JP2015157507A - Air conditioner for vehicle - Google Patents

Air conditioner for vehicle Download PDF

Info

Publication number
JP2015157507A
JP2015157507A JP2014031986A JP2014031986A JP2015157507A JP 2015157507 A JP2015157507 A JP 2015157507A JP 2014031986 A JP2014031986 A JP 2014031986A JP 2014031986 A JP2014031986 A JP 2014031986A JP 2015157507 A JP2015157507 A JP 2015157507A
Authority
JP
Japan
Prior art keywords
tube
heat exchange
refrigerant
evaporator
leeward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014031986A
Other languages
Japanese (ja)
Inventor
基之 ▲高▼木
基之 ▲高▼木
Motoyuki Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Thermal Systems Japan Ltd
Original Assignee
Keihin Thermal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Thermal Technology Corp filed Critical Keihin Thermal Technology Corp
Priority to JP2014031986A priority Critical patent/JP2015157507A/en
Priority to US14/613,359 priority patent/US20150241080A1/en
Priority to DE102015101818.7A priority patent/DE102015101818A1/en
Priority to CN201510082018.5A priority patent/CN104864524A/en
Publication of JP2015157507A publication Critical patent/JP2015157507A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00792Arrangement of detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H1/00335Heat exchangers for air-conditioning devices of the gas-air type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner for a vehicle that can prevent condensation water from freezing on a surface of an evaporator and enables reduction in the number of components.SOLUTION: An air conditioner for a vehicle includes: an evaporator 1; and a temperature sensor 2 for detecting a temperature of the evaporator 1. Three tube groups are provided in a leeward side tube row 4 of the evaporator 1, and two tube groups are provided in a windward tube row 5. A flowing direction of a refrigerant within a heat exchange tube 3 of the furthest tube group located at the furthest position from a refrigerant inlet 24 of the leeward side tube row 4 is the same as that of a refrigerant within a heat exchange tube 3 of the furthest tube group located at the furthest position from a refrigerant outlet 29 of the windward tube row 5, and one path is constituted by both of the furthest tube groups. The one temperature sensor 2 is disposed in the evaporator 1 so as to detect a temperature of a portion where the furthest tube group of the leeward side tube row 4 of the evaporator 1 is disposed.

Description

この発明は、たとえば自動車に搭載される冷凍サイクルである車両用空調装置に関する。   The present invention relates to a vehicle air conditioner that is a refrigeration cycle mounted on an automobile, for example.

この明細書および特許請求の範囲において、図2および図3の上下を上下というものとする。   In this specification and claims, the top and bottom of FIGS. 2 and 3 are referred to as top and bottom.

車両用空調装置としては、エンジンを駆動源としかつクラッチ手段を介してエンジンに連結されたコンプレッサと、コンプレッサで圧縮された冷媒を冷却するコンデンサと、コンデンサで冷却された冷媒を減圧する減圧器と、減圧器で減圧された冷媒を蒸発させるエバポレータと、エバポレータの温度を検出する温度センサとを備えており、温度センサにより検出された温度に基づいてコンプレッサをオン、オフさせてエバポレータの温度を制御することによって、コンプレッサのオン時およびオフ時の車室内への吹き出し空気の温度に大きな差が生じることを抑制した車両用空調装置が広く知られている。   As a vehicle air conditioner, a compressor that uses an engine as a drive source and is connected to the engine via a clutch means, a condenser that cools the refrigerant compressed by the compressor, and a decompressor that decompresses the refrigerant cooled by the condenser, The evaporator is equipped with an evaporator that evaporates the refrigerant depressurized by the decompressor, and a temperature sensor that detects the temperature of the evaporator. The temperature of the evaporator is controlled by turning the compressor on and off based on the temperature detected by the temperature sensor. By doing so, a vehicular air conditioner that suppresses the occurrence of a large difference in the temperature of air blown into the passenger compartment when the compressor is on and off is widely known.

上述した車両用空調装置の一例として、エバポレータに、長手方向を上下方向に向けるとともに通風方向と直角をなす方向に間隔をおいて配置された複数の熱交換チューブからなるチューブ列が、通風方向に並んで2列設けられており、隣接する熱交換チューブどうしの間の通風間隙に、それぞれ両チューブ列の熱交換チューブに跨って共有されるようにフィンが配置され、風下側および風上側チューブ列の熱交換チューブの上下両端部が、それぞれ風下側および風上側上下両ヘッダ部に通じさせられ、風下側上ヘッダ部の一端部に冷媒入口が設けられ、風上側上ヘッダ部における冷媒入口と同一端部に冷媒出口が設けられ、風下側チューブ列に、複数の熱交換チューブからなる第1〜第4のチューブ群が、冷媒入口側から他端側に向かって並んで設けられ、風上側チューブ列に、複数の熱交換チューブからなる第5〜第8のチューブ群が、冷媒出口とは反対側の端部側から冷媒出口に向かって並んで設けられ、第1チューブ群の風上側に第8チューブ群、第2チューブ群の風上側に第7チューブ群、第3チューブ群の風上側に第6チューブ群、および第4チューブ群の風上側に第7チューブ群がそれぞれ位置するとともに、各チューブ群がそれぞれ1つのパスとなり、各チューブ群における熱交換チューブの冷媒流れ方向が同一であるとともに、隣り合うチューブ群における熱交換チューブの冷媒流れ方向が逆向きとなっており、第1チューブ群の隣り合う熱交換チューブどうしの間に配置されたフィンに第1の温度センサが取り付けられ、第4チューブ群の隣り合う熱交換チューブどうしの間に配置されたフィンに第2の温度センサが取り付けられた車両用空調装置が提案されている(特許文献1参照)。   As an example of the vehicle air conditioner described above, a tube row composed of a plurality of heat exchange tubes arranged in the evaporator with the longitudinal direction oriented in the vertical direction and at intervals in the direction perpendicular to the ventilation direction is provided in the ventilation direction. Two rows are provided side by side, and fins are arranged in the ventilation gap between adjacent heat exchange tubes so as to be shared across the heat exchange tubes of both tube rows, and the leeward and windward side tube rows The upper and lower ends of the heat exchange tube are respectively connected to the leeward side and upper side upper and lower header parts, and a refrigerant inlet is provided at one end of the leeward side upper header part, which is the same as the refrigerant inlet in the leeward upper header part. A refrigerant outlet is provided at the end, and the first to fourth tube groups including a plurality of heat exchange tubes are provided in the leeward tube row from the refrigerant inlet side toward the other end side. The fifth to eighth tube groups comprising a plurality of heat exchange tubes are provided in the windward tube row side by side from the end side opposite to the refrigerant outlet toward the refrigerant outlet. The eighth tube group on the windward side of the tube group, the seventh tube group on the windward side of the second tube group, the sixth tube group on the windward side of the third tube group, and the seventh tube group on the windward side of the fourth tube group , Each tube group becomes one path, the refrigerant flow direction of the heat exchange tubes in each tube group is the same, and the refrigerant flow direction of the heat exchange tubes in the adjacent tube groups is opposite. The first temperature sensor is attached to the fins disposed between the adjacent heat exchange tubes of the first tube group, and the adjacent heat exchange tubes of the fourth tube group. Automotive air conditioner in which the second temperature sensor is attached to the arranged fins during blanking each other has been proposed (see Patent Document 1).

特許文献1記載の車両用空調装置においては、第1温度センサによりエバポレータの第1チューブ群に配置されているフィンの温度を検出し、当該温度がオフ側目標温度以下に低下するとクラッチ手段を遮断状態にしてコンプレッサを停止し、第2温度センサによりエバポレータの第4チューブ群に配置されているフィンの温度を検出し、当該温度がオフ側目標温度よりも所定温度だけ高いオン側目標温度まで上昇すると、クラッチ手段を接続状態にしてコンプレッサを作動状態に復帰させるようになっている。   In the vehicle air conditioner described in Patent Document 1, the temperature of the fins arranged in the first tube group of the evaporator is detected by the first temperature sensor, and the clutch means is disconnected when the temperature falls below the off-side target temperature. The compressor is stopped and the temperature of the fins arranged in the fourth tube group of the evaporator is detected by the second temperature sensor, and the temperature rises to the on-side target temperature that is higher than the off-side target temperature by a predetermined temperature. Then, the clutch means is connected and the compressor is returned to the operating state.

しかしながら、第8チューブ群にスーパーヒート領域が存在するので、コンプレッサのオフ時には、エバポレータの第8チューブ群に配置されているフィンの温度はかなり高くなる。したがって、コンプレッサのオン時に、エバポレータの第1チューブ群に配置されているフィンの温度がオフ側目標温度以下に低下するまでに比較的長時間を要し、他のチューブ群、たとえばエバポレータの第4チューブ群および第5チューブ群に配置されている熱交換チューブおよびフィンの温度が低下して凝縮水が凍結するおそれがある。その結果、凝縮水の凍結に起因して凍結臭と呼ばれる異臭が発生するおそれがある。   However, since the superheat region exists in the eighth tube group, the temperature of the fins arranged in the eighth tube group of the evaporator becomes considerably high when the compressor is off. Therefore, when the compressor is turned on, it takes a relatively long time for the temperature of the fins arranged in the first tube group of the evaporator to fall below the target temperature on the off side, and other tube groups such as the fourth tube of the evaporator. There is a possibility that the temperature of the heat exchange tubes and fins arranged in the tube group and the fifth tube group will drop and the condensed water will freeze. As a result, there is a possibility that a strange odor called a frozen odor may be generated due to the freezing of the condensed water.

また、特許文献1記載の車両用空調装置では、2つの温度センサが用いられているので、部品点数が増えてコストが高くなるとともに、組み付け作業工数が増加し、しかも制御系が複雑になるおそれがある。   Further, in the vehicle air conditioner described in Patent Document 1, since two temperature sensors are used, the number of parts increases, the cost increases, the number of assembly work steps increases, and the control system may be complicated. There is.

特開2004−268769号公報JP 2004-268769 A

この発明の目的は、上記問題を解決し、エバポレータの表面での凝縮水の凍結を防止しうるとともに、部品点数を低減しうる車両用空調装置を提供することにある。   An object of the present invention is to provide a vehicle air conditioner that can solve the above-described problems, prevent the condensed water from freezing on the surface of the evaporator, and reduce the number of parts.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)エンジンを駆動源としかつクラッチ手段を介してエンジンに連結されたコンプレッサと、コンプレッサで圧縮された冷媒を冷却するコンデンサと、コンデンサで冷却された冷媒を減圧する減圧器と、減圧器で減圧された冷媒を蒸発させるエバポレータと、エバポレータの温度を検出する温度センサとを備えており、温度センサにより検出された温度に基づいてコンプレッサをオン、オフさせてエバポレータの温度が制御されるようになされている車両用空調装置において、
エバポレータに、長手方向を上下方向に向けるとともに通風方向と直角をなす方向に間隔をおいて配置された複数の熱交換チューブからなるチューブ列が、通風方向に並んで2列設けられており、風下側チューブ列に、複数の熱交換チューブからなる3以上のチューブ群が設けられ、風上側チューブ列に、複数の熱交換チューブからなりかつ風下側チューブ列のチューブ群の数よりも1つ少ないチューブ群が設けられ、風下側および風上側チューブ列の熱交換チューブの上下両端部が、それぞれ風下側および風上側上下両ヘッダ部に通じさせられており、風下側上下両ヘッダ部のうちのいずれか一方のヘッダ部の一端部に冷媒入口が設けられ、風上側上下両ヘッダ部のうちの冷媒入口が設けられた風下側ヘッダ部と同じ側のヘッダ部における冷媒入口と同一端部に冷媒出口が設けられ、風下側チューブ列における冷媒入口から最も遠い位置にある最遠チューブ群の熱交換チューブ内の冷媒の流れ方向と、風上側チューブ列における冷媒出口から最も遠い位置にある最遠チューブ群の熱交換チューブ内の冷媒の流れ方向とが同一方向となっており、通風方向に並んで設けられるとともに熱交換チューブ内の冷媒の流れ方向が同一方向である上記2つの最遠チューブ群により1つのパスが構成され、
1つの温度センサが、エバポレータの風下側チューブ列の最遠チューブ群が設けられた部分の温度を検出するように、エバポレータに配置されている車両用空調装置。
1) A compressor connected to the engine through a clutch means, the engine as a driving source, a condenser for cooling the refrigerant compressed by the compressor, a decompressor for decompressing the refrigerant cooled by the condenser, and decompressing by the decompressor An evaporator for evaporating the generated refrigerant and a temperature sensor for detecting the temperature of the evaporator, and the temperature of the evaporator is controlled by turning on and off the compressor based on the temperature detected by the temperature sensor. Vehicle air conditioner
The evaporator is provided with two rows of tubes arranged with a plurality of heat exchange tubes arranged in the direction perpendicular to the ventilation direction and at right angles to the ventilation direction. Three or more tube groups made up of a plurality of heat exchange tubes are provided in the side tube row, and one tube less than the number of tube groups in the leeward side tube row is made up of the plurality of heat exchange tubes in the windward tube row. The upper and lower ends of the heat exchange tubes of the leeward side and the upper side tube row are respectively connected to the leeward side and the upper side upper and lower header parts, and either one of the leeward side upper and lower header parts is provided. A refrigerant inlet is provided at one end of one header part, and the header part on the same side as the leeward header part provided with the refrigerant inlet of the upwind upper and lower header parts. A refrigerant outlet is provided at the same end as the medium inlet, and the flow direction of the refrigerant in the heat exchange tube of the farthest tube group located farthest from the refrigerant inlet in the leeward tube row and from the refrigerant outlet in the windward tube row The flow direction of the refrigerant in the heat exchange tube of the farthest tube group at the farthest position is the same direction, and the refrigerant flow direction in the heat exchange tube is the same direction while being arranged side by side in the ventilation direction. One path is formed by the two farthest tube groups,
A vehicle air conditioner arranged in an evaporator so that one temperature sensor detects the temperature of a portion where the farthest tube group of the leeward tube row of the evaporator is provided.

2)温度センサがサーミスタからなり、風下側チューブ列の最遠チューブ群の隣り合う熱交換チューブどうしの間に配置されたフィンに取り付けられている上記1)記載の車両用空調装置。   2) The vehicle air conditioner according to 1), wherein the temperature sensor is a thermistor and is attached to a fin disposed between adjacent heat exchange tubes in the farthest tube group of the leeward side tube row.

3)エバポレータの風下側チューブ列に、複数の熱交換チューブからなる第1〜第3のチューブ群が、冷媒入口側の端部から他端部側に向かって並んで設けられ、同じく風上側チューブ列に、複数の熱交換チューブからなる第4および第5のチューブ群が、冷媒出口側とは反対側の端部から冷媒出口側の端部に向かって並んで設けられ、風下側上下両ヘッダ部および風上側上下両ヘッダ部に、熱交換チューブが通じる一定数の区画が設けられることによって、第1チューブ群が、冷媒が熱交換チューブ内を、上下いずれかのうちの冷媒入口が位置する側から反対側に流れる第1パスとなり、第2チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第2パスとなり、第3および第4チューブ群が、冷媒が熱交換チューブ内を第1パスと同方向に流れる第3パスとなり、第5チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第4パスとなっており、第3パスが、熱交換チューブ内の冷媒の流れ方向が同一方向である第3および第4チューブ群が通風方向に並んで設けられることにより構成されている上記1)または2)記載の車両用空調装置。   3) In the leeward side tube row of the evaporator, first to third tube groups composed of a plurality of heat exchange tubes are provided side by side from the end portion on the refrigerant inlet side toward the other end portion side. A fourth and fifth tube group consisting of a plurality of heat exchange tubes are provided in a row side by side from the end opposite to the refrigerant outlet side toward the end on the refrigerant outlet side. By providing a certain number of compartments through which the heat exchange tubes communicate with each other and the windward upper and lower headers, the first tube group is located inside the heat exchange tube, and the refrigerant inlet of either the upper or lower is positioned. The first tube flows from the side to the opposite side, the second tube group becomes a second path in which the refrigerant flows in the direction opposite to the first path in the heat exchange tube, and the third and fourth tube groups heat the refrigerant. Inside the exchange tube A third path that flows in the same direction as the path, the fifth tube group is a fourth path in which the refrigerant flows in the direction opposite to the first path in the heat exchange tube, and the third path is in the heat exchange tube The vehicle air conditioner according to 1) or 2), wherein the third and fourth tube groups having the same refrigerant flow direction are arranged side by side in the ventilation direction.

上記1)〜3)の車両用空調装置によれば、エバポレータの冷媒入口から流入した冷媒が、風下側チューブ列の最遠チューブ群および風上側チューブ列の最遠チューブ群に達するまでの距離および時間がほぼ等しくなるので、コンプレッサがオフからオンに切り替わると、エバポレータの両最遠チューブ群の熱交換チューブが均等に冷却され、その結果コンプレッサのオン時に、エバポレータの第3チューブ群が存在する部分の温度が比較的短時間でオフ側目標温度以下に低下する。したがって、エバポレータにおける風下側チューブ列の最遠チューブ群および風上側チューブ列の最遠チューブ群を除いたチューブ群が存在している部分の温度が低下して凝縮水が凍結することが抑えられ、その結果凝縮水の凍結に起因する凍結臭と呼ばれる異臭の発生が抑制される。   According to the vehicle air conditioners of 1) to 3) above, the distance from which the refrigerant flowing in from the refrigerant inlet of the evaporator reaches the farthest tube group in the leeward tube row and the farthest tube group in the windward tube row and Since the time is almost equal, when the compressor switches from off to on, the heat exchange tubes of both the farthest tube groups of the evaporator are evenly cooled, so that when the compressor is on, the portion where the third tube group of the evaporator exists The temperature drops below the off-side target temperature in a relatively short time. Therefore, the temperature of the portion where the tube group excluding the farthest tube group of the leeward tube row and the farthest tube group of the windward tube row in the evaporator is reduced and the condensed water is prevented from freezing, As a result, generation of a strange odor called a frozen odor caused by freezing of condensed water is suppressed.

また、コンプレッサがオフからオンに切り替わると、エバポレータの風下側チューブ列の最も冷媒入口に近い最近チューブ群が存在する部分の温度が急速に低下しようとするが、コンプレッサのオフ時には、風上側チューブ列の最も冷媒出口に近い最近チューブ群にスーパーヒート領域が存在することに起因して、エバポレータの風上側チューブ列の最近チューブ群が存在している部分の温度はかなり高くなっているので、コンプレッサがオフからオンに切り替わった際のエバポレータの風下側チューブ列の最近チューブ群が存在する部分の温度の低下が緩和される。したがって、コンプレッサのオン時に、エバポレータの風下側チューブ列の最近チューブ群が存在する部分の温度低下が抑えられて、凝縮水の凍結が抑制される。   In addition, when the compressor is switched from OFF to ON, the temperature of the portion of the evaporator leeward tube row closest to the refrigerant inlet where the nearest tube group exists tends to decrease rapidly. Due to the presence of the superheat zone in the tube group closest to the refrigerant outlet, the temperature of the part where the tube group in the windward tube row of the evaporator is present is considerably high. The temperature drop in the portion where the tube group in the leeward tube row of the evaporator at the time of switching from off to on is present is alleviated. Therefore, when the compressor is turned on, the temperature drop of the portion of the evaporator leeward tube row where the nearest tube group exists is suppressed, and the freezing of the condensed water is suppressed.

また、上記1)〜3)の車両用空調装置によれば、1つの温度センサが用いられているだけであるから、部品点数が低減されてコストが安くなるとともに、組み付け作業工数が減少し、しかも制御系が簡単になる。   Further, according to the vehicle air conditioner of the above 1) to 3), since only one temperature sensor is used, the number of parts is reduced and the cost is reduced, and the number of assembly work steps is reduced. Moreover, the control system is simplified.

この発明の車両用空調装置に用いられているエバポレータの全体構成を示す一部切り欠き斜視図である。1 is a partially cutaway perspective view showing an overall configuration of an evaporator used in a vehicle air conditioner according to the present invention. 一部を省略した図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 1 which abbreviate | omitted one part. 一部を省略した図1のB−B線断面図である。It is the BB sectional drawing of FIG. 1 which abbreviate | omitted one part. 図1のエバポレータにおける冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant in the evaporator of FIG.

以下、この発明の実施形態を、図面を参照して説明する。以下に述べる実施形態において、空気は、図面に矢印Xで示す方向に流れてエバポレータを通過し、車両用空調装置が搭載されている車両の車室内に送り込まれる。   Embodiments of the present invention will be described below with reference to the drawings. In the embodiments described below, air flows in the direction indicated by the arrow X in the drawing, passes through the evaporator, and is sent into the vehicle interior of the vehicle in which the vehicle air conditioner is mounted.

以下の説明において、風下側から風上側を見た際の左右(図2および図3の左右)を左右というものとする。   In the following description, left and right (left and right in FIGS. 2 and 3) when viewing the leeward side from the leeward side are referred to as left and right.

なお、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

図1はこの発明の車両用空調装置に用いられているエバポレータの全体構成を示し、図2および図3はその構成を概略的に示し、図4は図1のエバポレータにおける冷媒の流れを示す。なお、車両用空調装置の構成は周知であり、図示を省略する。   FIG. 1 shows the overall configuration of an evaporator used in the vehicle air conditioner of the present invention, FIGS. 2 and 3 schematically show the configuration, and FIG. 4 shows the flow of refrigerant in the evaporator of FIG. In addition, the structure of a vehicle air conditioner is well known, and illustration is abbreviate | omitted.

車両用空調装置は、エンジンを駆動源としかつクラッチ手段を介してエンジンに連結されたコンプレッサと、コンプレッサで圧縮された冷媒を冷却するコンデンサと、コンデンサで冷却された冷媒を減圧する減圧器と、減圧器で減圧された冷媒を蒸発させるエバポレータ(1)と、たとえばサーミスタからなりかつエバポレータ(1)の温度を検出する温度センサ(2)とを備えており、温度センサ(2)により検出された温度に基づいてコンプレッサをオン、オフさせてエバポレータ(1)の温度が制御されるようになされている。   A vehicle air conditioner includes an engine as a drive source and a compressor coupled to the engine via a clutch means, a condenser that cools the refrigerant compressed by the compressor, a decompressor that decompresses the refrigerant cooled by the condenser, Evaporator (1) that evaporates the refrigerant decompressed by the decompressor and a temperature sensor (2) that consists of a thermistor and detects the temperature of the evaporator (1), for example, are detected by the temperature sensor (2). The temperature of the evaporator (1) is controlled by turning the compressor on and off based on the temperature.

エバポレータ(1)は、図1〜図3に示すように、幅方向を図1に矢印Xで示す通風方向に向けるとともに長手方向を上下方向に向けた状態で左右方向(通風方向と直角をなす方向)に間隔をおいて配置された複数のアルミニウム製扁平状熱交換チューブ(3)からなる風下側チューブ列(4)および風上側チューブ列(5)と、風下側チューブ列(4)の熱交換チューブ(3)の上下両端側に長手方向を左右方向(熱交換チューブ(3)の並び方向)に向けて配置され、かつ風下側チューブ列(4)の全熱交換チューブ(3)が接続されたアルミニウム製風下側上ヘッダ部(6)およびアルミニウム製風下側下ヘッダ部(7)と、風上側チューブ列(5)の熱交換チューブ(3)の上下両端側に長手方向を左右方向(熱交換チューブ(3)の並び方向)に向けて配置され、かつ風上側チューブ列(5)の全熱交換チューブ(3)が接続されたアルミニウム製風上側上ヘッダ部(8)および風上側下ヘッダ部(9)とを備えている。風下側チューブ列(4)の熱交換チューブ(3)の数と風上側チューブ列(5)の熱交換チューブ(3)の数とは等しくなっている。   As shown in FIGS. 1 to 3, the evaporator (1) has a lateral direction (perpendicular to the ventilation direction) with the width direction directed to the ventilation direction indicated by the arrow X in FIG. 1 and the longitudinal direction directed to the vertical direction. The leeward tube row (4) and the windward tube row (5), which are made of a plurality of flat aluminum heat exchange tubes (3) spaced apart in the direction), and the heat of the leeward tube row (4). Arranged on the upper and lower ends of the exchange tube (3) with the longitudinal direction in the left-right direction (the direction in which the heat exchange tubes (3) are arranged), and the total heat exchange tube (3) in the leeward tube row (4) is connected The longitudinal direction of the aluminum leeward upper header part (6) and the aluminum leeward lower header part (7) and the upper and lower ends of the heat exchange tubes (3) of the windward tube row (5) The heat exchanger tubes (3) are arranged in the direction) and all of the windward tube rows (5) Includes exchange tubes (3) is aluminum windward upper header portion connected (8) and windward lower header section (9). The number of heat exchange tubes (3) in the leeward tube row (4) is equal to the number of heat exchange tubes (3) in the windward tube row (5).

両チューブ列(4)(5)の隣接する熱交換チューブ(3)どうしの間の通風間隙(11)および左右両端の熱交換チューブ(3)の外側に、それぞれ両チューブ列(4)(5)の熱交換チューブ(3)に跨って共有されるようにアルミニウム製コルゲートフィン(12)が配置されて両熱交換チューブ(3)にろう付され、左右両端のコルゲートフィン(12)の外側にそれぞれアルミニウム製サイドプレート(13)が配置されてコルゲートフィン(12)にろう付されている。コルゲートフィン(12)は、波頂部、波底部、および波頂部と波底部とを連結する連結部とよりなる。左右両端の熱交換チューブ(3)とサイドプレート(13)との間も通風間隙(11)となっている。両チューブ列(4)(5)の隣接する熱交換チューブ(3)どうしの間の通風間隙(11)を通過した空気は、車両用空調装置が搭載されている車両の車室内に送り込まれる。   Both tube rows (4) (5) are placed outside the ventilation gap (11) between the adjacent heat exchange tubes (3) of both tube rows (4) and (5) and outside the heat exchange tubes (3) on both left and right ends. The aluminum corrugated fins (12) are arranged so as to be shared across the heat exchanging tubes (3) and brazed to both heat exchanging tubes (3), outside the corrugated fins (12) at the left and right ends. Aluminum side plates (13) are respectively disposed and brazed to the corrugated fins (12). The corrugated fin (12) includes a wave crest portion, a wave bottom portion, and a connecting portion that connects the wave crest portion and the wave bottom portion. A ventilation gap (11) is also formed between the heat exchange tubes (3) at the left and right ends and the side plates (13). The air that has passed through the ventilation gap (11) between the heat exchange tubes (3) adjacent to each other in the tube rows (4) and (5) is sent into the vehicle compartment of the vehicle in which the vehicle air conditioner is mounted.

図2〜図4に示すように、風下側チューブ列(4)に、連続して並んだ複数の熱交換チューブ(3)からなる3以上の奇数、ここでは第1〜第3の3つチューブ群(14)(15)(16)が設けられ、風上側チューブ列(5)に、連続して並んだ複数の熱交換チューブ(3)からなりかつ風下側チューブ列(4)のチューブ群(14)(15)(16)よりも1つ少ない数、ここでは第4〜第5の2つのチューブ群(17)(18)が設けられている。   As shown in FIGS. 2 to 4, the leeward side tube row (4) has three or more odd numbers of three or more heat exchange tubes (3) arranged in succession, here, first to third three tubes. The group (14) (15) (16) is provided, and the tube group of the leeward side tube row (4) comprising a plurality of heat exchange tubes (3) arranged continuously in the windward side tube row (5) ( 14) The number of tubes (17) and (18) which are one less than (15) and (16), here, the fourth to fifth tubes are provided.

温度センサ(2)は、たとえばサーミスタからなり、第3チューブ群(16)の通風間隙(11)に配置されたコルゲートフィン(12)の隣り合う連結部どうしの間に取り付けられ、エバポレータ(1)の第3チューブ群(16)に配置されたコルゲートフィン(12)の温度を検出するようになっている。そして、温度センサ(2)により検出される温度がオフ側目標温度以下に低下するとクラッチ手段を遮断状態にしてコンプレッサを停止し、同じく温度センサ(2)により検出される温度がオフ側目標温度よりも所定温度だけ高いオン側目標温度まで上昇すると、クラッチ手段を接続状態にしてコンプレッサを作動状態に復帰させるようになっている。   The temperature sensor (2) is composed of, for example, a thermistor, and is attached between adjacent connecting portions of the corrugated fins (12) arranged in the ventilation gap (11) of the third tube group (16), and the evaporator (1) The temperature of the corrugated fins (12) arranged in the third tube group (16) is detected. When the temperature detected by the temperature sensor (2) falls below the off-side target temperature, the clutch means is disengaged and the compressor is stopped, and the temperature detected by the temperature sensor (2) is higher than the off-side target temperature. When the temperature rises to the on-side target temperature that is higher by a predetermined temperature, the clutch means is connected and the compressor is returned to the operating state.

風下側チューブ列(4)においては、第1チューブ群(14)は右端部に位置し、第2チューブ群(15)は左右方向の中央部に位置し、第3チューブ群(16)は左端部に位置している。風上側チューブ列(5)においては、第4チューブ群(17)は左側に位置し、第5チューブ群(18)は右側に位置している。第2チューブ群(15)を構成する熱交換チューブ(3)の数は、第1チューブ群(14)を構成する熱交換チューブ(3)の数以上となっており、両チューブ群(14)(15)の熱交換チューブ(3)の合計数は、第5チューブ群(18)を構成する熱交換チューブ(3)の数と等しくなっている。第3チューブ群(16)および第4チューブ群(17)を構成する熱交換チューブ(3)の数は互いに等しくなっている。その結果、第1および第2チューブ群(14)(15)の左右方向の合計幅が、第5チューブ群(18)の左右方向の幅と同一であり、第3チューブ群(16)および第4チューブ群(17)の左右方向の幅が同一である。そして、風下側チューブ列(4)の右端部の第1チューブ群(14)が冷媒が最初に流れる第1パスになるとともに、風上側チューブ列(5)の右側の第5チューブ群(18)が冷媒が最後に流れる最終パスとなっている。   In the leeward tube row (4), the first tube group (14) is located at the right end, the second tube group (15) is located at the center in the left-right direction, and the third tube group (16) is located at the left end. Located in the department. In the windward tube row (5), the fourth tube group (17) is located on the left side and the fifth tube group (18) is located on the right side. The number of heat exchange tubes (3) constituting the second tube group (15) is equal to or greater than the number of heat exchange tubes (3) constituting the first tube group (14), and both tube groups (14) The total number of heat exchange tubes (3) in (15) is equal to the number of heat exchange tubes (3) constituting the fifth tube group (18). The number of heat exchange tubes (3) constituting the third tube group (16) and the fourth tube group (17) is equal to each other. As a result, the total width in the left-right direction of the first and second tube groups (14), (15) is the same as the width in the left-right direction of the fifth tube group (18), and the third tube group (16), The width in the left-right direction of the 4-tube group (17) is the same. The first tube group (14) at the right end of the leeward tube row (4) becomes the first path through which the refrigerant flows first, and the fifth tube group (18) on the right side of the windward tube row (5). Is the final pass through which the refrigerant flows last.

風下側上ヘッダ部(6)と風上側上ヘッダ部(8)、および風下側下ヘッダ部(7)と風上側下ヘッダ部(9)とは、たとえば1つのタンク(19)(21)内を左右方向にのびる仕切部(19a)(21a)により通風方向に2つの空間に分割することにより設けられている。   The leeward upper header (6) and the windward upper header (8), and the leeward lower header (7) and the windward lower header (9) are, for example, in one tank (19) (21). Is divided into two spaces in the ventilation direction by partitioning portions (19a) and (21a) extending in the left-right direction.

風下側上ヘッダ部(6)に、風下側上ヘッダ部(6)内を分割部(6a)により左右方向に並んだ複数の空間に分割することによって、第1チューブ群(14)の熱交換チューブ(3)が通じる第1区画(22)と、第2および第3チューブ群(15)(16)の熱交換チューブ(3)が通じる第2区画(23)とが設けられており、第1区画(22)の右端部に冷媒入口(24)が設けられている。   Heat exchange of the first tube group (14) is performed by dividing the leeward upper header portion (6) into a plurality of spaces arranged in the left-right direction by the dividing portion (6a) in the leeward upper header portion (6). A first compartment (22) through which the tube (3) communicates, and a second compartment (23) through which the heat exchange tubes (3) of the second and third tube groups (15) and (16) communicate. A refrigerant inlet (24) is provided at the right end of one section (22).

風下側下ヘッダ部(7)に、風下側下ヘッダ部(7)内を分割部(7a)により左右方向に並んだ複数の空間に分割することによって、第1および第2チューブ群(14)(15)の熱交換チューブ(3)が通じる第3区画(25)と、第3チューブ群(16)の熱交換チューブ(3)が通じる第4区画(26)とが設けられている。   By dividing the leeward lower header portion (7) into a plurality of spaces arranged in the left-right direction by the dividing portion (7a), the first and second tube groups (14) are divided into the leeward lower header portion (7). A third section (25) through which the heat exchange tube (3) of (15) communicates and a fourth section (26) through which the heat exchange tube (3) of the third tube group (16) communicates.

風上側上ヘッダ部(8)に、風上側上ヘッダ部(8)内を分割部(8a)により左右方向に並んだ複数の空間に分割することによって、第4チューブ群(17)の熱交換チューブ(3)が通じる第5区画(27)と、第5チューブ群(18)の熱交換チューブ(3)が通じる第6区画(28)とが設けられており、第6区画(28)の右端部に冷媒出口(29)が設けられている。   Heat exchange of the fourth tube group (17) is performed by dividing the inside of the upwind header section (8) into a plurality of spaces arranged in the left-right direction by the dividing section (8a) in the upwind header section (8). A fifth section (27) through which the tube (3) communicates and a sixth section (28) through which the heat exchange tube (3) of the fifth tube group (18) communicates are provided. A refrigerant outlet (29) is provided at the right end.

風上側下ヘッダ部(9)に、第4チューブ群(17)および第5チューブ群(18)の熱交換チューブ(3)が通じる第7区画(32)が、風上側下ヘッダ部(9)の全体に設けられている。   The seventh section (32) through which the heat exchange tubes (3) of the fourth tube group (17) and the fifth tube group (18) communicate with the upwind lower header section (9) is the upwind lower header section (9). Is provided throughout.

風下側上ヘッダ部(6)の第2区画(23)における第3チューブ群(16)の熱交換チューブ(3)が連通している部分と、風上側上ヘッダ部(8)の第5区画(27)とが、仕切部(19a)に設けられた連通部(33)を介して通じさせられている。また、風下側下ヘッダ部(7)の第4区画(26)と、風上側下ヘッダ部(9)の第7区画(32)における第4チューブ群(17)の熱交換チューブ(3)が連通している部分とが、仕切部(21a)に設けられた複数の連通部(34)を介して通じさせられている。   The portion where the heat exchange tube (3) of the third tube group (16) communicates with the second section (23) of the leeward upper header section (6) and the fifth section of the leeward upper header section (8). (27) is communicated via a communication part (33) provided in the partition part (19a). Further, the heat exchange tubes (3) of the fourth tube group (17) in the fourth section (26) of the leeward lower header section (7) and the seventh section (32) of the leeward lower header section (9) are provided. The communicating portion is communicated through a plurality of communicating portions (34) provided in the partition portion (21a).

風下側チューブ列(4)および風上側チューブ列(5)に上述したようにして第1〜第5チューブ群(14)(15)(16)(17)(18)が設けられるとともに、風下側両ヘッダ部(6)(7)および風上側両ヘッダ部(8)(9)に上述したようにして冷媒入口(24)、冷媒出口(29)、第1〜第7区画(22)(23)(25)(26)(27)(28)(32)および連通部(33)(34)が設けられていることによって、第1チューブ群(14)、第3チューブ群(16)および第4チューブ群(17)の熱交換チューブ(3)内を冷媒が上から下に流れるようになっているとともに、第2チューブ群(15)および第5チューブ群(18)の熱交換チューブ(3)内を冷媒が下から上に流れるようになっており、第1チューブ群(14)、第2チューブ群(15)および第5チューブ群(18)によりそれぞれ1つの熱交換パスが構成され、第3および第4の2つのチューブ群(16)(17)により1つの熱交換パスが構成されている。   The first to fifth tube groups (14), (15), (16), (17), and (18) are provided in the leeward side tube row (4) and the leeward side tube row (5) as described above, and the leeward side The refrigerant inlet (24), the refrigerant outlet (29), and the first to seventh sections (22) (23) as described above in the header sections (6) (7) and the windward both header sections (8) (9). ) (25) (26) (27) (28) (32) and the communication portion (33) (34) are provided, the first tube group (14), the third tube group (16) and the The refrigerant flows from the top to the bottom in the heat exchange tube (3) of the four tube group (17), and the heat exchange tube (3 of the second tube group (15) and the fifth tube group (18)). ) Refrigerant flows from the bottom to the top, and each of the first tube group (14), the second tube group (15) and the fifth tube group (18) constitutes one heat exchange path, One by the third and fourth two tube groups (16) and (17) Heat exchange path is formed.

したがって、図4に示すように、減圧器により減圧された冷媒は、冷媒入口(24)から第1区画(22)内に流入し、次のように2つの経路を流れて第6区画(28)の冷媒出口(29)からコンプレッサに向けて流出するようになされている。第1の経路は、第1区画(22)、第1チューブ群(14)、第3区画(25)、第2チューブ群(15)、第2区画(23)、第4チューブ群(16)、第4区画(26)、連通部(34)、第7区画(32)、第5チューブ群(18)および第6区画(28)である。第2の経路は、第1区画(22)、第1チューブ群(14)、第3区画(25)、第2チューブ群(15)、第2区画(23)、連通部(33)、第5区画(27)、第4チューブ群(17)、第7区画(32)、第5チューブ群(18)および第6区画(28)である。そして、第1チューブ群(14)が第1パス、第2チューブ群(15)が第2パス、第3および第4チューブ群(16)(17)が第3パス、第8チューブ群(18)が第4パスを構成している。   Therefore, as shown in FIG. 4, the refrigerant depressurized by the decompressor flows into the first section (22) from the refrigerant inlet (24), flows through the two paths as follows, and flows into the sixth section (28). ) From the refrigerant outlet (29) toward the compressor. The first path consists of the first section (22), the first tube group (14), the third section (25), the second tube group (15), the second section (23), and the fourth tube group (16). The fourth section (26), the communication section (34), the seventh section (32), the fifth tube group (18), and the sixth section (28). The second path consists of the first section (22), the first tube group (14), the third section (25), the second tube group (15), the second section (23), the communication section (33), the second section They are 5 divisions (27), 4th tube group (17), 7th division (32), 5th tube group (18), and 6th division (28). The first tube group (14) is the first pass, the second tube group (15) is the second pass, the third and fourth tube groups (16) and (17) are the third pass, and the eighth tube group (18 ) Constitutes the fourth path.

上述した車両用空調装置において、コンプレッサ、コンデンサおよび膨張弁を通過した気液混相の2相冷媒が、冷媒入口(24)を通って風下側上ヘッダ部(6)の第1区画(22)内に入り、上述した2つの経路を通って第6区画(28)の冷媒出口(29)からコンプレッサに向けて流出する。冷媒が風下側チューブ列(4)の熱交換チューブ(3)内、および風上側チューブ列(5)の熱交換チューブ(3)内を流れる間に、通風間隙(11)を通過する空気(図1および図4矢印X参照)と熱交換をし、空気は冷却され、冷媒は気相となって流出する。   In the vehicle air conditioner described above, the gas-liquid mixed phase two-phase refrigerant that has passed through the compressor, the condenser, and the expansion valve passes through the refrigerant inlet (24) and enters the first section (22) of the leeward upper header section (6). And flows out from the refrigerant outlet (29) of the sixth section (28) toward the compressor through the two paths described above. While the refrigerant flows through the heat exchange tube (3) of the leeward tube row (4) and the heat exchange tube (3) of the windward tube row (5), the air passing through the ventilation gap (11) (Fig. 1 and the arrow X in FIG. 4), the air is cooled, and the refrigerant flows out as a gas phase.

そして、温度センサ(2)により検出されたエバポレータ(1)の第3チューブ群(16)に配置されているコルゲートフィン(12)の温度が、オフ側目標温度以下に低下するとクラッチ手段が遮断状態にされてコンプレッサが停止し、同じく温度センサ(2)により検出されたエバポレータ(1)の第3チューブ群(16)に配置されているコルゲートフィン(12)の温度が、オフ側目標温度よりも所定温度だけ高いオン側目標温度まで上昇すると、クラッチ手段が接続状態にされてコンプレッサが作動状態に復帰するようになっている。   When the temperature of the corrugated fin (12) arranged in the third tube group (16) of the evaporator (1) detected by the temperature sensor (2) falls below the off-side target temperature, the clutch means is disengaged. The compressor stops and the temperature of the corrugated fin (12) arranged in the third tube group (16) of the evaporator (1), which is also detected by the temperature sensor (2), is lower than the off-side target temperature. When the temperature rises to the on-side target temperature that is higher by a predetermined temperature, the clutch means is brought into the connected state and the compressor is returned to the operating state.

ここで、エバポレータ(1)の冷媒入口(24)から流入した冷媒が、風下側チューブ列(4)の最遠チューブ群である第3チューブ群(16)および風上側チューブ列(5)の最遠チューブ群である第4チューブ群(17)に達するまでの距離および時間がほぼ等しくなるので、コンプレッサがオフからオンに切り替わると、エバポレータの両チューブ群(16)(17)に配置された熱交換チューブ(3)およびコルゲートフィン(12)が均等に冷却され、その結果コンプレッサのオン時に、エバポレータ(1)の第3チューブ群(16)に配置されているコルゲートフィン(12)の温度が比較的短時間でオフ側目標温度以下に低下する。したがって、エバポレータ(1)における第3チューブ群(16)および第4チューブ群(17)を除いた第1チューブ群(14)、第2チューブ群(15)および第5チューブ群(18)に配置されている熱交換チューブ(3)およびコルゲートフィン(12)の温度が低下して表面において凝縮水が凍結することが抑えられ、その結果凝縮水の凍結に起因する凍結臭と呼ばれる異臭の発生が抑制される。   Here, the refrigerant flowing from the refrigerant inlet (24) of the evaporator (1) flows into the third tube group (16), which is the farthest tube group of the leeward tube row (4), and the farthest tube row (5). The distance and time to reach the fourth tube group (17), which is the far tube group, is almost the same, so when the compressor switches from off to on, the heat placed in both tube groups (16) and (17) of the evaporator The exchange tube (3) and corrugated fin (12) are evenly cooled, so that when the compressor is turned on, the temperature of the corrugated fin (12) placed in the third tube group (16) of the evaporator (1) is compared. It drops below the off-side target temperature in a short time. Therefore, the evaporator (1) is arranged in the first tube group (14), the second tube group (15) and the fifth tube group (18) excluding the third tube group (16) and the fourth tube group (17). The temperature of the heat exchange tubes (3) and corrugated fins (12) is reduced, and the condensate is prevented from freezing on the surface. It is suppressed.

また、コンプレッサがオフからオンに切り替わると、エバポレータ(1)の風下側チューブ列(4)の最も冷媒入口(24)に近い第1チューブ群(14)が存在する部分の温度が急速に低下しようとするが、コンプレッサのオフ時には、風上側チューブ列(5)の最も冷媒出口(29)に近い第5チューブ群(18)にスーパーヒート領域が存在することに起因して、エバポレータ(1)の第5チューブ群(18)が存在している部分の温度はかなり高くなっているので、コンプレッサがオフからオンに切り替わった際のエバポレータ(1)の第1チューブ群(14)が存在する部分の温度の低下が緩和される。したがって、コンプレッサのオン時に、エバポレータ(1)の風下側チューブ列(4)の第1チューブ群(14)が存在する部分の温度低下が抑えられて、凝縮水の凍結が抑制される。   In addition, when the compressor is switched from OFF to ON, the temperature of the portion where the first tube group (14) closest to the refrigerant inlet (24) of the leeward tube row (4) of the evaporator (1) exists will rapidly decrease. However, when the compressor is off, the evaporator (1) has a superheat region in the fifth tube group (18) closest to the refrigerant outlet (29) in the windward tube row (5). Since the temperature of the part where the fifth tube group (18) exists is considerably high, the temperature of the part where the first tube group (14) of the evaporator (1) exists when the compressor is switched from OFF to ON. The decrease in temperature is alleviated. Therefore, when the compressor is turned on, the temperature drop in the portion of the leeward tube row (4) of the evaporator (1) where the first tube group (14) is present is suppressed, and the condensate water is prevented from freezing.

上記実施形態においては、風下側チューブ列(4)に3つのチューブ群が設けられ、風上側チューブ列(5)に2つのチューブ群が設けられているが、これに限定されるものではない。また、両チューブ列(4)(5)のチューブ群の数によっては、冷媒入口が風下側下ヘッダ部に設けられ、冷媒出口が風上側下ヘッダ部に設けられることもある。   In the above embodiment, three tube groups are provided in the leeward tube row (4) and two tube groups are provided in the leeward tube row (5). However, the present invention is not limited to this. Further, depending on the number of tube groups in both the tube rows (4) and (5), the refrigerant inlet may be provided in the leeward lower header portion and the refrigerant outlet may be provided in the leeward lower header portion.

なお、この発明によるエバポレータは、1対の皿状プレートを対向させて周縁部どうしをろう付してなる複数の扁平中空体が並列状に配置されてなり、各偏平中空体に通風方向に並んだ上下方向にのびる2つの熱交換チューブ、および両熱交換チューブの上下両端に通じるヘッダ形成部が設けられるとともに、すべての扁平中空体の上下の2つのヘッダ形成部どうしがそれぞれ通じるように扁平中空体どうしがろう付されることによって、上下方向にのびるとともに通風方向と直角をなす方向に間隔をおいて配置された複数の熱交換チューブからなるチューブ列が、通風方向に並んで2列設けられるとともに、すべての扁平中空体のヘッダ形成部により、風下側および風上側のチューブ列の上下両端が通じる風下側および風上側上下両ヘッダ部が設けられた形式の所謂積層型エバポレータにも適用可能である。   In the evaporator according to the present invention, a plurality of flat hollow bodies formed by brazing the peripheral portions with a pair of plate-shaped plates facing each other are arranged in parallel, and are lined up in the ventilation direction in each flat hollow body. Two heat exchange tubes that extend in the vertical direction, and header forming parts that lead to the upper and lower ends of both heat exchange tubes are provided, and flat hollow so that the two upper and lower header forming parts of all flat hollow bodies can communicate with each other When the bodies are brazed to each other, two rows of tube rows each including a plurality of heat exchange tubes extending in the vertical direction and spaced apart in a direction perpendicular to the ventilation direction are provided side by side in the ventilation direction. In addition, both the leeward and leeward upper and lower headers where the upper and lower ends of the leeward and upper winder tube rows communicate with each other by the flat hollow body header forming portion. Is also applicable to form a so-called laminated evaporator provided.

この発明による車両用空調装置は、コンプレッサのオン時およびオフ時の車室内への吹き出し空気の温度差が大きくなることを抑制しうる自動車に好適に用いられる。   The vehicle air conditioner according to the present invention is suitably used for an automobile capable of suppressing an increase in temperature difference of air blown into the vehicle interior when the compressor is on and off.

(1):エバポレータ
(2):温度センサ
(3):熱交換チューブ
(4):風下側チューブ列
(5):風上側チューブ列
(6):風下側上ヘッダ部
(7):風下側下ヘッダ部
(8):風上側上ヘッダ部
(9):風上側下ヘッダ部
(14)(15)(16)(17)(18):第1〜第5チューブ群
(22)(23):第1および第2区画(風下側上ヘッダ部の区画)
(24):冷媒入口
(25)(26):第3および第4区画(風下側下ヘッダ部の区画)
(27)(28):第5および第6区画(風上側上ヘッダ部の区画)
(29):冷媒出口
(32):第7区画(風上側下ヘッダ部の区画)
(1): Evaporator
(2): Temperature sensor
(3): Heat exchange tube
(4): Downward tube row
(5): Windward tube row
(6): Upper header section on the leeward side
(7): Downward header on the leeward side
(8): Upwind header
(9): Upwind lower header
(14) (15) (16) (17) (18): First to fifth tube groups
(22) (23): 1st and 2nd section (compartment of the leeward side upper header part)
(24): Refrigerant inlet
(25) (26): Third and fourth compartments (compartments of the leeward lower header section)
(27) (28): Fifth and sixth compartments (division of upwind header section)
(29): Refrigerant outlet
(32): Seventh section (part on the windward lower header section)

Claims (3)

エンジンを駆動源としかつクラッチ手段を介してエンジンに連結されたコンプレッサと、コンプレッサで圧縮された冷媒を冷却するコンデンサと、コンデンサで冷却された冷媒を減圧する減圧器と、減圧器で減圧された冷媒を蒸発させるエバポレータと、エバポレータの温度を検出する温度センサとを備えており、温度センサにより検出された温度に基づいてコンプレッサをオン、オフさせてエバポレータの温度が制御されるようになされている車両用空調装置において、
エバポレータに、長手方向を上下方向に向けるとともに通風方向と直角をなす方向に間隔をおいて配置された複数の熱交換チューブからなるチューブ列が、通風方向に並んで2列設けられており、風下側チューブ列に、複数の熱交換チューブからなる3以上のチューブ群が設けられ、風上側チューブ列に、複数の熱交換チューブからなりかつ風下側チューブ列のチューブ群の数よりも1つ少ないチューブ群が設けられ、風下側および風上側チューブ列の熱交換チューブの上下両端部が、それぞれ風下側および風上側上下両ヘッダ部に通じさせられており、風下側上下両ヘッダ部のうちのいずれか一方のヘッダ部の一端部に冷媒入口が設けられ、風上側上下両ヘッダ部のうちの冷媒入口が設けられた風下側ヘッダ部と同じ側のヘッダ部における冷媒入口と同一端部に冷媒出口が設けられ、風下側チューブ列における冷媒入口から最も遠い位置にある最遠チューブ群の熱交換チューブ内の冷媒の流れ方向と、風上側チューブ列における冷媒出口から最も遠い位置にある最遠チューブ群の熱交換チューブ内の冷媒の流れ方向とが同一方向となっており、通風方向に並んで設けられるとともに熱交換チューブ内の冷媒の流れ方向が同一方向である上記2つの最遠チューブ群により1つのパスが構成され、
1つの温度センサが、エバポレータの風下側チューブ列の最遠チューブ群が設けられた部分の温度を検出するように、エバポレータに配置されている車両用空調装置。
Compressor using engine as drive source and connected to engine via clutch means, condenser for cooling refrigerant compressed by compressor, decompressor for decompressing refrigerant cooled by condenser, decompressed by decompressor An evaporator for evaporating the refrigerant and a temperature sensor for detecting the temperature of the evaporator are provided, and the temperature of the evaporator is controlled by turning on and off the compressor based on the temperature detected by the temperature sensor. In vehicle air conditioners,
The evaporator is provided with two rows of tubes arranged with a plurality of heat exchange tubes arranged in the direction perpendicular to the ventilation direction and at right angles to the ventilation direction. Three or more tube groups made up of a plurality of heat exchange tubes are provided in the side tube row, and one tube less than the number of tube groups in the leeward side tube row is made up of the plurality of heat exchange tubes in the windward tube row. The upper and lower ends of the heat exchange tubes of the leeward side and the upper side tube row are respectively connected to the leeward side and the upper side upper and lower header parts, and either one of the leeward side upper and lower header parts is provided. A refrigerant inlet is provided at one end of one header part, and the header part on the same side as the leeward header part provided with the refrigerant inlet of the upwind upper and lower header parts. A refrigerant outlet is provided at the same end as the medium inlet, and the flow direction of the refrigerant in the heat exchange tube of the farthest tube group located farthest from the refrigerant inlet in the leeward tube row and from the refrigerant outlet in the windward tube row The flow direction of the refrigerant in the heat exchange tube of the farthest tube group at the farthest position is the same direction, and the refrigerant flow direction in the heat exchange tube is the same direction while being arranged side by side in the ventilation direction. One path is formed by the two farthest tube groups,
A vehicle air conditioner arranged in an evaporator so that one temperature sensor detects the temperature of a portion where the farthest tube group of the leeward tube row of the evaporator is provided.
温度センサがサーミスタからなり、風下側チューブ列の最遠チューブ群の隣り合う熱交換チューブどうしの間に配置されたフィンに取り付けられている請求項1記載の車両用空調装置。 The vehicle air conditioner according to claim 1, wherein the temperature sensor comprises a thermistor and is attached to a fin disposed between adjacent heat exchange tubes in the farthest tube group of the leeward side tube row. エバポレータの風下側チューブ列に、複数の熱交換チューブからなる第1〜第3のチューブ群が、冷媒入口側の端部から他端部側に向かって並んで設けられ、同じく風上側チューブ列に、複数の熱交換チューブからなる第4および第5のチューブ群が、冷媒出口側とは反対側の端部から冷媒出口側の端部に向かって並んで設けられ、風下側上下両ヘッダ部および風上側上下両ヘッダ部に、熱交換チューブが通じる一定数の区画が設けられることによって、第1チューブ群が、冷媒が熱交換チューブ内を、上下いずれかのうちの冷媒入口が位置する側から反対側に流れる第1パスとなり、第2チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第2パスとなり、第3および第4チューブ群が、冷媒が熱交換チューブ内を第1パスと同方向に流れる第3パスとなり、第5チューブ群が、冷媒が熱交換チューブ内を第1パスとは逆方向に流れる第4パスとなっており、第3パスが、熱交換チューブ内の冷媒の流れ方向が同一方向である第3および第4チューブ群が通風方向に並んで設けられることにより構成されている請求項1または2記載の車両用空調装置。 The first to third tube groups composed of a plurality of heat exchange tubes are provided side by side from the end on the refrigerant inlet side to the other end side in the leeward side tube row of the evaporator. The fourth and fifth tube groups comprising a plurality of heat exchange tubes are provided side by side from the end opposite to the refrigerant outlet side toward the end on the refrigerant outlet side, By providing a certain number of compartments through which the heat exchange tubes communicate with the upper and lower header sections on the windward side, the first tube group moves from the side where the refrigerant inlet is located in either the upper or lower refrigerant through the heat exchange tube. The first path flows to the opposite side, the second tube group becomes a second path in which the refrigerant flows in the direction opposite to the first path in the heat exchange tube, and the third and fourth tube groups serve as the heat exchange tube. Inside is first The third tube flows in the same direction as the gas flow, and the fifth tube group is a fourth flow in which the refrigerant flows in the direction opposite to the first path in the heat exchange tube, and the third path is in the heat exchange tube. The vehicle air conditioner according to claim 1 or 2, wherein the third and fourth tube groups having the same flow direction of the refrigerant are arranged side by side in the ventilation direction.
JP2014031986A 2014-02-21 2014-02-21 Air conditioner for vehicle Pending JP2015157507A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014031986A JP2015157507A (en) 2014-02-21 2014-02-21 Air conditioner for vehicle
US14/613,359 US20150241080A1 (en) 2014-02-21 2015-02-04 Air-conditioning apparatus for vehicle
DE102015101818.7A DE102015101818A1 (en) 2014-02-21 2015-02-09 Air conditioning for one vehicle
CN201510082018.5A CN104864524A (en) 2014-02-21 2015-02-15 Air-conditioning apparatus for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014031986A JP2015157507A (en) 2014-02-21 2014-02-21 Air conditioner for vehicle

Publications (1)

Publication Number Publication Date
JP2015157507A true JP2015157507A (en) 2015-09-03

Family

ID=53782588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014031986A Pending JP2015157507A (en) 2014-02-21 2014-02-21 Air conditioner for vehicle

Country Status (4)

Country Link
US (1) US20150241080A1 (en)
JP (1) JP2015157507A (en)
CN (1) CN104864524A (en)
DE (1) DE102015101818A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018105593A (en) * 2016-12-28 2018-07-05 株式会社ケーヒン・サーマル・テクノロジー Evaporator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107856494B (en) * 2017-10-20 2024-05-03 珠海格力电器股份有限公司 Vehicle with a vehicle body having a vehicle body support
CN107940565A (en) * 2017-11-15 2018-04-20 北京小米移动软件有限公司 Air quality detecting device, air purifier, control method and device
EP3726153A1 (en) * 2019-03-29 2020-10-21 Kimura Kohki Co., Ltd. Air conditioning system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335514A (en) * 1993-06-01 1994-08-09 Chrysler Corporation Vehicle air conditioner refrigeration, automatic variable set point evaporator system therefor
JP2006021624A (en) * 2004-07-07 2006-01-26 Denso Corp Freezer
JP2011064388A (en) * 2009-09-17 2011-03-31 Keihin Corp Mounting structure for sensor attached to heat exchanger
JP2012092991A (en) * 2010-10-25 2012-05-17 Showa Denko Kk Evaporator
WO2014017060A1 (en) * 2012-07-23 2014-01-30 株式会社デンソー Evaporator

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11304293A (en) * 1997-07-10 1999-11-05 Denso Corp Refrigerant condenser
EP1065453B1 (en) * 1999-07-02 2004-05-06 Denso Corporation Refrigerant evaporator with refrigerant distribution
JP2004268769A (en) 2003-03-10 2004-09-30 Denso Corp Refrigeration cycle apparatus for vehicle
US7992401B2 (en) * 2004-07-05 2011-08-09 Showa Denko K.K. Evaporator
WO2006064823A1 (en) * 2004-12-16 2006-06-22 Showa Denko K.K. Evaporator
JP4761790B2 (en) * 2005-02-28 2011-08-31 カルソニックカンセイ株式会社 Evaporator
JP4692295B2 (en) * 2006-01-19 2011-06-01 株式会社デンソー Evaporator unit and ejector refrigeration cycle
JP4548350B2 (en) * 2006-01-20 2010-09-22 株式会社デンソー Ejector type refrigeration cycle unit
JP2007333292A (en) * 2006-06-14 2007-12-27 Denso Corp Ejector type refrigeration cycle
JP2008030706A (en) * 2006-07-31 2008-02-14 Denso Corp Vehicular air conditioner and air-conditioning method using the same
US8419512B2 (en) * 2006-10-10 2013-04-16 Hdt Tactical Systems, Inc. Vehicle cabin heating cooling and ventilation system
JP4375412B2 (en) * 2007-02-19 2009-12-02 株式会社デンソー Evaporator unit
JP2009024899A (en) * 2007-07-17 2009-02-05 Showa Denko Kk Evaporator
DE102008055624A1 (en) * 2007-12-10 2009-06-18 Behr Gmbh & Co. Kg Heat transfer medium, in particular radiator for motor vehicles
JP5142109B2 (en) * 2008-09-29 2013-02-13 株式会社ケーヒン・サーマル・テクノロジー Evaporator
JP2010112695A (en) * 2008-10-07 2010-05-20 Showa Denko Kk Evaporator
JP5525726B2 (en) * 2008-12-26 2014-06-18 株式会社ケーヒン・サーマル・テクノロジー Evaporator with cool storage function
US20100223949A1 (en) * 2009-03-06 2010-09-09 Showa Denko K.K. Evaporator with cool storage function
US20120198882A1 (en) * 2009-10-19 2012-08-09 Showa Denko K.K. Evaporator
JP5674388B2 (en) * 2009-12-25 2015-02-25 株式会社ケーヒン・サーマル・テクノロジー Evaporator with cool storage function
JP5549309B2 (en) * 2010-03-26 2014-07-16 株式会社デンソー Air conditioner
US8434324B2 (en) * 2010-04-05 2013-05-07 Denso Corporation Evaporator unit
JP5636215B2 (en) * 2010-06-11 2014-12-03 株式会社ケーヒン・サーマル・テクノロジー Evaporator
US10047984B2 (en) * 2010-06-11 2018-08-14 Keihin Thermal Technology Corporation Evaporator
JP5693346B2 (en) * 2010-07-30 2015-04-01 株式会社ケーヒン・サーマル・テクノロジー Evaporator
JP5674376B2 (en) * 2010-08-03 2015-02-25 株式会社ケーヒン・サーマル・テクノロジー Evaporator
US20120042687A1 (en) * 2010-08-23 2012-02-23 Showa Denko K.K. Evaporator with cool storage function
JP5413433B2 (en) * 2010-11-09 2014-02-12 株式会社デンソー Heat exchanger
JP5736164B2 (en) * 2010-12-13 2015-06-17 株式会社ケーヒン・サーマル・テクノロジー Evaporator
JP5009413B2 (en) * 2010-12-22 2012-08-22 シャープ株式会社 Heat exchanger and air conditioner equipped with the same
US20120222848A1 (en) * 2011-03-01 2012-09-06 Visteon Global Technologies, Inc. Integrated counter cross flow condenser
JP5759762B2 (en) * 2011-03-22 2015-08-05 株式会社ケーヒン・サーマル・テクノロジー Evaporator
WO2013008464A1 (en) * 2011-07-14 2013-01-17 パナソニック株式会社 Outdoor heat exchanger, and air conditioning device for vehicle
JP5923262B2 (en) * 2011-08-31 2016-05-24 株式会社ケーヒン・サーマル・テクノロジー Evaporator with cool storage function
JP5868088B2 (en) * 2011-09-15 2016-02-24 株式会社ケーヒン・サーマル・テクノロジー Cooling unit for vehicle air conditioner
JP5903233B2 (en) * 2011-09-15 2016-04-13 株式会社ケーヒン・サーマル・テクノロジー Manufacturing method of heat storage material container
JP2013072607A (en) * 2011-09-28 2013-04-22 Keihin Thermal Technology Corp Method of manufacturing heat exchanger
JP5809931B2 (en) * 2011-11-02 2015-11-11 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
JP5796563B2 (en) * 2011-11-29 2015-10-21 株式会社デンソー Heat exchanger
JP5983335B2 (en) * 2011-11-30 2016-08-31 株式会社デンソー Heat exchanger
JP6002421B2 (en) * 2012-04-03 2016-10-05 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
JP5891102B2 (en) * 2012-04-27 2016-03-22 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger with heat storage function and manufacturing method thereof
JP6050978B2 (en) * 2012-07-23 2016-12-21 株式会社ケーヒン・サーマル・テクノロジー Evaporator
JP5998854B2 (en) * 2012-10-31 2016-09-28 株式会社デンソー Refrigerant evaporator
JP6186253B2 (en) * 2012-12-17 2017-08-23 株式会社ケーヒン・サーマル・テクノロジー Evaporator with cool storage function
JP2014124971A (en) * 2012-12-25 2014-07-07 Keihin Thermal Technology Corp Evaporator with cold storage function
JP6069080B2 (en) * 2013-04-23 2017-01-25 株式会社ケーヒン・サーマル・テクノロジー Evaporator and vehicle air conditioner using the same
JP6140514B2 (en) * 2013-04-23 2017-05-31 株式会社ケーヒン・サーマル・テクノロジー Evaporator and vehicle air conditioner using the same
JP6123484B2 (en) * 2013-05-24 2017-05-10 株式会社デンソー Refrigerant evaporator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335514A (en) * 1993-06-01 1994-08-09 Chrysler Corporation Vehicle air conditioner refrigeration, automatic variable set point evaporator system therefor
JP2006021624A (en) * 2004-07-07 2006-01-26 Denso Corp Freezer
JP2011064388A (en) * 2009-09-17 2011-03-31 Keihin Corp Mounting structure for sensor attached to heat exchanger
JP2012092991A (en) * 2010-10-25 2012-05-17 Showa Denko Kk Evaporator
WO2014017060A1 (en) * 2012-07-23 2014-01-30 株式会社デンソー Evaporator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018105593A (en) * 2016-12-28 2018-07-05 株式会社ケーヒン・サーマル・テクノロジー Evaporator
US10408510B2 (en) 2016-12-28 2019-09-10 Keihin Thermal Technology Corporation Evaporator

Also Published As

Publication number Publication date
CN104864524A (en) 2015-08-26
US20150241080A1 (en) 2015-08-27
DE102015101818A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
JP4814907B2 (en) Refrigeration cycle equipment
JP5274175B2 (en) Cold storage heat exchanger
WO2014030306A1 (en) Cold storage heat exchanger
JP6098343B2 (en) Refrigerant evaporator
JP2007232287A (en) Heat exchanger and integral type heat exchanger
JP2015157507A (en) Air conditioner for vehicle
US10696128B2 (en) Cold storage heat exchanger
WO2016113825A1 (en) Refrigerant evaporator
JP5636215B2 (en) Evaporator
JP6842915B6 (en) Evaporator
US20150285544A1 (en) Refrigerant evaporator
JP2015034670A (en) Evaporator
JP2011257111A5 (en)
JP2014020758A (en) Cold storage heat exchanger
JP2008138895A (en) Evaporator unit
JP6486223B2 (en) Evaporator
JP2016217565A (en) Condenser
JP2010243066A (en) Cold storage heat exchanger
JP6406441B2 (en) Refrigerant evaporator
JP6477306B2 (en) Refrigerant evaporator
JP2018087646A (en) Evaporator
JP2018087646A5 (en)
JP3367235B2 (en) Refrigeration cycle of vehicle air conditioner
KR102161475B1 (en) Air conditioner system for vehicle
JP6486212B2 (en) Evaporator and vehicle air conditioner using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180320