JP5009413B2 - Heat exchanger and air conditioner equipped with the same - Google Patents

Heat exchanger and air conditioner equipped with the same Download PDF

Info

Publication number
JP5009413B2
JP5009413B2 JP2010286627A JP2010286627A JP5009413B2 JP 5009413 B2 JP5009413 B2 JP 5009413B2 JP 2010286627 A JP2010286627 A JP 2010286627A JP 2010286627 A JP2010286627 A JP 2010286627A JP 5009413 B2 JP5009413 B2 JP 5009413B2
Authority
JP
Japan
Prior art keywords
heat exchanger
condensed water
notch
fins
notches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010286627A
Other languages
Japanese (ja)
Other versions
JP2012132644A (en
Inventor
理 浜口
円 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010286627A priority Critical patent/JP5009413B2/en
Priority to KR1020137016024A priority patent/KR101558717B1/en
Priority to CN201180059716.3A priority patent/CN103261828B/en
Priority to PCT/JP2011/076022 priority patent/WO2012086333A1/en
Priority to US13/990,100 priority patent/US20130240187A1/en
Publication of JP2012132644A publication Critical patent/JP2012132644A/en
Application granted granted Critical
Publication of JP5009413B2 publication Critical patent/JP5009413B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05358Assemblies of conduits connected side by side or with individual headers, e.g. section type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0471Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05333Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

本発明はサイドフロー方式のパラレルフロー型熱交換器及びそれを搭載した空気調和機に関する。   The present invention relates to a side flow parallel flow heat exchanger and an air conditioner equipped with the heat exchanger.

複数のヘッダパイプの間に複数の偏平チューブを配置して偏平チューブ内部の複数の冷媒通路をヘッダパイプの内部に連通させるとともに、偏平チューブ間にコルゲートフィン等のフィンを配置したパラレルフロー型の熱交換器は、カーエアコンや建物用空気調和機の室外側ユニットなどに広く利用されている。   A parallel flow type heat in which a plurality of flat tubes are arranged between a plurality of header pipes so that a plurality of refrigerant passages in the flat tubes communicate with the inside of the header pipe, and fins such as corrugated fins are arranged between the flat tubes. Exchangers are widely used in outdoor units of car air conditioners and building air conditioners.

パラレルフロー型熱交換器では、コルゲートフィンの設置箇所を偏平チューブ同士の間に限ることもあれば、複数の偏平チューブの中で最も外側に位置する偏平チューブの、外側に向いた面にもコルゲートフィンを取り付けることもある。後者の例を特許文献1〜3に見ることができる。   In parallel flow type heat exchangers, the corrugated fins may be installed only between flat tubes, or the corrugated fins on the outermost surface of the flat tubes that are located on the outermost side. A fin may be attached. Examples of the latter can be seen in US Pat.

特許文献1記載の熱交換器は、偏平チューブを水平にしたパラレルフロー型熱交換器であって、最外側の偏平チューブの外側に向いた偏平面にもコルゲートフィンが取り付けられており、この最外側のコルゲートフィンの外側にはフィン保護用のサイドプレートが配置されている。   The heat exchanger described in Patent Document 1 is a parallel flow type heat exchanger in which a flat tube is horizontal, and corrugated fins are also attached to a flat surface facing the outside of the outermost flat tube. A fin protecting side plate is disposed outside the outer corrugated fin.

特許文献2記載の熱交換器も偏平チューブを水平にしたパラレルフロー型熱交換器であって、最外側の偏平チューブの外側に向いた偏平面にコルゲートフィンが取り付けられ、この最外側のコルゲートフィンの外側に、偏平チューブとコルゲートフィンを交互に積層して構成したコア部を補強するためのサイドプレートが配置されている。   The heat exchanger described in Patent Document 2 is also a parallel flow type heat exchanger in which the flat tubes are horizontal, and corrugated fins are attached to the flat surfaces facing the outer sides of the outermost flat tubes, and the outermost corrugated fins. A side plate for reinforcing a core portion formed by alternately laminating flat tubes and corrugated fins is disposed on the outside.

特許文献3記載の熱交換器も偏平チューブを水平にしたパラレルフロー型熱交換器であって、両端におけるコルゲートフィンの外部にサイドシートがロウ付けされている。   The heat exchanger described in Patent Document 3 is also a parallel flow type heat exchanger in which flat tubes are horizontal, and side sheets are brazed to the outside of the corrugated fins at both ends.

熱交換器を蒸発器として用いた場合、低温となった熱交換器表面に大気中の水分が凝結して凝縮水が発生する。サイドフロー方式のパラレルフロー型熱交換器では、偏平チューブやコルゲートフィンの表面に凝縮水が溜まると空気流通路の面積が水によって狭められてしまい、熱交換性能が低下する。このためパラレルフロー型熱交換器では、発生した凝縮水が内部に滞らないよう、速やかに排水する必要がある。   When the heat exchanger is used as an evaporator, moisture in the atmosphere condenses on the surface of the heat exchanger that has become a low temperature, and condensed water is generated. In the side flow type parallel flow heat exchanger, when the condensed water accumulates on the surface of the flat tube or the corrugated fin, the area of the air flow passage is narrowed by the water, and the heat exchange performance is deteriorated. For this reason, in the parallel flow type heat exchanger, it is necessary to drain quickly so that the generated condensed water does not stay inside.

凝縮水は、気温が低いと熱交換器の表面で霜と化す。霜が氷にまで進むこともある。本明細書では、そのような霜や氷が溶けた水、いわゆる除霜水も含めた意味で「凝縮水」の語を用いるものとする。   When the temperature is low, the condensed water turns into frost on the surface of the heat exchanger. Frost can travel to ice. In the present specification, the term “condensed water” is used to include water in which such frost and ice are melted, so-called defrosted water.

上記特許文献記載のもののように、最外側フィンの外側にサイドシートを備えたパラレルフロー型熱交換器を、ヘッダパイプを垂直に配置し、偏平チューブを水平に配置するという、いわゆるサイドフロー方式で使用すると、下側のサイドシートにより凝縮水が保持されるという問題が発生する。この問題に対処するための工夫が特許文献4、5に開示されている。   Like the one described in the above-mentioned patent document, a parallel flow type heat exchanger having a side seat outside the outermost fin is a so-called side flow system in which the header pipe is arranged vertically and the flat tube is arranged horizontally. If it uses, the problem that condensed water is hold | maintained by the lower side sheet | seat will generate | occur | produce. Devices for dealing with this problem are disclosed in Patent Documents 4 and 5.

特許文献4記載の熱交換器では、下部に位置する最外側コルゲートフィンは、下から見たとき、少なくとも一部が露出部となっている。この最外側コルゲートフィンの外側に位置するサイドプレートの幅を狭くすることにより、露出部を出現させる。   In the heat exchanger described in Patent Document 4, at least a part of the outermost corrugated fin located in the lower portion is an exposed portion when viewed from below. The exposed portion appears by narrowing the width of the side plate located outside the outermost corrugated fin.

特許文献5記載の熱交換器では、底面板としてのサイドプレートに、凝縮水の水抜き孔を設ける。水抜き孔は、下側サイドプレートにその機械的強度を低下させない程度の大きさと個数のものが設けられている。   In the heat exchanger described in Patent Document 5, a condensate drain hole is provided in a side plate as a bottom plate. The drain holes are provided in the lower side plate so as to have a size and a number that do not reduce the mechanical strength.

特開平5−79788号公報Japanese Patent Laid-Open No. 5-79788 特開2006−64194号公報JP 2006-64194 A 特開2007−139376号公報JP 2007-139376 A 特開2010−249388号公報JP 2010-249388 A 特開昭61−223465号公報JP-A-61-223465

本発明は、サイドフロー方式のパラレルフロー熱交換器において、下側の最外側フィンから凝縮水をできるだけ速やかに排水できる構造を提供することを目的とする。   An object of the present invention is to provide a structure capable of draining condensed water from a lower outermost fin as quickly as possible in a side flow parallel flow heat exchanger.

本発明の好ましい実施形態によれば、間隔を置いて平行に配置された複数のヘッダパイプと、前記複数のヘッダパイプの間に複数配置され、内部に設けた冷媒通路を前記ヘッダパイプの内部に連通させた偏平チューブと、前記複数の偏平チューブの偏平面に取り付けられる複数のフィンと、前記複数のフィンの中で最も外側に位置するフィンの外側に取り付けられるサイドシートを備えたサイドフロー方式のパラレルフロー型熱交換器において、熱交換器下部に位置する前記サイドシートには、当該熱交換器において凝縮水が結集する側の縁に、互いに間隔を置いて複数のノッチが形成され、前記ノッチは、各々、前記フィンの間隔ピッチを複数ピッチ分カバーする幅を備える。   According to a preferred embodiment of the present invention, a plurality of header pipes arranged in parallel at intervals, and a plurality of refrigerant pipes arranged between the plurality of header pipes are provided inside the header pipes. A side flow system comprising: a flat tube in communication; a plurality of fins attached to the flat surfaces of the plurality of flat tubes; and a side seat attached to the outside of the fin located on the outermost side among the plurality of fins. In the parallel flow type heat exchanger, a plurality of notches are formed on the side sheet located at the lower part of the heat exchanger at intervals on the side of the heat exchanger where condensed water is collected. Are each provided with a width that covers a plurality of pitches between the fins.

上記構成の熱交換器において、前記ノッチは、前記サイドシートの縁よりも奥に180°未満の角を有する形状であることが好ましい。   In the heat exchanger configured as described above, it is preferable that the notch has a shape having an angle of less than 180 ° behind the edge of the side sheet.

上記構成の熱交換器において、前記ノッチは、前記サイドシートの縁から奥に進むほど幅が狭くなる形状であることが好ましい。   In the heat exchanger configured as described above, it is preferable that the notch has a shape that becomes narrower as it goes from the edge of the side seat to the back.

上記構成の熱交換器において、前記サイドシートの凝縮水が結集する側とは反対側の縁に、互いに間隔を置いて複数のノッチが形成され、前記ノッチは、各々、前記フィンの間隔ピッチを複数ピッチ分カバーする幅を備えることが好ましい。   In the heat exchanger configured as described above, a plurality of notches are formed at intervals on the edge of the side sheet opposite to the side on which the condensed water is collected, and the notches each have an interval pitch between the fins. It is preferable to provide a width that covers a plurality of pitches.

上記構成の熱交換器において、前記サイドシートの凝縮水が結集する側に形成されたノッチ、またはその反対側に形成されたノッチが、前記サイドシートの奥行きの半分を超す奥行きを有することが好ましい。   In the heat exchanger configured as described above, it is preferable that a notch formed on the side sheet where condensed water is collected or a notch formed on the opposite side has a depth exceeding half of the depth of the side sheet. .

上記構成の熱交換器において、凝縮水が結集する側に形成されたノッチとその反対側に形成されたノッチとが、互い違いに配置されていることが好ましい。   In the heat exchanger having the above configuration, it is preferable that the notches formed on the side where condensed water is collected and the notches formed on the opposite side are alternately arranged.

上記構成の熱交換器において、当該熱交換器は一部が湾曲部となるように曲げ加工されうるものであり、前記曲げ加工を受ける前記サイドシートの一部には、曲げ加工後に凸となる縁に互いに間隔を置いて複数のスリットが切り込み形成されることが好ましい。   In the heat exchanger configured as described above, the heat exchanger can be bent so that a part thereof is a curved portion, and a part of the side sheet that receives the bending process is convex after the bending process. It is preferable that a plurality of slits are formed by cutting the edges at intervals.

上記構成の熱交換器において、曲げ加工後に凹となる縁には前記フィンの間隔ピッチを複数ピッチ分カバーする幅のノッチが互いに間隔を置いて複数形成されることが好ましい。   In the heat exchanger having the above-described configuration, it is preferable that a plurality of notches having a width to cover a plurality of pitches of the fins are formed on the edge that is concave after the bending process.

上記構成の熱交換器において、前記サイドシートには、前記ノッチ以外の箇所に、互いに間隔を置いて複数の貫通孔が形成されることが好ましい。   In the heat exchanger configured as described above, it is preferable that a plurality of through holes are formed in the side sheet at intervals other than the notches.

上記構成の熱交換器において、前記貫通孔は、各々、前記フィンの間隔ピッチを複数ピッチ分カバーする幅を有するように形成されていることが好ましい。   In the heat exchanger configured as described above, it is preferable that each of the through holes is formed to have a width that covers a plurality of pitches between the fins.

上記構成の熱交換器において、奥行き方向において、前記サイドシートの方が前記フィンよりも幅が狭くなっており、凝縮水が結集する側とその反対側において、前記フィンが前記サイドシートの外側に露出していることが好ましい。   In the heat exchanger configured as described above, in the depth direction, the width of the side seat is narrower than that of the fins, and the fin is located outside the side seat on the side where condensed water collects and the opposite side. It is preferable that it is exposed.

また本発明は、上記構成の熱交換器を室外機または室内機に搭載した空気調和機であることを特徴としている。   Further, the present invention is an air conditioner in which the heat exchanger configured as described above is mounted on an outdoor unit or an indoor unit.

本発明によると、熱交換器下部に位置する最外側フィンで凝縮水が発生、または上方で発生した凝縮水が熱交換器下部まで流下したとしても、速やかに滴下、すなわち排水される。   According to the present invention, even if condensed water is generated at the outermost fin located at the lower part of the heat exchanger or condensed water generated at the upper part flows down to the lower part of the heat exchanger, it is quickly dropped, that is, drained.

本発明の実施形態に係る熱交換器の正面図である。It is a front view of the heat exchanger which concerns on embodiment of this invention. 図1の熱交換器の斜視図である。It is a perspective view of the heat exchanger of FIG. 図1の熱交換器の下面図である。It is a bottom view of the heat exchanger of FIG. 図1の部分拡大図である。It is the elements on larger scale of FIG. 図1の熱交換器の部分斜視図である。It is a fragmentary perspective view of the heat exchanger of FIG. フィンの間隔ピッチとノッチの幅の関係の説明図である。It is explanatory drawing of the relationship between the space | interval pitch of a fin, and the width | variety of a notch. フィンの間隔ピッチと貫通孔の幅の関係の説明図である。It is explanatory drawing of the relationship between the space | interval pitch of a fin, and the width | variety of a through-hole. ノッチの形状について説明する第1の図である。It is a 1st figure explaining the shape of a notch. ノッチの形状について説明する第2の図である。It is a 2nd figure explaining the shape of a notch. ノッチの形状について説明する第3の図である。It is a 3rd figure explaining the shape of a notch. ノッチの形状について説明する第4の図である。It is a 4th figure explaining the shape of a notch. ノッチの形状について説明する第5の図である。It is a 5th figure explaining the shape of a notch. ノッチの形状について説明する第6の図である。It is a 6th figure explaining the shape of a notch. 貫通孔の形状について説明する第1の図である。It is a 1st figure explaining the shape of a through-hole. 貫通孔の形状について説明する第2の図である。It is a 2nd figure explaining the shape of a through-hole. 貫通孔の形状について説明する第3の図である。It is a 3rd figure explaining the shape of a through-hole. 熱交換器の湾曲部におけるノッチ形成手法について説明する図である。It is a figure explaining the notch formation method in the curved part of a heat exchanger. サイドシートの変形態様について説明する図である。It is a figure explaining the deformation | transformation aspect of a side seat | sheet. 本発明に係る熱交換器を搭載した空気調和機の室外機の概略断面図である。It is a schematic sectional drawing of the outdoor unit of the air conditioner carrying the heat exchanger which concerns on this invention. 本発明に係る熱交換器を搭載した空気調和機の概略構成図で、暖房運転時の状態を示すものである。It is a schematic block diagram of the air conditioner carrying the heat exchanger which concerns on this invention, and shows the state at the time of heating operation. 本発明に係る熱交換器を搭載した空気調和機の概略構成図で、冷房運転時の状態を示すものである。It is a schematic block diagram of the air conditioner carrying the heat exchanger which concerns on this invention, and shows the state at the time of air_conditionaing | cooling operation. サイドフロー方式パラレルフロー型熱交換器の基本構造を説明する垂直断面図である。It is a vertical sectional view explaining the basic structure of a side flow type parallel flow type heat exchanger. 図22のA−A線の箇所で切断した垂直断面図である。It is the vertical sectional view cut | disconnected in the location of the AA line of FIG.

以下本発明の実施形態を、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

サイドフロー方式のパラレルフロー型の熱交換器の基本構造を図22、23に示す。図22、23では紙面上側が垂直方向の上側、紙面下側が垂直方向の下側となる。熱交換器1は、2本の垂直なヘッダパイプ2、3を水平方向に間隔を置いて平行に配置し、ヘッダパイプ2、3の間に複数本の水平な偏平チューブ4を垂直方向に所定ピッチで配置している。偏平チューブ4は金属を押出成型した細長い成型品であり、内部には冷媒を流通させる冷媒通路5が形成されている。偏平チューブ4は長手方向である押出成型方向を水平にする形で配置されるので、冷媒通路5の冷媒流通方向も水平になる。冷媒通路5は断面形状及び断面面積の等しいものが図22の奥行き方向に複数個並び、そのため偏平チューブ4の垂直断面は、図23に示すようにハーモニカ状を呈している。各冷媒通路5はヘッダパイプ2、3の内部に連通する。偏平チューブ4の偏平面にはフィン6が取り付けられる。フィン6として、ここではコルゲートフィンを用いているが、プレートフィンでも構わない。なお、実際に機器に搭載する段階では、パラレルフロー型熱交換器1は設計の要請に従って様々な角度に据え付けられるものであり、厳密な「垂直」「水平」が当てはまらなくなるケースが多いことは言うまでもない。   The basic structure of a side flow parallel flow heat exchanger is shown in FIGS. 22 and 23, the upper side of the drawing is the upper side in the vertical direction, and the lower side of the drawing is the lower side of the vertical direction. In the heat exchanger 1, two vertical header pipes 2 and 3 are arranged in parallel with a horizontal interval, and a plurality of horizontal flat tubes 4 are predetermined between the header pipes 2 and 3 in the vertical direction. Arranged at the pitch. The flat tube 4 is an elongated molded product obtained by extruding a metal, and a refrigerant passage 5 through which a refrigerant flows is formed. Since the flat tube 4 is disposed so that the extrusion direction, which is the longitudinal direction, is horizontal, the refrigerant flow direction of the refrigerant passage 5 is also horizontal. A plurality of refrigerant passages 5 having the same cross-sectional shape and cross-sectional area are arranged in the depth direction of FIG. 22, and therefore the vertical cross section of the flat tube 4 has a harmonica shape as shown in FIG. 23. Each refrigerant passage 5 communicates with the inside of the header pipes 2 and 3. Fins 6 are attached to the flat surface of the flat tube 4. Here, corrugated fins are used as the fins 6, but plate fins may be used. In the actual mounting stage, the parallel flow heat exchanger 1 is installed at various angles according to the design requirements, and it is needless to say that there are many cases where exact “vertical” and “horizontal” do not apply. Yes.

ヘッダパイプ2と3、偏平チューブ4、及びフィン6はいずれもアルミニウム等熱伝導の良い金属からなり、偏平チューブ4はヘッダパイプ2、3に対し、フィン6は偏平チューブ4に対し、それぞれロウ付けまたは溶着で固定される。   The header pipes 2 and 3, the flat tubes 4, and the fins 6 are all made of a metal having good heat conductivity such as aluminum, the flat tubes 4 are brazed to the header pipes 2 and 3, and the fins 6 are brazed to the flat tubes 4. Or it is fixed by welding.

偏平チューブ4同士の間に配置されるフィン6は上下両端が上下の偏平チューブ4の偏平面に固定される。複数のものが上下に並んだ偏平チューブ4の中で、最も外側(最上位または最下位)に位置する偏平チューブ4の、外側に向いた偏平面に配置されるフィンは、上下一方の端のみがチューブの偏平面に固定されることになる。このフィンを最外側フィンと呼ぶことにする。熱交換器1の上部に位置する最外側フィンには6aUの符号を付し、熱交換器1の下部に位置する最外側フィンには6aDの符号を付す。   The fins 6 arranged between the flat tubes 4 are fixed to the flat surfaces of the upper and lower flat tubes 4 at both upper and lower ends. Among the flat tubes 4 in which a plurality of tubes are arranged vertically, the fins arranged on the flat surface facing the outer side of the flat tube 4 located on the outermost side (uppermost or lowermost) have only one upper and lower ends. Is fixed to the flat surface of the tube. This fin is called the outermost fin. The outermost fin located at the top of the heat exchanger 1 is labeled with 6aU, and the outermost fin located at the bottom of the heat exchanger 1 is labeled with 6aD.

最外側フィン6aUの外側にはサイドシート10Uが配置され、最外側フィン6aDの外側にはサイドシート10Dが配置される。サイドシート10U、10Dはアルミニウム等の金属板からなり、最外側フィン6aU、6aDに対しロウ付けまたは溶着で固定される。   A side seat 10U is disposed outside the outermost fin 6aU, and a side seat 10D is disposed outside the outermost fin 6aD. The side sheets 10U and 10D are made of a metal plate such as aluminum, and are fixed to the outermost fins 6aU and 6aD by brazing or welding.

熱交換器1はサイドフロー方式であり、冷媒出入口7、8はヘッダパイプ3の側にのみ設けられている。ヘッダパイプ3の内部には上下方向に間隔を置いて2枚の仕切板9a、9cが設けられており、ヘッダパイプ2の内部には仕切板9a、9cの中間の高さのところに仕切板9bが設けられている。   The heat exchanger 1 is a side flow system, and the refrigerant inlets 7 and 8 are provided only on the header pipe 3 side. Two partition plates 9a and 9c are provided in the header pipe 3 at intervals in the vertical direction. Inside the header pipe 2, the partition plates are located at a height intermediate between the partition plates 9a and 9c. 9b is provided.

熱交換器1を蒸発器として使用する場合、冷媒は図22に実線矢印で示すように下側の冷媒出入口7から流入する。冷媒出入口7から入った冷媒は、仕切板9aでせき止められて偏平チューブ4経由でヘッダパイプ2に向かう。この冷媒の流れが左向きのブロック矢印で表現されている。ヘッダパイプ2に入った冷媒は仕切板9bでせき止められて別の偏平チューブ4経由でヘッダパイプ3に向かう。この冷媒の流れが右向きのブロック矢印で表現されている。ヘッダパイプ3に入った冷媒は仕切板9cでせき止められてさらに別の偏平チューブ4経由で再びヘッダパイプ2に向かう。この冷媒の流れが左向きのブロック矢印で表現されている。ヘッダパイプ2に入った冷媒は折り返してさらに別の偏平チューブ4経由で再びヘッダパイプ3に向かう。この冷媒の流れが右向きのブロック矢印で表現されている。ヘッダパイプ3に入った冷媒は冷媒出入口8から流出する。このように、冷媒はジグザグの経路を辿って下から上に流れる。ここでは仕切板の数が3の場合を示したが、これは一例であり、仕切板の数と、その結果としてもたらされる冷媒流れの折り返し回数は、必要に応じ任意の数を設定することができる。   When the heat exchanger 1 is used as an evaporator, the refrigerant flows in from the lower refrigerant inlet / outlet port 7 as indicated by solid line arrows in FIG. The refrigerant entering from the refrigerant inlet / outlet 7 is blocked by the partition plate 9 a and travels toward the header pipe 2 via the flat tube 4. This refrigerant flow is represented by a left-pointing block arrow. The refrigerant that has entered the header pipe 2 is blocked by the partition plate 9 b and travels to the header pipe 3 via another flat tube 4. This refrigerant flow is represented by a right-pointing block arrow. The refrigerant that has entered the header pipe 3 is dammed up by the partition plate 9 c, and further travels toward the header pipe 2 via another flat tube 4. This refrigerant flow is represented by a left-pointing block arrow. The refrigerant that has entered the header pipe 2 is folded back and travels again to the header pipe 3 via another flat tube 4. This refrigerant flow is represented by a right-pointing block arrow. The refrigerant that has entered the header pipe 3 flows out from the refrigerant inlet / outlet 8. In this way, the refrigerant follows the zigzag path and flows from the bottom to the top. Although the case where the number of partition plates is 3 is shown here, this is only an example, and the number of partition plates and the number of times the resulting refrigerant flow may be folded may be set as desired. it can.

熱交換器1を凝縮器として使用する場合は、冷媒の流れが逆になる。すなわち冷媒は図22に点線矢印で示すように冷媒出入口8からヘッダパイプ3に入り、仕切板9cでせき止められて偏平チューブ4経由でヘッダパイプ2に向かい、ヘッダパイプ2では仕切板9bでせき止められて別の偏平チューブ4経由でヘッダパイプ3に向かい、ヘッダパイプ3では仕切板9aでせき止められてさらに別の偏平チューブ4経由で再びヘッダパイプ2に向かい、ヘッダパイプ2で折り返してさらに別の偏平チューブ4経由で再びヘッダパイプ3に向かい、冷媒出入口7から点線矢印のように流出するという、ジグザグの経路を辿って上から下に流れる。   When the heat exchanger 1 is used as a condenser, the refrigerant flow is reversed. That is, the refrigerant enters the header pipe 3 from the refrigerant inlet / outlet 8 as shown by a dotted arrow in FIG. 22, is dammed by the partition plate 9c and goes to the header pipe 2 via the flat tube 4, and is dammed by the partition plate 9b in the header pipe 2. It heads to the header pipe 3 via another flat tube 4, and the header pipe 3 is dammed by a partition plate 9 a, then goes to the header pipe 2 again via another flat tube 4, and is folded back by the header pipe 2 to make another flat It flows from the top to the bottom following the zigzag path in which it goes to the header pipe 3 again via the tube 4 and flows out from the refrigerant inlet / outlet 7 as indicated by the dotted line arrow.

熱交換器1の構成は上記に限定されない。ヘッダパイプ2、3の両方に冷媒出入口を設ける構成も可能であるし、ヘッダパイプ2、3の内部に仕切板を設けない構成も可能である。   The configuration of the heat exchanger 1 is not limited to the above. A configuration in which the refrigerant inlet / outlet is provided in both the header pipes 2 and 3 is possible, and a configuration in which the partition plate is not provided in the header pipes 2 and 3 is also possible.

本発明の実施形態である熱交換器1の構造を図1から図5までの図に示す。図22、23に示した基本構造と共通する構成要素には図22、23で用いた符号をそのまま付し、説明は省略する。   The structure of the heat exchanger 1 which is embodiment of this invention is shown in the figure from FIG. 1 to FIG. Components common to the basic structures shown in FIGS. 22 and 23 are denoted by the same reference numerals used in FIGS. 22 and 23, and description thereof is omitted.

熱交換器1を蒸発器として用いた場合、低温となった熱交換器1の表面に大気中の水分が凝結して凝縮水が発生する。「凝縮水」の意味は前述の通りである。熱交換器1のようなパラレルフロー型熱交換器では、偏平チューブやフィンの表面に凝縮水が溜まると空気流通路の断面積が水によって狭められてしまい、熱交換性能が低下する。加えて、熱交換器1はサイドフロー方式であるところから、上部の偏平チューブ4やフィン6で発生した凝縮水が次々に下の段に流下し、最外側フィン6aDは最も凝縮水の滞留が生じやすい箇所となる。   When the heat exchanger 1 is used as an evaporator, moisture in the atmosphere condenses on the surface of the heat exchanger 1 having a low temperature, and condensed water is generated. The meaning of “condensed water” is as described above. In a parallel flow type heat exchanger such as the heat exchanger 1, if the condensed water accumulates on the surface of the flat tube or the fin, the cross-sectional area of the air flow passage is narrowed by the water, and the heat exchange performance is deteriorated. In addition, since the heat exchanger 1 is a side flow type, the condensed water generated in the upper flat tubes 4 and fins 6 flows down to the lower stage one after another, and the outermost fin 6aD has the most condensate water retention. It becomes a place that is likely to occur.

滞留した凝縮水は、熱交換器1の空気流通路の面積を狭めて通風を阻害し、熱交換性能を低下させる。また、熱交換器1を空気調和機の室外機に搭載した場合、外気温が氷点下になると凝縮水が凍結して熱交換器1の破損を招くことがある。このため、熱交換器1に生じた凝縮水はできるだけ速やかに排水する必要がある。   The staying condensed water narrows the area of the air flow passage of the heat exchanger 1 and inhibits ventilation, thereby reducing the heat exchange performance. Further, when the heat exchanger 1 is mounted on an outdoor unit of an air conditioner, the condensed water may be frozen and the heat exchanger 1 may be damaged when the outside air temperature is below freezing. For this reason, it is necessary to drain the condensed water generated in the heat exchanger 1 as quickly as possible.

本発明では、上記問題に対処するため、熱交換器1の下部に位置するサイドシート10Dを次のように構成した。すなわちサイドシート10Dには、熱交換器1において凝縮水が結集する側の縁に、互いに間隔を置いて複数のノッチ11が形成されている。   In the present invention, in order to cope with the above problem, the side seat 10D located at the lower part of the heat exchanger 1 is configured as follows. That is, a plurality of notches 11 are formed on the side seat 10 </ b> D at intervals from each other at the edge on the side where the condensed water is collected in the heat exchanger 1.

熱交換器1を空気調和機の室外機に搭載した場合は、熱交換器1の風上側が凝縮水の結集側となる。これは次の理由による。室外機においては、熱交換器1を傾けることなく、ほぼ垂直に立てて設置している。熱交換器1を蒸発器として使用した場合(例えば暖房運転時がこれに該当する)、風下側よりも風上側で熱交換が盛んに行われ、そこに凝縮水が溜まる。そのため、風上側が凝縮水の結集側ということになるのである。   When the heat exchanger 1 is mounted on an outdoor unit of an air conditioner, the windward side of the heat exchanger 1 is the condensed water condensing side. This is due to the following reason. In the outdoor unit, the heat exchanger 1 is installed substantially vertically without being inclined. When the heat exchanger 1 is used as an evaporator (for example, the heating operation corresponds to this), heat exchange is actively performed on the windward side rather than the leeward side, and condensed water accumulates there. Therefore, the windward side is the condensed water condensing side.

熱交換器1は、空気調和機の室外機に搭載するものとして設計されており、図2、3、5に示す通り、途中に1箇所の湾曲部1aがあり、平面形状が略L字形状となっている。湾曲部1aが凸をなす側が室外機における風上側となる。従って、図3、4では図の下側が凝縮水の結集側となり、サイドシート10Dにはこちら側の縁にノッチ11が形成されている。   The heat exchanger 1 is designed to be mounted on an outdoor unit of an air conditioner. As shown in FIGS. 2, 3, and 5, there is a curved portion 1 a in the middle, and the planar shape is substantially L-shaped. It has become. The side on which the curved portion 1a is convex is the windward side of the outdoor unit. Therefore, in FIGS. 3 and 4, the lower side of the figure is the condensed water condensing side, and the side sheet 10D has a notch 11 at the edge on this side.

個々のノッチ11は、サイドシート10Dの縁よりも奥に180°未満の角を有し、またサイドシート10Dの縁から奥に進むほど幅が狭くなる形状であることが好ましい。実施形態では、その条件を満たす形状としてV字形が選択されている。ノッチ11は、図6に示す通り、最も幅の広い箇所ではフィン6の間隔ピッチPを複数ピッチ分カバーする幅W1を備えている。   It is preferable that each notch 11 has an angle of less than 180 ° behind the edge of the side sheet 10D and becomes narrower as it goes from the edge of the side sheet 10D to the back. In the embodiment, the V shape is selected as the shape that satisfies the condition. As shown in FIG. 6, the notch 11 has a width W1 that covers a plurality of pitches P between the fins 6 at the widest portion.

ノッチ11は、サイドシート10Dの縁から奥に進むほど幅が狭くなる形状であるところから、そのエッジに触れた凝縮水は、図8の矢印に示すように、ノッチ11の奥へと誘導され、ノッチ11の一番奥で合流して水滴を形成する。水滴はすぐに大きくなり、滴下、すなわち排水される。ノッチ11はフィン6の間隔ピッチPを複数ピッチ分カバーする幅を備えているから、凝縮水が集まって大きな水滴となるまでの時間が短く、効率良く凝縮水の排水を行うことができる。   Since the notch 11 has a shape that becomes narrower as it goes from the edge of the side sheet 10D to the back, the condensed water that has touched the edge is guided to the back of the notch 11 as shown by the arrow in FIG. , Merge at the back of the notch 11 to form water droplets. The water droplets quickly grow and drip, ie drain. Since the notch 11 has a width that covers the pitch P of the fins 6 by a plurality of pitches, it takes a short time until the condensed water gathers to form a large water droplet, and the condensed water can be drained efficiently.

本発明におけるノッチ11の形状はV字形に限定されない。図9から図12に例示する様々な形状、またはそれ以外の形状が可能である。   The shape of the notch 11 in the present invention is not limited to the V shape. Various shapes illustrated in FIGS. 9 to 12 or other shapes are possible.

図9に示すノッチ11は半円形またはU字形となっている。このノッチ11は奥に角を有する訳ではないが、サイドシート10Dの縁から奥に進むほど幅が狭くなるという条件を満たす。   The notch 11 shown in FIG. 9 is semicircular or U-shaped. The notch 11 does not have a corner at the back, but satisfies the condition that the width becomes narrower as it goes from the edge of the side sheet 10D to the back.

図10に示すノッチ11は台形である。このノッチ11は、サイドシート10Dの縁よりも奥に180°未満の角を有するという条件を、180°未満であって90°超の角、すなわち鈍角の角11aを2箇所に有するという形で満たす。また、サイドシート10Dの縁から奥に進むほど幅が狭くなるという条件も満たす。   The notch 11 shown in FIG. 10 is trapezoidal. The notch 11 has a condition that it has an angle of less than 180 ° behind the edge of the side sheet 10D in a form of having an angle of less than 180 ° and an angle of more than 90 °, that is, an obtuse angle 11a. Fulfill. Further, the condition that the width becomes narrower as it goes from the edge of the side sheet 10D to the back is also satisfied.

図11に示すノッチ11は倒立したM字形である。このノッチ11は、サイドシート10Dの縁よりも奥に180°未満の角を有するという条件を、90°未満の角、すなわち鋭角の角11bを2箇所に有するという形で満たす。また、サイドシート10Dの縁から奥に進むほど幅が狭くなるという条件も満たす。   The notch 11 shown in FIG. 11 is an inverted M-shape. This notch 11 satisfies the condition of having an angle of less than 180 ° behind the edge of the side sheet 10D in the form of having an angle of less than 90 °, that is, two acute angles 11b. Further, the condition that the width becomes narrower as it goes from the edge of the side sheet 10D to the back is also satisfied.

図12に示すノッチ11は倒立した台形であり、サイドシート10Dの縁に設けられた入口は幅が狭く、奥に進むほど幅が広くなっている。このノッチ11は、サイドシート10Dの縁よりも奥に180°未満の角を有するという条件を、90°未満の角、すなわち鋭角の角11bを2箇所に有するという形で満たす。   The notch 11 shown in FIG. 12 is an inverted trapezoid, and the entrance provided at the edge of the side seat 10D has a narrow width, and the width becomes wider as it goes deeper. This notch 11 satisfies the condition of having an angle of less than 180 ° behind the edge of the side sheet 10D in the form of having an angle of less than 90 °, that is, two acute angles 11b.

図8から図12のいずれの形状のノッチ11においても、ノッチ11のエッジに触れた凝縮水はノッチ11の奥へ誘導され、一番奥で合流して大きな水滴を形成し、滴下する。   In any shape of the notch 11 of FIGS. 8 to 12, the condensed water touching the edge of the notch 11 is guided to the back of the notch 11, and merges at the back to form a large water droplet and drops.

サイドシート10Dには、熱交換器1において凝縮水が結集する側とは反対側の縁にも、互いに間隔を置いて複数のノッチ12が形成されている。すなわち、サイドシート10Dの両側の縁にノッチが形成されている。図3、4では図の上側が凝縮水の結集側する側とは反対側ということになる。熱交換器1を空気調和機の室外機に搭載した場合、凝縮水の結集する側とは反対の側は、熱交換器1の風下側となる。ノッチ12も、ノッチ11と同様、フィン6の間隔ピッチPを複数ピッチ分カバーする幅を備え、またサイドシート10Dの縁から奥に進むほど幅が狭くなる形状となっている。   A plurality of notches 12 are also formed on the side sheet 10D at intervals on the opposite side of the side of the heat exchanger 1 from the side where the condensed water is collected. That is, notches are formed on the edges on both sides of the side sheet 10D. 3 and 4, the upper side of the figure is the side opposite to the side on which condensed water is collected. When the heat exchanger 1 is mounted on an outdoor unit of an air conditioner, the side opposite to the side where condensed water is collected is the leeward side of the heat exchanger 1. Similarly to the notch 11, the notch 12 has a width that covers a plurality of pitches P between the fins 6, and has a shape that becomes narrower as it goes from the edge of the side seat 10 </ b> D to the back.

図1から図5に示す実施形態では、ノッチ11とノッチ12は同じ形状(V字形)、同じ大きさとされているが、必ずしもそうである必要はない。ノッチ12がノッチ11と異なる形状(図9から図12に例示する形状、あるいはそれ以外の形状)であってもよく、ノッチ11とノッチ12で幅が異なっていてもよい。   In the embodiment shown in FIGS. 1 to 5, the notch 11 and the notch 12 have the same shape (V shape) and the same size, but this need not necessarily be the case. The notch 12 may have a shape different from the notch 11 (the shape illustrated in FIGS. 9 to 12 or other shapes), and the notch 11 and the notch 12 may have different widths.

このように、熱交換器1を空気調和機の室外機に搭載した場合、熱交換器1において凝縮水が結集する側(風上側)とは反対側(風下側)の縁にもノッチ12を形成したことにより、サイドシート10Dの両側の縁にノッチが形成されることになる。これにより、サイドシート10Dの凝縮水排水能力はさらに高まり、最外側フィン6aDの凝縮水を速やかに排水することができる。   In this way, when the heat exchanger 1 is mounted on an outdoor unit of an air conditioner, the notch 12 is also formed on the edge of the heat exchanger 1 on the opposite side (leeward side) to the side where the condensed water is concentrated (leeward side). By forming, a notch is formed in the edge of both sides of side sheet 10D. Thereby, the condensed water drainage capability of the side sheet 10D is further enhanced, and the condensed water of the outermost fin 6aD can be drained quickly.

本実施形態では、熱交換器1において凝縮水が結集する側の縁と、その反対側の縁にノッチが形成されている構成、言い換えればサイドシート10Dの両側の縁にノッチが形成されている構成を採用したが、凝縮水が結集する側の縁にのみノッチが形成されている構成であってもよい。   In the present embodiment, the heat exchanger 1 has a configuration in which notches are formed on the edge on the side where condensed water collects and the opposite edge, in other words, notches are formed on both edges of the side sheet 10D. Although the configuration is adopted, a configuration in which a notch is formed only at an edge on the side where condensed water collects may be employed.

ノッチ11、12をもっと大きくして、それぞれの奥行きがサイドシート10Dの奥行きの半分を超す大きさとしてもよい。そのようにしたサイドシート10Dは図13に示す形状を備えることとなり、最外側フィン6aDから凝縮水を速やかに排水する。   The notches 11 and 12 may be made larger so that the depth of each of the notches 11 and 12 exceeds half of the depth of the side seat 10D. Such a side seat 10D has the shape shown in FIG. 13, and quickly drains condensed water from the outermost fins 6aD.

図13において、ノッチ11、12は1個ずつ互い違いに配置されているが、この構成は限定的なものではない。2個のノッチ11に対してノッチ12が1個などといった構成であってもよい。   In FIG. 13, the notches 11 and 12 are alternately arranged one by one, but this configuration is not limited. For example, one notch 12 may be configured for two notches 11.

サイドシート10Dには、ノッチ11、12以外の箇所に貫通孔13が形成されている。実施形態では、ノッチ11とノッチ12の間の位置に複数の貫通孔13が互いに間隔を置いて形成されている。貫通孔13は偏平チューブ4の長さ方向に長軸を一致させた長円(トラック円)形状であり、図7に示す通り、フィン6の間隔ピッチPを複数ピッチ分カバーする幅W2を備えている。   A through hole 13 is formed in the side sheet 10 </ b> D at locations other than the notches 11 and 12. In the embodiment, a plurality of through holes 13 are formed at intervals between the notches 11 and 12 at intervals. The through-hole 13 has an oval (track circle) shape in which the major axis coincides with the length direction of the flat tube 4, and has a width W2 that covers the interval pitch P of the fins 6 by a plurality of pitches as shown in FIG. ing.

貫通孔13の存在により、最外側フィン6aDに溜まった凝縮水は一層良く排水されることになる。   Due to the presence of the through-hole 13, the condensed water accumulated in the outermost fin 6aD is drained better.

貫通孔13の形状は長円形に限定されない。図14に示す楕円形等、様々な形状を選択することができる。   The shape of the through hole 13 is not limited to an oval shape. Various shapes such as an ellipse shown in FIG. 14 can be selected.

角のない長円形や楕円形ばかりが貫通孔13の形状として好ましい訳ではない。180°未満の角を有する形状も貫通孔13として好ましい形状である。   Only oval and elliptical shapes without corners are not preferable as the shape of the through hole 13. A shape having an angle of less than 180 ° is also a preferable shape for the through hole 13.

例えば、図15に示す矩形であれば、直角の角を四隅に有することになる。図16に示す菱形であれば、対角線上の2箇所に180°未満であって90°超の角、すなわち鈍角の角を有し、前記対角線と直角をなす対角線上の2箇所に90°未満の角、すなわち鋭角の角を有することになる。   For example, the rectangle shown in FIG. 15 has right-angled corners at the four corners. In the case of the rhombus shown in FIG. 16, it has an angle of less than 180 ° and more than 90 ° at two diagonals, that is, an obtuse angle, and less than 90 ° at two diagonals perpendicular to the diagonal. That is, an acute angle.

上記のように180°未満の角を有する形状の貫通孔13では、凝縮水が角の方に誘導されて合流し、大きな水滴を形成して滴下する。このため凝縮水が速やかに排水される。   As described above, in the through-hole 13 having a shape with an angle of less than 180 °, the condensed water is guided toward the corner and merges to form a large water droplet. For this reason, condensed water is drained quickly.

貫通孔13は、必ずしもフィン6の間隔ピッチPを複数ピッチ分カバーする幅である必要はない。しかしながら、フィン6の間隔ピッチPを複数ピッチ分カバーする幅とすることにより、多量の凝縮水を凝集させ、排水をスピードアップすることができる。   The through holes 13 do not necessarily have a width that covers the pitch P of the fins 6 by a plurality of pitches. However, by setting the interval pitch P of the fins 6 to a width that covers a plurality of pitches, a large amount of condensed water can be aggregated and drainage can be speeded up.

図18に示すサイドシート10Dは、貫通孔13は形成されているが、ノッチ11、12は形成されていない。このようなサイドシート10Dであっても、最外側フィン6aDからの凝縮水の排水を促進する機能を備える。   In the side sheet 10D shown in FIG. 18, the through holes 13 are formed, but the notches 11 and 12 are not formed. Even such a side sheet 10D has a function of promoting drainage of condensed water from the outermost fins 6aD.

最外側フィン6aDの奥行き方向、すなわち通風方向の幅と、同じ方向におけるサイドシート10Dの幅を比較した場合、サイドシート10Dの方が幅狭とされている。このため、図2から図5に示す通り、凝縮水が結集する側とその反対側において、最外側フィン6aDがサイドシート10Dの外側に露出する。このように露出部が存在することにより、露出部が排水口となって、最外側フィン6aDから凝縮水が速やかに排水される。なおサイドシート10Uは、最外側フィン6aUより幅狭である必要はない。例えば、同じ幅であってもよい。   When the depth direction of the outermost fin 6aD, that is, the width in the ventilation direction is compared with the width of the side seat 10D in the same direction, the side seat 10D is narrower. For this reason, as shown in FIGS. 2 to 5, the outermost fins 6aD are exposed to the outside of the side seat 10D on the side where condensed water collects and on the opposite side. As a result of the presence of the exposed portion in this way, the exposed portion becomes a drain outlet, and the condensed water is quickly drained from the outermost fin 6aD. Note that the side seat 10U does not need to be narrower than the outermost fin 6aU. For example, it may be the same width.

前述の通り、熱交換器1には途中に1箇所の湾曲部1aがあり、平面形状が略L字形状となっている。湾曲部1aは、直線状の偏平チューブ4で熱交換器1を形成した後、曲げ加工を施すことにより形成されるが、その曲げ加工をノッチ11の形成にも役立てることができる。   As described above, the heat exchanger 1 has one curved portion 1a in the middle, and the planar shape is substantially L-shaped. The bending portion 1a is formed by forming the heat exchanger 1 with the straight flat tube 4 and then bending it, and the bending can also be used for forming the notch 11.

図17の下部の矩形の囲みの中に示すように、サイドシート10Dの中で、曲げ加工を受ける一部の箇所には、曲げ加工後に凸となる縁に互いに間隔を置いて複数のスリット14が切り込み形成されている。スリット14は、曲げ加工されると、図17の上側の図に示すようにV字形に開き、フィン6の間隔ピッチPを複数ピッチ分カバーする幅のノッチ11となる。このため、ノッチ11を簡単に形成することができる。   As shown in a rectangular box at the bottom of FIG. 17, in a part of the side sheet 10D that is subjected to bending, a plurality of slits 14 are spaced from each other at edges that become convex after bending. Is formed by cutting. When the slit 14 is bent, the slit 14 opens in a V shape as shown in the upper diagram of FIG. 17, and becomes a notch 11 having a width that covers a plurality of pitches P between the fins 6. For this reason, the notch 11 can be formed easily.

サイドシート10Dには、曲げ加工後に凹となる側の縁にノッチ12が形成されている。曲げ加工されるとノッチ12は開き角度が狭くなるが、その状態でも曲げ加工を受けない箇所のノッチ12と開き角度が同等になるように、すなわちフィン6の間隔ピッチPを複数ピッチ分カバーする幅を備えることとなるように、曲げ加工前のV字の角度を広く設定しておく。   In the side sheet 10D, a notch 12 is formed at the edge on the side that becomes concave after bending. When the bending process is performed, the opening angle of the notch 12 becomes narrow, but even in that state, the opening angle is equal to that of the notch 12 where the bending process is not performed, that is, the interval pitch P of the fins 6 is covered by a plurality of pitches. The V-shaped angle before bending is set wide so as to provide a width.

上記熱交換器1は、セパレート型空気調和機の室外機または室内機に搭載することができる。図19は室外機への搭載例を示す。   The heat exchanger 1 can be mounted on an outdoor unit or an indoor unit of a separate air conditioner. FIG. 19 shows an example of mounting on an outdoor unit.

図19の室外機20は平面形状略矩形の板金製筐体20aを備え、筐体20aの長辺側を正面20F及び背面20Bとし、短辺側を左側面20L及び右側面20Rとしている。正面20Fには排気口21が形成され、背面20Bには背面吸気口22が形成され、左側面20Lには側面吸気口23が形成される。排気口21は複数の水平なスリット状開口の集合からなり、背面吸気口22と側面吸気口23は格子状の開口からなる。正面20F、背面20B、左側面20L、右側面20Rの4面の板金部材に図示しない天板と底板が加わって六面体形状の筐体20aが形成される。   The outdoor unit 20 shown in FIG. 19 includes a sheet metal housing 20a having a substantially rectangular planar shape. The long side of the housing 20a is a front surface 20F and a back surface 20B, and the short side is a left side surface 20L and a right side surface 20R. An exhaust port 21 is formed on the front surface 20F, a rear intake port 22 is formed on the rear surface 20B, and a side intake port 23 is formed on the left side surface 20L. The exhaust port 21 is made up of a set of a plurality of horizontal slit-like openings, and the rear intake port 22 and the side intake ports 23 are made up of lattice-like openings. A top plate and a bottom plate (not shown) are added to the four sheet metal members of the front surface 20F, the back surface 20B, the left side surface 20L, and the right side surface 20R to form a hexahedral-shaped housing 20a.

筐体20aの内部には、背面吸気口22及び側面吸気口23のすぐ内側に熱平面形状L字形の熱交換器1が配置される。熱交換器1と室外空気との間で強制的に熱交換を行わせるため、熱交換器1と排気口21の間に送風機24が配置される。送風機24は電動機24aにプロペラファン24bを組み合わせたものである。送風効率向上のため、筐体20aの正面20Fの内面にはプロペラファン24bを囲むベルマウス25が取り付けられる。筐体20aの右側面20Rの内側の空間は背面吸気口22から排気口21へと流れる空気流から隔壁26で隔離されており、ここに圧縮機27が収容されている。   Inside the housing 20a, a heat-planar L-shaped heat exchanger 1 is disposed just inside the rear intake port 22 and the side intake port 23. In order to force heat exchange between the heat exchanger 1 and the outdoor air, a blower 24 is disposed between the heat exchanger 1 and the exhaust port 21. The blower 24 is a combination of an electric motor 24a and a propeller fan 24b. In order to improve the blowing efficiency, a bell mouth 25 surrounding the propeller fan 24b is attached to the inner surface of the front surface 20F of the housing 20a. A space inside the right side surface 20R of the housing 20a is isolated by a partition wall 26 from an air flow flowing from the rear intake port 22 to the exhaust port 21, and a compressor 27 is accommodated therein.

室外機20の熱交換器1に凝縮水が発生すると、空気流通路の面積が凝縮水で狭められることにより熱交換性能が低下するだけでなく、氷点下の外気温が継続する寒冷地であったりした場合には、凝縮水が凍結して熱交換器1の破損を招くこともある。そのため室外機20では、熱交換器1からの凝縮水の排水が重要な課題となる。   When condensed water is generated in the heat exchanger 1 of the outdoor unit 20, the area of the air flow passage is narrowed by the condensed water, so that not only the heat exchange performance is lowered, but also a cold district where the outside air temperature below freezing continues. In such a case, the condensed water may freeze and cause damage to the heat exchanger 1. Therefore, in the outdoor unit 20, the drainage of the condensed water from the heat exchanger 1 becomes an important issue.

前述した理由により、室外機20では、熱交換器1の風上側が凝縮水の結集側となる。風上側で結露した凝縮水は、風下側にあまり流れることなく、そのまま風上側の熱交換器1下部に達する。外気温が低い場合は、凝縮水は霜として熱交換器1に付着する。霜の量が増えれば除霜運転を余儀なくされるが、除霜運転中、送風機24は停止しているので、霜が溶けた水は風の影響を受けることなく専ら重力で下に流れて溜まる。このことから、熱交換器1の下部のサイドシート10Dを本発明の構成とすることにより、凝縮水を速やかに排水して、凝縮水の滞留がもたらす弊害を低減することができる。   For the reason described above, in the outdoor unit 20, the windward side of the heat exchanger 1 is the condensed water condensing side. The condensed water condensed on the windward side reaches the lower part of the heat exchanger 1 on the windward side without much flowing on the leeward side. When the outside air temperature is low, the condensed water adheres to the heat exchanger 1 as frost. If the amount of frost increases, the defrosting operation will be forced, but during the defrosting operation, the blower 24 is stopped, so that the water in which the frost has melted flows and accumulates exclusively under gravity without being affected by the wind. . From this, the side sheet 10D at the lower part of the heat exchanger 1 is configured as the present invention, so that the condensate can be drained quickly, and the adverse effects caused by the condensate can be reduced.

すなわち、最外側フィン6aDの外側に取り付けられるサイドシート10Dの凝縮水が結集する側の縁に、互いに間隔を置いて複数のノッチ11が形成される。このノッチ11は、各々、フィンの間隔ピッチを複数ピッチ分カバーする幅を備える。これらの構成により、熱交換器1の下部に位置する最外側フィン6aDで凝縮水が発生、または上方で発生した凝縮水が最外側フィン6aDまで流下したとして、凝縮水はノッチ11の奥に引き込まれて凝集し、速やかに滴下、すなわち排水されることになる。このため、熱交換器1の下部に位置する最外側フィン6aDのところに凝縮水が滞留して通風性が損なわれ、熱交換性能が低下するといった事態を回避できる。   That is, a plurality of notches 11 are formed at intervals from each other on the edge of the side sheet 10D attached to the outside of the outermost fin 6aD on the side where condensed water is collected. Each notch 11 has a width that covers a plurality of pitches between the fins. With these configurations, it is assumed that condensed water is generated at the outermost fin 6aD located at the lower part of the heat exchanger 1 or the condensed water generated above flows down to the outermost fin 6aD. It aggregates and drops quickly, that is, drained. For this reason, it is possible to avoid a situation in which condensed water stays at the outermost fins 6aD located in the lower part of the heat exchanger 1 and the air permeability is impaired and the heat exchange performance is lowered.

図20、21には、セパレート型空気調和機の室内機に熱交換器1を搭載した例を示す。図20、21に示されるセパレート型空気調和機の室外機は圧縮機、四方弁、膨張弁、室外側熱交換器、室外側送風機などを含み、室内機は室内側熱交換器、室内側送風機などを含む。室外側熱交換器は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。室内側熱交換器は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。   20 and 21 show an example in which the heat exchanger 1 is mounted on an indoor unit of a separate type air conditioner. The outdoor unit of the separate type air conditioner shown in FIGS. 20 and 21 includes a compressor, a four-way valve, an expansion valve, an outdoor heat exchanger, an outdoor fan, etc., and the indoor unit is an indoor heat exchanger and an indoor fan. Etc. The outdoor heat exchanger functions as an evaporator during heating operation and functions as a condenser during cooling operation. The indoor heat exchanger functions as a condenser during heating operation and functions as an evaporator during cooling operation.

図20には冷凍サイクルとしてヒートポンプサイクルを用いるセパレート型空気調和機の基本的構成が示されている。ヒートポンプサイクル101は、圧縮機102、四方弁103、室外側の熱交換器104、減圧膨張装置105、及び室内側の熱交換器106をループ状に接続したものである。圧縮機102、四方弁103、熱交換器104、及び減圧膨張装置105は室外機110の筐体に収容され、熱交換器106は室内機120の筐体に収容される。熱交換器104には室外側の送風機107が組み合わせられ、熱交換器106には室内側の送風機108が組み合わせられる。送風機107は吹出気流形成用のプロペラファン107aを含み、送風機108は吹出気流形成用のクロスフローファン108aを含む。クロスフローファン108aは熱交換器106の下に軸線を水平にして配置される。   FIG. 20 shows a basic configuration of a separate air conditioner that uses a heat pump cycle as a refrigeration cycle. The heat pump cycle 101 includes a compressor 102, a four-way valve 103, an outdoor heat exchanger 104, a decompression / expansion device 105, and an indoor heat exchanger 106 connected in a loop. The compressor 102, the four-way valve 103, the heat exchanger 104, and the decompression / expansion device 105 are accommodated in the casing of the outdoor unit 110, and the heat exchanger 106 is accommodated in the casing of the indoor unit 120. An outdoor fan 107 is combined with the heat exchanger 104, and an indoor fan 108 is combined with the heat exchanger 106. The blower 107 includes a propeller fan 107a for forming a blown airflow, and the blower 108 includes a cross flow fan 108a for forming a blown airflow. The cross flow fan 108a is disposed below the heat exchanger 106 with its axis line horizontal.

本発明に係る熱交換器1は、室内機の熱交換器106の構成要素として用いることができる。熱交換器106は、3個の熱交換器106A、106B、106Cを送風機108を覆う屋根のように組み合わせたものであり、熱交換器106A、106B、106Cのいずれかまたは全てを熱交換器1とすることができる。   The heat exchanger 1 which concerns on this invention can be used as a component of the heat exchanger 106 of an indoor unit. The heat exchanger 106 is a combination of three heat exchangers 106A, 106B, and 106C like a roof that covers the blower 108, and any or all of the heat exchangers 106A, 106B, and 106C are combined with the heat exchanger 1. It can be.

図20は暖房運転時の状態を示す。この時は、圧縮機102から吐出された高温高圧の冷媒は室内側の熱交換器106に入ってそこで放熱し、凝縮する。熱交換器106を出た冷媒は減圧膨張装置105から室外側の熱交換器104に入ってそこで膨張し、室外空気から熱を取り込んだ後、圧縮機102に戻る。室内側の送風機108によって生成された気流が熱交換器106からの放熱を促進し、室外側の送風機107によって生成された気流が熱交換器104の吸熱を促進する。   FIG. 20 shows a state during heating operation. At this time, the high-temperature and high-pressure refrigerant discharged from the compressor 102 enters the indoor heat exchanger 106 where it dissipates heat and condenses. The refrigerant exiting the heat exchanger 106 enters the outdoor heat exchanger 104 from the decompression / expansion device 105 and expands there, takes heat from the outdoor air, and returns to the compressor 102. The airflow generated by the indoor fan 108 promotes heat dissipation from the heat exchanger 106, and the airflow generated by the outdoor fan 107 accelerates heat absorption of the heat exchanger 104.

図21は冷房運転時あるいは除霜運転時の状態を示す。この時は四方弁103が切り換えられて暖房運転時と冷媒の流れが逆になる。すなわち、圧縮機102から吐出された高温高圧の冷媒は室外側の熱交換器104に入ってそこで放熱し、凝縮する。熱交換器104を出た冷媒は減圧膨張装置105から室内側の熱交換器106に入ってそこで膨張し、室内空気から熱を取り込んだ後、圧縮機102に戻る。室外側の送風機107によって生成された気流が熱交換器104からの放熱を促進し、室内側の送風機108によって生成された気流が熱交換器106の吸熱を促進する。   FIG. 21 shows a state during cooling operation or defrosting operation. At this time, the four-way valve 103 is switched so that the refrigerant flow is reversed from that during the heating operation. That is, the high-temperature and high-pressure refrigerant discharged from the compressor 102 enters the outdoor heat exchanger 104, where it dissipates heat and condenses. The refrigerant exiting the heat exchanger 104 enters the heat exchanger 106 on the indoor side from the decompression / expansion device 105 and expands there, takes heat from the indoor air, and returns to the compressor 102. The air flow generated by the outdoor air blower 107 promotes heat dissipation from the heat exchanger 104, and the air flow generated by the indoor air blower 108 promotes heat absorption of the heat exchanger 106.

本発明に係る熱交換器1を室内機の熱交換器106の構成要素として用いた場合、熱交換器1の風下側であり、熱交換器1の姿勢によっては下面側でもある面が凝縮水の結集側となる。本発明に係る熱交換器1を用いれば、凝縮水が発生したとしてもそれを速やかに排水することができ、凝縮水がクロスフローファン108aに滴下して水とびが生じるといった現象を低減することができる。   When the heat exchanger 1 according to the present invention is used as a constituent element of the heat exchanger 106 of the indoor unit, the surface that is the leeward side of the heat exchanger 1 and also the lower surface side depending on the posture of the heat exchanger 1 is condensed water. The rally side. If the heat exchanger 1 according to the present invention is used, even if condensed water is generated, it can be quickly drained, and the phenomenon that the condensed water drops on the cross flow fan 108a and water jumps is reduced. Can do.

以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。   Although the embodiments of the present invention have been described above, the scope of the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention.

本発明はサイドフロー方式のパラレルフロー型熱交換器に広く利用可能である。   The present invention is widely applicable to side flow parallel flow heat exchangers.

1 熱交換器
2、3 ヘッダパイプ
4 偏平チューブ
5 冷媒通路
6 フィン
6aU、6aD 最外側フィン
10U、10D サイドシート
11、12 ノッチ
13 貫通孔
20 室外機
110 室外機
120 室内機
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2, 3 Header pipe 4 Flat tube 5 Refrigerant passage 6 Fin 6aU, 6aD Outermost side fin 10U, 10D Side seat 11, 12 Notch 13 Through-hole 20 Outdoor unit 110 Outdoor unit 120 Indoor unit 120 Indoor unit

Claims (12)

間隔を置いて平行に配置された複数のヘッダパイプと、前記複数のヘッダパイプの間に複数配置され、内部に設けた冷媒通路を前記ヘッダパイプの内部に連通させた偏平チューブと、前記複数の偏平チューブの偏平面に取り付けられる複数のフィンと、前記複数のフィンの中で最も外側に位置するフィンの外側に取り付けられるサイドシートを備えたサイドフロー方式のパラレルフロー型熱交換器において、
熱交換器下部に位置する前記サイドシートには、当該熱交換器において凝縮水が結集する側の縁に、互いに間隔を置いて複数のノッチが形成され、前記ノッチは、各々、前記フィンの間隔ピッチを複数ピッチ分カバーする幅を備えることを特徴とする熱交換器。
A plurality of header pipes arranged in parallel at intervals, a plurality of flat tubes arranged between the plurality of header pipes and having refrigerant passages provided therein communicated with the inside of the header pipes, In a parallel flow type heat exchanger of a side flow type comprising a plurality of fins attached to a flat surface of a flat tube and a side sheet attached to the outside of the fins located on the outermost side among the plurality of fins,
A plurality of notches are formed in the side sheet located at the lower part of the heat exchanger at intervals on the side of the heat exchanger where condensed water gathers, and the notches are spaced apart from each other. A heat exchanger comprising a width that covers a plurality of pitches.
前記ノッチは、前記サイドシートの縁よりも奥に180°未満の角を有する形状であることを特徴とする請求項1に記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the notch has a shape having an angle of less than 180 ° behind the edge of the side sheet. 前記ノッチは、前記サイドシートの縁から奥に進むほど幅が狭くなる形状であることを
特徴とする請求項2に記載の熱交換器。
3. The heat exchanger according to claim 2, wherein the notch has a shape that becomes narrower as it goes from the edge of the side seat to the back.
前記サイドシートの凝縮水が結集する側とは反対側の縁に、互いに間隔を置いて複数のノッチが形成され、前記ノッチは、各々、前記フィンの間隔ピッチを複数ピッチ分カバーする幅を備えることを特徴とする請求項3に記載の熱交換器。   A plurality of notches are formed at intervals on the edge of the side sheet opposite to the side on which condensed water collects, and the notches each have a width that covers the pitch of the fins by a plurality of pitches. The heat exchanger according to claim 3. 前記サイドシートの凝縮水が結集する側に形成されたノッチ、またはその反対側に形成されたノッチが、前記サイドシートの奥行きの半分を超す奥行きを有することを特徴とする請求項4に記載の熱交換器。   The notch formed on the side of the side sheet where condensed water condenses, or the notch formed on the opposite side thereof has a depth exceeding half of the depth of the side sheet. Heat exchanger. 凝縮水が結集する側に形成されたノッチとその反対側に形成されたノッチとが、互い違いに配置されていることを特徴とする請求項4または5に記載の熱交換器。   The heat exchanger according to claim 4 or 5, wherein notches formed on a side where condensed water collects and notches formed on the opposite side are alternately arranged. 当該熱交換器は一部が湾曲部となるように曲げ加工されうるものであり、前記曲げ加工を受ける前記サイドシートの一部には、曲げ加工後に凸となる縁に互いに間隔を置いて複数のスリットが切り込み形成されることを特徴とする請求項1から6のいずれか1項に記載の熱交換器。   The heat exchanger can be bent so that a part thereof is a curved portion, and a part of the side sheet that receives the bending process includes a plurality of edges spaced apart from each other by edges that become convex after the bending process. The heat exchanger according to any one of claims 1 to 6, wherein the slit is cut and formed. 曲げ加工後に凹となる縁には前記フィンの間隔ピッチを複数ピッチ分カバーする幅のノッチが互いに間隔を置いて複数形成されることを特徴とする請求項7に記載の熱交換器。   8. The heat exchanger according to claim 7, wherein a plurality of notches having a width that covers a plurality of pitches of the fins are formed at intervals on the edge that is concave after the bending process. 前記サイドシートには、前記ノッチ以外の箇所に、互いに間隔を置いて複数の貫通孔が形成されることを特徴とする請求項1から8のいずれか1項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 8, wherein a plurality of through holes are formed in the side sheet at intervals other than the notch. 前記貫通孔は、各々、前記フィンの間隔ピッチを複数ピッチ分カバーする幅を有するように形成されていることを特徴とする請求項9に記載の熱交換器。   The heat exchanger according to claim 9, wherein each of the through holes is formed to have a width that covers a plurality of pitches between the fins. 奥行き方向において、前記サイドシートの方が前記フィンよりも幅が狭くなっており、凝縮水が結集する側とその反対側において、前記フィンが前記サイドシートの外側に露出していることを特徴とする請求項1から10のいずれか1項に記載の熱交換器。   In the depth direction, the width of the side seat is narrower than that of the fin, and the fin is exposed to the outside of the side seat on the side where condensed water collects and the opposite side. The heat exchanger according to any one of claims 1 to 10. 請求項1から11のいずれか1項に記載の熱交換器を室外機または室内機に搭載したことを特徴とする空気調和機。   An air conditioner in which the heat exchanger according to any one of claims 1 to 11 is mounted on an outdoor unit or an indoor unit.
JP2010286627A 2010-12-22 2010-12-22 Heat exchanger and air conditioner equipped with the same Expired - Fee Related JP5009413B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010286627A JP5009413B2 (en) 2010-12-22 2010-12-22 Heat exchanger and air conditioner equipped with the same
KR1020137016024A KR101558717B1 (en) 2010-12-22 2011-11-11 Heat exchanger and air conditioner equipped with same
CN201180059716.3A CN103261828B (en) 2010-12-22 2011-11-11 Heat exchanger and the air conditioner being provided with this heat exchanger
PCT/JP2011/076022 WO2012086333A1 (en) 2010-12-22 2011-11-11 Heat exchanger and air conditioner equipped with same
US13/990,100 US20130240187A1 (en) 2010-12-22 2011-11-11 Heat exchanger and air conditioner equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010286627A JP5009413B2 (en) 2010-12-22 2010-12-22 Heat exchanger and air conditioner equipped with the same

Publications (2)

Publication Number Publication Date
JP2012132644A JP2012132644A (en) 2012-07-12
JP5009413B2 true JP5009413B2 (en) 2012-08-22

Family

ID=46313615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010286627A Expired - Fee Related JP5009413B2 (en) 2010-12-22 2010-12-22 Heat exchanger and air conditioner equipped with the same

Country Status (5)

Country Link
US (1) US20130240187A1 (en)
JP (1) JP5009413B2 (en)
KR (1) KR101558717B1 (en)
CN (1) CN103261828B (en)
WO (1) WO2012086333A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858478B2 (en) * 2012-09-04 2016-02-10 シャープ株式会社 Parallel flow type heat exchanger and air conditioner equipped with the same
CN103411281B (en) * 2012-12-29 2015-10-28 泰铂(上海)实业有限公司 Air conditioning for automobiles U-shape heating and cooling used for indoor machine core body
US20150211807A1 (en) * 2014-01-29 2015-07-30 Trane International Inc. Heat Exchanger with Fluted Fin
JP2015157507A (en) * 2014-02-21 2015-09-03 株式会社ケーヒン・サーマル・テクノロジー Air conditioner for vehicle
CN103925742B (en) * 2014-04-18 2016-06-29 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanger and manufacture method, heat exchange module, heat-exchanger rig and heat source unit
JP6361452B2 (en) * 2014-10-16 2018-07-25 ダイキン工業株式会社 Refrigerant evaporator
CN216432657U (en) * 2018-12-18 2022-05-03 三菱电机株式会社 Heat exchanger
FR3116593B1 (en) * 2020-11-20 2023-02-10 Cinier Radiateurs ANTIVIRAL VERTICAL REVERSIBLE AIR CONDITIONING WALL TERMINAL

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3597956A (en) * 1969-03-07 1971-08-10 Trane Co Apparatus for constructing a fin-and-tube heat exchanger having a bend formed therein
JPS63154981U (en) * 1987-03-30 1988-10-12
US4917180A (en) * 1989-03-27 1990-04-17 General Motors Corporation Heat exchanger with laminated header and tank and method of manufacture
JPH02287094A (en) * 1989-04-26 1990-11-27 Zexel Corp Heat exchanger
JPH04340031A (en) * 1991-05-16 1992-11-26 Sharp Corp Heat exchanger for air conditioner
CA2215173C (en) * 1997-09-11 2004-04-06 Thomas F. Seiler Stepped dimpled mounting brackets for heat exchangers
JP2000241093A (en) * 1999-02-24 2000-09-08 Daikin Ind Ltd Air heat exchanger
FR2811416B1 (en) * 2000-07-05 2003-04-18 Const Aero Navales TWO-WAY FLOW FLOW TYPE HEAT EXCHANGER
JP4193741B2 (en) * 2004-03-30 2008-12-10 株式会社デンソー Refrigerant evaporator
FR2873434B1 (en) * 2004-07-20 2017-12-29 Valeo Thermique Moteur Sa HEAT EXCHANGER WITH JOUES
JP4604759B2 (en) * 2005-02-22 2011-01-05 株式会社デンソー Heat exchanger
US20080190596A1 (en) * 2005-04-05 2008-08-14 Dieter Bachner Heat Exchanger, in Particular for a Motor Vehicle
US20070169922A1 (en) * 2006-01-24 2007-07-26 Pautler Donald R Microchannel, flat tube heat exchanger with bent tube configuration
US7699095B2 (en) * 2006-03-29 2010-04-20 Delphi Technologies, Inc. Bendable core unit
JP5125344B2 (en) * 2006-09-29 2013-01-23 ダイキン工業株式会社 Heat exchanger
JP4334588B2 (en) * 2007-10-04 2009-09-30 シャープ株式会社 Heat exchanger
JP2010025477A (en) * 2008-07-22 2010-02-04 Daikin Ind Ltd Heat exchanger
JP5550106B2 (en) * 2009-03-17 2014-07-16 日本軽金属株式会社 Corrugated fin heat exchanger drainage structure
JP5336914B2 (en) * 2009-04-15 2013-11-06 シャープ株式会社 Heat exchanger and air conditioner equipped with the same

Also Published As

Publication number Publication date
CN103261828A (en) 2013-08-21
WO2012086333A1 (en) 2012-06-28
JP2012132644A (en) 2012-07-12
CN103261828B (en) 2015-11-25
KR101558717B1 (en) 2015-10-07
US20130240187A1 (en) 2013-09-19
KR20140018199A (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5009413B2 (en) Heat exchanger and air conditioner equipped with the same
JP4503682B1 (en) Heat exchanger and air conditioner equipped with the same
JP5336914B2 (en) Heat exchanger and air conditioner equipped with the same
JP2007183088A (en) Heat exchanger
JP6972158B2 (en) Dehumidifier
JP5270732B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
JP5172772B2 (en) Heat exchanger and air conditioner equipped with the same
JP2004271113A (en) Heat exchanger
JP2014043985A (en) Parallel flow type heat exchanger and air conditioner mounted with the same
WO2012011331A1 (en) Heat exchanger and air conditioner equipped therewith
JP4995308B2 (en) Air conditioner indoor unit
JP2012037092A (en) Heat exchanger, and air conditioner with the same
JP5940895B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
JP5404571B2 (en) Heat exchanger and equipment
WO2018040037A1 (en) Micro-channel heat exchanger and air-cooled refrigerator
JP2010139115A (en) Heat exchanger and heat exchanger unit
WO2018040036A1 (en) Micro-channel heat exchanger and air-cooled refrigerator
JP6379352B2 (en) Finned tube heat exchanger
JP5009409B2 (en) Heat exchanger and air conditioner equipped with the same
JP2011047600A (en) Heat exchanger and air conditioner mounted with the same
JP7258151B2 (en) Heat exchanger and refrigeration cycle equipment
JP7353483B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
WO2012056790A1 (en) Heat exchanger and air conditioner having same installed therein
JP2011102651A (en) Heat exchanger and air conditioner loading the same
JP2013228134A (en) Parallel flow type heat exchanger and air conditioner mounted with the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R150 Certificate of patent or registration of utility model

Ref document number: 5009413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees