JP2018096638A - Condenser - Google Patents

Condenser Download PDF

Info

Publication number
JP2018096638A
JP2018096638A JP2016242936A JP2016242936A JP2018096638A JP 2018096638 A JP2018096638 A JP 2018096638A JP 2016242936 A JP2016242936 A JP 2016242936A JP 2016242936 A JP2016242936 A JP 2016242936A JP 2018096638 A JP2018096638 A JP 2018096638A
Authority
JP
Japan
Prior art keywords
heat exchange
header tank
cooling air
working medium
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016242936A
Other languages
Japanese (ja)
Inventor
雅彦 真弓
Masahiko Mayumi
雅彦 真弓
中村 正明
Masaaki Nakamura
正明 中村
耕一 町田
Koichi Machida
耕一 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2016242936A priority Critical patent/JP2018096638A/en
Publication of JP2018096638A publication Critical patent/JP2018096638A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a condenser which can improve cooling performance by securing a sufficient temperature difference in any of heat exchange cores which are aligned in two rows in a fore-and-aft direction in a flow direction of cooling air.SOLUTION: Related to a condenser 10 for continuously air-cooling an operation medium 4 by aligning heat exchange cores 2, 3 in two rows in a fore-and-aft direction in a flow direction of cooling air 1, a common upper header tank 11 and individual lower header tanks 8, 9 are arranged at the heat exchange cores 2, 3, respectively, the vapor of the operation medium 4 introduced into the rear-row lower header tank 9 is cooled by the cooling air 1, and brought into an air-liquid mixed state while the vapor ascends along the rear-row heat exchange core 3 up to the upper header tank 11, and while the vapor is folded from the upper header tank 11 to the front-row heat exchange core 2, and descends, the vapor is further air-cooled by the cooling air 1, and collected from the front-row lower header tank 8 as the condensed water of the operation medium 4.SELECTED DRAWING: Figure 1

Description

本発明は、ランキンサイクル発電システム等に用いることが可能な凝縮器に関するものである。   The present invention relates to a condenser that can be used in a Rankine cycle power generation system or the like.

近年、エンジンとモータジェネレータを併用した燃費性能の高いハイブリッド自動車が普及してきており、既に乗用車については高い普及率が達成されている一方、大型トラック等についても徐々に普及率が高まり始めているところであるが、特に大型トラックのハイブリッド化にあたっては、更なる燃費性能の向上を図る目的でランキンサイクル発電システムを採用し、これにより排気ガスが持つ廃熱を回収して電気エネルギーに換えることが研究されている。   In recent years, hybrid vehicles with high fuel consumption performance using both an engine and a motor generator have become widespread, and a high penetration rate has already been achieved for passenger cars, while the penetration rate for large trucks and the like is starting to increase gradually. However, especially when hybridizing large trucks, a Rankine cycle power generation system has been adopted for the purpose of further improving fuel efficiency, and this has been researched to recover waste heat from exhaust gas and convert it to electrical energy. Yes.

この種のランキンサイクル発電システムでは、排気ガスの廃熱を利用して作動媒体を蒸気化し、その蒸気化した作動媒体によりタービンを駆動して発電させるようにしており、該タービンを経た作動媒体を等圧冷却して凝縮させる必要があるため、大型トラックのリヤオーバーハングに凝縮器を装備し、該凝縮器により走行風を冷却風として作動媒体を空冷して凝縮させることが考えられている。   In this type of Rankine cycle power generation system, the working medium is vaporized using the waste heat of the exhaust gas, and the turbine is driven by the vaporized working medium to generate electric power. Since it is necessary to cool and condense with equal pressure, it is considered that a condenser is provided in the rear overhang of a large truck, and that the working medium is cooled by air using the condenser as cooling air to condense.

この際、リヤオーバーハングの限られた範囲にコンパクトに凝縮器を配置して効率の良い熱交換を行わせるため、図5及び図6に示す如く、冷却風1の流れ方向に熱交換コア2,3を前後二列で並べて連続的に作動媒体4を空冷するようにした凝縮器5の採用が検討されている。   At this time, in order to perform efficient heat exchange by arranging the condenser compactly in a limited range of the rear overhang, as shown in FIGS. 5 and 6, the heat exchange core 2 is arranged in the flow direction of the cooling air 1. , 3 are arranged in two front and rear rows, and the adoption of a condenser 5 in which the working medium 4 is continuously air-cooled is being studied.

ここで、各熱交換コア2,3は、上下に延びる多数の熱交換チューブにより構成されて該各熱交換チューブ間の空隙を冷却風1が通過し得るようにしたパネル状の通気構造を成しており、前記各熱交換チューブ間の空隙には、必要に応じて熱交換効率を高めるためのフィン等が装備されるようになっている。   Here, each of the heat exchange cores 2 and 3 is constituted by a number of heat exchange tubes extending vertically, and forms a panel-like ventilation structure that allows the cooling air 1 to pass through the gaps between the heat exchange tubes. The gaps between the heat exchange tubes are equipped with fins or the like for increasing the heat exchange efficiency as necessary.

尚、本発明に関連する先行技術文献情報としては下記の特許文献1等がある。   As prior art document information related to the present invention, there is the following Patent Document 1 and the like.

特開2007−155183号公報JP 2007-155183 A

しかしながら、図5及び図6の従来提案のものでは、冷却風1の流れ方向に並ぶ各熱交換コア2,3の上部ヘッダタンク6,7に対し作動媒体4の蒸気を夫々導入し、夫々の熱交換コア2,3を下降させる間に冷却風1と熱交換させて凝縮を促し、その凝縮液を夫々の下部ヘッダタンク8,9に集めて抜き出すようにしているため、冷却風1の流れ方向の前列(上流側)に配置されている熱交換コア2で十分な温度差を以て冷却風1と作動媒体4とが熱交換されても、後列(下流側)の熱交換コア3では、前列の熱交換コア2で作動媒体4を冷却し終えて暖まった冷却風1が作動媒体4を冷却することになり、冷却風1と作動媒体4との温度差が小さくなって良好な冷却性能が得られなくなるという問題があった。   However, in the conventional proposals shown in FIGS. 5 and 6, the steam of the working medium 4 is introduced into the upper header tanks 6 and 7 of the heat exchange cores 2 and 3 arranged in the flow direction of the cooling air 1, respectively. While the heat exchange cores 2 and 3 are lowered, heat is exchanged with the cooling air 1 to promote condensation, and the condensed liquid is collected in the respective lower header tanks 8 and 9, so that the flow of the cooling air 1 Even if the heat exchange core 2 arranged in the front row (upstream side) of the direction exchanges heat between the cooling air 1 and the working medium 4 with a sufficient temperature difference, the heat exchange core 3 in the rear row (downstream side) After the cooling of the working medium 4 by the heat exchange core 2, the cooling air 1 that has been warmed cools the working medium 4, and the temperature difference between the cooling air 1 and the working medium 4 is reduced, resulting in good cooling performance. There was a problem that it could not be obtained.

本発明は上述の実情に鑑みてなしたもので、冷却風の流れ方向に前後二列で並ぶ熱交換コアの何れにおいても十分な温度差を確保して冷却性能の向上を図り得るようにした凝縮器を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to secure a sufficient temperature difference and improve the cooling performance in any of the heat exchange cores arranged in two rows before and after in the flow direction of the cooling air. The object is to provide a condenser.

本発明は、冷却風の流れ方向に熱交換コアを前後二列で並べて連続的に作動媒体を空冷する凝縮器であって、前記各熱交換コアの相互に共通の上部ヘッダタンクと個別の下部ヘッダタンクとを備え、後列の下部へッダタンクに導入した作動媒体の蒸気が後列の熱交換コアを上部ヘッダタンクまで上昇する間に冷却風により空冷されて気液混合状態となり且つ前記上部ヘッダタンクから前列の熱交換コアに折り返して下降する間に冷却風により更に空冷されて前列の下部ヘッダタンクから作動媒体の凝縮液として回収されるように構成したことを特徴とするものである。   The present invention is a condenser in which heat exchange cores are arranged in two rows in the front and rear in the flow direction of cooling air to continuously air-cool the working medium, and each of the heat exchange cores has a common upper header tank and separate lower portions. And the working medium vapor introduced into the lower header tank in the rear row is air-cooled by cooling air while rising up the heat exchange core in the rear row to the upper header tank, and becomes a gas-liquid mixed state. While being folded back to the heat exchange core in the front row and descending, it is further cooled by cooling air and is collected from the lower header tank in the front row as a condensate of the working medium.

而して、このようにすれば、後列の下部へッダタンクに導入されて後列の熱交換コアを上昇する温度の高い作動媒体の蒸気が、既に前列の熱交換コアで熱交換を終えて昇温した冷却風と熱交換されて空冷され、その流れの中にミスト状の凝縮液を随伴した気液混合状態となって上部ヘッダタンクに到り、該上部ヘッダタンクから前列の熱交換コアに折り返されて下降し、未だ熱交換に用いられていない温度の低い冷却風と熱交換されて更に空冷され、作動媒体の蒸気が全て凝縮液となって前列の下部ヘッダタンクに流下することになる。   Thus, in this case, the steam of the working medium having a high temperature introduced into the lower header tank of the rear row and rising the heat exchange core in the rear row has already finished heat exchange in the heat exchange core in the front row and raised the temperature. The air is cooled and air-cooled by heat exchange with the cooled cooling air, reaches a gas-liquid mixed state accompanied by mist-like condensate in the flow, reaches the upper header tank, and is folded back from the upper header tank to the heat exchange core in the front row. Then, the heat is exchanged with cooling air having a low temperature that is not yet used for heat exchange and further air-cooled, and all the vapor of the working medium becomes a condensate and flows down to the lower header tank in the front row.

即ち、冷却風の流れ方向に対し作動媒体が後列の熱交換コアから前列の熱交換コアへと遡るようにして相互の熱交換が成されるので、冷却風と作動媒体との熱交換の形式が対向流化されることになり、冷却風の流れ方向に前後二列で並ぶ熱交換コアの何れにおいても十分な温度差が確保されて冷却性能の向上が図られる。   That is, mutual heat exchange is performed such that the working medium goes back from the rear row heat exchange core to the front row heat exchange core with respect to the flow direction of the cooling air. As a result, a sufficient temperature difference is ensured in any of the heat exchange cores arranged in two rows in the front-rear direction in the flow direction of the cooling air, thereby improving the cooling performance.

しかも、作動媒体の凝縮が本格的に進んでミスト状態から液滴化していく前列の熱交換コアにあっては、作動媒体の流れが下方へ向かうダウンフローを成すようになっているので、前列の熱交換コアで液滴化した作動媒体が、圧力だけでなく重力の作用も受けて途中に滞留することなく円滑に前列の下部ヘッダタンクへと流下していくことになる。   Moreover, in the heat exchange cores in the front row where the condensation of the working medium progresses in earnest and becomes droplets from the mist state, the flow of the working medium forms a downward flow downward. The working medium formed into droplets by the heat exchanging core flows smoothly into the lower header tank in the front row without being retained in the middle due to not only the pressure but also the action of gravity.

また、本発明においては、前列の熱交換コアにおける冷却風の入側面が下向きとなり且つ後列の熱交換コアにおける冷却風の出側面が上向きとなるよう鉛直方向に対し所要の傾斜角を成して斜めに配置されていることが好ましい。   Further, in the present invention, a required inclination angle is formed with respect to the vertical direction so that the cooling air inlet side of the front row heat exchange core faces downward and the cooling air outlet side of the rear row heat exchange core faces upward. It is preferable that they are arranged obliquely.

このようにすれば、高さ制限があるような狭隘な配置スペースに対し各熱交換コアを傾斜させてコンパクトに配置することが可能となる上、作動媒体が折り返す上部ヘッダタンクの流れの澱み部分に凝縮液が生じても、重力の作用により前列の熱交換コアへと円滑に流し落とされるので、上部ヘッダタンクに凝縮液が滞留したり後列の熱交換コアへ逆流したりすることが防止される。   In this way, it is possible to arrange each heat exchange core in a compact arrangement with respect to a narrow arrangement space where there is a height restriction, and in addition, a stagnation part of the flow of the upper header tank where the working medium is folded back Even if condensate is generated in the upper header tank, the condensate is smoothly drained down to the heat exchange core in the front row by the action of gravity, so that it is prevented that the condensate stays in the upper header tank or flows back to the heat exchange core in the rear row. The

更に、本発明においては、大型トラックに採用されたランキンサイクル発電システムの作動媒体の蒸気を凝縮し得るよう前記大型トラックのリヤオーバーハングに装備されていることが好ましく、このようにすれば、リヤオーバーハングの限られた範囲にコンパクトに凝縮器を配置して効率の良い熱交換を行わせることが可能となる。   Furthermore, in the present invention, it is preferable that the rear overhang of the large truck is equipped so that the vapor of the working medium of the Rankine cycle power generation system employed in the large truck can be condensed. It becomes possible to arrange the condenser compactly in a limited range of overhang and to perform efficient heat exchange.

上記した本発明の凝縮器によれば、下記の如き種々の優れた効果を奏し得る。   According to the condenser of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、冷却風と作動媒体との熱交換の形式を対向流化し、冷却風の流れ方向に前後二列で並ぶ熱交換コアの何れにおいても十分な温度差が確保できるようにして冷却性能を従来より大幅に向上することができ、しかも、液滴化した作動媒体を重力の作用により途中に滞留させることなく円滑に流下させることができる。   (I) According to the invention described in claim 1 of the present invention, the heat exchange type between the cooling air and the working medium is counterflowed, and in any of the heat exchange cores arranged in two rows in the front and rear in the cooling air flow direction. In addition, a sufficient temperature difference can be ensured, and the cooling performance can be greatly improved as compared with the prior art. Moreover, the dropletized working medium can flow smoothly without being retained in the middle due to the action of gravity. .

(II)本発明の請求項2に記載の発明によれば、高さ制限があるような狭隘な配置スペースに対し各熱交換コアを傾斜させてコンパクトに配置することができ、しかも、上部ヘッダタンクに凝縮液が滞留したり後列の熱交換コアへ逆流したりすることを未然に防止することもできる。   (II) According to the invention described in claim 2 of the present invention, each heat exchange core can be inclined and arranged compactly with respect to a narrow arrangement space having a height restriction, and the upper header can be arranged. It is also possible to prevent the condensate from staying in the tank or flowing back to the heat exchange core in the rear row.

(III)本発明の請求項3に記載の発明によれば、リヤオーバーハングの限られた範囲にコンパクトに凝縮器を配置して効率の良い熱交換を行わせることができ、大型トラックへのランキンサイクル発電システムの効果的な適用を実現することができる。   (III) According to the invention described in claim 3 of the present invention, the condenser can be arranged compactly in a limited range of the rear overhang so that efficient heat exchange can be performed. Effective application of the Rankine cycle power generation system can be realized.

本発明を実施する形態の一例を示す斜視図である。It is a perspective view which shows an example of the form which implements this invention. 図1の凝縮器の側面図である。It is a side view of the condenser of FIG. 冷却風と作動媒体との熱交換の形式について説明するグラフである。It is a graph explaining the form of heat exchange with a cooling wind and a working medium. 大型トラックのリヤオーバーハングに適用した例を示す概略図である。It is the schematic which shows the example applied to the rear overhang of a large truck. 従来例を示す斜視図である。It is a perspective view which shows a prior art example. 図5の凝縮器の側面図である。FIG. 6 is a side view of the condenser of FIG. 5.

以下、本発明の実施の形態を図面を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜図3は本発明を実施する形態の一例を示すもので、本形態例においては、先に図5及び図6で説明した従来例と同様に、冷却風1の流れ方向に熱交換コア2,3を前後二列で並べて連続的に作動媒体4を空冷するようにした凝縮器10となっており、前記各熱交換コア2,3を上下に延びる多数の熱交換チューブによりパネル状に構成して該各熱交換チューブ間の空隙を冷却風1が通過し得るようにしてあるが、前記各熱交換コア2,3における熱交換チューブの下端が個別の下部ヘッダタンク8,9に夫々接続されているのに対し、前記各熱交換コア2,3における熱交換チューブの上端は共通の上部ヘッダタンク11に接続されていて、後列の下部ヘッダタンク9を作動媒体4の入側とし且つ前列の下部ヘッダタンク8を作動媒体4の出側として前記上部ヘッダタンク11を介し後列の熱交換コア3からの作動媒体4を前列の熱交換コア2に折り返し得るようにしてある。   1 to 3 show an example of an embodiment for carrying out the present invention. In this embodiment, heat exchange is performed in the flow direction of the cooling air 1 in the same manner as the conventional example described above with reference to FIGS. The condenser 10 is configured such that the working medium 4 is continuously air-cooled by arranging the cores 2 and 3 in two rows in the front and rear, and the heat exchange cores 2 and 3 are panel-shaped by a number of heat exchange tubes extending vertically. The cooling air 1 can pass through the gaps between the heat exchange tubes, but the lower ends of the heat exchange tubes in the heat exchange cores 2 and 3 are connected to the individual lower header tanks 8 and 9, respectively. Whereas the upper ends of the heat exchange tubes in the respective heat exchange cores 2 and 3 are connected to a common upper header tank 11, the lower header tank 9 in the rear row is used as the entry side for the working medium 4. The lower header tank 8 in the front row As the outlet side are as above may wrap upper header tank 11 the working medium 4 from the heat exchange core 3 of rear row through the heat exchange core 2 of the front row.

ここで、本形態例における凝縮器10は、図2に模式的に示す如く、後列の下部へッダタンク9に導入された作動媒体4の蒸気(気相)が、後列の熱交換コア3を上部ヘッダタンク11まで上昇する間に冷却風1により空冷されて気液混合状態となり、前記上部ヘッダタンク11から前列の熱交換コア2に折り返して下降する間に冷却風1により更に空冷されて作動媒体4の凝縮液(液相)として前列の下部ヘッダタンク8に回収されるように設計してある。   Here, in the condenser 10 in this embodiment, as schematically shown in FIG. 2, the vapor (gas phase) of the working medium 4 introduced into the lower header tank 9 in the rear row moves up the heat exchange core 3 in the rear row. The air is cooled by the cooling air 1 while rising to the header tank 11 to be in a gas-liquid mixed state, and is further cooled by the cooling air 1 while being folded back from the upper header tank 11 to the heat exchange core 2 in the front row. 4 condensate (liquid phase) is designed to be collected in the lower header tank 8 in the front row.

而して、このような凝縮器10とすれば、後列の下部へッダタンク9に導入されて後列の熱交換コア3を上昇する温度の高い作動媒体4の蒸気が、既に前列の熱交換コア2で熱交換を終えて昇温した冷却風1と熱交換されて空冷され、その流れの中にミスト状の凝縮液を随伴した気液混合状態となって上部ヘッダタンク11に到り、該上部ヘッダタンク11から前列の熱交換コア2に折り返されて下降し、未だ熱交換に用いられていない温度の低い冷却風1と熱交換されて更に空冷され、作動媒体4の蒸気が全て凝縮液となって前列の下部ヘッダタンク8に流下することになる。   Thus, in the case of such a condenser 10, the steam of the high-temperature working medium 4 introduced into the lower header tank 9 in the rear row and rising the rear row heat exchange core 3 is already in the front row heat exchange core 2. The heat is exchanged with the cooling air 1 that has been heated up after the heat exchange and is air-cooled, and is in a gas-liquid mixed state accompanied by a mist-like condensate in the flow to reach the upper header tank 11, The header tank 11 is folded back to the heat exchange core 2 in the front row, descends, is heat-exchanged with the cooling air 1 having a low temperature not yet used for heat exchange, is further air-cooled, and all the vapor of the working medium 4 is condensed with the condensate. Thus, it flows down to the lower header tank 8 in the front row.

即ち、冷却風1の流れ方向に対し作動媒体4が後列の熱交換コア3から前列の熱交換コア2へと遡るようにして相互の熱交換が成されるので、図3に模式的に示す如く、冷却風1と作動媒体4との熱交換の形式が対向流化されることになり、冷却風1の流れ方向に前後二列で並ぶ熱交換コア2,3の何れにおいても十分な温度差が確保されて冷却性能の向上が図られる。   That is, mutual heat exchange is performed such that the working medium 4 goes back from the rear heat exchange core 3 to the front heat exchange core 2 with respect to the flow direction of the cooling air 1, and is schematically shown in FIG. As described above, the heat exchange between the cooling air 1 and the working medium 4 is counterflowed, and the heat exchange cores 2 and 3 arranged in two rows in the front and rear directions in the flow direction of the cooling air 1 have a sufficient temperature. The difference is secured and the cooling performance is improved.

しかも、作動媒体4の凝縮が本格的に進んでミスト状態から液滴化していく前列の熱交換コア2にあっては、作動媒体4の流れが下方へ向かうダウンフローを成すようになっているので、前列の熱交換コア2で液滴化した作動媒体4が、圧力だけでなく重力の作用も受けて途中に滞留することなく円滑に前列の下部ヘッダタンク8へと流下していくことになる。   In addition, in the heat exchange core 2 in the front row where the condensation of the working medium 4 progresses in earnest and drops from the mist state, the flow of the working medium 4 forms a downward flow downward. Therefore, the working medium 4 formed into droplets by the heat exchange core 2 in the front row smoothly flows down to the lower header tank 8 in the front row without being retained in the middle due to not only the pressure but also the action of gravity. Become.

従って、上記形態例によれば、冷却風1と作動媒体4との熱交換の形式を対向流化し、冷却風1の流れ方向に前後二列で並ぶ熱交換コア2,3の何れにおいても十分な温度差が確保できるようにして冷却性能を従来より大幅に向上することができ、しかも、液滴化した作動媒体4を重力の作用により途中に滞留させることなく円滑に流下させることができる。   Therefore, according to the above embodiment, the heat exchange between the cooling air 1 and the working medium 4 is counterflowed, and the heat exchange cores 2 and 3 arranged in two rows in the front and rear directions in the flow direction of the cooling air 1 are sufficient. Thus, the cooling performance can be greatly improved as compared with the prior art by ensuring a sufficient temperature difference, and the droplets of the working medium 4 can be smoothly flowed down without being retained in the middle due to the action of gravity.

また、図4に示す如く、以上に述べた如き本形態例の凝縮器10を、大型トラック12に採用されたランキンサイクル発電システムの作動媒体4の蒸気を凝縮するために用いる場合には、デパーチャアングル(リヤオーバーハング13内の車両最下部と後輪タイヤ後側接地面を結ぶ接線と地面との角度)や最低地上高等といった高さ制限を考慮しつつリヤオーバーハング13の限られた範囲にコンパクトに凝縮器10を配置する必要があり、各熱交換コア2,3を鉛直方向に対し所要の傾斜角を成して斜めに配置しなければならなくなる。   In addition, as shown in FIG. 4, when the condenser 10 of the present embodiment as described above is used to condense the vapor of the working medium 4 of the Rankine cycle power generation system employed in the large truck 12, the The limited range of the rear overhang 13 while taking into account height restrictions such as the launch angle (angle between the tangent line connecting the bottom of the vehicle in the rear overhang 13 and the rear ground contact surface of the rear wheel tire and the ground) and the minimum ground clearance Therefore, it is necessary to arrange the condenser 10 in a compact manner, and the heat exchange cores 2 and 3 must be arranged obliquely at a predetermined inclination angle with respect to the vertical direction.

この際、前列の熱交換コア2における冷却風1(走行風)の入側面が下向きとなり且つ後列の熱交換コア3における冷却風1の出側面が上向きとなるよう鉛直方向に対し所要の傾斜角を成して斜めに配置すれば、各熱交換コア2,3を傾斜させてコンパクトに配置することができる上、作動媒体4が折り返す上部ヘッダタンク11の流れの澱み部分に凝縮液が生じても、重力の作用により前列の熱交換コア2へと円滑に流し落とすことができ、上部ヘッダタンク11に凝縮液が滞留したり後列の熱交換コア3へ逆流したりすることを未然に防止することができる。   At this time, a required inclination angle with respect to the vertical direction is such that the entrance side of the cooling air 1 (running wind) in the front heat exchange core 2 faces downward and the exit surface of the cooling air 1 in the rear heat exchange core 3 faces upward. If the heat exchanger cores 2 and 3 are inclined, the heat exchange cores 2 and 3 can be inclined and arranged in a compact manner, and condensate is generated in the stagnation portion of the flow of the upper header tank 11 where the working medium 4 is folded back. However, it is possible to smoothly flow down to the heat exchange core 2 in the front row by the action of gravity, and to prevent the condensate from staying in the upper header tank 11 or flowing back to the heat exchange core 3 in the rear row. be able to.

尚、本発明の凝縮器は、上述の形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the condenser of this invention is not limited only to the above-mentioned form example, Of course, a various change can be added in the range which does not deviate from the summary of this invention.

1 冷却風
2 前列の熱交換コア
3 後列の熱交換コア
4 作動媒体
8 前列の下部ヘッダタンク
9 後列の下部ヘッダタンク
10 凝縮器
11 上部ヘッダタンク
12 大型トラック
13 リヤオーバーハング
DESCRIPTION OF SYMBOLS 1 Cooling air 2 Front row heat exchange core 3 Rear row heat exchange core 4 Working medium 8 Front row lower header tank 9 Rear row lower header tank 10 Condenser 11 Upper header tank 12 Large truck 13 Rear overhang

Claims (3)

冷却風の流れ方向に熱交換コアを前後二列で並べて連続的に作動媒体を空冷する凝縮器であって、前記各熱交換コアの相互に共通の上部ヘッダタンクと個別の下部ヘッダタンクとを備え、後列の下部へッダタンクに導入した作動媒体の蒸気が後列の熱交換コアを上部ヘッダタンクまで上昇する間に冷却風により空冷されて気液混合状態となり且つ前記上部ヘッダタンクから前列の熱交換コアに折り返して下降する間に冷却風により更に空冷されて前列の下部ヘッダタンクから作動媒体の凝縮液として回収されるように構成したことを特徴とする凝縮器。   A condenser in which heat exchange cores are arranged in two rows before and after in the flow direction of the cooling air to continuously air-cool the working medium, and each heat exchange core includes a common upper header tank and individual lower header tanks. The steam of the working medium introduced into the lower header tank in the rear row is cooled by air while being raised up the heat exchange core in the rear row to the upper header tank, and becomes a gas-liquid mixed state, and heat exchange in the front row from the upper header tank A condenser configured to be further cooled by cooling air while returning to a core and descending and then recovered as a condensate of a working medium from a lower header tank in a front row. 前列の熱交換コアにおける冷却風の入側面が下向きとなり且つ後列の熱交換コアにおける冷却風の出側面が上向きとなるよう鉛直方向に対し所要の傾斜角を成して斜めに配置されていることを特徴とする請求項1に記載の凝縮器。   The cooling air inlet side of the front row heat exchange core is faced downward and the cooling air outlet side of the rear row heat exchange core is faced upward with a required inclination angle with respect to the vertical direction. The condenser according to claim 1. 大型トラックに採用されたランキンサイクル発電システムの作動媒体の蒸気を凝縮し得るよう前記大型トラックのリヤオーバーハングに装備されていることを特徴とする請求項1又は2に記載の凝縮器。   The condenser according to claim 1 or 2, wherein the condenser is installed in a rear overhang of the large truck so as to condense the vapor of the working medium of the Rankine cycle power generation system employed in the large truck.
JP2016242936A 2016-12-15 2016-12-15 Condenser Pending JP2018096638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016242936A JP2018096638A (en) 2016-12-15 2016-12-15 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016242936A JP2018096638A (en) 2016-12-15 2016-12-15 Condenser

Publications (1)

Publication Number Publication Date
JP2018096638A true JP2018096638A (en) 2018-06-21

Family

ID=62633285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016242936A Pending JP2018096638A (en) 2016-12-15 2016-12-15 Condenser

Country Status (1)

Country Link
JP (1) JP2018096638A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234958A1 (en) 2020-05-22 2021-11-25 三菱電機株式会社 Heat exchanger, outdoor unit equipped with heat exchanger, and air conditioner equipped with outdoor unit
WO2021234953A1 (en) * 2020-05-22 2021-11-25 三菱電機株式会社 Heat exchanger, outdoor unit comprising heat exchanger, and air-conditioning device comprising outdoor unit
WO2022249425A1 (en) 2021-05-28 2022-12-01 三菱電機株式会社 Heat exchanger, air conditioner outdoor unit equipped with heat exchanger, and air conditioner equipped with air conditioner outdoor unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228161A (en) * 1994-02-16 1995-08-29 Mazda Motor Corp Outside air introduction structure for vehicle
JP2004044530A (en) * 2002-07-15 2004-02-12 Mazda Motor Corp Arrangement structure for engine auxiliary machine
JP2007232287A (en) * 2006-03-01 2007-09-13 Calsonic Kansei Corp Heat exchanger and integral type heat exchanger
JP2013107469A (en) * 2011-11-18 2013-06-06 Toyota Motor Corp Cooling air introduction structure
JP2014048038A (en) * 2012-09-04 2014-03-17 Hino Motors Ltd Heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228161A (en) * 1994-02-16 1995-08-29 Mazda Motor Corp Outside air introduction structure for vehicle
JP2004044530A (en) * 2002-07-15 2004-02-12 Mazda Motor Corp Arrangement structure for engine auxiliary machine
JP2007232287A (en) * 2006-03-01 2007-09-13 Calsonic Kansei Corp Heat exchanger and integral type heat exchanger
JP2013107469A (en) * 2011-11-18 2013-06-06 Toyota Motor Corp Cooling air introduction structure
JP2014048038A (en) * 2012-09-04 2014-03-17 Hino Motors Ltd Heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234958A1 (en) 2020-05-22 2021-11-25 三菱電機株式会社 Heat exchanger, outdoor unit equipped with heat exchanger, and air conditioner equipped with outdoor unit
WO2021234953A1 (en) * 2020-05-22 2021-11-25 三菱電機株式会社 Heat exchanger, outdoor unit comprising heat exchanger, and air-conditioning device comprising outdoor unit
JP7357785B2 (en) 2020-05-22 2023-10-06 三菱電機株式会社 Heat exchanger, outdoor unit equipped with heat exchanger, and air conditioner equipped with outdoor unit
WO2022249425A1 (en) 2021-05-28 2022-12-01 三菱電機株式会社 Heat exchanger, air conditioner outdoor unit equipped with heat exchanger, and air conditioner equipped with air conditioner outdoor unit

Similar Documents

Publication Publication Date Title
KR102567146B1 (en) Cooling module for vehicle
US8879259B2 (en) Cooling system for onboard electrical power converter, and electrical power converter for railway vehicle
KR101280520B1 (en) Power Generation System Using Waste Heat
KR101601050B1 (en) Cooling apparatus for vehicle
JP2018096638A (en) Condenser
JP6032787B2 (en) Cooling device for fuel cell vehicle
KR101353413B1 (en) Cooling system for vehicle
KR100832083B1 (en) Cooling apparatus of a fuel cell vehicle
EP2839121A1 (en) High Performance Air-Cooled Combined Cycle Power Plant With Dual Working Fluid Bottoming Cycle and Integrated Capacity Control
CN104709071A (en) Cooling module for vehicle
KR20110040645A (en) Cooling device for vehicle
JP6157908B2 (en) Automotive laminated thermoelectric generator
US10801372B2 (en) Cooling module and method for rejecting heat from a coupled engine system and rankine cycle waste heat recovery system
CN102812211B (en) Rankine cycle system
JP2013247148A (en) Natural circulation type cooling device
CN104364600A (en) Evaporator
CN110014820B (en) Cooling module
JP2011511238A (en) Device for exchanging heat and automobile
JP2009268282A (en) Method and device for generating power by using exhaust heat
JP2009144676A (en) Energy recovery system
US8661801B2 (en) Thermoelectric generator of vehicle
JP2014129809A (en) Vehicle stacked thermoelectric generator
EP2910293B1 (en) Co2 recovery device
JP6076002B2 (en) Heat exchanger
JP5766993B2 (en) Multi-cooling device for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210302