JPH07190661A - Heat exchanger - Google Patents
Heat exchangerInfo
- Publication number
- JPH07190661A JPH07190661A JP33139193A JP33139193A JPH07190661A JP H07190661 A JPH07190661 A JP H07190661A JP 33139193 A JP33139193 A JP 33139193A JP 33139193 A JP33139193 A JP 33139193A JP H07190661 A JPH07190661 A JP H07190661A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- tube
- heat exchange
- fins
- flat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- 230000005494 condensation Effects 0.000 description 10
- 238000009833 condensation Methods 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 238000005219 brazing Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05383—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F17/00—Removing ice or water from heat-exchange apparatus
- F28F17/005—Means for draining condensates from heat exchangers, e.g. from evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2215/00—Fins
- F28F2215/12—Fins with U-shaped slots for laterally inserting conduits
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
(57)【要約】
【構成】 偏平チューブ(1)が上下方向に向けられて
配置されている。該偏平チューブ(1)の両側平面部に
は、長さ方向に延びる凹条(7)が形成されている。そ
して、この凹条(7)により、チューブ(1)とコルゲ
ートフィン(3)との間に排水部(8)が形成されてい
る。
【効果】 蒸発器として用いた場合に、結露水が排水部
(8)を通じて熱交換器コアからスムーズに排出され、
高い熱交換性能が実現される。
(57) [Summary] [Structure] The flat tube (1) is arranged so as to be oriented vertically. A concave strip (7) extending in the lengthwise direction is formed on both flat portions of the flat tube (1). A drainage section (8) is formed between the tube (1) and the corrugated fins (3) by the groove (7). [Effect] When used as an evaporator, condensed water is smoothly discharged from the heat exchanger core through the drainage section (8),
High heat exchange performance is realized.
Description
【0001】[0001]
【産業上の利用分野】この発明は、蒸発器として、或い
は蒸発器と凝縮器との間で切り替えられる兼用タイプの
熱交換器として、エアコン等に用いられる、アルミニウ
ム等の金属製熱交換器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger made of metal such as aluminum used for an air conditioner or the like as an evaporator or a combined heat exchanger that can be switched between an evaporator and a condenser. .
【0002】[0002]
【従来の技術及び課題】近時、凝縮器として、第9図に
示されるように、多数本の偏平チューブ(51)が、水平
方向に向けられて、上下方向に並列状態に配置され、か
つこれらのチューブ(51)の両端に左右一対の中空ヘッ
ダー(52)(52)が連通状態に接続された、いわゆるマ
ルチフロータイプ、或いはパラレルフロータイプと称さ
れる熱交換器が、低圧力損失、高熱交換性能、超コンパ
クト化を実現しうるものとして、好んで使用される傾向
にある。なお、(53)はコルゲートフィン、(54)(5
5)は配管接続管部である。2. Description of the Related Art Recently, as a condenser, as shown in FIG. 9, a large number of flat tubes (51) are oriented horizontally and arranged in parallel in the vertical direction, and A heat exchanger called a so-called multi-flow type or parallel-flow type, in which a pair of left and right hollow headers (52) (52) are connected to both ends of these tubes (51) in a communicating state, has a low pressure loss, It tends to be used favorably because it can realize high heat exchange performance and ultra compactness. In addition, (53) is a corrugated fin, (54) (5
5) is a pipe connection pipe part.
【0003】そして、最近、このマルチフロータイプの
熱交換器を、蒸発器にも適用することが種々試みられて
いる。Recently, various attempts have been made to apply the multi-flow type heat exchanger to an evaporator.
【0004】しかしながら、蒸発器には、凝縮器と異な
り、結露水を生じるという厄介な問題があり、上記のマ
ルチフロー熱交換器をそのまま蒸発器に適用した場合、
チューブ(51)が水平状態に配置されていることによ
り、熱交換中にコア部に生じた結露水の多くが排出され
ず、熱交換中、コア部に多量の水が滞溜して、通風抵抗
を増加させ、かつ熱伝達性能を低下させてしまうという
不具合を生じる。However, unlike the condenser, the evaporator has a troublesome problem that condensed water is generated, and when the above-mentioned multi-flow heat exchanger is directly applied to the evaporator,
Due to the horizontal arrangement of the tube (51), most of the dew condensation water generated in the core during heat exchange is not discharged, and a large amount of water accumulates in the core during heat exchange, creating ventilation. This causes a problem that resistance is increased and heat transfer performance is deteriorated.
【0005】そこで、第7図に示されるように、ヘッダ
ー(2)(2)を上下に配置して、チューブ(1)を上
下方向に向けた構成とすることが考えられる。このよう
な構成により、確かに、結露水の排出性能は、第9図に
示される熱交換器の場合よりも改善される。Therefore, as shown in FIG. 7, it is conceivable to arrange the headers (2) and (2) vertically so that the tube (1) is oriented vertically. With such a configuration, the drainage performance of the condensed water is certainly improved as compared with the case of the heat exchanger shown in FIG.
【0006】しかし、この場合、結露水の流下がコルゲ
ートフィン(3)によって妨げられることになり、スム
ーズな排水がなされにくく、熱交換効率の面で、依然と
して万全とはいい難い。In this case, however, the flow of dew condensation water is obstructed by the corrugated fins (3), smooth drainage is difficult to be performed, and heat exchange efficiency is still unsatisfactory.
【0007】この発明は、上記のような従来の欠点に鑑
み、蒸発器として機能させる場合に、熱交換器コア部に
おける結露水の排出性能を大幅に向上し、効率よい熱交
換を実現することができる熱交換器を提供することを目
的とする。In view of the above-mentioned conventional drawbacks, the present invention significantly improves the performance of discharging condensed water in the core portion of the heat exchanger and realizes efficient heat exchange when it functions as an evaporator. It aims at providing the heat exchanger which can be.
【0008】[0008]
【課題を解決するための手段】上記目的において、この
発明は、複数の偏平状熱交換管部が、上下方向に向けら
れて、左右方向に並列状態に配置されると共に、該熱交
換管部間にフィンが配置された熱交換器において、前記
熱交換管部のフィン側平面部に、結露水を熱交換管部と
フィンとの間から下方に流下せしめる排水部を形成する
凹部が設けられてなることを特徴とする熱交換器を要旨
とする。To achieve the above object, according to the present invention, a plurality of flat heat exchange tube portions are oriented vertically and are arranged in parallel in the left and right directions, and the heat exchange tube portions are arranged in parallel. In the heat exchanger in which the fins are arranged between the heat exchange pipes, the fin-side flat surface is provided with a concave portion that forms a drainage portion that allows the condensed water to flow downward from between the heat exchange pipes and the fins. The gist is a heat exchanger characterized by the following.
【0009】[0009]
【作用】上記構成では、熱交換管部が上下方向に向けら
れていることにより、結露水の排出が、熱交換管部によ
って妨げられることがない。しかも、熱交換管部のフィ
ン側平面部に、結露水を熱交換管部とフィンとの間から
下方に流下せしめる排水部を形成する凹部が設けられて
いることにより、結露水は、該排水部を通じて流下し、
結露水の排出が、フィンによって妨げられることもな
い。従って、結露水の流下がスムーズで、高い結露水排
出性能が実現される。In the above structure, since the heat exchange pipe portion is oriented in the vertical direction, the drainage of the condensed water is not obstructed by the heat exchange pipe portion. In addition, the fin-side flat surface portion of the heat exchange pipe portion is provided with a recess that forms a drainage portion that allows the condensed water to flow downward from between the heat exchange pipe portion and the fins. Flowing through the department,
The drainage of condensed water is not blocked by the fins. Therefore, the dew condensation water flows smoothly, and high dew condensation water discharge performance is realized.
【0010】[0010]
【実施例】次に、この発明をマルチフロータイプのアル
ミニウム製蒸発器に適用した実施例を説明する。EXAMPLES Next, examples in which the present invention is applied to a multi-flow type aluminum evaporator will be described.
【0011】なお、本発明は、偏平チューブ材を蛇行状
に曲成して熱交換器コアを形成した、いわゆるサーペン
タインタイプの熱交換器にも適用され得るものである。
また、蒸発器専用の熱交換器として用いられるものに限
らず、切替えにより蒸発器とも凝縮器ともなる兼用タイ
プの熱交換器にも適用され得る。The present invention can also be applied to a so-called serpentine type heat exchanger in which a flat tube material is bent in a meandering shape to form a heat exchanger core.
Further, the heat exchanger is not limited to being used as a heat exchanger dedicated to the evaporator, but may be applied to a heat exchanger of a combined type that functions as an evaporator and a condenser by switching.
【0012】第7図(イ)(ロ)に示されるマルチフロ
ー蒸発器において、(1)は偏平チューブ、(2)
(2)は筒状中空ヘッダー、(3)はコルゲートフィン
である。なお、(4)は冷媒入口管、(5)は同出口管
である。In the multiflow evaporator shown in FIGS. 7 (a) and 7 (b), (1) is a flat tube, and (2).
(2) is a tubular hollow header, and (3) is a corrugated fin. In addition, (4) is a refrigerant inlet pipe, and (5) is the same outlet pipe.
【0013】中空ヘッダー(2)は、片面又は両面にろ
う材層がクラッドされたアルミニウムブレージングシー
トを用い、これを第3図に示されるように、パイプ状に
成形してその両側縁部同士を突合わせ状態となした円筒
状のヘッダーパイプ(2a)からなり、その両端開口がア
ルミニウム製のヘッダーキャップ(2b)にて塞がれたも
のとなされている。なお、パイプ(2a)の突き合わせ両
側縁部等は、熱交換器構成部材相互の一括ろう付けの際
に接合される。また、ヘッダー(2)の周側壁には、チ
ューブ(1)の端部を挿入するチューブ挿入孔(2c)が
形成されている。なお、ヘッダーとしては、押出型材、
電縫管が使用されることもある。The hollow header (2) uses an aluminum brazing sheet in which a brazing material layer is clad on one or both sides, and this is molded into a pipe shape as shown in FIG. It is composed of a cylindrical header pipe (2a) in a butt state, and both ends of the header pipe are closed by a header cap (2b) made of aluminum. Both butted edges of the pipe (2a) are joined together during collective brazing of the heat exchanger constituent members. Further, a tube insertion hole (2c) into which the end of the tube (1) is inserted is formed on the peripheral side wall of the header (2). As the header, extruded mold material,
ERW pipe may be used.
【0014】コルゲートフィン(3)は、チューブ
(1)の幅と略同じ幅のアルミニウムブレージングシー
トを、その長さ方向に向けてコルゲート状に屈曲成形し
て形成されたものである。The corrugated fin (3) is formed by bending an aluminum brazing sheet having a width substantially the same as the width of the tube (1) in a corrugated shape in the length direction thereof.
【0015】偏平チューブ(1)は、押出型材によるも
ので、第1図ないし第4図に示されるように、内部が仕
切壁(1a)により複数の室に区画され、伝熱性能、耐圧
性能が高められた、いわゆるハモニカチューブによる。The flat tube (1) is made of an extruded mold material. As shown in FIGS. 1 to 4, the inside is divided into a plurality of chambers by a partition wall (1a), and heat transfer performance and pressure resistance performance are obtained. It is due to the so-called harmonica tube that has been improved.
【0016】そして、第1図ないし第3図に示されるよ
うに、この偏平チューブ(1)の両側平面部、即ちコル
ゲートフィン(3)が隣接状態に配置される両側平面部
には、長さ方向に延びる排水用の凹条(7)が形成され
ている。この凹条(7)はチューブ(1)の幅方向にお
ける内部仕切り壁(1a)の位置に対応して形成されてい
る。なお、第5図に示されるように、凹条(7)は、仕
切り壁(1a)の位置と位相を異にして形成されたものと
なされる場合もある。また、この凹条(7)は、第4図
(イ)にされるように、チューブ(1)の端部を除く範
囲において形成されている。これは、該端部はヘッダー
(2)のチューブ挿入孔(2c)に挿入された状態でヘッ
ダー(2)にろう付けされるものであるため、この凹条
(7)の端部がチューブ挿入孔(2a)内に入った状態で
ろう付けがなされると、チューブ(1)とヘッダー
(2)との間の気密性が阻害されることになるからであ
る。As shown in FIGS. 1 to 3, the flat tube (1) has flat surfaces on both sides, that is, flat surfaces on both sides where the corrugated fins (3) are arranged adjacent to each other. A drainage groove (7) extending in the direction is formed. The groove (7) is formed in correspondence with the position of the inner partition wall (1a) in the width direction of the tube (1). In addition, as shown in FIG. 5, the recessed line (7) may be formed to be out of phase with the position of the partition wall (1a). Further, the recessed line (7) is formed in a range excluding the end portion of the tube (1) as shown in FIG. This is because the end is brazed to the header (2) while being inserted into the tube insertion hole (2c) of the header (2), so that the end of the groove (7) is inserted into the tube. This is because if brazing is performed in the hole (2a), the airtightness between the tube (1) and the header (2) will be hindered.
【0017】凹条(7)の形成は、例えば、第4図
(ロ)に示されるように、上下方向に変位駆動可能な上
下一対の溝付けロール(10)(10)からなる溝付け機を
用い、コイル状に捲回した押出型材製チューブ材(11)
をロール(10)(10)間に通しながら適時ロール(10)
(10)を上下に変位させ、そして、ロール(10)(10)
の前方所定位置に配置したカッター(12)にてチューブ
(1)に定尺切断していくことにより行いうる。The groove (7) is formed by, for example, as shown in FIG. 4 (b), a grooving machine consisting of a pair of upper and lower grooving rolls (10) (10) which can be displaced vertically. Tube material made of extruded material that is wound into a coil by using (11)
Roll between the rolls (10) (10) and roll (10)
Displace (10) up and down and roll (10) (10)
This can be performed by cutting the tube (1) to a fixed length with a cutter (12) arranged at a predetermined position in front of the tube.
【0018】また、第4図(ハ)に示されるように、チ
ューブ材(11)を上下の溝付け用プレス金型(13)(1
3)間に間欠送りしながら、該金型(13)(13)を接近
プレス駆動、離反駆動することによっても形成可能であ
る。Further, as shown in FIG. 4 (c), the tube material (11) is pressed into the upper and lower groove press dies (13) (1).
It can also be formed by driving the molds (13) and (13) close to each other while driving the molds (3) while intermittently feeding them.
【0019】なお、チューブ(1)としては電縫管が使
用されることもある。An electric resistance welded tube may be used as the tube (1).
【0020】そして、上記各熱交換器構成部材は、各チ
ューブ(1)が、上下方向に向けられた状態で左右方向
に並列状態に配置されると共に、チューブ挿入孔(2a)
内にチューブ(1)端部を挿入することによりヘッダー
(2)(2)がチューブ(1)の上下両端に組み付けら
れ、更にチューブ(1)間の間隙内にコルゲートフィン
(3)が挿入配置されて熱交換器組立体に組立てられ、
その状態でろう付け炉内に入れられて全体が一括ろう付
けにより接合一体化されて、熱交換器に製造される。こ
うして製造された熱交換器において、チューブ(1)と
コルゲートフィン(3)との間には、第1図及び第2図
に示されるように、凹条(7)による排水部(8)が形
成されたものとなる。In the above heat exchanger constituent members, the tubes (1) are arranged in parallel in the left-right direction with the tubes (1) oriented in the vertical direction, and the tube insertion holes (2a).
The headers (2) and (2) are assembled to the upper and lower ends of the tube (1) by inserting the ends of the tube (1), and the corrugated fins (3) are inserted and arranged in the gap between the tubes (1). Assembled into a heat exchanger assembly,
In that state, it is put into a brazing furnace, and the whole is joined and integrated by collective brazing to produce a heat exchanger. In the heat exchanger manufactured in this manner, a drainage section (8) formed by a groove (7) is provided between the tube (1) and the corrugated fin (3) as shown in FIGS. 1 and 2. It will be formed.
【0021】上記構成の蒸発器用熱交換器では、熱交換
中、チューブ(1)やコルゲートフィン(3)の表面に
付着した結露水は、コルゲートフィン(3)の平面板部
(3a)を伝って凹条(7)による排水部(8)に向か
い、該排水部(8)を通じて、熱交換器下方側へとスム
ーズに流下していく。従って、従来のような、結露水に
よる熱交換性能の大幅な低下を招くことがなく、効率よ
い熱交換が行われる。In the heat exchanger for evaporator having the above-mentioned structure, the dew condensation water adhering to the surfaces of the tube (1) and the corrugated fins (3) travels through the flat plate portion (3a) of the corrugated fins (3) during heat exchange. Toward the drainage part (8) by the concave line (7), and smoothly flows down to the lower side of the heat exchanger through the drainage part (8). Therefore, unlike the conventional case, the heat exchange performance due to the dew condensation water is not significantly reduced, and the heat exchange is efficiently performed.
【0022】また、結露水が氷結するような環境下での
使用においても、コア部に滞溜する結露水がわずかであ
ることによって、デフロストのための停止時間を短縮す
ることができる。Further, even when the dew condensation water is used in an environment where the dew condensation water is frozen, the amount of dew condensation water accumulated in the core portion is small, so that the stop time for defrosting can be shortened.
【0023】更に、このように、凹条(7)による排水
部(8)を形成したことにより、マルチフロータイプに
よる蒸発器の実用化も実現可能となる。Further, since the drainage section (8) is formed by the recessed line (7) as described above, it is possible to put the multi-flow type evaporator into practical use.
【0024】第6図に示される実施例は、偏平チューブ
(1)の両側平面部に、コルゲートフィン(3)の各屈
曲部(3b)の位置に対応してディンプル(15)が形成さ
れたものとなされている。このようなディンプル構成に
よってもチューブ(1)とコルゲートフィン(3)との
間に適正な排水部が形成され、結露水は下方にスムーズ
に排出されていく。In the embodiment shown in FIG. 6, dimples (15) are formed on the flat portions on both sides of the flat tube (1) at positions corresponding to the respective bent portions (3b) of the corrugated fins (3). Has been made. Even with such a dimple structure, an appropriate drainage portion is formed between the tube (1) and the corrugated fin (3), and the condensed water is smoothly discharged downward.
【0025】第8図に示される実施例は、熱交換器フィ
ンとして、コルゲートフィンに替え、プレートフィン
(16)を使用したもので、このようなプレートフィン型
熱交換器においても、チューブ(1)の凹条(7)によ
り、チューブ(1)とフィン(16)との間に適正な排水
部(8)が形成され、下方への良好な結露水排出が実現
される。The embodiment shown in FIG. 8 uses plate fins (16) instead of corrugated fins as the heat exchanger fins. Even in such a plate fin type heat exchanger, the tube (1 ), The proper drainage part (8) is formed between the tube (1) and the fin (16), and good drainage of condensed water to the lower side is realized.
【0026】[0026]
【発明の効果】上述の次第で、この発明の熱交換器は、
複数の偏平状熱交換管部が、上下方向に向けられて、左
右方向に並列状態に配置されると共に、該熱交換管部の
フィン側平面部に、結露水を熱交換管部とフィンとの間
から下方に流下せしめる排水部を形成する凹部が設けら
れたものであるから、この熱交換器を蒸発器として機能
させた場合に、結露水は熱交換器コア部を下方に向けて
スムーズに流下していき、そのため熱交換中のコア部に
滞溜する結露水が少なく、熱交換を効率良く遂行するこ
とができる。According to the above, the heat exchanger of the present invention is
A plurality of flat heat exchange pipe parts are oriented in the up-down direction and arranged in parallel in the left-right direction, and dew condensation water is provided on the fin-side flat surface part of the heat exchange pipe parts with the fins. Since there is a recess that forms a drainage part that allows water to flow downwards from between the gaps, when this heat exchanger functions as an evaporator, the condensed water will flow smoothly with the heat exchanger core part facing downward. As a result, the amount of condensed water that accumulates in the core during heat exchange is small, and heat exchange can be efficiently performed.
【図1】熱交換器のコア部の断面斜視図である。FIG. 1 is a cross-sectional perspective view of a core portion of a heat exchanger.
【図2】熱交換器コアの水平断面図である。FIG. 2 is a horizontal sectional view of a heat exchanger core.
【図3】ヘッダー、チューブ、フィンを分離状態で示す
断面斜視図である。FIG. 3 is a sectional perspective view showing a header, tubes, and fins in a separated state.
【図4】チューブの製造法を示すもので、図(イ)は製
造されたチューブの斜視図、図(ロ)は製造途上の状態
を示す側面図、図(ハ)は他の方法による製造途上の状
態を示す側面図である。FIG. 4 shows a manufacturing method of a tube, FIG. 4A is a perspective view of the manufactured tube, FIG. 4B is a side view showing a state in the middle of manufacturing, and FIG. 4C is a manufacturing method by another method. It is a side view which shows the state on the way.
【図5】他の実施例にかかる熱交換器コアの水平断面図
である。FIG. 5 is a horizontal sectional view of a heat exchanger core according to another embodiment.
【図6】更に他の実施例にかかる熱交換器コアを、チュ
ーブとフィンとを分離状態に示す斜視図である。FIG. 6 is a perspective view showing a heat exchanger core according to still another embodiment in which tubes and fins are separated.
【図7】熱交換器の全体構成を示すもので、図(イ)は
正面図、図(ロ)は側面図である。FIG. 7 is a diagram showing an overall configuration of a heat exchanger, wherein FIG. 7A is a front view and FIG. 7B is a side view.
【図8】更に他の実施例にかかる熱交換器を示すもの
で、図(イ)は断面斜視図、図(ロ)はチューブとフィ
ンとを分離状態に示す斜視図である。8A and 8B show a heat exchanger according to still another embodiment, wherein FIG. 8A is a sectional perspective view, and FIG. 8B is a perspective view showing a tube and fins in a separated state.
【図9】従来の熱交換器を示す全体正面図である。FIG. 9 is an overall front view showing a conventional heat exchanger.
1…偏平チューブ(熱交換管部) 3…コルゲートフィン(フィン) 7…凹条(凹部) 8…排水部 15…ディンプル(凹部) 16…プレートフィン(フィン) DESCRIPTION OF SYMBOLS 1 ... Flat tube (heat exchange tube part) 3 ... Corrugated fin (fin) 7 ... Recess (recess) 8 ... Drainage part 15 ... Dimple (recess) 16 ... Plate fin (fin)
フロントページの続き (72)発明者 吉永 信也 栃木県下都賀郡大平町富田800 株式会社 日立製作所栃木工場内 (72)発明者 小暮 博志 栃木県下都賀郡大平町富田800 株式会社 日立製作所栃木工場内 (72)発明者 星野 良一 大阪府堺市海山町6丁224番地 昭和アル ミニウム株式会社内 (72)発明者 若林 信弘 大阪府堺市海山町6丁224番地 昭和アル ミニウム株式会社内Front Page Continuation (72) Inventor Shinya Yoshinaga 800 Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Hitachi Co., Ltd. Tochigi Plant (72) Inventor Hiroshi Kogure 800 Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Hitachi Co., Ltd. Tochigi Plant (72) ) Inventor Ryoichi Hoshino 6-224 Kaiyamacho, Sakai City, Osaka Prefecture Showa Aluminum Co., Ltd. (72) Inventor Nobuhiro Wakabayashi 6-224 Kaiyamacho, Sakai City, Osaka Prefecture Showa Aluminum Co., Ltd.
Claims (1)
向けられて、左右方向に並列状態に配置されると共に、
該熱交換管部間にフィンが配置された熱交換器におい
て、前記熱交換管部のフィン側平面部に、結露水を熱交
換管部とフィンとの間から下方に流下せしめる排水部を
形成する凹部が設けられてなることを特徴とする熱交換
器。1. A plurality of flat heat exchange tube portions are oriented in the vertical direction and are arranged in parallel in the horizontal direction,
In the heat exchanger in which the fins are arranged between the heat exchange pipe parts, a drain part is formed on the fin-side flat surface part of the heat exchange pipe part for allowing the condensed water to flow downward between the heat exchange pipe parts and the fins. A heat exchanger, characterized in that it is provided with a recess.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33139193A JPH07190661A (en) | 1993-12-27 | 1993-12-27 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33139193A JPH07190661A (en) | 1993-12-27 | 1993-12-27 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07190661A true JPH07190661A (en) | 1995-07-28 |
Family
ID=18243176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33139193A Pending JPH07190661A (en) | 1993-12-27 | 1993-12-27 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07190661A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6932153B2 (en) * | 2002-08-22 | 2005-08-23 | Lg Electronics Inc. | Heat exchanger |
WO2005100901A1 (en) * | 2004-03-16 | 2005-10-27 | Valeo Systemes Thermiques | Heat exchanger tubes that promote the drainage of condensates |
JP2007271182A (en) * | 2006-03-31 | 2007-10-18 | Denso Corp | Heat exchanger |
JP2008039322A (en) * | 2006-08-08 | 2008-02-21 | Univ Of Tokyo | HEAT EXCHANGER AND HEAT EXCHANGE DEVICE HAVING THE SAME |
WO2008105760A3 (en) * | 2007-02-27 | 2008-12-31 | Carrier Corp | Multi-channel flat tube evaporator with improved condensate drainage |
US7677057B2 (en) | 2006-11-22 | 2010-03-16 | Johnson Controls Technology Company | Multichannel heat exchanger with dissimilar tube spacing |
JP2010139115A (en) * | 2008-12-10 | 2010-06-24 | Sharp Corp | Heat exchanger and heat exchanger unit |
US7802439B2 (en) | 2006-11-22 | 2010-09-28 | Johnson Controls Technology Company | Multichannel evaporator with flow mixing multichannel tubes |
JP2012067971A (en) * | 2010-09-24 | 2012-04-05 | Mitsubishi Electric Corp | Heat exchanger and apparatus |
US8234881B2 (en) | 2008-08-28 | 2012-08-07 | Johnson Controls Technology Company | Multichannel heat exchanger with dissimilar flow |
JP2012233680A (en) * | 2011-04-22 | 2012-11-29 | Mitsubishi Electric Corp | Fin tube heat exchanger, and refrigeration cycle apparatus |
DE112011101772T5 (en) | 2010-05-24 | 2013-03-07 | Sanden Corporation | Channel for a heat exchanger, heat exchanger and method for producing a channel for a heat exchanger |
JP2013257096A (en) * | 2012-06-13 | 2013-12-26 | Sanden Corp | Heat exchanger |
WO2014133394A1 (en) * | 2013-03-01 | 2014-09-04 | Norsk Hydro Asa | Multi port extrusion (mpe) design |
WO2015189990A1 (en) * | 2014-06-13 | 2015-12-17 | 三菱電機株式会社 | Heat exchanger |
WO2018008134A1 (en) | 2016-07-07 | 2018-01-11 | 三菱電機株式会社 | Heat exchanger |
JP2018044707A (en) * | 2016-09-14 | 2018-03-22 | 株式会社ケーヒン・サーマル・テクノロジー | Heat exchanger |
WO2020027007A1 (en) * | 2018-07-30 | 2020-02-06 | 株式会社ティラド | Heat exchanger core |
JP2020106228A (en) * | 2018-12-27 | 2020-07-09 | 三菱アルミニウム株式会社 | Flat multihole pipe |
WO2020253507A1 (en) * | 2019-06-18 | 2020-12-24 | 宁德时代新能源科技股份有限公司 | Temperature control assembly and battery pack |
US11498162B2 (en) | 2018-09-21 | 2022-11-15 | Johnson Controls Tyco IP Holdings LLP | Heat exchanger tube with flattened draining dimple |
-
1993
- 1993-12-27 JP JP33139193A patent/JPH07190661A/en active Pending
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6932153B2 (en) * | 2002-08-22 | 2005-08-23 | Lg Electronics Inc. | Heat exchanger |
WO2005100901A1 (en) * | 2004-03-16 | 2005-10-27 | Valeo Systemes Thermiques | Heat exchanger tubes that promote the drainage of condensates |
FR2867845A1 (en) * | 2004-03-16 | 2005-11-15 | Valeo Climatisation | HEAT EXCHANGER TUBES PROMOTING CONDENSATE DRAINAGE |
JP2007271182A (en) * | 2006-03-31 | 2007-10-18 | Denso Corp | Heat exchanger |
DE102007014409B4 (en) * | 2006-03-31 | 2020-02-27 | Denso Corporation | heat exchangers |
JP2008039322A (en) * | 2006-08-08 | 2008-02-21 | Univ Of Tokyo | HEAT EXCHANGER AND HEAT EXCHANGE DEVICE HAVING THE SAME |
US7677057B2 (en) | 2006-11-22 | 2010-03-16 | Johnson Controls Technology Company | Multichannel heat exchanger with dissimilar tube spacing |
US7757753B2 (en) | 2006-11-22 | 2010-07-20 | Johnson Controls Technology Company | Multichannel heat exchanger with dissimilar multichannel tubes |
US7802439B2 (en) | 2006-11-22 | 2010-09-28 | Johnson Controls Technology Company | Multichannel evaporator with flow mixing multichannel tubes |
US7832231B2 (en) | 2006-11-22 | 2010-11-16 | Johnson Controls Technology Company | Multichannel evaporator with flow separating manifold |
US7895860B2 (en) | 2006-11-22 | 2011-03-01 | Johnson Controls Technology Company | Multichannel evaporator with flow mixing manifold |
US7980094B2 (en) | 2006-11-22 | 2011-07-19 | Johnson Controls Technology Company | Multichannel heat exchanger with dissimilar tube spacing |
US20100012307A1 (en) * | 2007-02-27 | 2010-01-21 | Carrier Corporation | Multi-channel flat tube evaporator with improved condensate drainage |
WO2008105760A3 (en) * | 2007-02-27 | 2008-12-31 | Carrier Corp | Multi-channel flat tube evaporator with improved condensate drainage |
US8307669B2 (en) | 2007-02-27 | 2012-11-13 | Carrier Corporation | Multi-channel flat tube evaporator with improved condensate drainage |
US8938988B2 (en) | 2008-08-28 | 2015-01-27 | Johnson Controls Technology Company | Multichannel heat exchanger with dissimilar flow |
US8234881B2 (en) | 2008-08-28 | 2012-08-07 | Johnson Controls Technology Company | Multichannel heat exchanger with dissimilar flow |
JP2010139115A (en) * | 2008-12-10 | 2010-06-24 | Sharp Corp | Heat exchanger and heat exchanger unit |
DE112011101772T5 (en) | 2010-05-24 | 2013-03-07 | Sanden Corporation | Channel for a heat exchanger, heat exchanger and method for producing a channel for a heat exchanger |
JP2012067971A (en) * | 2010-09-24 | 2012-04-05 | Mitsubishi Electric Corp | Heat exchanger and apparatus |
JP2012233680A (en) * | 2011-04-22 | 2012-11-29 | Mitsubishi Electric Corp | Fin tube heat exchanger, and refrigeration cycle apparatus |
JP2013257096A (en) * | 2012-06-13 | 2013-12-26 | Sanden Corp | Heat exchanger |
WO2014133394A1 (en) * | 2013-03-01 | 2014-09-04 | Norsk Hydro Asa | Multi port extrusion (mpe) design |
WO2015189990A1 (en) * | 2014-06-13 | 2015-12-17 | 三菱電機株式会社 | Heat exchanger |
JPWO2015189990A1 (en) * | 2014-06-13 | 2017-04-20 | 三菱電機株式会社 | Heat exchanger |
WO2018008134A1 (en) | 2016-07-07 | 2018-01-11 | 三菱電機株式会社 | Heat exchanger |
JP2018044707A (en) * | 2016-09-14 | 2018-03-22 | 株式会社ケーヒン・サーマル・テクノロジー | Heat exchanger |
WO2020027007A1 (en) * | 2018-07-30 | 2020-02-06 | 株式会社ティラド | Heat exchanger core |
JPWO2020027007A1 (en) * | 2018-07-30 | 2021-08-02 | 株式会社ティラド | Heat exchanger core |
US11498162B2 (en) | 2018-09-21 | 2022-11-15 | Johnson Controls Tyco IP Holdings LLP | Heat exchanger tube with flattened draining dimple |
JP2020106228A (en) * | 2018-12-27 | 2020-07-09 | 三菱アルミニウム株式会社 | Flat multihole pipe |
WO2020253507A1 (en) * | 2019-06-18 | 2020-12-24 | 宁德时代新能源科技股份有限公司 | Temperature control assembly and battery pack |
JP2022537098A (en) * | 2019-06-18 | 2022-08-24 | 寧徳時代新能源科技股▲分▼有限公司 | Temperature control assembly and battery pack |
US12206083B2 (en) | 2019-06-18 | 2025-01-21 | Contemporary Amperex Technology (Hong Kong) Limited | Temperature control component and battery pack |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07190661A (en) | Heat exchanger | |
US7111670B2 (en) | Plate fin for heat exchanger and heat exchanger core | |
JP3814917B2 (en) | Stacked evaporator | |
JP3942210B2 (en) | Heat exchanger, room air conditioner and car air conditioner using this heat exchanger | |
JP3043051B2 (en) | Heat exchange equipment | |
JP4105320B2 (en) | Heat exchanger | |
JP3580942B2 (en) | Flat tubes for heat exchangers and heat exchangers equipped with the tubes | |
JP2006132920A (en) | Heat exchanger | |
JPH05312492A (en) | Heat exchanger | |
JP2004177082A (en) | Heat exchanger | |
JP2005164226A (en) | Evaporator and manufacturing method of the same | |
JP2528121B2 (en) | Heat exchanger | |
JP4426189B2 (en) | Heat exchanger | |
JP3214874B2 (en) | Heat exchanger | |
JP4786234B2 (en) | Heat exchanger | |
JP4751662B2 (en) | Plate for manufacturing flat tube, method for manufacturing flat tube, and method for manufacturing heat exchanger | |
JP6636110B1 (en) | Air conditioner equipped with heat exchanger, pipe expansion member, and heat exchanger | |
JP3048614B2 (en) | Heat exchanger | |
JPH05322467A (en) | Heat exchanger | |
JPH0545474U (en) | Heat exchanger | |
JPH0560481A (en) | Heat exchanger | |
JP2002011570A (en) | Manufacture of heat exchanger | |
JPH1071463A (en) | Manufacturing method of flat heat exchange tube | |
JP2006170601A (en) | Evaporator | |
JP4214582B2 (en) | Stacked evaporator |