14に示すように、線形状のリブ15は平面形状が直線状のリブ15である。直線状のリブ15は、風下方向から伝熱管2の側面部2aに向かって角度θだけ傾けて成形されている。また、複数の直線状のリブ15は、平面部3aの中心線に対する傾き方向が互いに異なるように形成されている。図13に示すように、平面部3aの中心線に対する傾き方向は、風上側から風下側に向けて複数形成された直線状のリブ15に関して、交互に逆向きになるように、リブ15が形成されていてもよい。このような構成の熱交換器によっても、図1~図10に示した熱交換器と同様の効果を得ることができる。 FIG. 13 is a schematic cross-sectional view of an essential part showing a second modification of the heat exchanger shown in FIGS. 1 to 10, and FIG. 14 is an enlarged schematic view of a rib of the heat exchanger shown in FIG. The heat exchanger shown in FIG. 13 and FIG. 14 basically has the same configuration as the heat exchanger shown in FIG. 1 to FIG. 10, but the planar shape of the rib 15 is the heat shown in FIG. 1 to FIG. It is different from the exchanger. Specifically, as illustrated in FIG. 14, the linear rib 15 is a rib 15 having a linear planar shape. The linear rib 15 is formed so as to be inclined by an angle θ from the leeward direction toward the side surface portion 2 a of the heat transfer tube 2. Further, the plurality of linear ribs 15 are formed so that the inclination directions with respect to the center line of the flat surface portion 3a are different from each other. As shown in FIG. 13, the ribs 15 are formed so that the inclination directions with respect to the center line of the plane portion 3 a are alternately reversed with respect to the plurality of linear ribs 15 formed from the windward side toward the leeward side. May be. Even with the heat exchanger having such a configuration, the same effects as those of the heat exchanger shown in FIGS. 1 to 10 can be obtained.
 実施の形態2.
 <熱交換器の構成>
 図15は、本実施形態に係る熱交換器1の要部斜視模式図である。図15に示す熱交換器は、基本的には図1~図10に示した熱交換器と同様の構成を備えるが、伝熱管2の風下側の正面部2bがフィン3の風下側の端部より風下側に位置している点が、図1~図10に示した熱交換器と異なっている。異なる観点から言えば、少なくとも1つの伝熱管2は、空気の流通方向において、フィン3より下流側に位置する下流側端部(伝熱管2においてフィン3より下流側に位置する部分)を含む。
Embodiment 2. FIG.
<Configuration of heat exchanger>
FIG. 15 is a schematic perspective view of a main part of the heat exchanger 1 according to the present embodiment. The heat exchanger shown in FIG. 15 basically has the same configuration as the heat exchanger shown in FIGS. 1 to 10, except that the leeward front portion 2b of the heat transfer tube 2 is the end of the fin 3 on the leeward side. The heat exchanger shown in FIGS. 1 to 10 is different from the heat exchanger shown in FIGS. If it says from a different viewpoint, the at least 1 heat exchanger tube 2 will contain the downstream edge part (part located in the downstream of the fin 3 in the heat exchanger tube 2) located in the downstream of the fin 3 in the distribution direction of air.
 <熱交換器の作用効果>
 図15に示すように、フィン3の風下側の端面よりも風下側に突出している伝熱管2の正面部2bと、当該正面部2bからフィン3の下流側の端部までの間に位置する伝熱管2の側面部2aの一部が、排水路17として利用できる。そのため、図1~図10に示した熱交換器よりも排水路17として利用できる面積が増加する。したがって、熱交換器1において発生する結露水14a~14cの量が多い場合でも、伝熱管2の表面やフィン3の曲面部3bを伝って排水路17に流れてきた結露水を熱交換器1の下部に流下させることができる。このため、熱交換器1の風下側に飛散する結露水の量を低減できる。
<Effects of heat exchanger>
As shown in FIG. 15, it is located between the front portion 2 b of the heat transfer tube 2 projecting further leeward than the end surface on the leeward side of the fin 3 and from the front portion 2 b to the downstream end of the fin 3. A part of the side surface portion 2 a of the heat transfer tube 2 can be used as the drainage channel 17. Therefore, the area that can be used as the drainage channel 17 is larger than that of the heat exchanger shown in FIGS. Therefore, even when the amount of the dew condensation water 14a to 14c generated in the heat exchanger 1 is large, the dew condensation water that has flowed to the drainage channel 17 through the surface of the heat transfer tube 2 or the curved surface portion 3b of the fin 3 is used as the heat exchanger 1. It can be made to flow down to the bottom. For this reason, the amount of condensed water scattered on the leeward side of the heat exchanger 1 can be reduced.
 実施の形態3.
 <熱交換器の構成>
 図16は、本実施形態に係る熱交換器1の要部斜視模式図である。図16に示す熱交換器は、基本的には図15に示した熱交換器と同様の構成を備えるが、伝熱管2の側面部2aのうちフィン3の風下側に位置する部分(排水路17として機能する領域)に、凹部2cが形成されている点が図15に示した熱交換器と異なっている。凹部2cは伝熱管2の延在方向に沿って延びるように形成されている。
Embodiment 3 FIG.
<Configuration of heat exchanger>
FIG. 16 is a schematic perspective view of an essential part of the heat exchanger 1 according to the present embodiment. The heat exchanger shown in FIG. 16 basically has the same configuration as the heat exchanger shown in FIG. 15, but the portion (drainage channel) located on the leeward side of the fin 3 in the side surface portion 2 a of the heat transfer tube 2. 15 is different from the heat exchanger shown in FIG. 15 in that a recess 2c is formed in a region functioning as 17). The recess 2 c is formed so as to extend along the extending direction of the heat transfer tube 2.
 <熱交換器の作用効果>
 図16に示す熱交換器では、フィン3の風下側の端面よりも風下側に突出している伝熱管2の端部において凹部2cが形成された側面部2aと、伝熱管2の正面部2bとが、排水路17として利用できる。つまり、図15に示した熱交換器より、排水路17として利用できる部分の面積が凹部2cを形成することにより広くなっている。そのため、図15に示した熱交換器を用いた場合より、さらに熱交換器1において発生する結露水14a~14cの量が多い場合でも、伝熱管2の表面やフィン3の曲面部3bを伝って排水路17に流れてきた結露水を熱交換器1の下部に流下させることができる。このため、熱交換器1の風下側に飛散する結露水の量を低減できる。
<Effects of heat exchanger>
In the heat exchanger shown in FIG. 16, a side surface portion 2 a in which a concave portion 2 c is formed at an end portion of the heat transfer tube 2 projecting further leeward than the end surface on the leeward side of the fin 3, a front surface portion 2 b of the heat transfer tube 2, However, it can be used as the drainage channel 17. That is, the area of the portion that can be used as the drainage channel 17 is wider than that of the heat exchanger shown in FIG. 15 by forming the recess 2c. Therefore, even when the amount of dew condensation water 14a to 14c generated in the heat exchanger 1 is larger than when the heat exchanger shown in FIG. 15 is used, the heat transfer tube 2 and the curved surface portion 3b of the fin 3 are transmitted. Thus, the dew condensation water that has flowed into the drainage channel 17 can flow down to the lower part of the heat exchanger 1. For this reason, the amount of condensed water scattered on the leeward side of the heat exchanger 1 can be reduced.
 実施の形態4.
 <熱交換器の構成>
 図17は、本実施形態に係る熱交換器1の要部斜視模式図である。図17に示す熱交換器は、基本的には図16に示した熱交換器と同様の構成を備えるが、伝熱管2の側面部2aのうちフィン3の風下側に位置する部分(排水路17として機能する領域)において、凹部2cの下流側にさらに凸部2dが形成されている点が図16に示した熱交換器と異なっている。凸部2dは伝熱管2の延在方向に沿って延びるように形成されている。
Embodiment 4 FIG.
<Configuration of heat exchanger>
FIG. 17 is a schematic perspective view of a main part of the heat exchanger 1 according to the present embodiment. The heat exchanger shown in FIG. 17 basically has the same configuration as that of the heat exchanger shown in FIG. 16, but the portion (drainage channel) located on the leeward side of the fin 3 in the side surface portion 2 a of the heat transfer tube 2. 16 is different from the heat exchanger shown in FIG. 16 in that a convex portion 2d is further formed on the downstream side of the concave portion 2c. The convex portion 2 d is formed so as to extend along the extending direction of the heat transfer tube 2.
 <熱交換器の作用効果>
 図17に示す熱交換器では、フィン3の風下側の端面よりも風下側に突出している伝熱管2の端部において凹部2cおよび凸部2dが形成された側面部2aと、伝熱管2の正面部2bとが、排水路17として利用できる。つまり、図16に示した熱交換器より、排水路17として利用できる部分の面積が凸部2dを形成することによりさらに広くなっている。そのため、図16に示した熱交換器を用いた場合より、さらに熱交換器1において発生する結露水14a~14cの量が多い場合でも、伝熱管2の表面やフィン3の曲面部3bを伝って排水路17に流れてきた結露水を熱交換器1の下部に流下させることができる。このため、熱交換器1の風下側に飛散する結露水の量を低減できる。
<Effects of heat exchanger>
In the heat exchanger shown in FIG. 17, the side surface portion 2 a in which the concave portion 2 c and the convex portion 2 d are formed at the end portion of the heat transfer tube 2 projecting further leeward than the end surface on the leeward side of the fin 3, The front portion 2 b can be used as the drainage channel 17. That is, the area of the portion that can be used as the drainage channel 17 is further increased by forming the convex portion 2d as compared with the heat exchanger shown in FIG. Therefore, even when the amount of condensed water 14a to 14c generated in the heat exchanger 1 is larger than when the heat exchanger shown in FIG. 16 is used, the heat transfer pipe 2 and the curved surface portion 3b of the fin 3 are transmitted. Thus, the dew condensation water that has flowed into the drainage channel 17 can flow down to the lower part of the heat exchanger 1. For this reason, the amount of condensed water scattered on the leeward side of the heat exchanger 1 can be reduced.
 実施の形態5.
 <熱交換器の構成>
 図18は、本実施形態に係る熱交換器1の要部斜視模式図である。図18に示す熱交換器は、基本的には図15に示した熱交換器と同様の構成を備えるが、伝熱管2の側面部2aのうちフィン3の風下側に位置する部分(排水路として機能する領域)に、吸水部材18が配置されている点が図15に示した熱交換器と異なっている。吸水部材18は伝熱管2の側面部2aに固定されている。吸水部材18は伝熱管2の延在方向に沿って延びるように形成されている。
Embodiment 5 FIG.
<Configuration of heat exchanger>
FIG. 18 is a schematic perspective view of a main part of the heat exchanger 1 according to the present embodiment. The heat exchanger shown in FIG. 18 basically has the same configuration as the heat exchanger shown in FIG. 15, but the portion (drainage channel) located on the leeward side of the fin 3 in the side surface portion 2 a of the heat transfer tube 2. 15 is different from the heat exchanger shown in FIG. 15 in that the water absorbing member 18 is disposed in the area functioning as The water absorbing member 18 is fixed to the side surface portion 2 a of the heat transfer tube 2. The water absorbing member 18 is formed so as to extend along the extending direction of the heat transfer tube 2.
 <熱交換器の作用効果>
 図18に示す熱交換器では、伝熱管2の下流側端部(伝熱管2においてフィン3より下流側に位置する部分)に接続された吸水部材18をさらに備えるフィン3の風下側の端面よりも風下側に突出している伝熱管2の端部において吸水部材18が固定された側面部2aと、伝熱管2の正面部2bとが、排水路として利用できる。つまり、図15に示した熱交換器より、吸水部材18を配置することにより排水路として利用できる部分の結露水を保持する能力が図15に示した熱交換器より高くなっている。そのため、図15に示した熱交換器を用いた場合より、熱交換器1において発生する結露水14a~14cの量が多い場合でも、伝熱管2の表面やフィン3の曲面部3bを伝って吸水部材18に流れてきた結露水を熱交換器1の下部に流下させることができる。このため、熱交換器1の風下側に飛散する結露水の量を低減できる。
<Effects of heat exchanger>
In the heat exchanger shown in FIG. 18, from the leeward side end surface of the fin 3 further comprising a water absorbing member 18 connected to the downstream side end portion of the heat transfer tube 2 (portion located on the downstream side of the fin 3 in the heat transfer tube 2). Moreover, the side part 2a to which the water absorption member 18 was fixed in the edge part of the heat exchanger tube 2 which protrudes to the leeward side, and the front part 2b of the heat exchanger tube 2 can be utilized as a drainage channel. That is, the ability to hold the condensed water in a portion that can be used as a drainage channel by arranging the water absorbing member 18 is higher than that of the heat exchanger shown in FIG. 15 than the heat exchanger shown in FIG. Therefore, even when the amount of dew condensation water 14a to 14c generated in the heat exchanger 1 is larger than when the heat exchanger shown in FIG. 15 is used, the heat transfer tube 2 and the curved surface portion 3b of the fin 3 are transmitted along the surface. The condensed water that has flowed to the water absorbing member 18 can flow down to the lower part of the heat exchanger 1. For this reason, the amount of condensed water scattered on the leeward side of the heat exchanger 1 can be reduced.
 なお、吸水部材18の材料は、吸水性を有する材料であれば任意の材料を利用できる。たとえば、スポンジ状の樹脂や多孔質材料などを用いることができる。また、図18では、伝熱管2の側面部2aの表面に吸水部材18を配置しているが、当該側面部2aに溝を形成し、当該溝の内部に吸水部材18を配置してもよい。この場合、吸水部材18が空気の流通路に突出する高さを低減できるので、吸水部材18による空気の流通抵抗の増大を抑制できる。また、吸水部材18の表面が、側面部2aにおいて溝が形成されていない部分と同一面上に位置するように、吸水部材18の厚みと溝の深さとを同じにしてもよい。 Note that any material can be used as the material of the water absorbing member 18 as long as it is a material having water absorption. For example, a sponge-like resin or a porous material can be used. Moreover, in FIG. 18, although the water absorption member 18 is arrange | positioned in the surface of the side part 2a of the heat exchanger tube 2, a groove | channel may be formed in the said side part 2a and the water absorption member 18 may be arrange | positioned inside the said groove | channel. . In this case, since the height at which the water absorbing member 18 protrudes into the air flow passage can be reduced, an increase in air flow resistance due to the water absorbing member 18 can be suppressed. Moreover, you may make the thickness of the water absorption member 18 and the depth of a groove | channel so that the surface of the water absorption member 18 may be located on the same surface as the part in which the groove | channel is not formed in the side part 2a.
 以上のように本発明の実施の形態について説明を行ったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。 Although the embodiments of the present invention have been described above, the above-described embodiments can be variously modified. The scope of the present invention is not limited to the above-described embodiment. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、パラレルフロー熱交換器および当該パラレルフロー熱交換器を備えた空気調和機に有効に利用される。 The present invention is effectively used for a parallel flow heat exchanger and an air conditioner equipped with the parallel flow heat exchanger.
 1 熱交換器、2 伝熱管、2a 側面部、2b 正面部、2c 凹部、2d 凸部、3 フィン、3a 平面部、3b 曲面部、4a 入口側ヘッダ、4b 出口側ヘッダ、5 流路、6 冷媒出入口、7 室内機、8 ケーシング、9 吸込口、10 吹出口、11 送風路、12 クロスフローファン、13 ドレンパン、14a,14b,14c 結露水、15 リブ、15a 直線部、15b リブ中央部、16 ルーバ、17 排水路、18 吸水部材。 1 heat exchanger, 2 heat transfer tube, 2a side surface, 2b front surface, 2c concave, 2d convex, 3 fin, 3a flat surface, 3b curved surface, 4a inlet side header, 4b outlet side header, 5 flow path, 6 Refrigerant inlet / outlet, 7 indoor unit, 8 casing, 9 inlet, 10 outlet, 11 air passage, 12 cross flow fan, 13 drain pan, 14a, 14b, 14c condensed water, 15 rib, 15a straight part, 15b rib central part, 16 louvers, 17 drainage channels, 18 water-absorbing members.

Claims (7)

  1.  内部に冷媒が流通する少なくとも1つの伝熱管と、
     前記少なくとも1つの伝熱管と接続されたフィンとを備え、
     前記フィンは、
      前記伝熱管と接続された第1端部と、
      前記第1端部に連なる平面部と、
      前記平面部に連なり、前記平面部から見て前記第1端部と反対側に位置する第2端部とを含み、
     前記平面部は、
      前記平面部から突出する線形状の少なくとも1つのリブを有し、
     前記少なくとも1つのリブは、
      前記第1端部と前記第2端部との間の中央に位置するリブ中央部と、
      前記リブ中央部と連なり、前記空気の流通方向の下流側に向かうにつれて、前記第1端部および前記第2端部のいずれか一方に近づくように形成された部分とを含む、熱交換器。
    At least one heat transfer tube through which refrigerant flows;
    A fin connected to the at least one heat transfer tube;
    The fin is
    A first end connected to the heat transfer tube;
    A plane portion connected to the first end;
    A second end located on the opposite side of the first end as viewed from the plane,
    The plane portion is
    Having at least one linear rib projecting from the planar portion;
    The at least one rib is
    A rib central portion located in the center between the first end portion and the second end portion;
    A heat exchanger that includes a portion that is connected to the rib central portion and is formed so as to approach either the first end portion or the second end portion toward the downstream side in the air flow direction.
  2.  前記少なくとも1つのリブの前記部分は、直線部を含む、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the portion of the at least one rib includes a straight portion.
  3.  前記少なくとも1つの伝熱管は、前記フィンより前記下流側に位置する下流側端部を含む、請求項1または請求項2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the at least one heat transfer tube includes a downstream end located on the downstream side of the fin.
  4.  前記下流側端部の表面は凹部を含む、請求項3に記載の熱交換器。 The heat exchanger according to claim 3, wherein a surface of the downstream end includes a recess.
  5.  前記下流側端部の表面は、前記流通方向において前記凹部の下流側に位置する凸部を含む、請求項4に記載の熱交換器。 The heat exchanger according to claim 4, wherein the surface of the downstream end includes a convex portion located downstream of the concave portion in the flow direction.
  6.  前記下流側端部に接続された吸水部材をさらに備える、請求項3に記載の熱交換器。 The heat exchanger according to claim 3, further comprising a water absorbing member connected to the downstream end.
  7.  前記少なくとも1つの伝熱管は、第1の伝熱管と第2の伝熱管とを含み、
     前記第1の伝熱管と前記第2の伝熱管とは、前記フィンを間に挟むように配置され、
     前記フィンの前記第1端部は、前記第1の伝熱管に接続され、
     前記フィンの前記第2端部は、前記第2の伝熱管に接続されている、請求項1~請求項6のいずれか1項に記載の熱交換器。
    The at least one heat transfer tube includes a first heat transfer tube and a second heat transfer tube,
    The first heat transfer tube and the second heat transfer tube are disposed so as to sandwich the fin therebetween,
    The first end of the fin is connected to the first heat transfer tube;
    The heat exchanger according to any one of claims 1 to 6, wherein the second end portion of the fin is connected to the second heat transfer tube.
PCT/JP2016/070185 2016-07-07 2016-07-07 Heat exchanger WO2018008134A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16908178.3A EP3483544B1 (en) 2016-07-07 2016-07-07 Heat exchanger
JP2018525900A JP6771557B2 (en) 2016-07-07 2016-07-07 Heat exchanger
PCT/JP2016/070185 WO2018008134A1 (en) 2016-07-07 2016-07-07 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070185 WO2018008134A1 (en) 2016-07-07 2016-07-07 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2018008134A1 true WO2018008134A1 (en) 2018-01-11

Family

ID=60912517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070185 WO2018008134A1 (en) 2016-07-07 2016-07-07 Heat exchanger

Country Status (3)

Country Link
EP (1) EP3483544B1 (en)
JP (1) JP6771557B2 (en)
WO (1) WO2018008134A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095567A1 (en) * 2019-11-14 2021-05-20 ダイキン工業株式会社 Heat transfer pipe and heat exchanger

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122066U (en) * 1980-02-19 1981-09-17
JPS57101873U (en) * 1980-12-12 1982-06-23
JPS5881473U (en) * 1981-11-26 1983-06-02 豊和工業株式会社 refrigerant evaporator
JPH07190661A (en) 1993-12-27 1995-07-28 Hitachi Ltd Heat exchanger
JP2004177082A (en) 2002-11-29 2004-06-24 Matsushita Electric Ind Co Ltd Heat exchanger
JP2004271113A (en) * 2003-03-11 2004-09-30 Matsushita Electric Ind Co Ltd Heat exchanger
JP2011047600A (en) 2009-08-28 2011-03-10 Sharp Corp Heat exchanger and air conditioner mounted with the same
JP2012037092A (en) * 2010-08-04 2012-02-23 Sharp Corp Heat exchanger, and air conditioner with the same
JP2013019596A (en) * 2011-07-11 2013-01-31 Mitsubishi Electric Corp Heat exchanger, indoor unit, and outdoor unit
WO2013183136A1 (en) * 2012-06-07 2013-12-12 株式会社日立製作所 Air heat exchanger

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3298432A (en) * 1964-05-22 1967-01-17 Przyborowski Stanislaus Radiators
JP4482991B2 (en) * 1999-12-14 2010-06-16 株式会社デンソー Double heat exchanger
JP2005201492A (en) * 2004-01-14 2005-07-28 Matsushita Electric Ind Co Ltd Heat exchanger
KR100689903B1 (en) * 2005-07-28 2007-03-08 위니아만도 주식회사 heat exchanger
CN101379360A (en) * 2006-02-01 2009-03-04 康奈可关精株式会社 Heat exchanger for vehicle
JP2007232356A (en) * 2006-02-01 2007-09-13 Calsonic Kansei Corp Heat exchanger for vehicle
JP5156773B2 (en) * 2010-02-25 2013-03-06 株式会社小松製作所 Corrugated fin and heat exchanger provided with the same
WO2013160950A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger and air conditioner
ITTO20130055A1 (en) * 2013-01-23 2014-07-24 Denso Thermal Systems Spa FIN STRUCTURE FOR HEAT EXCHANGER FOR AUTOMOTIVE APPLICATIONS, IN PARTICULAR FOR AGRICULTURAL AND CONSTRUCTION MACHINES.
JP2014156990A (en) * 2013-02-18 2014-08-28 Mitsubishi Electric Corp Heat exchanger of air conditioner
EP3015808B1 (en) * 2013-06-28 2018-08-29 Mitsubishi Heavy Industries Thermal Systems, Ltd. Heat exchanger, heat exchanger structure, and fin for heat exchanger

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122066U (en) * 1980-02-19 1981-09-17
JPS57101873U (en) * 1980-12-12 1982-06-23
JPS5881473U (en) * 1981-11-26 1983-06-02 豊和工業株式会社 refrigerant evaporator
JPH07190661A (en) 1993-12-27 1995-07-28 Hitachi Ltd Heat exchanger
JP2004177082A (en) 2002-11-29 2004-06-24 Matsushita Electric Ind Co Ltd Heat exchanger
JP2004271113A (en) * 2003-03-11 2004-09-30 Matsushita Electric Ind Co Ltd Heat exchanger
JP2011047600A (en) 2009-08-28 2011-03-10 Sharp Corp Heat exchanger and air conditioner mounted with the same
JP2012037092A (en) * 2010-08-04 2012-02-23 Sharp Corp Heat exchanger, and air conditioner with the same
JP2013019596A (en) * 2011-07-11 2013-01-31 Mitsubishi Electric Corp Heat exchanger, indoor unit, and outdoor unit
WO2013183136A1 (en) * 2012-06-07 2013-12-12 株式会社日立製作所 Air heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3483544A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095567A1 (en) * 2019-11-14 2021-05-20 ダイキン工業株式会社 Heat transfer pipe and heat exchanger
JP2021081081A (en) * 2019-11-14 2021-05-27 ダイキン工業株式会社 Heat transfer pipe and heat exchanger

Also Published As

Publication number Publication date
EP3483544A1 (en) 2019-05-15
EP3483544B1 (en) 2023-07-26
JP6771557B2 (en) 2020-10-21
EP3483544A4 (en) 2019-10-09
JPWO2018008134A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
US20120103583A1 (en) Heat exchanger and fin for the same
US9534827B2 (en) Air heat exchanger
US20110139428A1 (en) Heat exchanger
JP5417718B2 (en) Heat exchanger
JP6223596B2 (en) Air conditioner indoor unit
JP2010019534A (en) Heat exchanger
EP2447660A2 (en) Heat Exchanger and Micro-Channel Tube Thereof
JP2010139166A (en) Air conditioner
JP5020886B2 (en) Heat exchanger
JP2010216718A (en) Heat exchanger with fin
JP6375897B2 (en) Heat exchanger
CN107843031B (en) Micro-channel heat exchanger
WO2018008134A1 (en) Heat exchanger
JP2008116095A (en) Air heat exchanger
CN114322105B (en) Heat exchanger and air conditioning system
JP2017133790A (en) Heat exchanger
JP2020180752A (en) Heat exchanger, heat exchanger unit and indoor unit of air conditioner
JP5574737B2 (en) Heat exchanger
JP2015227754A (en) Heat exchanger
US12092403B2 (en) Heat exchanger
JP7006376B2 (en) Heat exchanger
JP4344659B2 (en) Evaporator
JP2011158130A (en) Heat exchanger
WO2021006336A1 (en) Heat exchanger and heat exchange unit
JP7471446B2 (en) Indoor heat exchanger and indoor unit of air conditioner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018525900

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016908178

Country of ref document: EP

Effective date: 20190207