JP2007232287A - Heat exchanger and integral type heat exchanger - Google Patents

Heat exchanger and integral type heat exchanger Download PDF

Info

Publication number
JP2007232287A
JP2007232287A JP2006055187A JP2006055187A JP2007232287A JP 2007232287 A JP2007232287 A JP 2007232287A JP 2006055187 A JP2006055187 A JP 2006055187A JP 2006055187 A JP2006055187 A JP 2006055187A JP 2007232287 A JP2007232287 A JP 2007232287A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
tank
exchanger core
header tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006055187A
Other languages
Japanese (ja)
Inventor
Torahide Takahashi
寅秀 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2006055187A priority Critical patent/JP2007232287A/en
Priority to EP07714836A priority patent/EP1998133A1/en
Priority to US12/281,212 priority patent/US20090050298A1/en
Priority to PCT/JP2007/053365 priority patent/WO2007099868A1/en
Publication of JP2007232287A publication Critical patent/JP2007232287A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger capable of preventing hunting by eliminating accumulation of oil without deteriorating heat radiation performance. <P>SOLUTION: A coolant is sent upward from a downwind side of a fist header tank 40, is turned around in a second header tank 50, and is sent downward from an upwind side. Oil accumulated in interiors of the second header tank 50 and a first heat exchanger core 20 can be sent downward along with the coolant. A heat exchange area becomes large in comparison with a single pass, and since turning of the coolant is facilitated, passage resistance can be reduced in comparison with a three pass. Thereby, accumulation of oil can be eliminated without deteriorating the heat radiation performance, and hunting can be prevented. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は車両用の空調装置として用いられる熱交換器に関し、詳しくは一体型コンデンサ・ラジエータ(以下、適宜にUCR)に適した熱交換器の構造に関する。   The present invention relates to a heat exchanger used as an air conditioner for a vehicle, and more particularly to a heat exchanger structure suitable for an integrated condenser radiator (hereinafter referred to as UCR).

なお以下の説明においては、CO2冷媒に対応した一体型ガスクーラ・ラジエータについてもUCRという。   In the following description, the integrated gas cooler / radiator corresponding to the CO2 refrigerant is also referred to as UCR.

一般に、自動車の前部に設けられたエンジンルーム内には、車両駆動用のエンジンを始めとして、エンジン冷却水を冷却するためのラジエータや、空調装置の冷媒を冷却して凝縮させるコンデンサ(ガスクーラ)等の熱交換器、冷却ファン等が搭載されている。このうち、コンデンサとラジエータはエンジンルーム内において、コンデンサが風上側、ラジエータが風下側に位置するように近接して前後に配置されている。また、コンデンサとラジエータとを一つに組み合わせた一体型コンデンサ・ラジエータも普及しつつある。   In general, in an engine room provided in the front part of an automobile, a radiator for cooling engine cooling water including an engine for driving a vehicle, and a condenser (gas cooler) for cooling and condensing a refrigerant of an air conditioner It is equipped with a heat exchanger such as a cooling fan. Among these, the condenser and the radiator are arranged in the engine room in close proximity to each other so that the condenser is located on the windward side and the radiator is located on the leeward side. Also, integrated capacitor radiators that combine capacitors and radiators into one are becoming popular.

ところで、空調装置の冷凍サイクルには冷媒とコンプレッサ潤滑用のオイルとが循環している。この冷凍サイクルにおいて、冷媒を凝縮するコンデンサ内部に液冷媒やオイルが滞留すると一時的に冷媒通路が狭くなるため冷媒圧力が高まる。そして、この圧力が一定圧力以上になると滞留していたオイルが冷媒により押し流されて圧力は低下する。冷凍サイクルの稼動中にこのような冷媒圧力の上昇、下降が繰り返されると冷凍サイクルのハンチングを引き起こし、それに伴って空調空気の温度も変動してしまうという不具合を生じる。とくに冷媒を縦方向に流す縦流れタイプのコンデンサではオイルの滞留によるハンチングが起こりやすい傾向があり、オイルを流れやすくするためには横流れタイプとすることが望ましい。   By the way, refrigerant and compressor lubricating oil circulate in the refrigeration cycle of the air conditioner. In this refrigeration cycle, if liquid refrigerant or oil stays inside the condenser that condenses the refrigerant, the refrigerant passage temporarily narrows, and the refrigerant pressure increases. And when this pressure becomes more than a certain pressure, the oil which stayed is pushed away by the refrigerant and the pressure drops. When the refrigerant pressure is repeatedly increased and decreased during the operation of the refrigeration cycle, the refrigeration cycle hunting is caused, and the temperature of the conditioned air also varies accordingly. In particular, in a vertical flow type condenser in which the refrigerant flows in the vertical direction, hunting due to oil retention tends to occur, and in order to make the oil flow easily, it is desirable to use a horizontal flow type.

上述したUCRでは、フィン共通化のため、コンデンサと同じくラジエータの流れも横流れとしている。しかし、ラジエータでは冷却通路内に残る空気のエア抜きや、および熱交換の通風面積を稼ぐために、縦流れタイプとすることが望ましい。また、ラジエータは、車体前部のクロスメンバーの間にレイアウトするので、横流れタイプの場合は、冷却風の流れないクロスメンバーを避けて熱交換部を配置するため、ラジエータの通風面積が小さくなる。このため厚みを増やして対応しているが、これではエンジンルーム内のスペースを有効に活かせなくなってしまう。   In the UCR described above, for common fins, the flow of the radiator is also a lateral flow as with the capacitor. However, it is desirable that the radiator be of a longitudinal flow type in order to remove air remaining in the cooling passage and increase the ventilation area for heat exchange. In addition, since the radiator is laid out between the cross members at the front part of the vehicle body, in the case of the transverse flow type, the heat exchange portion is arranged avoiding the cross member where the cooling air does not flow, and thus the ventilation area of the radiator is reduced. For this reason, it is possible to increase the thickness, but this makes it impossible to effectively use the space in the engine room.

そこで、横流れタイプのコンデンサと、縦流れタイプのラジエータとを組み合わせた熱交換器が提案されている(特許文献1参照)。   Thus, a heat exchanger in which a transverse flow type condenser and a longitudinal flow type radiator are combined has been proposed (see Patent Document 1).

また、縦流れタイプのコンデンサに関して、連通するチューブエレメント同士を膨出状のヘッダーで連通接続させるようにした熱交換器が提案されている(特許文献2参照)。同じく縦流れタイプのコンデンサに関して、熱交換領域を3パスとし、冷媒が上向き流れとなるパスの通路面積やインナーフィンの通路抵抗を小さくして流速を高め、オイルを排出しやくするようにしたものが提案されている(特許文献3参照)。
特開2001−311597号公報 特開平7−332890号公報 特開平10−220919号公報
Further, regarding a vertical flow type capacitor, a heat exchanger has been proposed in which communicating tube elements are connected in communication with a bulged header (see Patent Document 2). Similarly for the vertical flow type condenser, the heat exchange area is 3 passes, and the passage area of the passage where the refrigerant flows upward and the passage resistance of the inner fins are reduced to increase the flow velocity and make it easier to discharge oil. Has been proposed (see Patent Document 3).
JP 2001-311597 A JP-A-7-332890 JP-A-10-220919

しかしながら、上記特許文献1に記載の熱交換器では、コンデンサとラジエータのフィン方向が異なるため、UCRとして構成した場合には部品の一体化や構造の簡素化を図ることができず、低コスト化が難しいものとなる。また、上記特許文献2に記載の熱交換器では、1パスであればオイルの滞留による影響は少ないが、その場合には、コンデンサの冷媒入口から冷媒出口までの距離が短くなるため、放熱性能の低下が懸念される。さらに、上記特許文献3に記載のコンデンサでは、パスの通路面積調整やインナーフィンの通路抵抗調整により流速を調整しているため、製品仕様や使用状況によっては冷媒の通路抵抗が上がってしまうことが考えられる。   However, in the heat exchanger described in Patent Document 1, since the fin directions of the condenser and the radiator are different, when configured as a UCR, it is not possible to achieve integration of parts or simplification of the structure, thereby reducing the cost. Will be difficult. Further, in the heat exchanger described in Patent Document 2, there is little influence due to oil retention in one pass, but in that case, since the distance from the refrigerant inlet to the refrigerant outlet of the condenser is shortened, the heat dissipation performance There is concern about the decline. Furthermore, in the capacitor described in Patent Document 3, the flow velocity is adjusted by adjusting the passage area of the path and adjusting the passage resistance of the inner fin, so that the passage resistance of the refrigerant may increase depending on the product specifications and usage conditions. Conceivable.

この発明の目的は、放熱性能を低下させることなしにオイルの滞留によるハンチングを防止することができる熱交換器と、上記目的に加えてUCRとして構成した場合に低コスト化を図ることができる一体型熱交換器とを提供することにある。   An object of the present invention is to reduce the cost when a heat exchanger that can prevent hunting due to oil stagnation without degrading heat dissipation performance and a UCR in addition to the above object. It is to provide a body heat exchanger.

上記目的を達成するため、請求項1に係わる熱交換器は、空調用の冷媒を冷却風により冷却する熱交換器であって、冷却風の流れ方向に対して前後に配置された第1熱交換器コア、第2熱交換器コアと、独立した2つのタンク部を備え、冷却風の風下側となるタンク部が前記第2熱交換器コアの冷媒入口側と連通し、風上側となるタンク部が前記第1熱交換器コアの冷媒出口側と連通するとともに、前記風下側となるタンク部から冷媒を導入し、前記風上側となるタンク部から冷媒を排出する、下方に設けられた第1ヘッダタンクと、前記第2熱交換器コアの冷媒出口側および前記第1熱交換器コアの冷媒入口側とそれぞれ連通し、前記第2熱交換器コアを通過した冷媒を前記第1熱交換器コア側に流入させる、上方に設けられた第2ヘッダタンクとを備えたことを特徴とする。   In order to achieve the above object, a heat exchanger according to claim 1 is a heat exchanger that cools an air-conditioning refrigerant with cooling air, and the first heat is arranged forward and backward with respect to the flow direction of the cooling air. An exchanger core, a second heat exchanger core, and two independent tank portions are provided, and a tank portion on the leeward side of the cooling air communicates with a refrigerant inlet side of the second heat exchanger core and becomes an upwind side The tank portion is provided below, communicating with the refrigerant outlet side of the first heat exchanger core, introducing the refrigerant from the tank portion on the leeward side, and discharging the refrigerant from the tank portion on the leeward side. The first header tank communicates with the refrigerant outlet side of the second heat exchanger core and the refrigerant inlet side of the first heat exchanger core, and the refrigerant that has passed through the second heat exchanger core passes through the first heat tank. The second header provided above that flows into the exchanger core side Characterized in that a tank.

請求項2に係わる熱交換器は、請求項1において、独立した2つのタンク部を、冷却風の流れ方向から見て前後に分離して配置したことを特徴とする。   A heat exchanger according to a second aspect is characterized in that, in the first aspect, two independent tank portions are arranged separately in the front-rear direction as viewed from the flow direction of the cooling air.

請求項3に係わる熱交換器は、請求項1又は2のいずれか一項において、独立した2つのタンク部の間に長手方向に沿ってスリットを設け、前記2つのタンク部を少なくとも一箇所で連結したことを特徴とする。   A heat exchanger according to a third aspect is the heat exchanger according to any one of the first or second aspects, wherein a slit is provided along the longitudinal direction between two independent tank portions, and the two tank portions are arranged at least at one location. It is connected.

請求項4に係わる一体型熱交換器は、請求項1乃至3のいずれか一項に記載の熱交換器の風下側に、エンジン冷却水を冷却するラジエータを設けて一体化したことを特徴とする。   An integrated heat exchanger according to claim 4 is characterized in that a radiator for cooling engine cooling water is provided on the leeward side of the heat exchanger according to any one of claims 1 to 3 and integrated. To do.

請求項1の発明によれば、第1ヘッダタンクの風下側から上方に向けて冷媒を流し、第2ヘッダタンクでターンさせ、風上側から下方に向けて冷媒を流すようにしたので、ヘッダタンクや熱交換器コアの内部のオイルを冷媒とともに下方向に流すことができる。したがって、冷凍サイクルの稼動中に冷媒圧力が上昇、下降することがなく、ハンチングを抑えることができるため、空調空気の温度を一定に保つことが可能となる。   According to the first aspect of the present invention, the refrigerant flows from the leeward side to the upper side of the first header tank, is turned by the second header tank, and flows from the leeward side to the lower side. Or the oil inside the heat exchanger core can flow downward together with the refrigerant. Therefore, the refrigerant pressure does not rise or fall during the operation of the refrigeration cycle, and hunting can be suppressed, so that the temperature of the conditioned air can be kept constant.

また、冷媒の通路が2パスとなるため、1パスに比べて熱交換領域が大きくなるとともに、冷媒のターンが容易になるため3パスに比べて通路抵抗を低減することができる。このため、縦流れタイプの熱交換器でありながら、放熱性能を低下させることなしにオイルの滞留を防止し、ハンチングを防止することができる。   In addition, since the refrigerant passage has two paths, the heat exchange area becomes larger than that in the first path, and the refrigerant can be easily turned. Therefore, the passage resistance can be reduced as compared with the three paths. For this reason, although it is a longitudinal flow type heat exchanger, it is possible to prevent oil stagnation and hunting without deteriorating heat dissipation performance.

請求項2の発明によれば、第1ヘッダタンクの風下側となるタンク部に導入された冷媒の熱が、第1熱交換器コアから第2熱交換器コアを通過する間に冷却風と熱交換して低温となった冷媒に伝わることがないので、熱交換効率を向上させることができる。   According to the invention of claim 2, the heat of the refrigerant introduced into the tank portion on the leeward side of the first header tank is cooled with the cooling air while passing from the first heat exchanger core to the second heat exchanger core. Since it is not transmitted to the refrigerant having a low temperature after heat exchange, the heat exchange efficiency can be improved.

請求項3の発明によれば、高温の冷媒が導入される風下側のタンク部から低温の冷媒が排出される風上側のタンク部側へ熱がより伝わりにくくなるため、熱交換効率をさらに向上させることができる。   According to the invention of claim 3, heat is more difficult to be transferred from the leeward tank portion where the high-temperature refrigerant is introduced to the leeward tank portion where the low-temperature refrigerant is discharged, thereby further improving the heat exchange efficiency. Can be made.

請求項4の発明によれば、縦流れタイプのラジエータと組み合わせることにより、部品の一体化や構造の簡素化を図ることができるため、低コスト化を実現することができる。また、車体のクロスメンバー間にレイアウトした場合でも、上下のヘッダタンクをクロスメンバーの裏側に配置することができるため、横流れタイプのラジエータのように通風面積が小さくならず、また厚みを増やす必要もないので、エンジンルーム内のスペースを有効に活用することができる。   According to the invention of claim 4, by combining with a longitudinal flow type radiator, it is possible to achieve the integration of parts and the simplification of the structure, so that the cost can be reduced. In addition, even when laid out between the cross members of the car body, the upper and lower header tanks can be arranged on the back side of the cross member, so the ventilation area is not reduced and the thickness needs to be increased as with the transverse flow type radiator. Since there is no space, the space in the engine room can be used effectively.

以下、本発明に係わる熱交換器および一体型熱交換器の実施形態について説明する。ここでは、本発明に係わる熱交換器をCO2を冷媒とする縦流れタイプのガスクーラに適用した例について説明する。   Hereinafter, embodiments of a heat exchanger and an integrated heat exchanger according to the present invention will be described. Here, an example in which the heat exchanger according to the present invention is applied to a longitudinal flow type gas cooler using CO2 as a refrigerant will be described.

図1は本実施形態に係わるガスクーラの斜視図、図2は図1の縦断面図である。本実施形態に係わるガスクーラ10は、図1に示すように、内部を流通する冷媒と冷却風60との間で熱交換を行う第1熱交換器コア20、第2熱交換器コア30と、これら第1熱交換器コア20、第2熱交換器コア30の上下端部に接合された第1ヘッダタンク40、第2ヘッダタンク50とを備えている。   FIG. 1 is a perspective view of a gas cooler according to the present embodiment, and FIG. 2 is a longitudinal sectional view of FIG. As shown in FIG. 1, the gas cooler 10 according to the present embodiment includes a first heat exchanger core 20 and a second heat exchanger core 30 that perform heat exchange between the refrigerant circulating inside and the cooling air 60. A first header tank 40 and a second header tank 50 joined to the upper and lower ends of the first heat exchanger core 20 and the second heat exchanger core 30 are provided.

第1熱交換器コア20、第2熱交換器コア30は、内部に冷媒通路となる図示せぬチューブ穴が複数形成された多穴管構造のチューブ21と、波形に成形された冷却用のフィン22とを交互に積層した構造となっている。そして、冷却風60の流れ方向に対して第1熱交換器コア20、第2熱交換器コア30の順に前後に配置されている。   The first heat exchanger core 20 and the second heat exchanger core 30 include a tube 21 having a multi-hole tube structure in which a plurality of tube holes (not shown) serving as refrigerant passages are formed therein, and a cooling tube formed into a corrugated shape. The fins 22 are alternately stacked. And the 1st heat exchanger core 20 and the 2nd heat exchanger core 30 are arrange | positioned in order of the flow direction of the cooling air 60 in order.

第1ヘッダタンク40は、図2に示すように第1、第2熱交換器コア20、30の下方に配置され、2つのプレート41、42とを重ね合わせてロウ付け接合したもので、内部には冷媒の流通路となる断面略半円形の第1タンク部43、第2タンク部44が形成されている。これら第1タンク部43、第2タンク部44は第1ヘッダタンク40本体の中央部で仕切られており、内部で連通しない独立したタンク部として構成されている。なお、第1タンク部43には冷媒供給パイプが、また第2タンク部44には冷媒排出パイプがそれぞれ接続されている(いずれも図示を省略)。   The first header tank 40 is disposed below the first and second heat exchanger cores 20 and 30 as shown in FIG. 2 and is formed by joining two plates 41 and 42 and brazing them together. A first tank part 43 and a second tank part 44 having a substantially semicircular cross section serving as a refrigerant flow path are formed. The first tank portion 43 and the second tank portion 44 are partitioned by the central portion of the main body of the first header tank 40, and are configured as independent tank portions that do not communicate with each other inside. Note that a refrigerant supply pipe is connected to the first tank portion 43 and a refrigerant discharge pipe is connected to the second tank portion 44 (both are not shown).

この第1ヘッダタンク40のうち、冷却風60の流れ方向から見て風下側となる第1タンク部43は第2熱交換器コア30の冷媒入口側と連通し、風上側となる第2タンク部44が第1熱交換器コア20の冷媒出口側と連通している。これによって、冷媒は風下側となる第1タンク部43から導入され、風上側となる第2タンク部44から排出されることになる。   Of the first header tank 40, the first tank portion 43 that is on the leeward side when viewed from the flow direction of the cooling air 60 communicates with the refrigerant inlet side of the second heat exchanger core 30 and is the second tank that is on the windward side. The part 44 communicates with the refrigerant outlet side of the first heat exchanger core 20. As a result, the refrigerant is introduced from the first tank portion 43 on the leeward side and discharged from the second tank portion 44 on the leeward side.

第2ヘッダタンク50は、図2に示すように、第1熱交換器コア20、30の上方に配置され、2つのプレート51、52とを重ね合わせてロウ付け接合したもので、内部には冷媒の流通路となる断面略半円形の第1タンク部53、第2タンク部54が形成されている。これら第1タンク部53、第2タンク部54の間には連通路55が形成されており、両タンク部は内部で連通するように構成されている。   As shown in FIG. 2, the second header tank 50 is disposed above the first heat exchanger cores 20 and 30 and is formed by superposing and brazing and joining two plates 51 and 52. A first tank portion 53 and a second tank portion 54 that are substantially semicircular in cross section and serve as a refrigerant flow passage are formed. A communication passage 55 is formed between the first tank portion 53 and the second tank portion 54, and both tank portions are configured to communicate with each other.

この第2ヘッダタンク50のうち、第1タンク部53は第2熱交換器コア30の冷媒出口側と連通し、第2タンク部54は第1熱交換器コア20の冷媒入口側と連通している。これにより、第2熱交換器コア30を通過した冷媒は第2ヘッダタンク50の第1タンク部53から連通路55を経て第2タンク部54へ流れ込み、さらに第1熱交換器コア20へ流入することになる。   Of the second header tank 50, the first tank portion 53 communicates with the refrigerant outlet side of the second heat exchanger core 30, and the second tank portion 54 communicates with the refrigerant inlet side of the first heat exchanger core 20. ing. As a result, the refrigerant that has passed through the second heat exchanger core 30 flows from the first tank portion 53 of the second header tank 50 into the second tank portion 54 via the communication passage 55 and further flows into the first heat exchanger core 20. Will do.

上記のように構成されたガスクーラ10において、第1ヘッダタンク40の第1タンク部43から導入された冷媒は、第2熱交換器コア30のチューブ穴21a(図2参照)を上向きに流れて第2ヘッダタンク50の第1タンク部53へ流れ込む。そして、冷媒は連通路55から第2タンク部54へ流れ込み、さらに第1熱交換器コア20のチューブ穴21aを下向きに流れて第1ヘッダタンク40の第2タンク部44へ流れ込み、ここから外部に排出される。この間、冷媒が各熱交換器コアを通過した際に、冷媒の流れ方向と直交する方向から流れる冷却風60との間で熱交換が行われる。   In the gas cooler 10 configured as described above, the refrigerant introduced from the first tank portion 43 of the first header tank 40 flows upward through the tube hole 21a (see FIG. 2) of the second heat exchanger core 30. It flows into the first tank portion 53 of the second header tank 50. Then, the refrigerant flows from the communication path 55 to the second tank portion 54, and further flows downward through the tube hole 21a of the first heat exchanger core 20 to the second tank portion 44 of the first header tank 40, from here to the outside To be discharged. During this time, when the refrigerant passes through each heat exchanger core, heat exchange is performed with the cooling air 60 flowing from the direction orthogonal to the flow direction of the refrigerant.

図3は、CO2冷媒を用いた冷凍サイクルの作用を示すp−h線図であり、冷房時のサイクルバランスを表している。図3において、臨界点以上となっている高圧側の(a−b)の区間がガスクーラでの変化を示している。外気温度が40℃等の高負荷時においては、冷媒はガスクーラ10の出口付近でもガス状態であり、縦流れでも流速の早い状態を保つことができるため、オイルの滞留を生じることはない。一方、外気温度が15℃等の低負荷時においては、冷媒は凝縮するため液冷媒となる。しかし、冷媒は1パス目(第2熱交換器コア30)を通過する際はガス状態であり流速の早い状態であるのでオイルを排出しやすく、また2パス目(第1熱交換器コア20)では下方向に向けての流れとなり、液冷媒は自重により下方に流れるため、オイルを容易に排出することができるので滞留させることがない。   FIG. 3 is a ph diagram showing the operation of the refrigeration cycle using the CO 2 refrigerant, and shows the cycle balance during cooling. In FIG. 3, the section (ab) on the high pressure side that is equal to or higher than the critical point shows the change in the gas cooler. When the outside air temperature is a high load such as 40 ° C., the refrigerant is in a gas state near the outlet of the gas cooler 10 and can maintain a high flow rate even in a longitudinal flow, so that no oil stays. On the other hand, when the outside air temperature is a low load such as 15 ° C., the refrigerant condenses and becomes a liquid refrigerant. However, when the refrigerant passes through the first pass (second heat exchanger core 30), it is in a gas state and has a high flow rate, so that it is easy to discharge oil, and the second pass (first heat exchanger core 20). ), The liquid refrigerant flows downward due to its own weight, so that the oil can be easily discharged and is not retained.

以上説明したように、本実施形態の構成によれば、第1ヘッダタンク40の風下側から上方に向けて冷媒を流し、第2ヘッダタンク50でUターンさせ、風上側から下方に向けて冷媒を流すようにしたので、第2ヘッダタンク50や第1熱交換器コア20の内部にオイルを冷媒とともに滞留させずに下方向に流すことができる。したがって、冷凍サイクルの稼動中に冷媒圧力が上昇、下降することがなく、ハンチングを抑えることができるため、空調空気の温度を一定に保つことが可能となる。   As described above, according to the configuration of the present embodiment, the refrigerant flows from the leeward side of the first header tank 40 upward, is caused to make a U-turn in the second header tank 50, and the refrigerant flows downward from the leeward side. As a result, the oil can flow downward in the second header tank 50 and the first heat exchanger core 20 without being retained with the refrigerant. Therefore, the refrigerant pressure does not rise or fall during the operation of the refrigeration cycle, and hunting can be suppressed, so that the temperature of the conditioned air can be kept constant.

また、本実施形態の構成では冷媒の通路を2パスとしているため、1パスに比べて熱交換領域が大きくなるとともに、冷媒のターンが容易になるため3パスに比べて通路抵抗を低減することできる。このため、縦流れタイプのガスクーラでありながら、放熱性能を低下させることなしにオイルの滞留によるハンチングを防止することができる。   In addition, since the refrigerant passage has two paths in the configuration of the present embodiment, the heat exchange area is larger than that of the first path, and the refrigerant is easily turned, so that the passage resistance is reduced as compared with the three paths. it can. For this reason, although it is a longitudinal flow type gas cooler, it is possible to prevent hunting due to oil stagnation without degrading the heat dissipation performance.

また、冷媒を第1ヘッダタンク40の風下側(第1タンク部43)から導入するようにしたので、第1、第2熱交換器コアを通過した冷却風の吹き返しが生じても、冷媒との温度差を大きくすることができるため、放熱性能に与える影響を少なくすることができる。   In addition, since the refrigerant is introduced from the leeward side (first tank portion 43) of the first header tank 40, even if the cooling air that has passed through the first and second heat exchanger cores blows back, Therefore, the influence on the heat radiation performance can be reduced.

また、第1タンク部43および第2タンク部44は、冷却風の流れ方向から見て前後に分離して配置されているため、第1ヘッダタンク40の第1タンク部43に導入された冷媒の熱が、第1熱交換器コア20から第2熱交換器コア30を通過する間に冷却風と熱交換して低温となった冷媒に伝わることがないので、熱交換効率を向上させることができる。   In addition, since the first tank portion 43 and the second tank portion 44 are arranged separately in the front-rear direction when viewed from the flow direction of the cooling air, the refrigerant introduced into the first tank portion 43 of the first header tank 40. Heat is not transferred to the refrigerant that has become a low temperature by exchanging heat with the cooling air while passing through the second heat exchanger core 30 from the first heat exchanger core 20, thereby improving the heat exchange efficiency Can do.

また、図2に示すように、第1タンク部43および第2タンク部44を構成するプレート41、42の中央部分に長手方向に沿ってスリット41a、42aを設け、これら2つのタンク部43、44を少なくとも一箇所(好ましくは複数箇所)で連結するようにしてもよい。このようなスリット41a、42aを設けることにより、高温の冷媒が導入される第1タンク部43から低温の冷媒が排出される第2タンク部44側へ熱がより伝わりにくくなるため、熱交換効率をさらに向上させることができる。   In addition, as shown in FIG. 2, slits 41 a and 42 a are provided along the longitudinal direction in the central portions of the plates 41 and 42 constituting the first tank portion 43 and the second tank portion 44, and these two tank portions 43, 44 may be connected in at least one place (preferably a plurality of places). By providing such slits 41a and 42a, heat is more difficult to be transferred from the first tank portion 43 into which the high-temperature refrigerant is introduced to the second tank portion 44 through which the low-temperature refrigerant is discharged. Can be further improved.

さらに、上記のようなスリット41a、42aを設けた場合には、図2に示すように、第1タンク部43と第2タンク部44との間を覆うように遮蔽部材45を貼り付けるようにしてもよい。このような遮蔽部材45を設けることにより、風上側の第1熱交換器コア20を通過した冷却風がスリット41a、42aから下方に抜けてしまうのを防ぐことができるので、スリット41a、42aによる熱交換効率の低下を抑えることができる。なお、遮蔽部材45としては、第1タンク部43から第2タンク部44側へ熱が伝わりにくくするため、熱伝導率の低い樹脂材料を用いる。   Further, when the slits 41a and 42a as described above are provided, a shielding member 45 is attached so as to cover the space between the first tank portion 43 and the second tank portion 44 as shown in FIG. May be. By providing such a shielding member 45, it is possible to prevent the cooling air that has passed through the first heat exchanger core 20 on the windward side from falling downward from the slits 41a and 42a. A decrease in heat exchange efficiency can be suppressed. As the shielding member 45, a resin material having a low thermal conductivity is used in order to make it difficult for heat to be transmitted from the first tank portion 43 to the second tank portion 44 side.

また、本実施形態のガスクーラ10は、図4に示すように、ラジエータと一体化してUCRとして構成することもできる。図4は、ガスクーラ10の風下側に縦流れタイプのラジエータ70を設けて一体化したUCR100の縦断面図を示している。   Moreover, as shown in FIG. 4, the gas cooler 10 of this embodiment can also be integrated with a radiator and comprised as a UCR. FIG. 4 shows a longitudinal sectional view of a UCR 100 in which a longitudinal flow type radiator 70 is provided on the leeward side of the gas cooler 10 and integrated.

図4に示すように、本実施形態のガスクーラ10は、縦流れタイプのラジエータ70と組み合わせることにより、部品の一体化や構造の簡素化を図ることができるため、低コスト化を実現することができる。また、車体のクロスメンバー間にレイアウトした場合でも、横流れタイプのラジエータのように通風面積が小さくならず、また厚みを増やす必要もないので、エンジンルーム内のスペースを有効に活用することができる。これによれば、エンジンの冷却能力を向上し、かつ横流れタイプのラジエータに比べてコンパクト化を図ることができる。しかも、エンジン冷却水の液量も少なくすることができるので、車両の軽量化にも貢献することができる。   As shown in FIG. 4, the gas cooler 10 according to the present embodiment can be integrated with parts and simplified in structure by combining with a longitudinal flow type radiator 70, thereby realizing low cost. it can. Further, even when laid out between the cross members of the vehicle body, the ventilation area is not reduced and the thickness does not need to be increased unlike a cross-flow type radiator, so that the space in the engine room can be used effectively. According to this, the cooling capacity of the engine can be improved, and the size can be reduced as compared with the transverse flow type radiator. In addition, the amount of engine cooling water can be reduced, which can contribute to weight reduction of the vehicle.

実施形態に係わるガスクーラの斜視図。The perspective view of the gas cooler concerning an embodiment. 図1の縦断面図。The longitudinal cross-sectional view of FIG. CO2冷媒を用いた冷凍サイクルの作用を示すp−h線図。The ph diagram which shows the effect | action of the refrigerating cycle using a CO2 refrigerant | coolant. 実施形態のガスクーラをUCRとして構成した場合の断面図。Sectional drawing at the time of comprising the gas cooler of embodiment as UCR.

符号の説明Explanation of symbols

10…ガスクーラ
20…第1熱交換器コア
21…チューブ
21a…チューブ穴
22…フィン
30…第2熱交換器コア
40…第1ヘッダタンク
43…第1タンク部
44…第2タンク部
50…第2ヘッダタンク
53…第1タンク部
54…第2タンク部
55…連通路
60…冷却風
70…ラジエータ
100…UCR
DESCRIPTION OF SYMBOLS 10 ... Gas cooler 20 ... 1st heat exchanger core 21 ... Tube 21a ... Tube hole 22 ... Fin 30 ... 2nd heat exchanger core 40 ... 1st header tank 43 ... 1st tank part 44 ... 2nd tank part 50 ... 1st 2 Header tank 53 ... 1st tank part 54 ... 2nd tank part 55 ... Communication path 60 ... Cooling air 70 ... Radiator 100 ... UCR

Claims (4)

空調用の冷媒を冷却風により冷却する熱交換器であって、
冷却風の流れ方向に対して前後に配置された第1熱交換器コア(20)、第2熱交換器コア(30)と、
独立した2つのタンク部(43、44)を備え、冷却風の風下側となるタンク部(43)が前記第2熱交換器コア(30)の冷媒入口側と連通し、風上側となるタンク部(44)が前記第1熱交換器コア(20)の冷媒出口側と連通するとともに、前記風下側となるタンク部(43)から冷媒を導入し、前記風上側となるタンク部(44)から冷媒を排出する、下方に設けられた第1ヘッダタンク(40)と、
前記第2熱交換器コア(30)の冷媒出口側および前記第1熱交換器コア(20)の冷媒入口側とそれぞれ連通し、前記第2熱交換器コア(30)を通過した冷媒を前記第1熱交換器コア(20)側に流入させる、上方に設けられた第2ヘッダタンク(50)と、
を備えることを特徴とする熱交換器。
A heat exchanger that cools the air-conditioning refrigerant with cooling air,
A first heat exchanger core (20) and a second heat exchanger core (30) arranged in front and rear with respect to the flow direction of the cooling air;
A tank provided with two independent tank parts (43, 44), the tank part (43) on the leeward side of the cooling air communicates with the refrigerant inlet side of the second heat exchanger core (30), and is on the windward side The portion (44) communicates with the refrigerant outlet side of the first heat exchanger core (20) and introduces refrigerant from the tank portion (43) on the leeward side, so that the tank portion (44) on the leeward side. A first header tank (40) provided below, for discharging the refrigerant from
The refrigerant that communicated with the refrigerant outlet side of the second heat exchanger core (30) and the refrigerant inlet side of the first heat exchanger core (20), respectively, and that has passed through the second heat exchanger core (30) A second header tank (50) provided above, which is caused to flow into the first heat exchanger core (20),
A heat exchanger comprising:
請求項1記載の熱交換器において、独立した2つのタンク部(43、44)を、冷却風の流れ方向から見て前後に分離して配置したことを特徴とする熱交換器。   2. The heat exchanger according to claim 1, wherein the two independent tank portions (43, 44) are arranged separately in the front-rear direction when viewed from the flow direction of the cooling air. 請求項1又は2のいずれか一項に記載の熱交換器において、独立した2つのタンク部(43、44)の間に長手方向に沿ってスリット(41a、42a)を設け、前記2つのタンク部(43、44)を少なくとも一箇所で連結したことを特徴とする熱交換器。   The heat exchanger according to any one of claims 1 and 2, wherein a slit (41a, 42a) is provided along a longitudinal direction between two independent tank portions (43, 44), and the two tanks are provided. The heat exchanger characterized by connecting a part (43, 44) in at least one place. 請求項1乃至3のいずれか一項に記載の熱交換器の風下側に、エンジン冷却水を冷却するラジエータ(70)を設けて一体化したことを特徴とする一体型熱交換器。   An integrated heat exchanger characterized in that a radiator (70) for cooling engine cooling water is provided and integrated on the leeward side of the heat exchanger according to any one of claims 1 to 3.
JP2006055187A 2006-03-01 2006-03-01 Heat exchanger and integral type heat exchanger Withdrawn JP2007232287A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006055187A JP2007232287A (en) 2006-03-01 2006-03-01 Heat exchanger and integral type heat exchanger
EP07714836A EP1998133A1 (en) 2006-03-01 2007-02-23 Heat exchanger and integrated-type heat exchanger
US12/281,212 US20090050298A1 (en) 2006-03-01 2007-02-23 Heat exchanger and integrated-type heat exchanger
PCT/JP2007/053365 WO2007099868A1 (en) 2006-03-01 2007-02-23 Heat exchanger and integrated-type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006055187A JP2007232287A (en) 2006-03-01 2006-03-01 Heat exchanger and integral type heat exchanger

Publications (1)

Publication Number Publication Date
JP2007232287A true JP2007232287A (en) 2007-09-13

Family

ID=38458978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006055187A Withdrawn JP2007232287A (en) 2006-03-01 2006-03-01 Heat exchanger and integral type heat exchanger

Country Status (4)

Country Link
US (1) US20090050298A1 (en)
EP (1) EP1998133A1 (en)
JP (1) JP2007232287A (en)
WO (1) WO2007099868A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101500751B1 (en) * 2008-12-23 2015-03-09 두산인프라코어 주식회사 Inner partition type oil cooler
KR101543608B1 (en) 2009-09-28 2015-08-11 한온시스템 주식회사 A Water Cooling Type Condenser
JP2018096638A (en) * 2016-12-15 2018-06-21 日野自動車株式会社 Condenser
JP2019158189A (en) * 2018-03-09 2019-09-19 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water generation device including the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013203222A1 (en) 2013-02-27 2014-08-28 Behr Gmbh & Co. Kg Heat exchanger
EP3156752B1 (en) * 2014-06-13 2020-11-11 Mitsubishi Electric Corporation Heat exchanger
CN107003073A (en) * 2014-11-26 2017-08-01 开利公司 The micro channel heat exchanger of resistance to frost
US10330399B2 (en) 2015-05-22 2019-06-25 Modine Manufacturing Company Heat exchanger and heat exchanger tank
KR102236771B1 (en) * 2016-12-02 2021-04-06 삼성전자주식회사 Outdoor display apparatus
US11506402B2 (en) * 2018-06-11 2022-11-22 Mitsubishi Electric Corporation Outdoor unit of air-conditioning apparatus and air-conditioning apparatus
GB2581478B (en) * 2019-02-13 2021-09-22 Jaguar Land Rover Ltd Motor vehicle counterflow radiator, engine cooling circuit, vehicle and method of cooling an engine
IT202100000920A1 (en) * 2021-01-20 2022-07-20 Denso Thermal Systems Spa HEAT EXCHANGER, IN PARTICULAR INTERNAL CONDENSER FOR HVAC SYSTEMS WITH HEAT PUMP

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1601114A1 (en) * 1967-03-04 1970-05-21 Piero Pasqualini Production and assembly system for header heads of countercurrent water condensers and products made with this system
US5046554A (en) * 1990-02-22 1991-09-10 Calsonic International, Inc. Cooling module
US5186244A (en) * 1992-04-08 1993-02-16 General Motors Corporation Tube design for integral radiator/condenser
JP3683001B2 (en) 1994-04-12 2005-08-17 昭和電工株式会社 Double stacked heat exchanger
EP0677716B1 (en) * 1994-04-12 1999-01-07 Showa Aluminum Corporation Stacked-type duplex heat exchanger
US6095239A (en) * 1996-08-12 2000-08-01 Calsonic Kansei Corporation Integral-type heat exchanger
JPH10220919A (en) 1997-02-07 1998-08-21 Calsonic Corp Condenser
EP1223391B8 (en) * 1996-12-25 2005-12-21 Calsonic Kansei Corporation Condenser assembly structure
JP3324464B2 (en) * 1997-10-01 2002-09-17 株式会社デンソー Heat exchange equipment for vehicles
US6253837B1 (en) * 1998-03-23 2001-07-03 Long Manufacturing Ltd. By-pass values for heat exchanger
JP2001311597A (en) 2000-04-28 2001-11-09 Toyo Radiator Co Ltd Combined heat exchanger
US6273182B1 (en) * 2000-05-19 2001-08-14 Delphi Technologies, Inc. Heat exchanger mounting
LU90827B1 (en) * 2001-09-07 2003-03-10 Delphi Tech Inc Assembly of a component of a vehicle air conditioning system to a support structure
EP1452814A4 (en) * 2001-11-08 2008-09-10 Zexel Valeo Climate Contr Corp Heat exchanger and tube for heat exchanger
WO2004059235A1 (en) * 2002-12-31 2004-07-15 Modine Korea,Llc Evaporator
JP4124136B2 (en) * 2003-04-21 2008-07-23 株式会社デンソー Refrigerant evaporator
US7337832B2 (en) * 2003-04-30 2008-03-04 Valeo, Inc. Heat exchanger
DE112005001552T5 (en) * 2004-07-05 2007-05-16 Showa Denko Kk heat exchangers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101500751B1 (en) * 2008-12-23 2015-03-09 두산인프라코어 주식회사 Inner partition type oil cooler
KR101543608B1 (en) 2009-09-28 2015-08-11 한온시스템 주식회사 A Water Cooling Type Condenser
JP2018096638A (en) * 2016-12-15 2018-06-21 日野自動車株式会社 Condenser
JP2019158189A (en) * 2018-03-09 2019-09-19 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water generation device including the same
JP7008178B2 (en) 2018-03-09 2022-01-25 パナソニックIpマネジメント株式会社 Refrigeration cycle device and hot water generator equipped with it

Also Published As

Publication number Publication date
US20090050298A1 (en) 2009-02-26
EP1998133A1 (en) 2008-12-03
WO2007099868A1 (en) 2007-09-07

Similar Documents

Publication Publication Date Title
JP2007232287A (en) Heat exchanger and integral type heat exchanger
JP4078766B2 (en) Heat exchanger
JP5585543B2 (en) Vehicle cooling system
JP2008180486A (en) Heat exchanger
JP2008080995A (en) Cooling system
JP5274175B2 (en) Cold storage heat exchanger
JP2006329511A (en) Heat exchanger
JP2010261658A (en) Evaporator with cool storage function
US7013952B2 (en) Stack type heat exchanger
US20040206483A1 (en) Vehicle heat exchanger
JP2011133126A (en) Evaporator with cold storage function
JP5636215B2 (en) Evaporator
WO2020170651A1 (en) Compound heat exchanger
JP2011257111A5 (en)
JP2010175167A (en) Cold storage heat exchanger
JP2010223464A (en) Evaporator
JP2010038448A (en) Heat exchanger
JP2006266114A (en) Heat exchanging device
JP2006207944A (en) Heat exchanger
JP2004338644A (en) Heat exchange device for vehicle
JP2006349275A (en) Heat exchanger
JP2007303734A (en) Heat exchanger
JP2010054067A (en) Heat exchanger
JP4397676B2 (en) Automotive heat exchanger
JP2017190896A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100805