JP7006376B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP7006376B2
JP7006376B2 JP2018033604A JP2018033604A JP7006376B2 JP 7006376 B2 JP7006376 B2 JP 7006376B2 JP 2018033604 A JP2018033604 A JP 2018033604A JP 2018033604 A JP2018033604 A JP 2018033604A JP 7006376 B2 JP7006376 B2 JP 7006376B2
Authority
JP
Japan
Prior art keywords
heat transfer
louver
axial direction
heat exchanger
louvers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018033604A
Other languages
Japanese (ja)
Other versions
JP2019148375A (en
Inventor
康浩 工藤
浩介 富田
昌春 深谷
俊太郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2018033604A priority Critical patent/JP7006376B2/en
Publication of JP2019148375A publication Critical patent/JP2019148375A/en
Application granted granted Critical
Publication of JP7006376B2 publication Critical patent/JP7006376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、伝熱管内を流れる冷媒と空気等の流体を熱交換させる熱交換器に関する。 The present invention relates to a heat exchanger that exchanges heat between a refrigerant flowing in a heat transfer tube and a fluid such as air.

複数の扁平な伝熱管(扁平管)と複数の伝熱フィンとで構成されるパラレルフロー型熱交換器が知られている。このパラレルフロー型熱交換器に用いられる伝熱フィンには、コルゲートフィンや板状フィンがある。コルゲートフィンは、帯状の金属板を波型に形成し、上下に配置された複数の伝熱管の各々の間に挿入される。板状フィンは、帯状の金属板で、それを所定の間隔をあけて複数枚積層し、幅方向の一方から伝熱管が挿入される。これらの伝熱フィンは、ろう付けにより伝熱管と接合される。 A parallel flow type heat exchanger composed of a plurality of flat heat transfer tubes (flat tubes) and a plurality of heat transfer fins is known. Heat transfer fins used in this parallel flow heat exchanger include corrugated fins and plate-shaped fins. The corrugated fins form a band-shaped metal plate in a wavy shape and are inserted between each of a plurality of heat transfer tubes arranged one above the other. The plate-shaped fin is a strip-shaped metal plate, and a plurality of plate-shaped fins are laminated at predetermined intervals, and a heat transfer tube is inserted from one side in the width direction. These heat transfer fins are joined to the heat transfer tube by brazing.

このようなパラレルフロー型熱交換器は、複数の伝熱フィンの間に流入する流体(例えば空気)と、伝熱管の内部を流れる冷媒との間で熱交換を行う。このとき伝熱フィンは、流体と冷媒との間の伝熱を促進する働きをする。伝熱フィンの伝熱性能を向上させるため、伝熱フィンの表面を切り起こしてルーバを形成することが知られている。ルーバによる前縁効果や乱流の発生により伝熱フィンの伝熱性能を向上させ、それにより熱交換器の熱交換性能を向上させることができる。 In such a parallel flow type heat exchanger, heat is exchanged between the fluid (for example, air) flowing between the plurality of heat transfer fins and the refrigerant flowing inside the heat transfer tube. At this time, the heat transfer fins function to promote heat transfer between the fluid and the refrigerant. In order to improve the heat transfer performance of the heat transfer fin, it is known that the surface of the heat transfer fin is cut up to form a louver. The heat transfer performance of the heat transfer fins can be improved by the front edge effect of the louver and the generation of turbulence, thereby improving the heat exchange performance of the heat exchanger.

例えば特許文献1には、流体の流れ方向に沿って並べられた複数のルーバを有する熱交換器用フィンが開示されている。複数のルーバは、流体の流れ方向と平行に形成された転向部を境に切り起こし方向が逆に形成されているとともに、第1ルーバと、第1ルーバよりも切り起こし角度が小さい第2ルーバの少なくとも2種類のルーバを有し、第2のルーバが転向部に隣り合って配置されている。その結果、転向部より風上側の第2ルーバからの流体の流れが転向部によって反転し、転向部から風下側の第2ルーバによって第1ルーバ間に流体が流れやすくなるとしている。そして、隣り合うルーバ間の距離を等しくすることで、流体がルーバ間に均等に流入し、これにより伝熱フィンの伝熱性能が向上するとしている。 For example, Patent Document 1 discloses a fin for a heat exchanger having a plurality of louvers arranged along the flow direction of a fluid. The plurality of louvers are formed in opposite directions with the turning portion formed parallel to the flow direction of the fluid as a boundary, and the first louver and the second louver having a smaller cutting angle than the first louver. It has at least two types of louvers, and a second louver is arranged next to the turning portion. As a result, the flow of the fluid from the second louver on the windward side of the turning portion is reversed by the turning portion, and the fluid easily flows between the first louvers by the second louver on the leeward side from the turning portion. By making the distances between adjacent louvers equal, the fluid flows evenly between the louvers, which improves the heat transfer performance of the heat transfer fins.

特開2013-195024号公報Japanese Unexamined Patent Publication No. 2013-195024

しかしながら、特許文献1に記載のフィン構造は、車載用途の熱交換器への適用を前提としているため、特許文献1に記載のようなルーバ間の距離が同等でルーバ高さが異なるフィン構造を冷凍空調用途の熱交換器に適用した場合、所望とする熱交換性能が得られにくいという問題がある。 However, since the fin structure described in Patent Document 1 is premised on application to a heat exchanger for in-vehicle use, a fin structure having the same distance between louvers and different louver heights as described in Patent Document 1 is used. When applied to a heat exchanger for refrigeration and air conditioning, there is a problem that it is difficult to obtain the desired heat exchange performance.

すなわち、冷凍空調用途の熱交換器においては、車載用途の熱交換器と比較して流体の流入速度が遅いため、高さの異なるルーバが混在すると、フィン表面に平行な流体の流れが、高さの大きい(切り起こし角度の大きい)ルーバで妨げられ、高さの小さい(切り起こし角度の小さい)ルーバ間へ十分な量の流体が流入できなくなる。その結果、伝熱フィンの風上側と風下側で伝熱性能にばらつきが発生し、期待されるような熱交換性能の向上を図ることができない。 That is, in heat exchangers for refrigeration and air conditioning, the inflow rate of fluid is slower than that for heat exchangers for in-vehicle use. Therefore, when louvers with different heights are mixed, the flow of fluid parallel to the fin surface is high. It is hindered by a large (large cutting angle) louver, and a sufficient amount of fluid cannot flow between the small height (small cutting angle) louvers. As a result, the heat transfer performance varies between the windward side and the leeward side of the heat transfer fin, and it is not possible to improve the heat exchange performance as expected.

以上のような事情に鑑み、本発明の目的は、流速が比較的遅い場合でも熱交換性能の向上を図ることができる熱交換器を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a heat exchanger capable of improving heat exchange performance even when the flow velocity is relatively slow.

上記目的を達成するため、本発明の一形態に係る熱交換器は、複数の伝熱管と、複数の伝熱フィンとを具備する。
前記複数の伝熱管は、第1の軸方向に沿って冷媒が流れる流路を有し、前記第1の軸方向と直交する第2の軸方向に配列される。
前記複数の伝熱フィンは、前記第1の軸方向に配列され、前記複数の伝熱管と接合される。
前記複数の伝熱フィンは、前記複数の伝熱管の間に位置し流体が通過する通風路を形成する伝熱部と、前記伝熱部に設けられ前記第1の軸方向及び前記第2の軸方向に直交する第3の軸方向に配列された複数のルーバを含むルーバ部とをそれぞれ有する。
前記複数のルーバは、前記伝熱部に対して一定の高さを有する。
前記伝熱部に対する前記複数のルーバの切り起こし角度は、前記第3の軸方向の一端側から他端側に向かって徐々に小さくなる。
In order to achieve the above object, the heat exchanger according to one embodiment of the present invention includes a plurality of heat transfer tubes and a plurality of heat transfer fins.
The plurality of heat transfer tubes have a flow path through which the refrigerant flows along the first axial direction, and are arranged in the second axial direction orthogonal to the first axial direction.
The plurality of heat transfer fins are arranged in the first axial direction and are joined to the plurality of heat transfer tubes.
The plurality of heat transfer fins have a heat transfer portion located between the plurality of heat transfer tubes and forming a ventilation path through which a fluid passes, and the heat transfer portion provided in the first axial direction and the second. Each has a louver portion including a plurality of louvers arranged in a third axial direction orthogonal to the axial direction.
The plurality of louvers have a certain height with respect to the heat transfer portion.
The cutting angle of the plurality of louvers with respect to the heat transfer portion gradually decreases from one end side to the other end side in the third axial direction.

前記複数のルーバの配列ピッチは、前記一端側から前記他端側に向かって徐々に大きくなってもよい。 The arrangement pitch of the plurality of louvers may gradually increase from the one end side toward the other end side.

前記複数の伝熱フィンは、前記伝熱部に設けられ前記複数の伝熱フィンの配列間隔を調整する複数のタブを有する板状フィンで構成され、前記複数のタブの一部は、前記ルーバ部よりも前記第3の軸方向の他端側に設けられてもよい。 The plurality of heat transfer fins are composed of plate-shaped fins provided in the heat transfer portion and having a plurality of tabs for adjusting the arrangement interval of the plurality of heat transfer fins, and a part of the plurality of tabs is the louver. It may be provided on the other end side in the third axial direction with respect to the portion.

以上述べたように、本発明によれば、流速が比較的遅い場合でも熱交換器の熱交換性能の向上を図ることができる。 As described above, according to the present invention, it is possible to improve the heat exchange performance of the heat exchanger even when the flow velocity is relatively slow.

本発明の一実施形態に係る熱交換器の正面図である。It is a front view of the heat exchanger which concerns on one Embodiment of this invention. 図1におけるA-A線方向の部分断面図である。FIG. 1 is a partial cross-sectional view taken along the line AA in FIG. 図2におけるB-B線方向断面図である。FIG. 2 is a cross-sectional view taken along the line BB in FIG. 上記熱交換器におけるルーバ部の形態を示す斜視図である。It is a perspective view which shows the form of the louver part in the said heat exchanger.

以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る熱交換器100の正面図、図2は、図1におけるA-A線方向の部分断面図である。
なお各図において、X軸(第1の軸)、Y軸(第2の軸)及びZ軸(第3の軸)は相互に直交する3軸方向を示しており、X軸方向は左右方向(幅方向)、Y軸方向は上下方向(高さ方向)に相当する。
FIG. 1 is a front view of the heat exchanger 100 according to an embodiment of the present invention, and FIG. 2 is a partial cross-sectional view taken along the line AA in FIG.
In each figure, the X-axis (first axis), the Y-axis (second axis), and the Z-axis (third axis) show three axis directions orthogonal to each other, and the X-axis direction is the left-right direction. (Width direction) and Y-axis direction correspond to the vertical direction (height direction).

[基本構成]
本実施形態の熱交換器は、冷凍空調用途や給湯・温水暖房用途の熱交換器(凝縮器あるいは蒸発器)である。以下、熱交換器100の基本構成について説明する。
[Basic configuration]
The heat exchanger of the present embodiment is a heat exchanger (condenser or evaporator) for refrigeration and air conditioning and for hot water supply / hot water heating. Hereinafter, the basic configuration of the heat exchanger 100 will be described.

熱交換器100は、第1ヘッダ11と、第2ヘッダ12と、複数の伝熱管20と、複数の伝熱フィン30とを備える。
第1ヘッダ11、第2ヘッダ12、伝熱管20及び伝熱フィン30はいずれもアルミニウム合金製の部材であり、各々の接合は、ろう付けにより行われている。
The heat exchanger 100 includes a first header 11, a second header 12, a plurality of heat transfer tubes 20, and a plurality of heat transfer fins 30.
The first header 11, the second header 12, the heat transfer tube 20, and the heat transfer fin 30 are all members made of an aluminum alloy, and their respective joining is performed by brazing.

第1ヘッダ11及び第2ヘッダ12はいずれも、長手方向(Y軸方向)の両端が閉鎖された、例えば細長い円筒状に形成されている。熱交換器100の幅方向の一端側に第1ヘッダ11が配置され、その他端側に第2ヘッダ12が配置される。 Both the first header 11 and the second header 12 are formed in an elongated cylindrical shape, for example, in which both ends in the longitudinal direction (Y-axis direction) are closed. The first header 11 is arranged on one end side in the width direction of the heat exchanger 100, and the second header 12 is arranged on the other end side.

複数の伝熱管20は、左右方向に直線的に延び、上下方向に間隔をおいて配列される。本実施形態において各伝熱管20は、図2に示すように流体(空気)の流れ方向(Z軸方向)に平行な主面を有する扁平管で構成される。各伝熱管20は、冷媒が流れる複数の流路21を有する。各流路21は相互に独立して形成され、流体の流れ方向(Z軸方向)に間隔をおいて形成される。各伝熱管20の一端は第1ヘッダ11に、各伝熱管20の他端は第2ヘッダ12にそれぞれ挿入され、第1ヘッダ11と第2ヘッダ12が流路21を介して連通している。 The plurality of heat transfer tubes 20 extend linearly in the left-right direction and are arranged at intervals in the vertical direction. In the present embodiment, each heat transfer tube 20 is composed of a flat tube having a main surface parallel to the flow direction (Z-axis direction) of the fluid (air) as shown in FIG. Each heat transfer tube 20 has a plurality of flow paths 21 through which the refrigerant flows. The flow paths 21 are formed independently of each other and are formed at intervals in the fluid flow direction (Z-axis direction). One end of each heat transfer tube 20 is inserted into the first header 11, the other end of each heat transfer tube 20 is inserted into the second header 12, and the first header 11 and the second header 12 communicate with each other via the flow path 21. ..

複数の伝熱フィン30は、左右方向(X軸方向)に配列され、複数の伝熱管20と熱的に接続される。本実施形態において各伝熱フィン30は、上下方向に直線的に延びる板状フィンであり、プレス加工等により図2に示すような形状に形成される。図2において矢印Wで示すように、流体としての空気はZ軸方向に流れる。以下、図2において左方側を風上側、右方側を風下側ともいう。 The plurality of heat transfer fins 30 are arranged in the left-right direction (X-axis direction) and are thermally connected to the plurality of heat transfer tubes 20. In the present embodiment, each heat transfer fin 30 is a plate-shaped fin extending linearly in the vertical direction, and is formed into a shape as shown in FIG. 2 by press working or the like. As shown by the arrow W in FIG. 2, air as a fluid flows in the Z-axis direction. Hereinafter, in FIG. 2, the left side is also referred to as a leeward side, and the right side is also referred to as a leeward side.

各伝熱フィン30は、縦長の板形状に形成されており、図2に示すようにその短手方向の風下側端部302から風上側端部301に向かって延びる横長の切欠き部31が、伝熱フィン30の長手方向(Y軸方向)に第1の間隔をおいて多数形成されている。これら切欠き部31に伝熱管20が挿し込まれることで、伝熱管20が図1に示すように上下方向に第1の間隔d1をおいて配置される。 Each heat transfer fin 30 is formed in a vertically long plate shape, and as shown in FIG. 2, a horizontally long notch 31 extending from the leeward end portion 302 in the lateral direction toward the leeward end portion 301 is provided. , A large number of heat transfer fins 30 are formed at a first interval in the longitudinal direction (Y-axis direction). By inserting the heat transfer tube 20 into these notches 31, the heat transfer tube 20 is arranged with a first interval d1 in the vertical direction as shown in FIG.

また、各伝熱フィン30は、図1に示すように、熱交換器100の左右方向(X軸方向)に熱交換器100の熱交換能力と通風抵抗などを考慮して決定した間隔である第2の間隔d2をおいて配置される。そして、上下に隣り合う伝熱管20と、左右に隣り合う伝熱フィン30に囲まれた通風路40が、上下方向と左右方向それぞれに複数並んで形成される。 Further, as shown in FIG. 1, each heat transfer fin 30 has an interval determined in the left-right direction (X-axis direction) of the heat exchanger 100 in consideration of the heat exchange capacity of the heat exchanger 100, ventilation resistance, and the like. They are arranged at a second interval d2. Then, a plurality of ventilation passages 40 surrounded by heat transfer tubes 20 adjacent to each other vertically and heat transfer fins 30 adjacent to the left and right are formed side by side in each of the vertical direction and the horizontal direction.

複数の伝熱管20と複数の伝熱フィン30は互いに直交しており、図2に示すように、伝熱フィン30のうち、複数の通風路40の一つと接するとともに、上下に隣り合う伝熱管20の間に位置する領域が、矢印Wで示す方向に流れる空気と熱交換する伝熱部32である。また、伝熱フィン30の一部であって、切欠き部31より伝熱フィン30の風上側端部301側に位置する領域が、伝熱フィン30の上端から下端まで連続して形成された流水部(連通部)33である。流水部33は、熱交換器100が蒸発器として構成される場合、結露水を鉛直下方に流下させる流路を形成する。 The plurality of heat transfer tubes 20 and the plurality of heat transfer fins 30 are orthogonal to each other, and as shown in FIG. 2, the heat transfer tubes 20 are in contact with one of the plurality of ventilation passages 40 among the heat transfer fins 30, and the heat transfer tubes are vertically adjacent to each other. The region located between 20 is the heat transfer unit 32 that exchanges heat with the air flowing in the direction indicated by the arrow W. Further, a region which is a part of the heat transfer fin 30 and is located on the windward end portion 301 side of the heat transfer fin 30 from the notch portion 31 is continuously formed from the upper end to the lower end of the heat transfer fin 30. It is a flowing water section (communication section) 33. When the heat exchanger 100 is configured as an evaporator, the water flow unit 33 forms a flow path through which the condensed water flows vertically downward.

伝熱フィン30の各伝熱部32は、YZ平面に平行な平坦面であるとともに、各伝熱部32には、空気の流れ方向(Z軸方向)に沿って配列された複数のルーバを含むルーバ部50が設けられている。ルーバ部50は前縁効果により伝熱フィン30の伝熱を促進する。さらに、ルーバ部50は、伝熱部32を挟んで隣接する一方の通風路40から他方の通風路40へ空気を導くもので、伝熱部32の一部をX軸方向に切り起こして伝熱部に対して斜めに傾斜するように形成される。 Each heat transfer portion 32 of the heat transfer fin 30 is a flat surface parallel to the YZ plane, and each heat transfer portion 32 has a plurality of louvers arranged along the air flow direction (Z-axis direction). A louver portion 50 including the louver portion 50 is provided. The louver portion 50 promotes heat transfer of the heat transfer fin 30 by the leading edge effect. Further, the louver portion 50 guides air from one ventilation passage 40 adjacent to the heat transfer portion 32 to the other ventilation passage 40, and a part of the heat transfer portion 32 is cut up and transferred in the X-axis direction. It is formed so as to be inclined diagonally with respect to the heat portion.

伝熱フィン30はさらに、隣り合う伝熱フィン30の配列間隔を調整する複数のタブを有する。複数のタブは、流水部33に設けられた第1タブ61と、伝熱部32に設けられた第2タブ62とを有し、これらは流水部33及び伝熱部32の所定部位を垂直方向(図2においてX軸方向)に切り起こして形成される。第1タブ61と第2タブ62は、伝熱フィン30の長手方向に沿って適当な位置に複数設けられる。特に、第2タブ62は、ルーバ部50よりも伝熱フィン30の風下側端部302側に設けられる。第1タブ61の形成位置は特に限定されず、本実施形態では、ルーバ部50を挟んで第2タブ62とZ軸方向に対向する位置に設けられる。 The heat transfer fins 30 further have a plurality of tabs for adjusting the arrangement spacing of the adjacent heat transfer fins 30. The plurality of tabs have a first tab 61 provided in the water flow unit 33 and a second tab 62 provided in the heat transfer unit 32, and these have vertical portions of the water flow unit 33 and the heat transfer unit 32. It is formed by cutting up in the direction (X-axis direction in FIG. 2). A plurality of first tabs 61 and second tabs 62 are provided at appropriate positions along the longitudinal direction of the heat transfer fins 30. In particular, the second tab 62 is provided on the leeward end 302 side of the heat transfer fin 30 with respect to the louver portion 50. The forming position of the first tab 61 is not particularly limited, and in the present embodiment, the first tab 61 is provided at a position facing the second tab 62 in the Z-axis direction with the louver portion 50 interposed therebetween.

[ルーバ部]
以下、ルーバ部50の詳細について説明する。
図3は、図2におけるB-B線方向断面図、図4は、ルーバ部50の形態を示す斜視図である。
[Louver part]
Hereinafter, the details of the louver portion 50 will be described.
FIG. 3 is a cross-sectional view taken along the line BB in FIG. 2, and FIG. 4 is a perspective view showing the form of the louver portion 50.

ルーバ部50は、伝熱部32を斜めに貫通するスリット状の複数の開口部50wを含む。本実施形態においてルーバ部50は、第1ルーバ51、第2ルーバ52、第3ルーバ53、第4ルーバ54、第5ルーバ55及び第6ルーバ56の6つのルーバを含み、これらがその順番で伝熱フィン30の風上側端部301(第1の端部)から風下側端部302(第2の端部)に向かって配置される。ルーバの数は勿論これに限られず、伝熱部32の大きさ等に応じて任意に設定可能である。 The louver portion 50 includes a plurality of slit-shaped openings 50w that diagonally penetrate the heat transfer portion 32. In the present embodiment, the louver portion 50 includes six louvers of a first louver 51, a second louver 52, a third louver 53, a fourth louver 54, a fifth louver 55, and a sixth louver 56, and these are in that order. The heat transfer fins 30 are arranged from the windward end 301 (first end) to the leeward end 302 (second end). Of course, the number of louvers is not limited to this, and can be arbitrarily set according to the size of the heat transfer unit 32 and the like.

第1ルーバ51~第6ルーバ56は、伝熱フィン30の長手方向(Y軸方向)に平行な方向を幅方向とする概略矩形状を有するとともに、図3に示すように伝熱部32の一方の主面32aあるいは他方の主面32b側に、Y軸方向に平行な軸まわりに切り起こして形成される。図示の例では、第1ルーバ51は他方の主面32b側に、第2ルーバ52~第5ルーバ55については風上側が一方の主面32a側、風下側が他方の主面32b側に、そして、第6ルーバ56は一方の主面32a側に、それぞれ切り起こされる。 The first louver 51 to the sixth louver 56 have a substantially rectangular shape whose width direction is parallel to the longitudinal direction (Y-axis direction) of the heat transfer fin 30, and the heat transfer portion 32 has a heat transfer portion 32 as shown in FIG. It is formed by cutting up on one main surface 32a or the other main surface 32b side around an axis parallel to the Y-axis direction. In the illustrated example, the first louver 51 is on the other main surface 32b side, and for the second louvers 52 to the fifth louver 55, the windward side is on one main surface 32a side, the leeward side is on the other main surface 32b side, and , The sixth louver 56 is cut up on one main surface 32a side, respectively.

第1ルーバ51~第6ルーバ56は、図2に示すようにそれぞれ同一の幅(Lw)で形成されるとともに、図3に示すように伝熱部31に対して一定の高さ(H)で切り起こされる。一定の高さとは、伝熱部32に対する各ルーバ51~56の切り起こし高さが実質的に同一の高さであることを意味し、完全に同一である場合に限られず、製造誤差などのばらつきが含まれてもよい。 The first louver 51 to the sixth louver 56 are formed to have the same width (Lw) as shown in FIG. 2, and have a constant height (H) with respect to the heat transfer portion 31 as shown in FIG. It is cut up by. The constant height means that the cut-up heights of the louvers 51 to 56 with respect to the heat transfer portion 32 are substantially the same height, and the height is not limited to the case where they are completely the same. Variations may be included.

また、伝熱部32に対する第1ルーバ51~第6ルーバ56の切り起こし角度は、図3に示すように、その順で(風上側端部301側から風下側端部302側に向かって)徐々に小さくなるようになっており、また、第1ルーバ51~第6ルーバ56の長さ(幅方向に直交する方向の大きさ)が徐々に大きくなっている。各ルーバ51~56の切り起こし角度は特に限定されず、必要とされる伝熱性能に応じて適宜設定され、例えば、0°を超えて90°以下の範囲で任意に設定可能である。 Further, as shown in FIG. 3, the cutting angles of the first louver 51 to the sixth louver 56 with respect to the heat transfer portion 32 are in that order (from the windward end portion 301 side to the leeward side end portion 302 side). The length of the first louver 51 to the sixth louver 56 (the size in the direction orthogonal to the width direction) is gradually increased. The cutting angle of each louver 51 to 56 is not particularly limited, and is appropriately set according to the required heat transfer performance, and can be arbitrarily set, for example, in the range of more than 0 ° and 90 ° or less.

さらに本実施形態では、第1ルーバ51~第6ルーバ56が近接して配置される。その結果、第1ルーバ51~第6ルーバ56の配列ピッチP1~P6は、その順で(風上側端部301側から風下側端部302側に向かって)徐々に大きくなるように設定される。 Further, in the present embodiment, the first louver 51 to the sixth louver 56 are arranged in close proximity to each other. As a result, the arrangement pitches P1 to P6 of the first louver 51 to the sixth louver 56 are set to gradually increase in that order (from the windward end 301 side to the leeward end 302 side). ..

[熱交換器の作用]
以上のように構成される本実施形態の熱交換器100は、図示しない送風ファンによって伝熱フィン30の風上側端部301から風下側端部302の方向に空気が流される。送風ファンにより流された空気は、複数の伝熱管20及び伝熱フィン30により区画された複数の通風路40を通過し、各伝熱フィン30の伝熱部32を介して流路21を流れる冷媒との間で熱交換を行う。これにより、熱交換器100が凝縮器の場合は伝熱管20の流路21を流れる冷媒を凝縮させ、熱交換器100が蒸発器の場合は伝熱管20の流路21を流れる冷媒を蒸発させる。
[Action of heat exchanger]
In the heat exchanger 100 of the present embodiment configured as described above, air is flowed from the windward end portion 301 of the heat transfer fin 30 toward the leeward side end portion 302 by a blower fan (not shown). The air flowed by the blower fan passes through the plurality of ventilation passages 40 partitioned by the plurality of heat transfer tubes 20 and the heat transfer fins 30, and flows through the flow path 21 through the heat transfer portion 32 of each heat transfer fin 30. Heat exchange with the refrigerant. As a result, when the heat exchanger 100 is a condenser, the refrigerant flowing through the flow path 21 of the heat transfer tube 20 is condensed, and when the heat exchanger 100 is an evaporator, the refrigerant flowing through the flow path 21 of the heat transfer tube 20 is evaporated. ..

空気調和機の送風ファンから送出される空気の流速は、例えば車両用途の熱交換器(例えば、ラジエータ)などに比べて比較的遅く、伝熱フィン30の風上側端部301から通風路40へ進入した空気は、風下側端部302に向かって伝熱部32の表面に平行に流れる。通風路40内の空気の一部は、図3において矢印で示すように第1ルーバ51~第6ルーバ56間に流れ込み、伝熱部32の一方の主面32aにより区画される通風路40から他方の主面32bにより区画される通風路40へ導かれることで、伝熱部32の一方の主面32a及び他方の主面32bと空気との間で熱伝達が行われる。 The flow velocity of the air sent from the blower fan of the air conditioner is relatively slower than that of, for example, a heat exchanger (for example, a radiator) for a vehicle, and the heat transfer fin 30 is sent from the wind upper end 301 to the ventilation passage 40. The invading air flows parallel to the surface of the heat transfer portion 32 toward the leeward end portion 302. A part of the air in the ventilation passage 40 flows between the first louver 51 and the sixth louver 56 as shown by an arrow in FIG. 3, and is separated from the ventilation passage 40 partitioned by one main surface 32a of the heat transfer portion 32. By being guided to the ventilation passage 40 partitioned by the other main surface 32b, heat transfer is performed between one main surface 32a of the heat transfer unit 32 and the other main surface 32b and the air.

本実施形態によれば、ルーバ部50を構成する第1ルーバ51~第6ルーバ56が伝熱部32に対して一定の高さで形成されているため、ルーバの切り起こし高さが異なる従来のフィン構造と比較して、各ルーバ間に均等に空気を流入させることができる。これにより、伝熱部32全体としての伝熱性能が向上し、前述のとおり、流速が比較的遅い場合でも所望とする伝熱性能を確保することができる。 According to the present embodiment, since the first louver 51 to the sixth louver 56 constituting the louver portion 50 are formed at a constant height with respect to the heat transfer portion 32, the cut-up heights of the louvers are different from the conventional ones. Compared to the fin structure of, air can flow evenly between each louver. As a result, the heat transfer performance of the heat transfer unit 32 as a whole is improved, and as described above, the desired heat transfer performance can be ensured even when the flow velocity is relatively slow.

さらに本実施形態によれば、ルーバ部50を構成する複数のルーバの切り起こし角度が風下側に向かって順次小さくなるように構成されているため、ルーバ部50の下流側に向かうに従って、空気の流れ角度が小さくなる(伝熱部32の表面に平行な方向に近づく)。その結果、下流側のルーバ間に流れる空気の量を増大させることができる。 Further, according to the present embodiment, since the cutting angle of the plurality of louvers constituting the louver portion 50 is configured to be sequentially reduced toward the leeward side, the air becomes more downstream toward the downstream side of the louver portion 50. The flow angle becomes smaller (closer to the direction parallel to the surface of the heat transfer unit 32). As a result, the amount of air flowing between the louvers on the downstream side can be increased.

そして本実施形態によれば、ルーバ部50が設けられていない伝熱部32の他方の主面32b側の比較的熱流束の小さい最下流端領域32E(図3参照)に空気が流れやすくなるため、当該領域における伝熱性能を向上させることができる。 According to the present embodiment, air easily flows to the most downstream end region 32E (see FIG. 3) where the heat flux is relatively small on the other main surface 32b side of the heat transfer portion 32 in which the louver portion 50 is not provided. Therefore, the heat transfer performance in the region can be improved.

以上のように本実施形態によれば、伝熱フィン30の各伝熱部の伝熱性能を高めることができる。これにより、空気の流速が比較的遅い冷凍空調用途の熱交換器に適用した場合でも熱交換性能に優れた熱交換器を提供することができる。
また、上述したルーバ部50の構成により、伝熱部32のほぼ全領域にわたって安定した伝熱性能を確保することができるため、同等の伝熱性能を有する従来の熱交換器よりも小型化、薄型化を図ることができる。
As described above, according to the present embodiment, the heat transfer performance of each heat transfer portion of the heat transfer fin 30 can be enhanced. This makes it possible to provide a heat exchanger having excellent heat exchange performance even when applied to a heat exchanger for refrigerating and air-conditioning applications in which the flow velocity of air is relatively slow.
Further, due to the configuration of the louver portion 50 described above, stable heat transfer performance can be ensured over almost the entire region of the heat transfer portion 32, so that the size is smaller than that of the conventional heat exchanger having the same heat transfer performance. It is possible to reduce the thickness.

以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made.

例えば以上の実施形態では、伝熱フィンが板状フィンである場合を例に挙げて説明したが、これに限られず、伝熱フィンがコルゲートフィンである場合にも本発明は適用可能である。また、以上の実施形態ではパラレルフロー型熱交換器を例に挙げて説明したが、これに限られず、円管とフィンで形成されるフィンチューブ熱交換器、プレートフィン熱交換器などにも本発明は適用可能である。 For example, in the above embodiment, the case where the heat transfer fin is a plate-shaped fin has been described as an example, but the present invention is not limited to this, and the present invention can be applied even when the heat transfer fin is a corrugated fin. Further, in the above embodiment, the parallel flow type heat exchanger has been described as an example, but the present invention is not limited to this, and the present invention also applies to fin tube heat exchangers formed by circular tubes and fins, plate fin heat exchangers, and the like. The invention is applicable.

また以上の実施形態では、ルーバ部50を構成する各ルーバ51~56の切り起こし角度がそれぞれ異なるように形成されたが、これに限られず、複数のルーバのうち切り起こし角度及び高さが同一のルーバが複数連続して配置されてもよい。 Further, in the above embodiment, the louvers 51 to 56 constituting the louver portion 50 are formed so that the cut-up angles are different, but the cut-up angle and the height are the same among the plurality of louvers. A plurality of louvers may be arranged consecutively.

20…伝熱管
21…流路
30…伝熱フィン
32…伝熱部
40…通風路
50…ルーバ部
51~56…ルーバ
61,62…タブ
100…熱交換器
20 ... Heat transfer tube 21 ... Flow path 30 ... Heat transfer fin 32 ... Heat transfer section 40 ... Ventilation path 50 ... Louver section 51-56 ... Louver 61, 62 ... Tab 100 ... Heat exchanger

Claims (3)

第1の軸方向に沿って冷媒が流れる流路を有し、前記第1の軸方向と直交する第2の軸方向に配列された複数の伝熱管と、
前記第1の軸方向に配列され、前記複数の伝熱管と接合された複数の伝熱フィンと
を具備し、
前記複数の伝熱フィンは、前記複数の伝熱管の間に位置し流体が通過する通風路を形成する伝熱部と、前記伝熱部に設けられ前記第1の軸方向及び前記第2の軸方向に直交する第3の軸方向に配列された複数のルーバを含むルーバ部とをそれぞれ有し、
前記複数のルーバは、前記伝熱部に対して一定の高さを有し、
前記伝熱部に対する前記複数のルーバの切り起こし角度は、前記第3の軸方向の一端側から他端側に向かって徐々に小さくなる
熱交換器。
A plurality of heat transfer tubes having a flow path through which the refrigerant flows along the first axial direction and arranged in the second axial direction orthogonal to the first axial direction,
A plurality of heat transfer fins arranged in the first axial direction and joined to the plurality of heat transfer tubes are provided.
The plurality of heat transfer fins have a heat transfer portion located between the plurality of heat transfer tubes and forming a ventilation path through which a fluid passes, and the heat transfer portion provided in the first axial direction and the second. Each has a louver portion including a plurality of louvers arranged in a third axial direction orthogonal to the axial direction.
The plurality of louvers have a certain height with respect to the heat transfer portion, and the plurality of louvers have a certain height.
A heat exchanger in which the cutting angle of the plurality of louvers with respect to the heat transfer portion gradually decreases from one end side to the other end side in the third axial direction.
請求項1に記載の熱交換器であって、
前記複数のルーバの配列ピッチは、前記一端側から前記他端側に向かって徐々に大きくなる
熱交換器。
The heat exchanger according to claim 1.
A heat exchanger in which the arrangement pitch of the plurality of louvers gradually increases from the one end side toward the other end side.
請求項1又は2に記載の熱交換器であって、
前記複数の伝熱フィンは、前記複数の伝熱フィンの配列間隔を調整する複数のタブを有する板状フィンで構成され、
前記複数のタブの一部は、前記ルーバ部よりも前記第3の軸方向の他端側に設けられる
熱交換器。
The heat exchanger according to claim 1 or 2.
The plurality of heat transfer fins are composed of plate-shaped fins having a plurality of tabs for adjusting the arrangement spacing of the plurality of heat transfer fins.
A part of the plurality of tabs is a heat exchanger provided on the other end side in the third axial direction with respect to the louver portion.
JP2018033604A 2018-02-27 2018-02-27 Heat exchanger Active JP7006376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018033604A JP7006376B2 (en) 2018-02-27 2018-02-27 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018033604A JP7006376B2 (en) 2018-02-27 2018-02-27 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2019148375A JP2019148375A (en) 2019-09-05
JP7006376B2 true JP7006376B2 (en) 2022-02-10

Family

ID=67849653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018033604A Active JP7006376B2 (en) 2018-02-27 2018-02-27 Heat exchanger

Country Status (1)

Country Link
JP (1) JP7006376B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154501A (en) 2011-01-21 2012-08-16 Daikin Industries Ltd Heat exchanger and air conditioner
JP2012237538A (en) 2011-05-13 2012-12-06 Daikin Industries Ltd Heat exchanger
JP2013195024A (en) 2012-03-22 2013-09-30 Denso Corp Fin for heat exchanger, and heat exchanger
JP2017048948A (en) 2015-08-31 2017-03-09 株式会社ティラド Corrugated fin type heat exchanger core

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015059U (en) * 1973-06-02 1975-02-17

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154501A (en) 2011-01-21 2012-08-16 Daikin Industries Ltd Heat exchanger and air conditioner
JP2012237538A (en) 2011-05-13 2012-12-06 Daikin Industries Ltd Heat exchanger
JP2013195024A (en) 2012-03-22 2013-09-30 Denso Corp Fin for heat exchanger, and heat exchanger
JP2017048948A (en) 2015-08-31 2017-03-09 株式会社ティラド Corrugated fin type heat exchanger core

Also Published As

Publication number Publication date
JP2019148375A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
EP2857785B1 (en) Heat exchanger and air conditioner
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
US20120103583A1 (en) Heat exchanger and fin for the same
JP2006322698A (en) Heat exchanger
JP6011481B2 (en) Heat exchanger fins
JP2011043322A (en) Heat exchanger
JP2015017776A5 (en)
JP6553981B2 (en) Heat exchange equipment for heat pump equipment
JP6120978B2 (en) Heat exchanger and air conditioner using the same
JP2015017738A (en) Heat exchanger
EP2447660A2 (en) Heat Exchanger and Micro-Channel Tube Thereof
JP6425829B2 (en) Heat exchanger and refrigeration cycle device
KR20060012303A (en) Heat exchanger fin, heat exchanger, condensers, and evaporators
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
WO2022220159A1 (en) Heat exchanger
JP7006376B2 (en) Heat exchanger
EP3550247B1 (en) Heat exchanger and air conditioner
JP2016121838A (en) Heat exchanger
JP2009162433A (en) Heat transfer member
JP7155538B2 (en) Heat exchanger
JP5569410B2 (en) Heat exchanger tubes and heat exchangers
JP6509593B2 (en) Finned tube heat exchanger
JP5589860B2 (en) Heat exchanger
JP2005003350A (en) Heat exchanger fin, heat exchanger, condenser and evaporator
CN114322105B (en) Heat exchanger and air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R151 Written notification of patent or utility model registration

Ref document number: 7006376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151