WO2021234953A1 - Heat exchanger, outdoor unit comprising heat exchanger, and air-conditioning device comprising outdoor unit - Google Patents

Heat exchanger, outdoor unit comprising heat exchanger, and air-conditioning device comprising outdoor unit Download PDF

Info

Publication number
WO2021234953A1
WO2021234953A1 PCT/JP2020/020346 JP2020020346W WO2021234953A1 WO 2021234953 A1 WO2021234953 A1 WO 2021234953A1 JP 2020020346 W JP2020020346 W JP 2020020346W WO 2021234953 A1 WO2021234953 A1 WO 2021234953A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
header
gas pipe
refrigerant
outdoor unit
Prior art date
Application number
PCT/JP2020/020346
Other languages
French (fr)
Japanese (ja)
Inventor
傑 鳩村
哲二 七種
理人 足立
充宏 池田
浩二 西岡
俊希 行▲徳▼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/020346 priority Critical patent/WO2021234953A1/en
Priority to JP2022524841A priority patent/JP7357785B2/en
Publication of WO2021234953A1 publication Critical patent/WO2021234953A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present disclosure relates to a heat exchanger having a plurality of flat tubes, an outdoor unit equipped with a heat exchanger, and an air conditioner equipped with an outdoor unit.
  • the heat exchange cores are arranged in two rows in the front and rear in the direction of the wind flow, and the upper header tank and the separate lower header tanks that are common to each other of the heat exchange cores are provided.
  • a heat exchanger in which a sufficient temperature difference is secured to improve the heat transfer performance (see, for example, Patent Document 1).
  • Patent Document 1 When a conventional heat exchanger as in Patent Document 1 is used for an outdoor unit of an air conditioner capable of operating both cooling operation and heating operation, in the heating operation where the outside air temperature is low, a low temperature and low pressure two-phase refrigerant is used. Flows through the heat exchange core on the wind side, causing a lot of frost there. In the defrosting operation, high-temperature and high-pressure gas refrigerant flows in from the lower header tank on the leeward side and flows to the heat exchange core on the leeward side to defrost. After defrosting, the defrosted water generated on the surface of the heat exchange core flows downward, but tends to collect especially near the lower header tank on the windward side.
  • the present disclosure has been made to solve the above problems, and includes a heat exchanger capable of suppressing refreezing of defrosted water, an outdoor unit equipped with a heat exchanger, and an outdoor unit. It is intended to provide an air conditioner.
  • the heat exchanger according to the present disclosure is a heat exchanger mounted on an outdoor unit provided with at least one heat exchanger having a plurality of flat tubes along the direction of air flow, and is the most wind-upper side.
  • the first header provided at the lower end of the heat exchanger, the second header provided at the upper end or the lower end of the most leeward heat exchanger, and the first header are connected to function as an evaporator.
  • At least a part of the gas pipe is provided along the long axis direction of the first header, and at least a part of the gas pipe is in contact with the first header. It is a thing.
  • the heat exchanger according to the present disclosure has a plurality of flat tubes, and is composed of a main heat exchanger and an auxiliary heat exchanger in which the number of the flat tubes is smaller than that of the main heat exchanger.
  • a heat exchanger mounted on an outdoor unit which is provided with at least one heat exchanger along the air flow direction, and has the first header provided at the lower end of the auxiliary heat exchanger on the windy side, and the most.
  • the refrigerant flows in when functioning as an evaporator, and flows out when functioning as a condenser.
  • the outdoor unit of the air conditioner according to the present disclosure is equipped with the above heat exchanger.
  • the air conditioner according to the present disclosure is equipped with the above-mentioned outdoor unit.
  • the outdoor unit provided with the heat exchanger, and the air conditioner provided with the outdoor unit according to the present disclosure at least a part of the gas pipe is provided along the long axis direction of the first header. At least part of the gas pipe is in contact with the first header. Therefore, the heat of the gas pipe through which the high-temperature and high-pressure gas refrigerant flows during the defrosting operation can be transferred to the first header. Then, the heat transferred to the first header is transferred to the defrost water in the vicinity of the first header, and the temperature of the defrost water becomes high. Therefore, even if the heating operation is restarted after the defrosting operation is completed, it is possible to prevent the defrosting water in the vicinity of the first header from refreezing.
  • FIG. 1 It is a refrigerant circuit diagram of the air conditioner provided with the heat exchanger which concerns on Embodiment 1.
  • FIG. It is the first perspective view of the heat exchanger which concerns on Embodiment 1.
  • FIG. It is a second perspective view of the heat exchanger which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows the modification of the heat exchanger which concerns on Embodiment 1.
  • FIG. 3 is a perspective view of a top-flow type outdoor unit equipped with a heat exchanger and a heat exchanger according to the second embodiment. It is a perspective view of the heat exchanger which concerns on Embodiment 2.
  • FIG. It is a top view which shows typically the flow of the refrigerant at the time of the heating operation of the heat exchanger which concerns on Embodiment 2.
  • FIG. It is a perspective view which shows typically the flow of the refrigerant at the time of the heating operation of the heat exchanger which concerns on Embodiment 2.
  • FIG. It is a top view which shows typically the flow of the refrigerant at the time of the defrosting operation of the heat exchanger which concerns on Embodiment 2.
  • FIG. It is a perspective view which shows typically the flow of the refrigerant at the time of the defrosting operation of the heat exchanger which concerns on Embodiment 2.
  • FIG. It is a top view which shows typically the flow of the refrigerant at the time of defrosting operation of the modification of the heat exchanger which concerns on Embodiment 2.
  • FIG. It is a perspective view which shows typically the flow of the refrigerant at the time of defrosting operation of the modification of the heat exchanger which concerns on Embodiment 2.
  • FIG. It is an enlarged front view schematically showing the main part of the heat exchanger according to the third embodiment. It is an enlarged front view schematically showing the main part of the heat exchanger according to the fourth embodiment. It is a perspective view which shows typically the joint of the heat exchanger which concerns on Embodiment 5. It is sectional drawing which shows typically the joint of the heat exchanger which concerns on Embodiment 5.
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner 100 provided with a heat exchanger 30 according to the first embodiment.
  • the solid line arrow in FIG. 1 indicates the flow of the refrigerant during the cooling operation, and the broken line arrow in FIG. 1 indicates the flow of the refrigerant during the heating operation.
  • the heat exchanger 30 is mounted on the outdoor unit 10 of the air conditioner 100 including the outdoor unit 10 and the indoor unit 20.
  • the outdoor unit 10 includes a compressor 11, a flow path switching device 12, and a fan 13 in addition to the heat exchanger 30.
  • the indoor unit 20 includes a throttle device 21, an indoor heat exchanger 22, and an indoor fan 23.
  • the air conditioner 100 includes a refrigerant circuit in which a compressor 11, a flow path switching device 12, a heat exchanger 30, a throttle device 21, and an indoor heat exchanger 22 are connected by a refrigerant pipe and a refrigerant circulates.
  • the air conditioner 100 can operate both the cooling operation and the heating operation by switching the flow path switching device 12.
  • the compressor 11 sucks in the low temperature and low pressure refrigerant, compresses the sucked refrigerant, and discharges the high temperature and high pressure refrigerant.
  • the compressor 11 is composed of, for example, an inverter compressor whose capacity, which is a transmission amount per unit time, is controlled by changing the operating frequency.
  • the flow path switching device 12 is, for example, a four-way valve, and switches between cooling operation and heating operation by switching the flow direction of the refrigerant.
  • the flow path switching device 12 switches to the state shown by the solid line in FIG. 1 during the cooling operation, and the discharge side of the compressor 11 and the heat exchanger 30 are connected to each other. Further, the flow path switching device 12 switches to the state shown by the broken line in FIG. 1 during the heating operation, and the discharge side of the compressor 11 and the indoor heat exchanger 22 are connected to each other.
  • the heat exchanger 30 exchanges heat between the outdoor air and the refrigerant.
  • the heat exchanger 30 functions as a condenser that dissipates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation. Further, the heat exchanger 30 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air by the heat of vaporization at that time.
  • the fan 13 supplies outdoor air to the heat exchanger 30, and the amount of air blown to the heat exchanger 30 is adjusted by controlling the rotation speed.
  • the throttle device 21 is, for example, an electronic expansion valve capable of adjusting the opening degree of the throttle, and controls the pressure of the refrigerant flowing into the heat exchanger 30 or the indoor heat exchanger 22 by adjusting the opening degree.
  • the diaphragm device 21 is provided in the indoor unit 20, but it may be provided in the outdoor unit 10, and the installation location is not limited.
  • the indoor heat exchanger 22 exchanges heat between the indoor air and the refrigerant.
  • the indoor heat exchanger 22 functions as an evaporator that evaporates the refrigerant during the cooling operation and cools the outdoor air by the heat of vaporization at that time. Further, the indoor heat exchanger 22 functions as a condenser that dissipates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the heating operation.
  • the indoor fan 23 supplies indoor air to the indoor heat exchanger 22, and the amount of air blown to the indoor heat exchanger 22 is adjusted by controlling the rotation speed.
  • FIG. 2 is a first perspective view of the heat exchanger 30 according to the first embodiment.
  • FIG. 3 is a second perspective view of the heat exchanger 30 according to the first embodiment.
  • the white arrows in FIGS. 2 and 3 indicate the flow of wind generated by the fan 13.
  • the black dashed arrows in FIGS. 2 and 3 indicate the flow of the refrigerant.
  • the heat exchanger 30 has a plurality of heat exchangers along the air flow direction. Specifically, the heat exchanger 30 has a first heat exchanger 31 on the windward side and a second heat exchanger 32 on the leeward side.
  • the heat exchanger has a plurality of flat tubes 38 and a plurality of fins 39.
  • the flat pipes 38 are arranged in parallel in the horizontal direction at intervals so that the wind generated by the fan 13 flows, and the refrigerant flows in the vertical direction in the pipes extending in the vertical direction.
  • the fins 39 are connected between adjacent flat tubes 38 and transfer heat to the flat tubes 38.
  • the fin 39 improves the heat exchange efficiency between the air and the refrigerant, and for example, a corrugated fin is used. However, it is not limited to this. Since heat exchange between air and the refrigerant is performed on the surface of the flat tube 38, the fins 39 may not be present.
  • a first header 34 is provided at the lower end of the first heat exchanger 31.
  • the lower end of the flat tube 38 of the first heat exchanger 31 is directly inserted into the first header 34.
  • the first header 34 is connected to the refrigerant circuit of the air conditioner 100 via the liquid pipe 36.
  • the first header 34 is also called a liquid header.
  • An opening (not shown) is formed in a portion of the first header 34 to which the liquid pipe 36 is connected.
  • the first header 34 causes a low-temperature low-pressure two-phase refrigerant to flow into the heat exchanger 30 during the heating operation, and is heat-exchanged by the heat exchanger 30 during the cooling operation as shown in FIG.
  • the low temperature and high pressure liquid refrigerant is discharged to the refrigerant circuit.
  • a second header 35 is provided at the lower end of the second heat exchanger 32.
  • the lower end of the flat tube 38 of the second heat exchanger 32 is directly inserted into the second header 35.
  • the second header 35 is arranged in parallel with the first header 34.
  • the second header 35 is connected to the refrigerant circuit of the air conditioner 100 via the gas pipe 37.
  • the second header 35 is also called a gas header.
  • An opening (not shown) is formed in a portion of the second header 35 to which the gas pipe 37 is connected.
  • the second header 35 causes the high-temperature and high-pressure gas refrigerant from the compressor 11 to flow into the heat exchanger 30 during the cooling operation, and heat exchanges with the heat exchanger 30 during the heating operation as shown in FIG.
  • the low-temperature low-pressure gas refrigerant after the heat is discharged to the refrigerant circuit.
  • the inlet of the refrigerant becomes the gas pipe 37 connected to the second header 35, and the outlet of the refrigerant becomes the liquid pipe 36 connected to the first header 34. Further, during the heating operation, the inlet of the refrigerant becomes the liquid pipe 36 connected to the first header 34, and the outlet of the refrigerant becomes the gas pipe 37 connected to the second header 35.
  • a row header 33 into which the upper ends of the plurality of flat tubes 38 inserted in the first header 34 and the second header 35 are inserted is provided. Has been done.
  • the plurality of flat pipes 38, fins 39, first header 34, second header 35, row passing header 33, liquid pipe 36, and gas pipe 37 are all made of aluminum and are joined by brazing.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the heat exchanger 30 via the flow path switching device 12.
  • the high-temperature and high-pressure gas refrigerant flowing into the heat exchanger 30 exchanges heat with the outdoor air taken in by the fan 13 and condenses while radiating heat, becomes a low-temperature and high-pressure liquid refrigerant, and flows out from the heat exchanger 30.
  • the refrigerant flowing in the heat exchanger 30 is the gas pipe 37, the second header 35, the second heat exchanger 32, the row passing header 33, the first heat exchanger 31, the first.
  • the header 34 and the liquid pipe 36 flow in this order.
  • the low-temperature, high-pressure liquid refrigerant flowing out of the heat exchanger 30 is depressurized by the drawing device 21, becomes a low-temperature, low-pressure, gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 22.
  • the low-temperature low-pressure gas-liquid two-phase refrigerant flowing into the indoor heat exchanger 22 exchanges heat with the indoor air taken in by the indoor fan 23 and evaporates while absorbing heat, cooling the indoor air and forming a low-temperature low-pressure gas refrigerant. Then, it flows out from the indoor heat exchanger 22.
  • the low-temperature low-pressure gas refrigerant flowing out of the indoor heat exchanger 22 is sucked into the compressor 11 and becomes a high-temperature high-pressure gas refrigerant again.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor heat exchanger 22 via the flow path switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor heat exchanger 22 exchanges heat with the indoor air taken in by the indoor fan 23 and condenses while radiating heat, heating the indoor air and becoming a low-temperature and high-pressure liquid refrigerant in the room. It flows out from the heat exchanger 22.
  • the low-temperature and high-pressure liquid refrigerant flowing out of the indoor heat exchanger 22 is depressurized by the throttle device 21, becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, and flows into the heat exchanger 30.
  • the low-temperature low-pressure gas-liquid two-phase refrigerant that has flowed into the heat exchanger 30 exchanges heat with the outdoor air taken in by the fan 13 and evaporates while absorbing heat, becoming a low-temperature low-pressure gas refrigerant and flowing out of the heat exchanger 30. do.
  • the refrigerant flowing in the heat exchanger 30 is the liquid pipe 36, the first header 34, the first heat exchanger 31, the row passing header 33, the second heat exchanger 32, and the second.
  • the header 35 and the gas pipe 37 flow in this order.
  • the low-temperature low-pressure gas refrigerant flowing out of the heat exchanger 30 is sucked into the compressor 11 and becomes a high-temperature high-pressure gas refrigerant again.
  • the fan 13 In the defrosting operation, the fan 13 is stopped, the flow path switching device 12 is switched to the same state as in the cooling operation, and the high temperature and high pressure gas refrigerant flows into the heat exchanger 30. This melts the frost attached to the flat tube 38 and the fins 39.
  • the defrosting operation is started, the high-temperature and high-pressure gas refrigerant flows into each flat tube 38 via the second header 35. Then, the frost adhering to the flat tube 38 and the fins 39 is melted and changed to water by the high-temperature refrigerant flowing into the flat tube 38.
  • defrost water 50 The water generated by melting the frost (hereinafter referred to as defrost water 50) is drained to the lower part of the heat exchanger 30 along the flat pipe 38 or the fin 39.
  • defrost water 50 The water generated by melting the frost (hereinafter referred to as defrost water 50) is drained to the lower part of the heat exchanger 30 along the flat pipe 38 or the fin 39.
  • the low-temperature low-pressure two-phase refrigerant flows through the first heat exchanger 31 on the wind side, so that the frost on the heat exchanger 30 is caused by the first heat exchanger 31 on the wind side.
  • the number is larger than that of the second heat exchanger 32 on the leeward side. Therefore, the defrosting water 50 generated on the surface of the first heat exchanger 31 after defrosting flows downward and collects in the vicinity of the first header 34 at the lower end of the first heat exchanger 31, especially in the upper part of the first header 34. Cheap.
  • the low-temperature low-pressure two-phase refrigerant flows in from the first header 34, so that the defrost water 50 accumulated in the upper part of the first header 34 is re-frozen and becomes root ice in the conventional case. This has led to a decrease in heating capacity and damage to the heat exchanger 30.
  • At least a part of the gas pipe 37 is provided along the long axis direction of the first header 34, and at least a part of the gas pipe 37 is the first header 34. Is in contact with. Further, the gas pipe 37 is arranged below the first header 34. In this way, at least a part of the gas pipe 37 is provided along the long axis direction of the first header 34, and at least a part of the gas pipe 37 comes into contact with the first header 34, so that the temperature and pressure are high and high during the defrosting operation. The heat of the gas pipe 37 through which the gas refrigerant of No. 1 flows can be transferred to the first header 34.
  • the heat transferred to the first header 34 is transmitted to the defrost water 50 in the vicinity of the first header 34, and the temperature of the defrost water 50 becomes high. Therefore, even if the heating operation is restarted after the defrosting operation is completed, it is possible to prevent the defrosting water 50 in the vicinity of the first header 34 from refreezing. As a result, it is possible to suppress a decrease in heating capacity and damage to the heat exchanger 30. Further, since the gas pipe 37 is arranged below the first header 34 and does not interfere with the drainage path of the defrost water 50, deterioration of the drainage property can be prevented. The wider the contact area between the gas pipe 37 and the first header 34, the more heat of the gas pipe 37 can be transferred to the first header 34.
  • the heat exchanger 30 has two heat exchangers, but is not limited thereto, and may have one or three or more heat exchangers.
  • FIG. 4 is a perspective view showing a modified example of the heat exchanger 30 according to the first embodiment.
  • a first header 34 is provided at the lower end of the heat exchanger 311 and a first header 34 is provided at the upper end of the heat exchanger 311.
  • the two headers 35 are provided, and the column passing header 33 is not provided.
  • the liquid pipe 36 is connected to the first header 34, and the gas pipe 37 is connected to the second header 35.
  • the first header 34 is provided at the lower end of the most leeward heat exchanger, and the first header 34 is provided at the upper end of the leeward heat exchanger.
  • Two headers 35 are provided.
  • the number of heat exchangers-1 column passing header 33 is provided to connect adjacent heat exchangers to each other. Then, the liquid pipe 36 is connected to the first header 34, and the gas pipe 37 is connected to the second header 35.
  • the first header 34 is provided at the lower end of the heat exchanger on the most upwind side, and the first header 34 is provided at the lower end of the heat exchanger on the leeward side.
  • Two headers 35 are provided.
  • the number of heat exchangers-1 column passing header 33 is provided to connect adjacent heat exchangers to each other. Then, the liquid pipe 36 is connected to the first header 34, and the gas pipe 37 is connected to the second header 35.
  • the heat exchanger 30 is a heat exchanger 30 having at least one heat exchanger having a plurality of flat tubes 38 along the air flow direction, and is the most windy side.
  • a first header provided at the lower end of the heat exchanger, a second header provided at the upper end or the lower end of the most leeward heat exchanger, and a refrigerant when connected to the first header and functioning as an evaporator.
  • It is provided with a gas pipe 37. At least a part of the gas pipe 37 is provided along the long axis direction of the first header, and at least a part of the gas pipe 37 is in contact with the first header.
  • the heat exchanger 30 According to the heat exchanger 30 according to the first embodiment, at least a part of the gas pipe 37 is provided along the long axis direction of the first header 34, and at least a part of the gas pipe 37 is provided in the first header. It is in contact with 34. Therefore, the heat of the gas pipe 37 through which the high-temperature and high-pressure gas refrigerant flows during the defrosting operation can be transferred to the first header 34. Then, the heat transferred to the first header 34 is transmitted to the defrost water in the vicinity of the first header 34, and the temperature of the defrost water 50 becomes high.
  • the gas pipe 37 is arranged below the first header 34.
  • the gas pipe 37 is arranged below the first header 34 and does not interfere with the drainage path of the defrost water 50, so that deterioration of the drainage property is prevented. be able to.
  • the outdoor unit 10 according to the first embodiment is provided with the above heat exchanger 30. According to the outdoor unit 10 according to the first embodiment, the same effect as that of the heat exchanger 30 can be obtained.
  • the air conditioner 100 according to the first embodiment is provided with the above-mentioned outdoor unit 10. According to the air conditioner 100 according to the first embodiment, the same effect as that of the outdoor unit 10 can be obtained.
  • Embodiment 2 Hereinafter, the second embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
  • FIG. 5 is a perspective view of the top-flow type outdoor unit 10a on which the heat exchanger 30 and the heat exchanger 30 according to the second embodiment are mounted.
  • the heat exchanger 30 according to the second embodiment is mounted on the top flow type outdoor unit 10a.
  • the heat exchanger 30 has an L-shape in a plan view, and is mounted on the outdoor unit 10a so that the two heat exchangers 30 form a rectangular shape in a plan view.
  • the heat exchanger 30 does not have to have a strictly L-shape in a plan view. Further, the two heat exchangers 30 do not have to form a strictly rectangular shape in a plan view.
  • the outdoor unit 10a includes a box-shaped casing 15. A suction port 16 is formed on each of the four side surfaces of the casing 15, and an air outlet 17 is formed on the upper surface of the casing 15. Further, the outdoor unit 10a includes two heat exchangers 30 arranged in the casing 15 so as to be along the suction ports 16 on each of the four side surfaces of the casing 15. Further, the outdoor unit 10a is arranged inside the fan guard 18 provided so as to be ventilated so as to cover the air outlet 17 of the casing 15, and the outside air is sucked from the suction port 16 and the outside air is sucked from the air outlet 17. It is equipped with a fan 13 for discharging.
  • the two heat exchangers 30 are arranged below the fan 13. Further, the two heat exchangers 30 are arranged along the four side surfaces of the casing 15. The two heat exchangers 30 are fixed to the pillars 15a provided at the four corners of the casing 15 with screws or the like. Then, the outdoor air sucked from the suction ports 16 formed on each side surface by the fan 13 is heat-exchanged with the refrigerant by each heat exchanger 30 and then blown out from the outlet 17.
  • side panels 15b are provided on each of the four side surfaces of the casing 15, and a machine room (not shown) in which the compressor 11 and the like are housed is formed in the space surrounded by the side panels 15b. ..
  • the side panel 15b is formed below the two heat exchangers 30.
  • a gap 19 is formed between each side panel 15b and each heat exchanger 30. This gap 19 serves as a handling space for the gas pipe 37. Further, the gap 19 is a space for securing a drainage path for the defrosted water generated in the heat exchanger 30. That is, the gap 19 makes it possible to provide the gas pipe 37 along the long axis direction of the auxiliary side first header 34b of the heat exchanger 30, and also prevents deterioration of drainage.
  • FIG. 6 is a perspective view of the heat exchanger 30 according to the second embodiment.
  • the heat exchanger 30 according to the second embodiment has a plurality of heat exchangers along the air flow direction. Specifically, the heat exchanger 30 has a first heat exchanger 31 on the windward side and a second heat exchanger 32 on the leeward side.
  • the first heat exchanger 31 is composed of a main side first heat exchanger 31a and an auxiliary side first heat exchanger 31b in which the number of flat tubes 38 is smaller than that of the main side first heat exchanger 31a.
  • the second heat exchanger 32 is composed of a main side second heat exchanger 32a and an auxiliary side second heat exchanger 32b in which the number of flat tubes 38 is smaller than that of the main side second heat exchanger 32a.
  • the heat exchanger 30 is divided into a main heat exchange unit 30a and an auxiliary heat exchange unit 30b.
  • the main heat exchange unit 30a includes a main side first heat exchanger 31a, a main side second heat exchanger 32a, a main side first header 34a (hereinafter, also referred to as a first header), a main side second header 35a, and a main side. It is provided with a column passing header 33a.
  • the auxiliary heat exchange unit 30b includes an auxiliary side first heat exchanger 31b (hereinafter, also referred to as a second header), an auxiliary side second heat exchanger 32b, an auxiliary side first header 34b, and an auxiliary side second header 35b. It is provided with an auxiliary side column passing header 33b.
  • a main side first header 34a is provided at the lower end of the main side first heat exchanger 31a.
  • the lower end of the flat tube 38 of the main side first heat exchanger 31a is directly inserted into the main side first header 34a.
  • the main side first header 34a is connected to the refrigerant circuit of the air conditioner 100 via the gas pipe 37.
  • An opening 34a1 is formed in a portion of the first header 34a on the main side to which the gas pipe 37 is connected.
  • the first header 34a on the main side causes the high-temperature and high-pressure gas refrigerant from the compressor 11 to flow into the heat exchanger 30 during the cooling operation, and the low-temperature and low-pressure gas refrigerant after the heat is exchanged by the heat exchanger 30 during the heating operation. Let it flow out to the refrigerant circuit.
  • An auxiliary side first header 34b is provided at the lower end of the auxiliary side first heat exchanger 31b.
  • the lower end of the flat tube 38 of the auxiliary side first heat exchanger 31b is directly inserted into the auxiliary side first header 34b.
  • the first header 34b on the auxiliary side is connected to the refrigerant circuit of the air conditioner 100 via the liquid pipe 36.
  • An opening (not shown) is formed in a portion of the auxiliary side first header 34b to which the liquid pipe 36 is connected.
  • the first header 34b on the auxiliary side causes a low-temperature low-pressure two-phase refrigerant to flow into the heat exchanger 30 during the heating operation, and the low-temperature high-pressure liquid refrigerant after heat exchange in the heat exchanger 30 during the cooling operation flows out to the refrigerant circuit.
  • the inlet of the refrigerant becomes the gas pipe 37 connected to the first header 34a on the main side, and the outlet of the refrigerant becomes the liquid pipe 36 connected to the first header 34b on the auxiliary side. .. Further, during the heating operation, the inlet of the refrigerant becomes the liquid pipe 36 connected to the first header 34b on the auxiliary side, and the outlet of the refrigerant becomes the gas pipe 37 connected to the first header 34a on the main side.
  • a main side second header 35a is provided at the lower end of the main side second heat exchanger 32a.
  • the lower end of the flat tube 38 of the main side second heat exchanger 32a is directly inserted into the main side second header 35a.
  • an auxiliary side second header 35b (see FIG. 7) is provided at the lower end portion of the auxiliary side second heat exchanger 32b.
  • the lower end of the flat tube 38 of the auxiliary side second heat exchanger 32b is directly inserted into the auxiliary side second header 35b.
  • the main side second header 35a and the auxiliary side second header 35b communicate with each other.
  • the upper ends of a plurality of flat tubes 38 inserted into the main side first header 34a and the main side second header 35a are inserted.
  • the main side column passing header 33a is provided.
  • the upper ends of a plurality of flat tubes 38 inserted into the auxiliary side first header 34b and the auxiliary side second header 35b Is provided with an auxiliary side column passing header 33b into which the is inserted.
  • the liquid pipe 36 is connected to the auxiliary side first header 34b, and the gas pipe 37 is connected to the main side first header 34a. At least a part of the gas pipe 37 is provided along the long axis direction of the auxiliary side first header 34b, and at least a part of the gas pipe 37 is in contact with the auxiliary side first header 34b. Further, the gas pipe 37 is arranged below the first header 34b on the auxiliary side.
  • the main heat exchange portion 30a has bent portions 41 and 42 (see FIGS. 7 and 9 described later) in the middle of the flow paths of the main side first header 34a and the main side second header 35a, respectively. As a result, the main heat exchange portion 30a can be arranged so as to straddle two side surfaces of the casing 15 adjacent to each other.
  • the main side first header 34a and the auxiliary side first header 34b are configured such that the first header 34 is partitioned by a partition plate (not shown) provided inside the first header 34. Further, the main side row passing header 33a and the auxiliary side row passing header 33b are configured by partitioning the row passing header 33 by a partition plate (not shown) provided inside the main side row passing header 33a and the auxiliary side row passing header 33b. That is, the main side first header 34a and the auxiliary side first header 34b, and the main side row passing header 33a and the auxiliary side row passing header 33b are configured by partitioning the same body by a partition plate (not shown). Has been done.
  • main side first header 34a and the auxiliary side first header 34b, and the main side column passing header 33a and the auxiliary side column passing header 33b may be configured as separate bodies. Further, the main side second header 35a and the auxiliary side second header 35b are not separated by a partition plate (not shown), and as described above, the main side second header 35a and the auxiliary side second header 35b are Communicate with each other.
  • the flow of the refrigerant in the main side first heat exchanger 31a becomes a countercurrent flow to the flow of the refrigerant in the auxiliary side first heat exchanger 31b, and the main side second heat exchanger 32a
  • the flow of the refrigerant is configured to be opposite to the flow of the refrigerant in the auxiliary side second heat exchanger 32b.
  • FIG. 7 is a plan view schematically showing the flow of the refrigerant during the heating operation of the heat exchanger 30 according to the second embodiment.
  • FIG. 8 is a perspective view schematically showing the flow of the refrigerant during the heating operation of the heat exchanger 30 according to the second embodiment. Note that FIG. 8 shows only one heat exchanger 30 surrounded by the broken line in FIG. 7, but the other heat exchanger 30 has the same structure and the same flow of the refrigerant.
  • a low-temperature low-pressure gas-liquid two-phase refrigerant flows into the heat exchanger 30 from the liquid pipe 36.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant flowing into the heat exchanger 30 includes an auxiliary side first header 34b, an auxiliary side first heat exchanger 31b, an auxiliary side row passing header 33b, an auxiliary side second heat exchanger 32b, and an auxiliary side.
  • Side second header 35b, main side second header 35a, main side second heat exchanger 32a, main side row passing header 33a, main side first heat exchanger 31a, main side first header 34a flow in this order, and low temperature and low pressure. It becomes the gas refrigerant of. Then, the low-temperature low-pressure gas refrigerant flows out of the heat exchanger 30 from the gas pipe 37.
  • FIG. 9 is a plan view schematically showing the flow of the refrigerant during the defrosting operation of the heat exchanger 30 according to the second embodiment.
  • FIG. 10 is a perspective view schematically showing the flow of the refrigerant during the defrosting operation of the heat exchanger 30 according to the second embodiment. Note that FIG. 10 shows only one heat exchanger 30 surrounded by the broken line in FIG. 9, but the other heat exchanger 30 has the same structure and the same flow of the refrigerant.
  • a high-temperature and high-pressure gas refrigerant flows into the heat exchanger 30 from the gas pipe 37.
  • the high-temperature and high-pressure gas refrigerant flowing into the heat exchanger 30 includes a main side first header 34a, a main side first heat exchanger 31a, a main side row passing header 33a, a main side second heat exchanger 32a, and a main side second.
  • the header 35a, the auxiliary side second header 35b, the auxiliary side second heat exchanger 32b, the auxiliary side row passing header 33b, the auxiliary side first heat exchanger 31b, and the auxiliary side first header 34b flow in this order, and are low temperature and high pressure gas refrigerants. It becomes. Then, the low-temperature and high-pressure gas refrigerant flows out of the heat exchanger 30 from the liquid pipe 36.
  • the gas pipe 37 is connected to the main side first header 34a, and during the defrosting operation, the high temperature and high pressure gas refrigerant flows into the heat exchanger 30 from the windward side first header 34a. do. Therefore, it is possible to efficiently defrost the main side first heat exchanger 31a on the windward side where the amount of frost formation is large, and the defrosting time can be shortened. Further, at least a part of the gas pipe 37 is provided along the long axis direction of the auxiliary side first header 34b, and at least a part of the gas pipe 37 is in contact with the auxiliary side first header 34b. Therefore, the heat of the gas pipe 37 through which the high-temperature and high-pressure gas refrigerant flows during the defrosting operation can be transferred to the auxiliary side first header 34b.
  • the heat transferred to the auxiliary side first header 34b is transmitted to the defrost water in the vicinity of the auxiliary side first header 34b, and the temperature of the defrost water becomes high. Therefore, even if the heating operation is restarted after the defrosting operation is completed, the defrosting water in the vicinity of the auxiliary side first header 34b at the lower end of the auxiliary side first heat exchanger 31b where the defrosting water tends to collect after defrosting is generated. It is possible to suppress refreezing. As a result, it is possible to suppress a decrease in heating capacity and damage to the heat exchanger 30. Further, since the gas pipe 37 is arranged below the first header 34b on the auxiliary side and does not interfere with the drainage path of the defrosted water, deterioration of the drainage property can be prevented.
  • the heat exchanger 30 is mounted on the top-flow type outdoor unit 10a
  • the present invention is not limited to this, and the heat exchanger 30 is another type of outdoor unit such as the side-flow type. It can also be installed in.
  • the heat exchanger 30 has two heat exchangers, but is not limited thereto, and may have one or three or more heat exchangers.
  • FIG. 11 is a plan view schematically showing the flow of the refrigerant during the defrosting operation of the modified example of the heat exchanger 30 according to the second embodiment.
  • FIG. 12 is a perspective view schematically showing the flow of the refrigerant during the defrosting operation of the modified example of the heat exchanger 30 according to the second embodiment. Note that FIG. 12 shows only one heat exchanger 30 surrounded by the broken line in FIG. 11, but the other heat exchanger 30 has the same structure.
  • a main side first header 34a is provided at the lower end of the main side heat exchanger 31a1 to provide main side heat.
  • a second header 35a on the main side is provided at the upper end of the exchanger 31a1.
  • an auxiliary side first header 34b is provided at the lower end portion of the auxiliary side heat exchanger 31b1
  • an auxiliary side second header 35b is provided at the upper end portion of the auxiliary side heat exchanger 31b1
  • a main side row passing header 33a is provided.
  • the auxiliary side column passing header 33b is not provided. Then, the liquid pipe 36 is connected to the auxiliary side first header 34b, and the gas pipe 37 is connected to the main side first header 34a.
  • the main side first header 34a is provided at the lower end of the wind-upper main side heat exchanger, and the wind-up side auxiliary side heat exchange is provided.
  • An auxiliary side first header 34b is provided at the lower end of the body.
  • the main side second header 35a is provided at the upper end portion of the main leeward side heat exchanger, and the auxiliary side second header 35b is provided at the upper end portion of the auxiliary side heat exchanger on the leeward side.
  • the number of heat exchangers-1 main side row passing header 33a is provided, and adjacent main side heat exchangers are connected to each other.
  • the number of heat exchangers-1 auxiliary side row passing header 33b is provided to connect adjacent auxiliary heat exchangers to each other. Then, the liquid pipe 36 is connected to the auxiliary side first header 34b, and the gas pipe 37 is connected to the main side first header 34a.
  • the main side first header 34a is provided at the lower end of the most windy side main side heat exchanger, and the most windy side auxiliary side heat exchange is provided.
  • An auxiliary side first header 34b is provided at the lower end of the body.
  • the main side second header 35a is provided at the lower end of the most leeward main side heat exchanger, and the auxiliary side second header 35b is provided at the lower end of the most leeward auxiliary heat exchanger.
  • the number of heat exchangers-1 main side row passing header 33a is provided, and adjacent main side heat exchangers are connected to each other.
  • the number of heat exchangers-1 auxiliary side row passing header 33b is provided to connect adjacent auxiliary heat exchangers to each other. Then, the liquid pipe 36 is connected to the auxiliary side first header 34b, and the gas pipe 37 is connected to the main side first header 34a.
  • the heat exchanger 30 is composed of a main heat exchanger and an auxiliary heat exchanger in which the number of flat tubes 38 is smaller than that of the main heat exchanger, which has a plurality of flat tubes 38.
  • a heat exchanger 30 having at least one heat exchanger provided along the direction of air flow, the first header provided at the lower end of the auxiliary heat exchanger on the most wind side, and the windmost side.
  • a liquid pipe connected to the first header and the second header provided at the lower end of the main heat exchanger, in which the refrigerant flows in when functioning as an evaporator and the refrigerant flows out when functioning as a condenser.
  • the refrigerant flows out when functioning as an evaporator and the refrigerant flows in when functioning as a condenser.
  • At least a part of the gas pipe 37 is provided along the long axis direction of the first header, and at least a part of the gas pipe 37 is in contact with the first header.
  • the heat exchanger 30 According to the heat exchanger 30 according to the second embodiment, at least a part of the gas pipe 37 is provided along the long axis direction of the first header 34, and at least a part of the gas pipe 37 is provided in the first header. It is in contact with 34. Therefore, the heat of the gas pipe 37 through which the high-temperature and high-pressure gas refrigerant flows during the defrosting operation can be transferred to the first header 34. Then, the heat transferred to the first header 34 is transmitted to the defrost water in the vicinity of the first header 34, and the temperature of the defrost water 50 becomes high.
  • the gas pipe 37 is arranged below the first header 34.
  • the gas pipe 37 is arranged below the first header 34 and does not interfere with the drainage path of the defrost water 50, so that deterioration of the drainage property is prevented. be able to.
  • the outdoor unit 10 according to the second embodiment includes the above heat exchanger 30. According to the outdoor unit 10 according to the second embodiment, the same effect as that of the heat exchanger 30 can be obtained.
  • the outdoor unit 10 of the air conditioner 100 includes the heat exchanger 30, a casing 15 having a suction port 16 on the side surface and an outlet 17 on the upper surface, and the heat exchanger 30.
  • a fan 13 provided on the upper side is provided, and the casing 15 has a side panel 15b for covering the machine room formed inside thereof under the heat exchanger 30, and the heat exchanger 30 and the side panel 15b are provided with each other. A gap 19 is formed between them.
  • a gap 19 is formed between the heat exchanger 30 and the side panel 15b.
  • This gap 19 serves as a space for handling the gas pipe 37 and a space for securing a drainage path for the defrosted water generated in the heat exchanger 30. Therefore, the gap 19 makes it possible to provide the gas pipe 37 along the long axis direction of the auxiliary side first header 34b of the heat exchanger 30, and it is possible to prevent deterioration of drainage.
  • the air conditioner 100 according to the second embodiment includes the above-mentioned outdoor unit 10. According to the air conditioner 100 according to the second embodiment, the same effect as that of the outdoor unit 10 can be obtained.
  • Embodiment 3 Hereinafter, the third embodiment will be described, but the description thereof will be omitted for the parts overlapping with the second embodiment, and the same parts or the corresponding parts as those in the second embodiment will be designated by the same reference numerals.
  • FIG. 13 is an enlarged front view schematically showing a main part of the heat exchanger 30 according to the third embodiment.
  • the gas pipe 37 is provided along the long axis direction of the auxiliary side first header 34b.
  • the gas pipe 37 is in contact with the auxiliary side first header 34b in the entire area 34b1 in which the flat pipe 38 is provided. Further, the gas pipe 37 is arranged below the first header 34b on the auxiliary side.
  • the gas pipe 37 is brought into contact with the auxiliary side first header 34b and the entire area 34b1 in which the flat pipe 38 is provided.
  • the heat of the gas pipe 37 through which the high-temperature and high-pressure gas refrigerant flows during the defrosting operation is transferred by the auxiliary side first header 34b, as compared with the case where the gas pipe 37 is only partially in contact with the auxiliary side first header 34b. It can be made easier to convey.
  • the heat exchanger 30 when molding the heat exchanger 30, it is possible to braze the gas pipe 37 to the auxiliary side first header 34b at the same time as brazing the flat pipe 38 and fins 39 of the heat exchanger 30 and each header. Therefore, the production of the heat exchanger 30 can be simplified. Further, since the gas pipe 37 is arranged closer to the auxiliary side first header 34b, a space is formed in the lower part of the heat exchanger 30, and a service space can be secured.
  • the gas pipe 37 is in contact with the first header in the entire area 34b1 in which the flat pipe 38 is provided.
  • the heat of the gas pipe 37 through which the high-temperature and high-pressure gas refrigerant flows during the defrosting operation is compared with the case where the gas pipe 37 is only partially in contact with the first header. Can be easily conveyed by the first header.
  • the outdoor unit 10 according to the third embodiment includes the above heat exchanger 30. According to the outdoor unit 10 according to the third embodiment, the same effect as that of the heat exchanger 30 can be obtained.
  • the air conditioner 100 according to the third embodiment includes the above-mentioned outdoor unit 10. According to the air conditioner 100 according to the third embodiment, the same effect as that of the outdoor unit 10 can be obtained.
  • Embodiment 4 Hereinafter, the fourth embodiment will be described, but the description of the parts overlapping with the second embodiment will be omitted, and the same parts or the corresponding parts as those of the second embodiment will be designated by the same reference numerals.
  • FIG. 14 is an enlarged front view schematically showing a main part of the heat exchanger 30 according to the fourth embodiment.
  • the auxiliary side first header 34b and the main side first header 34a are displaced in the height direction, and the auxiliary side first header 34b is It is arranged above the first header 34a on the main side.
  • at least a part of the gas pipe 37 is provided along the long axis direction of the auxiliary side first header 34b.
  • at least a part of the gas pipe 37 is in contact with the auxiliary side first header 34b.
  • the gas pipe 37 is arranged below the first header 34b on the auxiliary side. Therefore, the portion (hereinafter referred to as a parallel portion) 37b parallel to the auxiliary side first header 34b of the gas pipe 37 is arranged at substantially the same height as the main side first header 34a.
  • auxiliary side first header 34b By arranging the auxiliary side first header 34b above the main side first header 34a in this way, a space is formed in the lower part of the heat exchanger 30 and a service space can be secured. Further, since the parallel portion 37b of the gas pipe 37 can be arranged at substantially the same height as the main side first header 34a, the gas pipe 37 is not perpendicular to the main side first header 34a but in the parallel direction. It becomes possible to connect, and it is possible to simplify the piping connection.
  • the first header and the second header are displaced in the height direction, and the first header is arranged above the second header.
  • the heat exchanger 30 by arranging the first header above the second header, a space is formed in the lower part of the heat exchanger 30 and a service space can be secured. .. Further, since the portion parallel to the first header of the gas pipe 37 can be arranged at substantially the same height as the first header, the gas pipe 37 is not perpendicular to the main side first header 34a but in the parallel direction. It becomes possible to connect to, and it is possible to simplify the piping connection.
  • the outdoor unit 10 according to the fourth embodiment includes the above heat exchanger 30. According to the outdoor unit 10 according to the third embodiment, the same effect as that of the heat exchanger 30 can be obtained.
  • the air conditioner 100 according to the fourth embodiment includes the above-mentioned outdoor unit 10. According to the air conditioner 100 according to the third embodiment, the same effect as that of the outdoor unit 10 can be obtained.
  • Embodiment 5 Hereinafter, the fifth embodiment will be described, but the description thereof will be omitted for the parts that overlap with the second embodiment, and the same parts or the corresponding parts as those in the second embodiment will be designated by the same reference numerals.
  • FIG. 15 is a perspective view schematically showing the joint 60 of the heat exchanger 30 according to the fifth embodiment.
  • FIG. 16 is a cross-sectional view schematically showing the joint 60 of the heat exchanger 30 according to the fifth embodiment.
  • the heat exchanger 30 according to the fifth embodiment includes the joint 60 shown in FIGS. 15 and 16.
  • the joint 60 is made of aluminum like the gas pipe 37 and the main side first header 34a. Further, a first opening 60a is formed on one side surface of the joint 60, and a second opening 60b is formed on the upper surface of the joint 60.
  • the first opening 60a and the second opening 60b are communicated with each other by an L-shaped communication hole 60c formed inside the joint 60.
  • the communication hole 60c does not have to be strictly L-shaped.
  • the gas pipe 37 can be made into an L shape. That is, the gas pipe 37 has an L-shape having a joint 60 provided at its corner. Therefore, the gas pipe 37 can be connected in the direction perpendicular to the main side first header 34a.
  • the gas pipe 37 is connected in the direction perpendicular to the main side first header 34a without using the joint 60, it is necessary to bend the gas pipe 37, and there is also a space for routing the gas pipe 37. You will need it.
  • the gas pipe 37 is connected in the direction perpendicular to the main side first header 34a. It is not necessary to bend the 37, and the piping connection can be simplified. Further, since the space for routing the gas pipe 37 is not required, a space is formed in the lower part of the heat exchanger 30, and a service space can be secured.
  • the heat exchanger 30 includes a joint 60 having an L-shaped communication hole 60c formed therein, the gas pipe 37 has an L-shape, and the joint 60 is provided at a corner thereof. It is provided.
  • the gas pipe 37 since the gas pipe 37 has an L-shape having a joint 60 provided at its corner, the gas pipe 37 is perpendicular to the first header. It is not necessary to bend the gas pipe 37 when connecting in the direction, and the pipe connection can be simplified. Further, since the space for routing the gas pipe 37 is not required, a space is formed in the lower part of the heat exchanger 30, and a service space can be secured.
  • the outdoor unit 10 according to the fifth embodiment includes the above heat exchanger 30. According to the outdoor unit 10 according to the third embodiment, the same effect as that of the heat exchanger 30 can be obtained.
  • the air conditioner 100 according to the fifth embodiment includes the above-mentioned outdoor unit 10. According to the air conditioner 100 according to the third embodiment, the same effect as that of the outdoor unit 10 can be obtained.

Abstract

A heat exchanger which comprises, along an air flow direction, at least one heat-exchange element having a plurality of flat tubes and is installed in an outdoor unit, said heat exchanger comprising: a first header which is provided on a lower end of the heat-exchange element that is the furthest upstream; a second header which is provided on an upper or lower end of the heat-exchange element that is the furthest downstream; liquid piping which is connected to the first header and through which refrigerant flows in during an evaporator function and flows out during a condenser function; and gas piping which is connected to the second header and through which refrigerant flows out during the evaporator function and flows in during the condenser function, wherein at least part of the gas piping is provided along the length direction of the first header, and at least part of the gas piping is in contact with the first header.

Description

熱交換器、熱交換器を備えた室外機、および、室外機を備えた空気調和装置A heat exchanger, an outdoor unit equipped with a heat exchanger, and an air conditioner equipped with an outdoor unit.
 本開示は、複数の扁平管を有する熱交換器、熱交換器を備えた室外機、および、室外機を備えた空気調和装置に関するものである。 The present disclosure relates to a heat exchanger having a plurality of flat tubes, an outdoor unit equipped with a heat exchanger, and an air conditioner equipped with an outdoor unit.
 従来、風の流れ方向に前後二列に並ぶ熱交換コアと、各熱交換コアの相互に共通の上部ヘッダタンクと個別の下部ヘッダタンクとを備え、前後二列に並ぶ風上側の熱交換コアおよび風下側の熱交換コアのいずれにおいても十分な温度差を確保して伝熱性能を向上させた熱交換器がある(例えば、特許文献1参照)。 Conventionally, the heat exchange cores are arranged in two rows in the front and rear in the direction of the wind flow, and the upper header tank and the separate lower header tanks that are common to each other of the heat exchange cores are provided. In any of the heat exchange cores on the leeward side, there is a heat exchanger in which a sufficient temperature difference is secured to improve the heat transfer performance (see, for example, Patent Document 1).
 特許文献1の熱交換器は、凝縮器として機能する場合、高温高圧のガス冷媒が風下側の下部ヘッダタンクから流入し、風下側の熱交換コア、上部ヘッダタンク、風上側の熱交換コアの順に流れ、低温高圧の液冷媒となって風上側の下部ヘッダタンクから流出する。また、この熱交換器は、蒸発器として機能する場合、低温低圧の二相冷媒が風上側の下部ヘッダタンクから流入し、風上側の熱交換コア、上部ヘッダタンク、風下側の熱交換コアの順に流れ、低温低圧のガス冷媒となって風下側の下部ヘッダタンクから流出する。 When the heat exchanger of Patent Document 1 functions as a condenser, a high-temperature and high-pressure gas refrigerant flows in from the lower header tank on the leeward side, and the heat exchange core on the leeward side, the upper header tank, and the heat exchange core on the leeward side It flows in order, becomes a low-temperature and high-pressure liquid refrigerant, and flows out from the lower header tank on the wind side. Further, when this heat exchanger functions as an evaporator, a low-temperature low-pressure two-phase refrigerant flows in from the lower header tank on the windward side, and the heat exchange core on the windward side, the upper header tank, and the heat exchange core on the leeward side. It flows in order, becomes a low-temperature low-pressure gas refrigerant, and flows out from the lower header tank on the leeward side.
特開2018-96638号公報Japanese Unexamined Patent Publication No. 2018-96638
 特許文献1のような従来の熱交換器を、冷房運転および暖房運転の両方が運転可能な空気調和装置の室外機に用いる場合、外気温度が低温となる暖房運転では、低温低圧の二相冷媒が風上側の熱交換コアを流れるため、そこで多くの着霜が生じる。また、除霜運転では、高温高圧のガス冷媒を風下側の下部ヘッダタンクから流入させ、風上側の熱交換コアへ流すことで除霜する。除霜後、熱交換コアの表面に発生した除霜水は下方に流れるが、特に風上側の下部ヘッダタンク近傍に溜まりやすい。そして、暖房運転が再開されると、低温低圧の二相冷媒が風上側の下部ヘッダタンクから流入するが、風上側のヘッダタンク近傍に溜まった除霜水の温度は低いため、除霜水が再氷結して根氷となり、暖房能力の低下および熱交換器の破損を招くという課題があった。 When a conventional heat exchanger as in Patent Document 1 is used for an outdoor unit of an air conditioner capable of operating both cooling operation and heating operation, in the heating operation where the outside air temperature is low, a low temperature and low pressure two-phase refrigerant is used. Flows through the heat exchange core on the wind side, causing a lot of frost there. In the defrosting operation, high-temperature and high-pressure gas refrigerant flows in from the lower header tank on the leeward side and flows to the heat exchange core on the leeward side to defrost. After defrosting, the defrosted water generated on the surface of the heat exchange core flows downward, but tends to collect especially near the lower header tank on the windward side. Then, when the heating operation is restarted, the low-temperature low-pressure two-phase refrigerant flows in from the lower header tank on the wind side, but the defrost water collected near the header tank on the wind side is low in temperature, so that the defrost water is discharged. There was a problem that it re-freezes and becomes root ice, which causes a decrease in heating capacity and damage to the heat exchanger.
 本開示は、以上のような課題を解決するためになされたもので、除霜水の再氷結を抑制することができる熱交換器、熱交換器を備えた室外機、および、室外機を備えた空気調和装置を提供することを目的としている。 The present disclosure has been made to solve the above problems, and includes a heat exchanger capable of suppressing refreezing of defrosted water, an outdoor unit equipped with a heat exchanger, and an outdoor unit. It is intended to provide an air conditioner.
 本開示に係る熱交換器は、複数の扁平管を有する熱交換体を空気の流れ方向に沿って少なくとも一つ以上備えた、室外機に搭載される熱交換器であって、最も風上側の熱交換体の下端部に設けられる第1ヘッダと、最も風下側の熱交換体の上端部または下端部に設けられる第2ヘッダと、前記第1ヘッダに接続され、蒸発器として機能する際に冷媒が流入し、凝縮器として機能する際に冷媒が流出する液配管と、前記第2ヘッダに接続され、蒸発器として機能する際に冷媒が流出し、凝縮器として機能する際に冷媒が流入するガス配管と、を備え、前記ガス配管の少なくとも一部は前記第1ヘッダの長軸方向に沿って設けられており、前記ガス配管は、少なくとも一部が前記第1ヘッダと接触しているものである。 The heat exchanger according to the present disclosure is a heat exchanger mounted on an outdoor unit provided with at least one heat exchanger having a plurality of flat tubes along the direction of air flow, and is the most wind-upper side. When the first header provided at the lower end of the heat exchanger, the second header provided at the upper end or the lower end of the most leeward heat exchanger, and the first header are connected to function as an evaporator. A liquid pipe in which the refrigerant flows in and flows out when it functions as a condenser, and a liquid pipe which is connected to the second header and flows out when it functions as an evaporator and flows in when it functions as a condenser. At least a part of the gas pipe is provided along the long axis direction of the first header, and at least a part of the gas pipe is in contact with the first header. It is a thing.
 また、本開示に係る熱交換器は、複数の扁平管を有し、主熱交換体と該主熱交換体よりも前記扁平管の数が少ない補助熱交換体とで構成された熱交換体を空気の流れ方向に沿って少なくとも一つ以上備えた、室外機に搭載される熱交換器であって、最も風上側の補助側熱交換体の下端部に設けられた第1ヘッダと、最も風上側の主側熱交換体の下端部に設けられた第2ヘッダと、前記第1ヘッダに接続され、蒸発器として機能する際に冷媒が流入し、凝縮器として機能する際に冷媒が流出する液配管と、前記第2ヘッダに接続され、蒸発器として機能する際に冷媒が流出し、凝縮器として機能する際に冷媒が流入するガス配管と、を備え、前記ガス配管の少なくとも一部は前記第1ヘッダの長軸方向に沿って設けられており、前記ガス配管は、少なくとも一部が前記第1ヘッダと接触しているものである。 Further, the heat exchanger according to the present disclosure has a plurality of flat tubes, and is composed of a main heat exchanger and an auxiliary heat exchanger in which the number of the flat tubes is smaller than that of the main heat exchanger. A heat exchanger mounted on an outdoor unit, which is provided with at least one heat exchanger along the air flow direction, and has the first header provided at the lower end of the auxiliary heat exchanger on the windy side, and the most. Connected to the second header provided at the lower end of the main heat exchanger on the wind side and the first header, the refrigerant flows in when functioning as an evaporator, and flows out when functioning as a condenser. A gas pipe connected to the second header, from which the refrigerant flows out when functioning as an evaporator, and a gas pipe which is connected to the second header and into which the refrigerant flows when functioning as a condenser, is provided, and at least a part of the gas pipe. Is provided along the long axis direction of the first header, and at least a part of the gas pipe is in contact with the first header.
 また、本開示に係る空気調和装置の室外機は、上記の熱交換器を備えたものである。 Further, the outdoor unit of the air conditioner according to the present disclosure is equipped with the above heat exchanger.
 また、本開示に係る空気調和装置は、上記の室外機を備えたものである。 Further, the air conditioner according to the present disclosure is equipped with the above-mentioned outdoor unit.
 本開示に係る熱交換器、熱交換器を備えた室外機、および、室外機を備えた空気調和装置によれば、ガス配管の少なくとも一部は第1ヘッダの長軸方向に沿って設けられており、ガス配管は、少なくとも一部が第1ヘッダと接触している。そのため、除霜運転時に高温高圧のガス冷媒が流れるガス配管の熱を第1ヘッダに伝えることができる。そして、第1ヘッダに伝わった熱は、第1ヘッダ近傍の除霜水に伝わり、除霜水の温度が高くなる。そのため、除霜運転が終了後、暖房運転が再開されても、第1ヘッダ近傍の除霜水が再氷結するのを抑制することができる。 According to the heat exchanger, the outdoor unit provided with the heat exchanger, and the air conditioner provided with the outdoor unit according to the present disclosure, at least a part of the gas pipe is provided along the long axis direction of the first header. At least part of the gas pipe is in contact with the first header. Therefore, the heat of the gas pipe through which the high-temperature and high-pressure gas refrigerant flows during the defrosting operation can be transferred to the first header. Then, the heat transferred to the first header is transferred to the defrost water in the vicinity of the first header, and the temperature of the defrost water becomes high. Therefore, even if the heating operation is restarted after the defrosting operation is completed, it is possible to prevent the defrosting water in the vicinity of the first header from refreezing.
実施の形態1に係る熱交換器を備えた空気調和装置の冷媒回路図である。It is a refrigerant circuit diagram of the air conditioner provided with the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器の第一の斜視図である。It is the first perspective view of the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器の第二の斜視図である。It is a second perspective view of the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器の変形例を示す斜視図である。It is a perspective view which shows the modification of the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態2に係る熱交換器および熱交換器が搭載されたトップフロー型の室外機の斜視図である。FIG. 3 is a perspective view of a top-flow type outdoor unit equipped with a heat exchanger and a heat exchanger according to the second embodiment. 実施の形態2に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger which concerns on Embodiment 2. FIG. 実施の形態2に係る熱交換器の暖房運転時の冷媒の流れを模式的に示す平面図である。It is a top view which shows typically the flow of the refrigerant at the time of the heating operation of the heat exchanger which concerns on Embodiment 2. FIG. 実施の形態2に係る熱交換器の暖房運転時の冷媒の流れを模式的に示す斜視図である。It is a perspective view which shows typically the flow of the refrigerant at the time of the heating operation of the heat exchanger which concerns on Embodiment 2. FIG. 実施の形態2に係る熱交換器の除霜運転時の冷媒の流れを模式的に示す平面図である。It is a top view which shows typically the flow of the refrigerant at the time of the defrosting operation of the heat exchanger which concerns on Embodiment 2. FIG. 実施の形態2に係る熱交換器の除霜運転時の冷媒の流れを模式的に示す斜視図である。It is a perspective view which shows typically the flow of the refrigerant at the time of the defrosting operation of the heat exchanger which concerns on Embodiment 2. FIG. 実施の形態2に係る熱交換器の変形例の除霜運転時の冷媒の流れを模式的に示す平面図である。It is a top view which shows typically the flow of the refrigerant at the time of defrosting operation of the modification of the heat exchanger which concerns on Embodiment 2. FIG. 実施の形態2に係る熱交換器の変形例の除霜運転時の冷媒の流れを模式的に示す斜視図である。It is a perspective view which shows typically the flow of the refrigerant at the time of defrosting operation of the modification of the heat exchanger which concerns on Embodiment 2. FIG. 実施の形態3に係る熱交換器の要部を模式的に示す拡大図で正面図である。It is an enlarged front view schematically showing the main part of the heat exchanger according to the third embodiment. 実施の形態4に係る熱交換器の要部を模式的に示す拡大図で正面図である。It is an enlarged front view schematically showing the main part of the heat exchanger according to the fourth embodiment. 実施の形態5に係る熱交換器の継手を模式的に示す斜視図である。It is a perspective view which shows typically the joint of the heat exchanger which concerns on Embodiment 5. 実施の形態5に係る熱交換器の継手を模式的に示す断面図である。It is sectional drawing which shows typically the joint of the heat exchanger which concerns on Embodiment 5.
 以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the embodiments described below. Further, in the drawings below, the relationship between the sizes of the constituent members may differ from the actual one.
 実施の形態1.
<空気調和装置100の構成>
 図1は、実施の形態1に係る熱交換器30を備えた空気調和装置100の冷媒回路図である。なお、図1中の実線矢印は冷房運転時の冷媒の流れを示しており、図1中の破線矢印は暖房運転時の冷媒の流れを示している。
Embodiment 1.
<Structure of air conditioner 100>
FIG. 1 is a refrigerant circuit diagram of an air conditioner 100 provided with a heat exchanger 30 according to the first embodiment. The solid line arrow in FIG. 1 indicates the flow of the refrigerant during the cooling operation, and the broken line arrow in FIG. 1 indicates the flow of the refrigerant during the heating operation.
 図1に示すように、実施の形態1に係る熱交換器30は、室外機10と室内機20とを備えた空気調和装置100の室外機10に搭載されている。室外機10は、熱交換器30の他、圧縮機11と、流路切替装置12と、ファン13とを備えている。室内機20は、絞り装置21と、室内熱交換器22と、室内ファン23とを備えている。 As shown in FIG. 1, the heat exchanger 30 according to the first embodiment is mounted on the outdoor unit 10 of the air conditioner 100 including the outdoor unit 10 and the indoor unit 20. The outdoor unit 10 includes a compressor 11, a flow path switching device 12, and a fan 13 in addition to the heat exchanger 30. The indoor unit 20 includes a throttle device 21, an indoor heat exchanger 22, and an indoor fan 23.
 また、空気調和装置100は、圧縮機11、流路切替装置12、熱交換器30、絞り装置21、室内熱交換器22が冷媒配管で接続され、冷媒が循環する冷媒回路を備えている。この空気調和装置100は、流路切替装置12の切り替えにより冷房運転および暖房運転の両方が運転可能である。 Further, the air conditioner 100 includes a refrigerant circuit in which a compressor 11, a flow path switching device 12, a heat exchanger 30, a throttle device 21, and an indoor heat exchanger 22 are connected by a refrigerant pipe and a refrigerant circulates. The air conditioner 100 can operate both the cooling operation and the heating operation by switching the flow path switching device 12.
 圧縮機11は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温高圧の冷媒を吐出する。圧縮機11は、例えば、運転周波数を変化させることにより、単位時間あたりの送出量である容量が制御されるインバータ圧縮機などからなる。 The compressor 11 sucks in the low temperature and low pressure refrigerant, compresses the sucked refrigerant, and discharges the high temperature and high pressure refrigerant. The compressor 11 is composed of, for example, an inverter compressor whose capacity, which is a transmission amount per unit time, is controlled by changing the operating frequency.
 流路切替装置12は、例えば四方弁であり、冷媒の流れる方向を切り替えることにより、冷房運転と暖房運転との切り替えを行う。流路切替装置12は、冷房運転時に、図1の実線で示す状態に切り替わり、圧縮機11の吐出側と熱交換器30とが接続される。また、流路切替装置12は、暖房運転時に、図1の破線で示す状態に切り替わり、圧縮機11の吐出側と室内熱交換器22とが接続される。 The flow path switching device 12 is, for example, a four-way valve, and switches between cooling operation and heating operation by switching the flow direction of the refrigerant. The flow path switching device 12 switches to the state shown by the solid line in FIG. 1 during the cooling operation, and the discharge side of the compressor 11 and the heat exchanger 30 are connected to each other. Further, the flow path switching device 12 switches to the state shown by the broken line in FIG. 1 during the heating operation, and the discharge side of the compressor 11 and the indoor heat exchanger 22 are connected to each other.
 熱交換器30は、室外空気と冷媒との間で熱交換を行う。熱交換器30は、冷房運転の際に、冷媒の熱を室外空気に放熱して冷媒を凝縮させる凝縮器として機能する。また、熱交換器30は、暖房運転の際に、冷媒を蒸発させ、その際の気化熱により室外空気を冷却する蒸発器として機能する。 The heat exchanger 30 exchanges heat between the outdoor air and the refrigerant. The heat exchanger 30 functions as a condenser that dissipates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation. Further, the heat exchanger 30 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air by the heat of vaporization at that time.
 ファン13は、熱交換器30に対して室外空気を供給するものであり、回転数が制御されることにより、熱交換器30に対する送風量が調整される。 The fan 13 supplies outdoor air to the heat exchanger 30, and the amount of air blown to the heat exchanger 30 is adjusted by controlling the rotation speed.
 絞り装置21は、例えば絞りの開度を調整することができる電子式膨張弁であり、開度を調整することによって熱交換器30または室内熱交換器22に流入する冷媒の圧力を制御する。なお、実施の形態では、絞り装置21は室内機20に設けられているが、室外機10に設けられていてもよく、設置箇所は限定されない。 The throttle device 21 is, for example, an electronic expansion valve capable of adjusting the opening degree of the throttle, and controls the pressure of the refrigerant flowing into the heat exchanger 30 or the indoor heat exchanger 22 by adjusting the opening degree. In the embodiment, the diaphragm device 21 is provided in the indoor unit 20, but it may be provided in the outdoor unit 10, and the installation location is not limited.
 室内熱交換器22は、室内空気と冷媒との間で熱交換を行う。室内熱交換器22は、冷房運転の際に、冷媒を蒸発させ、その際の気化熱により室外空気を冷却する蒸発器として機能する。また、室内熱交換器22は、暖房運転の際に、冷媒の熱を室外空気に放熱して冷媒を凝縮させる凝縮器として機能する。 The indoor heat exchanger 22 exchanges heat between the indoor air and the refrigerant. The indoor heat exchanger 22 functions as an evaporator that evaporates the refrigerant during the cooling operation and cools the outdoor air by the heat of vaporization at that time. Further, the indoor heat exchanger 22 functions as a condenser that dissipates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the heating operation.
 室内ファン23は、室内熱交換器22に対して室内空気を供給するものであり、回転数が制御されることにより、室内熱交換器22に対する送風量が調整される。 The indoor fan 23 supplies indoor air to the indoor heat exchanger 22, and the amount of air blown to the indoor heat exchanger 22 is adjusted by controlling the rotation speed.
<熱交換器30の構成>
 図2は、実施の形態1に係る熱交換器30の第一の斜視図である。図3は、実施の形態1に係る熱交換器30の第二の斜視図である。なお、図2中および図3中の白抜き矢印は、ファン13によって発生する風の流れを示す。また、図2中および図3中の黒の破線矢印は、冷媒の流れを示す。
<Structure of heat exchanger 30>
FIG. 2 is a first perspective view of the heat exchanger 30 according to the first embodiment. FIG. 3 is a second perspective view of the heat exchanger 30 according to the first embodiment. The white arrows in FIGS. 2 and 3 indicate the flow of wind generated by the fan 13. The black dashed arrows in FIGS. 2 and 3 indicate the flow of the refrigerant.
 図2および図3に示すように、熱交換器30は、空気の流れ方向に沿って複数の熱交換体を有している。具体的には、熱交換器30は、風上側の第1熱交換体31と風下側の第2熱交換体32とを有する。熱交換体は、複数の扁平管38と複数のフィン39とを有する。 As shown in FIGS. 2 and 3, the heat exchanger 30 has a plurality of heat exchangers along the air flow direction. Specifically, the heat exchanger 30 has a first heat exchanger 31 on the windward side and a second heat exchanger 32 on the leeward side. The heat exchanger has a plurality of flat tubes 38 and a plurality of fins 39.
 扁平管38は、ファン13によって発生した風が流れるように、間隔を空けて水平方向に並列して配置され、鉛直方向に延びる管内に鉛直方向に冷媒が流れる。フィン39は、隣り合う扁平管38の間にわたって接続され、扁平管38に伝熱する。なお、フィン39は、空気と冷媒との熱交換効率を向上させるものであり、たとえばコルゲートフィンが用いられる。しかし、これに限定されるものではない。扁平管38の表面で空気と冷媒との熱交換が行われるため、フィン39がなくてもよい。 The flat pipes 38 are arranged in parallel in the horizontal direction at intervals so that the wind generated by the fan 13 flows, and the refrigerant flows in the vertical direction in the pipes extending in the vertical direction. The fins 39 are connected between adjacent flat tubes 38 and transfer heat to the flat tubes 38. The fin 39 improves the heat exchange efficiency between the air and the refrigerant, and for example, a corrugated fin is used. However, it is not limited to this. Since heat exchange between air and the refrigerant is performed on the surface of the flat tube 38, the fins 39 may not be present.
 第1熱交換体31の下端部には、第1ヘッダ34が設けられている。第1ヘッダ34には、第1熱交換体31の扁平管38の下端部が直接挿入されている。第1ヘッダ34は、空気調和装置100の冷媒回路に液配管36を介して接続されている。第1ヘッダ34は、液ヘッダとも呼ばれる。なお、第1ヘッダ34の液配管36が接続される部分には、開口部(図示せず)が形成されている。第1ヘッダ34は、図2に示すように暖房運転時に低温低圧の二相冷媒を熱交換器30に流入させ、図3に示すように冷房運転時に熱交換器30で熱交換された後の低温高圧の液冷媒を冷媒回路に流出させる。 A first header 34 is provided at the lower end of the first heat exchanger 31. The lower end of the flat tube 38 of the first heat exchanger 31 is directly inserted into the first header 34. The first header 34 is connected to the refrigerant circuit of the air conditioner 100 via the liquid pipe 36. The first header 34 is also called a liquid header. An opening (not shown) is formed in a portion of the first header 34 to which the liquid pipe 36 is connected. As shown in FIG. 2, the first header 34 causes a low-temperature low-pressure two-phase refrigerant to flow into the heat exchanger 30 during the heating operation, and is heat-exchanged by the heat exchanger 30 during the cooling operation as shown in FIG. The low temperature and high pressure liquid refrigerant is discharged to the refrigerant circuit.
 第2熱交換体32の下端部には、第2ヘッダ35が設けられている。第2ヘッダ35には、第2熱交換体32の扁平管38の下端部が直接挿入されている。また、第2ヘッダ35は、第1ヘッダ34に並列して配置されている。第2ヘッダ35は、空気調和装置100の冷媒回路にガス配管37を介して接続されている。第2ヘッダ35は、ガスヘッダとも呼ばれる。なお、第2ヘッダ35のガス配管37が接続される部分には、開口部(図示せず)が形成されている。第2ヘッダ35は、図3に示すように冷房運転時に圧縮機11からの高温高圧のガス冷媒を熱交換器30に流入させ、図2に示すように暖房運転時に熱交換器30で熱交換された後の低温低圧のガス冷媒を冷媒回路に流出させる。 A second header 35 is provided at the lower end of the second heat exchanger 32. The lower end of the flat tube 38 of the second heat exchanger 32 is directly inserted into the second header 35. Further, the second header 35 is arranged in parallel with the first header 34. The second header 35 is connected to the refrigerant circuit of the air conditioner 100 via the gas pipe 37. The second header 35 is also called a gas header. An opening (not shown) is formed in a portion of the second header 35 to which the gas pipe 37 is connected. As shown in FIG. 3, the second header 35 causes the high-temperature and high-pressure gas refrigerant from the compressor 11 to flow into the heat exchanger 30 during the cooling operation, and heat exchanges with the heat exchanger 30 during the heating operation as shown in FIG. The low-temperature low-pressure gas refrigerant after the heat is discharged to the refrigerant circuit.
 つまり、熱交換器30では、冷房運転時に、冷媒の入口が第2ヘッダ35に接続されるガス配管37となり、冷媒の出口が第1ヘッダ34に接続される液配管36となる。また、暖房運転時に、冷媒の入口が第1ヘッダ34に接続される液配管36となり、冷媒の出口が第2ヘッダ35に接続されるガス配管37となる。 That is, in the heat exchanger 30, during the cooling operation, the inlet of the refrigerant becomes the gas pipe 37 connected to the second header 35, and the outlet of the refrigerant becomes the liquid pipe 36 connected to the first header 34. Further, during the heating operation, the inlet of the refrigerant becomes the liquid pipe 36 connected to the first header 34, and the outlet of the refrigerant becomes the gas pipe 37 connected to the second header 35.
 第1熱交換体31および第2熱交換体32の上端部には、第1ヘッダ34および第2ヘッダ35に挿入された複数の扁平管38の上端部が挿入される列渡しヘッダ33が設けられている。 At the upper ends of the first heat exchanger 31 and the second heat exchanger 32, a row header 33 into which the upper ends of the plurality of flat tubes 38 inserted in the first header 34 and the second header 35 are inserted is provided. Has been done.
 複数の扁平管38、フィン39、第1ヘッダ34、第2ヘッダ35、列渡しヘッダ33、液配管36、および、ガス配管37は、いずれもアルミニウム製であり、ロウ付けによって接合されている。 The plurality of flat pipes 38, fins 39, first header 34, second header 35, row passing header 33, liquid pipe 36, and gas pipe 37 are all made of aluminum and are joined by brazing.
<冷房運転>
 圧縮機11から吐出された高温高圧のガス冷媒は、流路切替装置12を介して熱交換器30に流入する。熱交換器30に流入した高温高圧のガス冷媒は、ファン13によって取り込まれた室外空気と熱交換して放熱しながら凝縮し、低温高圧の液冷媒となって熱交換器30から流出する。このとき、熱交換器30内を流れる冷媒は、図3に示すように、ガス配管37、第2ヘッダ35、第2熱交換体32、列渡しヘッダ33、第1熱交換体31、第1ヘッダ34、液配管36の順に流れる。熱交換器30から流出した低温高圧の液冷媒は、絞り装置21によって減圧され、低温低圧の気液二相冷媒となり、室内熱交換器22に流入する。室内熱交換器22に流入した低温低圧の気液二相冷媒は、室内ファン23によって取り込まれた室内空気と熱交換して吸熱しながら蒸発し、室内空気を冷却するとともに低温低圧のガス冷媒となって室内熱交換器22から流出する。室内熱交換器22から流出した低温低圧のガス冷媒は、圧縮機11へ吸入され、再び高温高圧のガス冷媒となる。
<Cooling operation>
The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the heat exchanger 30 via the flow path switching device 12. The high-temperature and high-pressure gas refrigerant flowing into the heat exchanger 30 exchanges heat with the outdoor air taken in by the fan 13 and condenses while radiating heat, becomes a low-temperature and high-pressure liquid refrigerant, and flows out from the heat exchanger 30. At this time, as shown in FIG. 3, the refrigerant flowing in the heat exchanger 30 is the gas pipe 37, the second header 35, the second heat exchanger 32, the row passing header 33, the first heat exchanger 31, the first. The header 34 and the liquid pipe 36 flow in this order. The low-temperature, high-pressure liquid refrigerant flowing out of the heat exchanger 30 is depressurized by the drawing device 21, becomes a low-temperature, low-pressure, gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 22. The low-temperature low-pressure gas-liquid two-phase refrigerant flowing into the indoor heat exchanger 22 exchanges heat with the indoor air taken in by the indoor fan 23 and evaporates while absorbing heat, cooling the indoor air and forming a low-temperature low-pressure gas refrigerant. Then, it flows out from the indoor heat exchanger 22. The low-temperature low-pressure gas refrigerant flowing out of the indoor heat exchanger 22 is sucked into the compressor 11 and becomes a high-temperature high-pressure gas refrigerant again.
<暖房運転>
 圧縮機11から吐出された高温高圧のガス冷媒は、流路切替装置12を介して室内熱交換器22に流入する。室内熱交換器22に流入した高温高圧のガス冷媒は、室内ファン23によって取り込まれた室内空気と熱交換して放熱しながら凝縮し、室内空気を加熱するとともに低温高圧の液冷媒となって室内熱交換器22から流出する。室内熱交換器22から流出した低温高圧の液冷媒は、絞り装置21によって減圧され、低温低圧の気液二相冷媒となり、熱交換器30に流入する。熱交換器30に流入した低温低圧の気液二相冷媒は、ファン13によって取り込まれた室外空気と熱交換して吸熱しながら蒸発し、低温低圧のガス冷媒となって熱交換器30から流出する。このとき、熱交換器30内を流れる冷媒は、図2に示すように、液配管36、第1ヘッダ34、第1熱交換体31、列渡しヘッダ33、第2熱交換体32、第2ヘッダ35、ガス配管37の順に流れる。熱交換器30から流出した低温低圧のガス冷媒は、圧縮機11へ吸入され、再び高温高圧のガス冷媒となる。
<Heating operation>
The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the indoor heat exchanger 22 via the flow path switching device 12. The high-temperature and high-pressure gas refrigerant that has flowed into the indoor heat exchanger 22 exchanges heat with the indoor air taken in by the indoor fan 23 and condenses while radiating heat, heating the indoor air and becoming a low-temperature and high-pressure liquid refrigerant in the room. It flows out from the heat exchanger 22. The low-temperature and high-pressure liquid refrigerant flowing out of the indoor heat exchanger 22 is depressurized by the throttle device 21, becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, and flows into the heat exchanger 30. The low-temperature low-pressure gas-liquid two-phase refrigerant that has flowed into the heat exchanger 30 exchanges heat with the outdoor air taken in by the fan 13 and evaporates while absorbing heat, becoming a low-temperature low-pressure gas refrigerant and flowing out of the heat exchanger 30. do. At this time, as shown in FIG. 2, the refrigerant flowing in the heat exchanger 30 is the liquid pipe 36, the first header 34, the first heat exchanger 31, the row passing header 33, the second heat exchanger 32, and the second. The header 35 and the gas pipe 37 flow in this order. The low-temperature low-pressure gas refrigerant flowing out of the heat exchanger 30 is sucked into the compressor 11 and becomes a high-temperature high-pressure gas refrigerant again.
<除霜運転>
 扁平管38およびフィン39の表面温度が0℃以下となる低温環境において、暖房運転を行う場合には、熱交換器30には着霜が生じる。熱交換器30への着霜量が一定以上になると、ファン13によって発生する風が通過する熱交換器30の風路が閉塞され、熱交換器30の性能が低下し、暖房性能が低下する。そこで、暖房性能が低下した場合には、熱交換器30の表面の霜を溶かす除霜運転を行う。
<Defrosting operation>
When the heating operation is performed in a low temperature environment where the surface temperature of the flat tube 38 and the fin 39 is 0 ° C. or lower, frost is formed on the heat exchanger 30. When the amount of frost on the heat exchanger 30 exceeds a certain level, the air passage of the heat exchanger 30 through which the wind generated by the fan 13 passes is blocked, the performance of the heat exchanger 30 deteriorates, and the heating performance deteriorates. .. Therefore, when the heating performance deteriorates, a defrosting operation for melting the frost on the surface of the heat exchanger 30 is performed.
 除霜運転では、ファン13が停止され、流路切替装置12が冷房運転時と同じ状態に切り替えられ、高温高圧のガス冷媒が熱交換器30に流入する。これにより、扁平管38およびフィン39に付着した霜が融解する。除霜運転が開始されると、高温高圧のガス冷媒は、第2ヘッダ35を介して各扁平管38に流入する。そして、扁平管38に流入した高温の冷媒によって、扁平管38およびフィン39に付着した霜は融解して水に変化する。霜が融解して生じた水(以下、除霜水50と称する)は、扁平管38あるいはフィン39に沿って熱交換器30の下方へ排水される。付着した霜が融解したら除霜運転が終了され、暖房運転が再開される。 In the defrosting operation, the fan 13 is stopped, the flow path switching device 12 is switched to the same state as in the cooling operation, and the high temperature and high pressure gas refrigerant flows into the heat exchanger 30. This melts the frost attached to the flat tube 38 and the fins 39. When the defrosting operation is started, the high-temperature and high-pressure gas refrigerant flows into each flat tube 38 via the second header 35. Then, the frost adhering to the flat tube 38 and the fins 39 is melted and changed to water by the high-temperature refrigerant flowing into the flat tube 38. The water generated by melting the frost (hereinafter referred to as defrost water 50) is drained to the lower part of the heat exchanger 30 along the flat pipe 38 or the fin 39. When the attached frost melts, the defrosting operation is terminated and the heating operation is restarted.
 外気温度が低温となる暖房運転では、低温低圧の二相冷媒が風上側の第1熱交換体31を流れるため、熱交換器30への着霜は、風上側の第1熱交換体31の方が風下側の第2熱交換体32よりも多くなる。そのため、除霜後に第1熱交換体31の表面に発生した除霜水50が下方に流れ、第1熱交換体31の下端部の第1ヘッダ34近傍、特に第1ヘッダ34の上部に溜まりやすい。そして、暖房運転が再開されると、低温低圧の二相冷媒が第1ヘッダ34から流入するため、従来では、第1ヘッダ34の上部に溜まった除霜水50が再氷結して根氷となり、暖房能力の低下および熱交換器30の破損を招いていた。 In the heating operation in which the outside air temperature is low, the low-temperature low-pressure two-phase refrigerant flows through the first heat exchanger 31 on the wind side, so that the frost on the heat exchanger 30 is caused by the first heat exchanger 31 on the wind side. The number is larger than that of the second heat exchanger 32 on the leeward side. Therefore, the defrosting water 50 generated on the surface of the first heat exchanger 31 after defrosting flows downward and collects in the vicinity of the first header 34 at the lower end of the first heat exchanger 31, especially in the upper part of the first header 34. Cheap. Then, when the heating operation is restarted, the low-temperature low-pressure two-phase refrigerant flows in from the first header 34, so that the defrost water 50 accumulated in the upper part of the first header 34 is re-frozen and becomes root ice in the conventional case. This has led to a decrease in heating capacity and damage to the heat exchanger 30.
 そこで、実施の形態1に係る熱交換器30では、ガス配管37の少なくとも一部が第1ヘッダ34の長軸方向に沿って設けられており、ガス配管37の少なくとも一部は第1ヘッダ34と接触している。また、ガス配管37は、第1ヘッダ34の下方に配置されている。このように、ガス配管37の少なくとも一部が第1ヘッダ34の長軸方向に沿って設けられ、ガス配管37の少なくとも一部が第1ヘッダ34と接触することで、除霜運転時に高温高圧のガス冷媒が流れるガス配管37の熱を第1ヘッダ34に伝えることができる。そして、第1ヘッダ34に伝わった熱は、第1ヘッダ34近傍の除霜水50に伝わり、除霜水50の温度が高くなる。そのため、除霜運転が終了後、暖房運転が再開されても、第1ヘッダ34近傍の除霜水50が再氷結するのを抑制することができる。その結果、暖房能力の低下および熱交換器30の破損を抑制することができる。また、ガス配管37は、第1ヘッダ34の下方に配置されており、除霜水50の排水経路を邪魔しないため、排水性の悪化を防止することができる。なお、ガス配管37と第1ヘッダ34との接触面積が広いほど、ガス配管37のより多くの熱を第1ヘッダ34に伝えることができる。 Therefore, in the heat exchanger 30 according to the first embodiment, at least a part of the gas pipe 37 is provided along the long axis direction of the first header 34, and at least a part of the gas pipe 37 is the first header 34. Is in contact with. Further, the gas pipe 37 is arranged below the first header 34. In this way, at least a part of the gas pipe 37 is provided along the long axis direction of the first header 34, and at least a part of the gas pipe 37 comes into contact with the first header 34, so that the temperature and pressure are high and high during the defrosting operation. The heat of the gas pipe 37 through which the gas refrigerant of No. 1 flows can be transferred to the first header 34. Then, the heat transferred to the first header 34 is transmitted to the defrost water 50 in the vicinity of the first header 34, and the temperature of the defrost water 50 becomes high. Therefore, even if the heating operation is restarted after the defrosting operation is completed, it is possible to prevent the defrosting water 50 in the vicinity of the first header 34 from refreezing. As a result, it is possible to suppress a decrease in heating capacity and damage to the heat exchanger 30. Further, since the gas pipe 37 is arranged below the first header 34 and does not interfere with the drainage path of the defrost water 50, deterioration of the drainage property can be prevented. The wider the contact area between the gas pipe 37 and the first header 34, the more heat of the gas pipe 37 can be transferred to the first header 34.
 なお、実施の形態1では、熱交換器30は、2つの熱交換体を有しているが、それに限定されず、1つあるいは3つ以上の熱交換体を有していてもよい。 Note that, in the first embodiment, the heat exchanger 30 has two heat exchangers, but is not limited thereto, and may have one or three or more heat exchangers.
 図4は、実施の形態1に係る熱交換器30の変形例を示す斜視図である。
 熱交換器30が1つのみの熱交換体311を有する場合は、図4に示すように、熱交換体311の下端部に第1ヘッダ34が設けられ、熱交換体311の上端部に第2ヘッダ35が設けられ、列渡しヘッダ33は設けられない。そして、第1ヘッダ34に液配管36が接続され、第2ヘッダ35にガス配管37が接続される。
FIG. 4 is a perspective view showing a modified example of the heat exchanger 30 according to the first embodiment.
When the heat exchanger 30 has only one heat exchanger 311, as shown in FIG. 4, a first header 34 is provided at the lower end of the heat exchanger 311 and a first header 34 is provided at the upper end of the heat exchanger 311. The two headers 35 are provided, and the column passing header 33 is not provided. Then, the liquid pipe 36 is connected to the first header 34, and the gas pipe 37 is connected to the second header 35.
 熱交換器30が3つ以上の奇数の熱交換体を有する場合は、最も風上側の熱交換体の下端部に第1ヘッダ34が設けられ、最も風下側の熱交換体の上端部に第2ヘッダ35が設けられる。また、熱交換体の数-1個の列渡しヘッダ33が設けられ、隣接する熱交換体同士を接続する。そして、第1ヘッダ34に液配管36が接続され、第2ヘッダ35にガス配管37が接続される。 When the heat exchanger 30 has three or more odd heat exchangers, the first header 34 is provided at the lower end of the most leeward heat exchanger, and the first header 34 is provided at the upper end of the leeward heat exchanger. Two headers 35 are provided. In addition, the number of heat exchangers-1 column passing header 33 is provided to connect adjacent heat exchangers to each other. Then, the liquid pipe 36 is connected to the first header 34, and the gas pipe 37 is connected to the second header 35.
 熱交換器30が4つ以上の偶数の熱交換体を有する場合は、最も風上側の熱交換体の下端部に第1ヘッダ34が設けられ、最も風下側の熱交換体の下端部に第2ヘッダ35が設けられる。また、熱交換体の数-1個の列渡しヘッダ33が設けられ、隣接する熱交換体同士を接続する。そして、第1ヘッダ34に液配管36が接続され、第2ヘッダ35にガス配管37が接続される。 When the heat exchanger 30 has four or more even heat exchangers, the first header 34 is provided at the lower end of the heat exchanger on the most upwind side, and the first header 34 is provided at the lower end of the heat exchanger on the leeward side. Two headers 35 are provided. In addition, the number of heat exchangers-1 column passing header 33 is provided to connect adjacent heat exchangers to each other. Then, the liquid pipe 36 is connected to the first header 34, and the gas pipe 37 is connected to the second header 35.
 以上、実施の形態1に係る熱交換器30は、複数の扁平管38を有する熱交換体を空気の流れ方向に沿って少なくとも一つ以上備えた熱交換器30であって、最も風上側の熱交換体の下端部に設けられる第1ヘッダと、最も風下側の熱交換体の上端部または下端部に設けられる第2ヘッダと、第1ヘッダに接続され、蒸発器として機能する際に冷媒が流入し、凝縮器として機能する際に冷媒が流出する液配管36と、第2ヘッダに接続され、蒸発器として機能する際に冷媒が流出し、凝縮器として機能する際に冷媒が流入するガス配管37と、を備えている。そして、ガス配管37の少なくとも一部は第1ヘッダの長軸方向に沿って設けられており、ガス配管37は、少なくとも一部が第1ヘッダと接触しているものである。 As described above, the heat exchanger 30 according to the first embodiment is a heat exchanger 30 having at least one heat exchanger having a plurality of flat tubes 38 along the air flow direction, and is the most windy side. A first header provided at the lower end of the heat exchanger, a second header provided at the upper end or the lower end of the most leeward heat exchanger, and a refrigerant when connected to the first header and functioning as an evaporator. Is connected to the liquid pipe 36, which is connected to the second header and flows out when it functions as a condenser, and the refrigerant flows out when it functions as an evaporator, and flows in when it functions as a condenser. It is provided with a gas pipe 37. At least a part of the gas pipe 37 is provided along the long axis direction of the first header, and at least a part of the gas pipe 37 is in contact with the first header.
 実施の形態1に係る熱交換器30によれば、ガス配管37の少なくとも一部は第1ヘッダ34の長軸方向に沿って設けられており、ガス配管37は、少なくとも一部が第1ヘッダ34と接触している。そのため、除霜運転時に高温高圧のガス冷媒が流れるガス配管37の熱を第1ヘッダ34に伝えることができる。そして、第1ヘッダ34に伝わった熱は、第1ヘッダ34近傍の除霜水に伝わり、除霜水50の温度が高くなる。そのため、除霜運転が終了後、暖房運転が再開されても、第1ヘッダ34近傍の除霜水50が再氷結するのを抑制することができる。その結果、その結果、暖房能力の低下および熱交換器30の破損を抑制することができる。 According to the heat exchanger 30 according to the first embodiment, at least a part of the gas pipe 37 is provided along the long axis direction of the first header 34, and at least a part of the gas pipe 37 is provided in the first header. It is in contact with 34. Therefore, the heat of the gas pipe 37 through which the high-temperature and high-pressure gas refrigerant flows during the defrosting operation can be transferred to the first header 34. Then, the heat transferred to the first header 34 is transmitted to the defrost water in the vicinity of the first header 34, and the temperature of the defrost water 50 becomes high. Therefore, even if the heating operation is restarted after the defrosting operation is completed, it is possible to prevent the defrosting water 50 in the vicinity of the first header 34 from refreezing. As a result, it is possible to suppress a decrease in heating capacity and damage to the heat exchanger 30.
 また、実施の形態1に係る熱交換器30において、ガス配管37は、第1ヘッダ34の下方に配置されている。 Further, in the heat exchanger 30 according to the first embodiment, the gas pipe 37 is arranged below the first header 34.
 実施の形態1に係る熱交換器30によれば、ガス配管37は、第1ヘッダ34の下方に配置されており、除霜水50の排水経路を邪魔しないため、排水性の悪化を防止することができる。 According to the heat exchanger 30 according to the first embodiment, the gas pipe 37 is arranged below the first header 34 and does not interfere with the drainage path of the defrost water 50, so that deterioration of the drainage property is prevented. be able to.
 また、実施の形態1に係る室外機10は、上記の熱交換器30を備えたものである。実施の形態1に係る室外機10によれば、上記の熱交換器30と同様の効果が得られる。 Further, the outdoor unit 10 according to the first embodiment is provided with the above heat exchanger 30. According to the outdoor unit 10 according to the first embodiment, the same effect as that of the heat exchanger 30 can be obtained.
 また、実施の形態1に係る空気調和装置100は、上記の室外機10を備えたものである。実施の形態1に係る空気調和装置100によれば、上記の室外機10と同様の効果が得られる。 Further, the air conditioner 100 according to the first embodiment is provided with the above-mentioned outdoor unit 10. According to the air conditioner 100 according to the first embodiment, the same effect as that of the outdoor unit 10 can be obtained.
 実施の形態2.
 以下、実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 2.
Hereinafter, the second embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
 図5は、実施の形態2に係る熱交換器30および熱交換器30が搭載されたトップフロー型の室外機10aの斜視図である。
 図5に示すように、実施の形態2に係る熱交換器30は、トップフロー型の室外機10aに搭載されている。熱交換器30は平面視してL字状を有し、2つの熱交換器30が平面視して矩形状を形成するように室外機10aに搭載されている。なお、熱交換器30は平面視して厳密にL字状を有していなくてもよい。また、2つの熱交換器30は、平面視して厳密に矩形状を形成していなくてもよい。
FIG. 5 is a perspective view of the top-flow type outdoor unit 10a on which the heat exchanger 30 and the heat exchanger 30 according to the second embodiment are mounted.
As shown in FIG. 5, the heat exchanger 30 according to the second embodiment is mounted on the top flow type outdoor unit 10a. The heat exchanger 30 has an L-shape in a plan view, and is mounted on the outdoor unit 10a so that the two heat exchangers 30 form a rectangular shape in a plan view. The heat exchanger 30 does not have to have a strictly L-shape in a plan view. Further, the two heat exchangers 30 do not have to form a strictly rectangular shape in a plan view.
 室外機10aは、箱状に形成されたケーシング15を備えている。このケーシング15の四側面それぞれには、吸込口16が形成されており、ケーシング15の上面には吹出口17が形成されている。また、室外機10aは、ケーシング15の四側面それぞれの吸込口16に沿うようにケーシング15内に配置された2つの熱交換器30を備えている。また、室外機10aは、ケーシング15の吹出口17を覆うように通風可能に設けられたファンガード18と、ファンガード18の内部に配置され、吸込口16から外気を吸い込み、吹出口17から外気を排出するファン13と、を備えている。 The outdoor unit 10a includes a box-shaped casing 15. A suction port 16 is formed on each of the four side surfaces of the casing 15, and an air outlet 17 is formed on the upper surface of the casing 15. Further, the outdoor unit 10a includes two heat exchangers 30 arranged in the casing 15 so as to be along the suction ports 16 on each of the four side surfaces of the casing 15. Further, the outdoor unit 10a is arranged inside the fan guard 18 provided so as to be ventilated so as to cover the air outlet 17 of the casing 15, and the outside air is sucked from the suction port 16 and the outside air is sucked from the air outlet 17. It is equipped with a fan 13 for discharging.
 2つの熱交換器30は、ファン13の下方に配置されている。また、2つの熱交換器30は、ケーシング15の四側面に沿って配置されている。なお、2つの熱交換器30は、ケーシング15の四隅に設けられた柱部15aにネジなどで固定されている。そして、ファン13によって各側面に形成された吸込口16から吸い込まれた室外空気は、各熱交換器30で冷媒と熱交換した後、吹出口17から吹き出される。 The two heat exchangers 30 are arranged below the fan 13. Further, the two heat exchangers 30 are arranged along the four side surfaces of the casing 15. The two heat exchangers 30 are fixed to the pillars 15a provided at the four corners of the casing 15 with screws or the like. Then, the outdoor air sucked from the suction ports 16 formed on each side surface by the fan 13 is heat-exchanged with the refrigerant by each heat exchanger 30 and then blown out from the outlet 17.
 また、ケーシング15の四側面には、それぞれ側面パネル15bが設けられており、側面パネル15bで囲まれた空間に、圧縮機11などが収容される機械室(図示せず)が形成されている。側面パネル15bは、2つの熱交換器30の下方に形成されている。また、各側面パネル15bと各熱交換器30との間にはそれぞれ隙間19が形成されている。この隙間19は、ガス配管37の取り回しスペースとなっている。また、この隙間19は、熱交換器30で生じた除霜水の排水経路を確保するスペースとなっている。つまり、この隙間19によって、ガス配管37を熱交換器30の補助側第1ヘッダ34bの長軸方向に沿って設けることを可能とし、また、排水性の悪化を防止している。 Further, side panels 15b are provided on each of the four side surfaces of the casing 15, and a machine room (not shown) in which the compressor 11 and the like are housed is formed in the space surrounded by the side panels 15b. .. The side panel 15b is formed below the two heat exchangers 30. Further, a gap 19 is formed between each side panel 15b and each heat exchanger 30. This gap 19 serves as a handling space for the gas pipe 37. Further, the gap 19 is a space for securing a drainage path for the defrosted water generated in the heat exchanger 30. That is, the gap 19 makes it possible to provide the gas pipe 37 along the long axis direction of the auxiliary side first header 34b of the heat exchanger 30, and also prevents deterioration of drainage.
 図6は、実施の形態2に係る熱交換器30の斜視図である。
 実施の形態2に係る熱交換器30は、空気の流れ方向に沿って複数の熱交換体を有している。具体的には、熱交換器30は、風上側の第1熱交換体31と風下側の第2熱交換体32とを有する。第1熱交換体31は、主側第1熱交換体31aと、主側第1熱交換体31aよりも扁平管38の数が少ない補助側第1熱交換体31bとで構成されている。第2熱交換体32は、主側第2熱交換体32aと、主側第2熱交換体32aよりも扁平管38の数が少ない補助側第2熱交換体32bとで構成されている。
FIG. 6 is a perspective view of the heat exchanger 30 according to the second embodiment.
The heat exchanger 30 according to the second embodiment has a plurality of heat exchangers along the air flow direction. Specifically, the heat exchanger 30 has a first heat exchanger 31 on the windward side and a second heat exchanger 32 on the leeward side. The first heat exchanger 31 is composed of a main side first heat exchanger 31a and an auxiliary side first heat exchanger 31b in which the number of flat tubes 38 is smaller than that of the main side first heat exchanger 31a. The second heat exchanger 32 is composed of a main side second heat exchanger 32a and an auxiliary side second heat exchanger 32b in which the number of flat tubes 38 is smaller than that of the main side second heat exchanger 32a.
 また、熱交換器30は、主熱交換部30aと補助熱交換部30bとに分かれている。主熱交換部30aは、主側第1熱交換体31aと主側第2熱交換体32aと主側第1ヘッダ34a(以下、第1ヘッダとも称する)と主側第2ヘッダ35aと主側列渡しヘッダ33aとを備えている。また、補助熱交換部30bは、補助側第1熱交換体31b(以下、第2ヘッダとも称する)と補助側第2熱交換体32bと補助側第1ヘッダ34bと補助側第2ヘッダ35bと補助側列渡しヘッダ33bとを備えている。 Further, the heat exchanger 30 is divided into a main heat exchange unit 30a and an auxiliary heat exchange unit 30b. The main heat exchange unit 30a includes a main side first heat exchanger 31a, a main side second heat exchanger 32a, a main side first header 34a (hereinafter, also referred to as a first header), a main side second header 35a, and a main side. It is provided with a column passing header 33a. Further, the auxiliary heat exchange unit 30b includes an auxiliary side first heat exchanger 31b (hereinafter, also referred to as a second header), an auxiliary side second heat exchanger 32b, an auxiliary side first header 34b, and an auxiliary side second header 35b. It is provided with an auxiliary side column passing header 33b.
 主側第1熱交換体31aの下端部には、主側第1ヘッダ34aが設けられている。主側第1ヘッダ34aには、主側第1熱交換体31aの扁平管38の下端部が直接挿入されている。主側第1ヘッダ34aは、空気調和装置100の冷媒回路にガス配管37を介して接続されている。なお、主側第1ヘッダ34aのガス配管37が接続されている部分には、開口部34a1が形成されている。主側第1ヘッダ34aは、冷房運転時に圧縮機11からの高温高圧のガス冷媒を熱交換器30に流入させ、暖房運転時に熱交換器30で熱交換された後の低温低圧のガス冷媒を冷媒回路に流出させる。 A main side first header 34a is provided at the lower end of the main side first heat exchanger 31a. The lower end of the flat tube 38 of the main side first heat exchanger 31a is directly inserted into the main side first header 34a. The main side first header 34a is connected to the refrigerant circuit of the air conditioner 100 via the gas pipe 37. An opening 34a1 is formed in a portion of the first header 34a on the main side to which the gas pipe 37 is connected. The first header 34a on the main side causes the high-temperature and high-pressure gas refrigerant from the compressor 11 to flow into the heat exchanger 30 during the cooling operation, and the low-temperature and low-pressure gas refrigerant after the heat is exchanged by the heat exchanger 30 during the heating operation. Let it flow out to the refrigerant circuit.
 補助側第1熱交換体31bの下端部には、補助側第1ヘッダ34bが設けられている。補助側第1ヘッダ34bには、補助側第1熱交換体31bの扁平管38の下端部が直接挿入されている。補助側第1ヘッダ34bは、空気調和装置100の冷媒回路に液配管36を介して接続されている。なお、補助側第1ヘッダ34bの液配管36が接続されている部分には、開口部(図示せず)が形成されている。補助側第1ヘッダ34bは、暖房運転時に低温低圧の二相冷媒を熱交換器30に流入させ、冷房運転時に熱交換器30で熱交換された後の低温高圧の液冷媒を冷媒回路に流出させる。 An auxiliary side first header 34b is provided at the lower end of the auxiliary side first heat exchanger 31b. The lower end of the flat tube 38 of the auxiliary side first heat exchanger 31b is directly inserted into the auxiliary side first header 34b. The first header 34b on the auxiliary side is connected to the refrigerant circuit of the air conditioner 100 via the liquid pipe 36. An opening (not shown) is formed in a portion of the auxiliary side first header 34b to which the liquid pipe 36 is connected. The first header 34b on the auxiliary side causes a low-temperature low-pressure two-phase refrigerant to flow into the heat exchanger 30 during the heating operation, and the low-temperature high-pressure liquid refrigerant after heat exchange in the heat exchanger 30 during the cooling operation flows out to the refrigerant circuit. Let me.
 つまり、熱交換器30では、冷房運転時に、冷媒の入口が主側第1ヘッダ34aに接続されるガス配管37となり、冷媒の出口が補助側第1ヘッダ34bに接続される液配管36となる。また、暖房運転時に、冷媒の入口が補助側第1ヘッダ34bに接続される液配管36となり、冷媒の出口が主側第1ヘッダ34aに接続されるガス配管37となる。 That is, in the heat exchanger 30, during the cooling operation, the inlet of the refrigerant becomes the gas pipe 37 connected to the first header 34a on the main side, and the outlet of the refrigerant becomes the liquid pipe 36 connected to the first header 34b on the auxiliary side. .. Further, during the heating operation, the inlet of the refrigerant becomes the liquid pipe 36 connected to the first header 34b on the auxiliary side, and the outlet of the refrigerant becomes the gas pipe 37 connected to the first header 34a on the main side.
 主側第2熱交換体32aの下端部には、主側第2ヘッダ35aが設けられている。主側第2ヘッダ35aには、主側第2熱交換体32aの扁平管38の下端部が直接挿入されている。また、補助側第2熱交換体32bの下端部には、補助側第2ヘッダ35b(図7参照)が設けられている。補助側第2ヘッダ35bには、補助側第2熱交換体32bの扁平管38の下端部が直接挿入されている。主側第2ヘッダ35aと補助側第2ヘッダ35bとは、互いに連通している。 A main side second header 35a is provided at the lower end of the main side second heat exchanger 32a. The lower end of the flat tube 38 of the main side second heat exchanger 32a is directly inserted into the main side second header 35a. Further, an auxiliary side second header 35b (see FIG. 7) is provided at the lower end portion of the auxiliary side second heat exchanger 32b. The lower end of the flat tube 38 of the auxiliary side second heat exchanger 32b is directly inserted into the auxiliary side second header 35b. The main side second header 35a and the auxiliary side second header 35b communicate with each other.
 主側第1熱交換体31aおよび主側第2熱交換体32aの上端部には、主側第1ヘッダ34aおよび主側第2ヘッダ35aに挿入された複数の扁平管38の上端部が挿入される主側列渡しヘッダ33aが設けられている。また、補助側第1熱交換体31bおよび補助側第2熱交換体32bの上端部には、補助側第1ヘッダ34bおよび補助側第2ヘッダ35bに挿入された複数の扁平管38の上端部が挿入される補助側列渡しヘッダ33bが設けられている。 At the upper ends of the main side first heat exchanger 31a and the main side second heat exchanger 32a, the upper ends of a plurality of flat tubes 38 inserted into the main side first header 34a and the main side second header 35a are inserted. The main side column passing header 33a is provided. Further, at the upper ends of the auxiliary side first heat exchanger 31b and the auxiliary side second heat exchanger 32b, the upper ends of a plurality of flat tubes 38 inserted into the auxiliary side first header 34b and the auxiliary side second header 35b Is provided with an auxiliary side column passing header 33b into which the is inserted.
 また、液配管36は、補助側第1ヘッダ34bに接続されており、ガス配管37は、主側第1ヘッダ34aに接続されている。そして、ガス配管37の少なくとも一部が補助側第1ヘッダ34bの長軸方向に沿って設けられており、ガス配管37の少なくとも一部は補助側第1ヘッダ34bと接触している。また、ガス配管37は、補助側第1ヘッダ34bの下方に配置されている。 Further, the liquid pipe 36 is connected to the auxiliary side first header 34b, and the gas pipe 37 is connected to the main side first header 34a. At least a part of the gas pipe 37 is provided along the long axis direction of the auxiliary side first header 34b, and at least a part of the gas pipe 37 is in contact with the auxiliary side first header 34b. Further, the gas pipe 37 is arranged below the first header 34b on the auxiliary side.
 また、主熱交換部30aは、主側第1ヘッダ34aおよび主側第2ヘッダ35aの流路の途中にそれぞれ屈曲部41、42(後述する図7および図9参照)を有する。これにより、主熱交換部30aは、ケーシング15の互いに隣り合う2つの側面に跨がって配置することができる。 Further, the main heat exchange portion 30a has bent portions 41 and 42 (see FIGS. 7 and 9 described later) in the middle of the flow paths of the main side first header 34a and the main side second header 35a, respectively. As a result, the main heat exchange portion 30a can be arranged so as to straddle two side surfaces of the casing 15 adjacent to each other.
 主側第1ヘッダ34aと補助側第1ヘッダ34bとは、第1ヘッダ34がその内部に設けられた仕切板(図示せず)によって仕切られて構成されている。また、主側列渡しヘッダ33aと補助側列渡しヘッダ33bとは、列渡しヘッダ33がその内部に設けられた仕切板(図示せず)によって仕切られて構成されている。つまり、主側第1ヘッダ34aと補助側第1ヘッダ34b、および、主側列渡しヘッダ33aと補助側列渡しヘッダ33bは、それぞれ同体のものを仕切板(図示せず)によって仕切ることで構成されている。ただし、主側第1ヘッダ34aと補助側第1ヘッダ34b、および、主側列渡しヘッダ33aと補助側列渡しヘッダ33bは、それぞれ別体として構成されていてもよい。また、主側第2ヘッダ35aと補助側第2ヘッダ35bとは、仕切板(図示せず)によって仕切られておらず、上記の通り主側第2ヘッダ35aと補助側第2ヘッダ35bとは互いに連通している。 The main side first header 34a and the auxiliary side first header 34b are configured such that the first header 34 is partitioned by a partition plate (not shown) provided inside the first header 34. Further, the main side row passing header 33a and the auxiliary side row passing header 33b are configured by partitioning the row passing header 33 by a partition plate (not shown) provided inside the main side row passing header 33a and the auxiliary side row passing header 33b. That is, the main side first header 34a and the auxiliary side first header 34b, and the main side row passing header 33a and the auxiliary side row passing header 33b are configured by partitioning the same body by a partition plate (not shown). Has been done. However, the main side first header 34a and the auxiliary side first header 34b, and the main side column passing header 33a and the auxiliary side column passing header 33b may be configured as separate bodies. Further, the main side second header 35a and the auxiliary side second header 35b are not separated by a partition plate (not shown), and as described above, the main side second header 35a and the auxiliary side second header 35b are Communicate with each other.
 熱交換器30は、上記の構造により、主側第1熱交換体31aの冷媒の流れが補助側第1熱交換体31bの冷媒の流れと対向流となり、主側第2熱交換体32aの冷媒の流れが補助側第2熱交換体32bの冷媒の流れと対向流となるように構成されている。 Due to the above structure, in the heat exchanger 30, the flow of the refrigerant in the main side first heat exchanger 31a becomes a countercurrent flow to the flow of the refrigerant in the auxiliary side first heat exchanger 31b, and the main side second heat exchanger 32a The flow of the refrigerant is configured to be opposite to the flow of the refrigerant in the auxiliary side second heat exchanger 32b.
<暖房運転>
 図7は、実施の形態2に係る熱交換器30の暖房運転時の冷媒の流れを模式的に示す平面図である。図8は、実施の形態2に係る熱交換器30の暖房運転時の冷媒の流れを模式的に示す斜視図である。なお、図8は、図7の破線で囲まれた一方の熱交換器30のみを示しているが、もう一方の熱交換器30についても同様の構造および同様の冷媒の流れである。
<Heating operation>
FIG. 7 is a plan view schematically showing the flow of the refrigerant during the heating operation of the heat exchanger 30 according to the second embodiment. FIG. 8 is a perspective view schematically showing the flow of the refrigerant during the heating operation of the heat exchanger 30 according to the second embodiment. Note that FIG. 8 shows only one heat exchanger 30 surrounded by the broken line in FIG. 7, but the other heat exchanger 30 has the same structure and the same flow of the refrigerant.
 暖房運転時は、図7および図8に示すように、低温低圧の気液二相冷媒が、液配管36から熱交換器30に流入する。熱交換器30に流入した低温低圧の気液二相冷媒は、補助側第1ヘッダ34b、補助側第1熱交換体31b、補助側列渡しヘッダ33b、補助側第2熱交換体32b、補助側第2ヘッダ35b、主側第2ヘッダ35a、主側第2熱交換体32a、主側列渡しヘッダ33a、主側第1熱交換体31a、主側第1ヘッダ34aの順に流れ、低温低圧のガス冷媒となる。そして、低温低圧のガス冷媒は、ガス配管37から熱交換器30を流出する。 During the heating operation, as shown in FIGS. 7 and 8, a low-temperature low-pressure gas-liquid two-phase refrigerant flows into the heat exchanger 30 from the liquid pipe 36. The low-temperature and low-pressure gas-liquid two-phase refrigerant flowing into the heat exchanger 30 includes an auxiliary side first header 34b, an auxiliary side first heat exchanger 31b, an auxiliary side row passing header 33b, an auxiliary side second heat exchanger 32b, and an auxiliary side. Side second header 35b, main side second header 35a, main side second heat exchanger 32a, main side row passing header 33a, main side first heat exchanger 31a, main side first header 34a flow in this order, and low temperature and low pressure. It becomes the gas refrigerant of. Then, the low-temperature low-pressure gas refrigerant flows out of the heat exchanger 30 from the gas pipe 37.
<除霜運転>
 図9は、実施の形態2に係る熱交換器30の除霜運転時の冷媒の流れを模式的に示す平面図である。図10は、実施の形態2に係る熱交換器30の除霜運転時の冷媒の流れを模式的に示す斜視図である。なお、図10は、図9の破線で囲まれた一方の熱交換器30のみを示しているが、もう一方の熱交換器30についても同様の構造および同様の冷媒の流れである。
<Defrosting operation>
FIG. 9 is a plan view schematically showing the flow of the refrigerant during the defrosting operation of the heat exchanger 30 according to the second embodiment. FIG. 10 is a perspective view schematically showing the flow of the refrigerant during the defrosting operation of the heat exchanger 30 according to the second embodiment. Note that FIG. 10 shows only one heat exchanger 30 surrounded by the broken line in FIG. 9, but the other heat exchanger 30 has the same structure and the same flow of the refrigerant.
 除霜運転時は、図9および図10に示すように、高温高圧のガス冷媒が、ガス配管37から熱交換器30に流入する。熱交換器30に流入した高温高圧のガス冷媒は、主側第1ヘッダ34a、主側第1熱交換体31a、主側列渡しヘッダ33a、主側第2熱交換体32a、主側第2ヘッダ35a、補助側第2ヘッダ35b、補助側第2熱交換体32b、補助側列渡しヘッダ33b、補助側第1熱交換体31b、補助側第1ヘッダ34bの順に流れ、低温高圧のガス冷媒となる。そして、低温高圧のガス冷媒は、液配管36から熱交換器30を流出する。 During the defrosting operation, as shown in FIGS. 9 and 10, a high-temperature and high-pressure gas refrigerant flows into the heat exchanger 30 from the gas pipe 37. The high-temperature and high-pressure gas refrigerant flowing into the heat exchanger 30 includes a main side first header 34a, a main side first heat exchanger 31a, a main side row passing header 33a, a main side second heat exchanger 32a, and a main side second. The header 35a, the auxiliary side second header 35b, the auxiliary side second heat exchanger 32b, the auxiliary side row passing header 33b, the auxiliary side first heat exchanger 31b, and the auxiliary side first header 34b flow in this order, and are low temperature and high pressure gas refrigerants. It becomes. Then, the low-temperature and high-pressure gas refrigerant flows out of the heat exchanger 30 from the liquid pipe 36.
 実施の形態2では、ガス配管37が主側第1ヘッダ34aに接続されており、除霜運転時は、高温高圧のガス冷媒が風上側の主側第1ヘッダ34aから熱交換器30に流入する。そのため、効率的に着霜量の多い風上側の主側第1熱交換体31aを除霜することが可能となり、除霜時間を短縮することができる。また、ガス配管37の少なくとも一部が補助側第1ヘッダ34bの長軸方向に沿って設けられ、ガス配管37の少なくとも一部が補助側第1ヘッダ34bと接触している。そのため、除霜運転時に高温高圧のガス冷媒が流れるガス配管37の熱を補助側第1ヘッダ34bに伝えることができる。 In the second embodiment, the gas pipe 37 is connected to the main side first header 34a, and during the defrosting operation, the high temperature and high pressure gas refrigerant flows into the heat exchanger 30 from the windward side first header 34a. do. Therefore, it is possible to efficiently defrost the main side first heat exchanger 31a on the windward side where the amount of frost formation is large, and the defrosting time can be shortened. Further, at least a part of the gas pipe 37 is provided along the long axis direction of the auxiliary side first header 34b, and at least a part of the gas pipe 37 is in contact with the auxiliary side first header 34b. Therefore, the heat of the gas pipe 37 through which the high-temperature and high-pressure gas refrigerant flows during the defrosting operation can be transferred to the auxiliary side first header 34b.
 そして、補助側第1ヘッダ34bに伝わった熱は、補助側第1ヘッダ34b近傍の除霜水に伝わり、除霜水の温度が高くなる。そのため、除霜運転が終了後、暖房運転が再開されても、除霜後に除霜水が溜まりやすい補助側第1熱交換体31bの下端部の補助側第1ヘッダ34b近傍の除霜水が再氷結するのを抑制することができる。その結果、暖房能力の低下および熱交換器30の破損を抑制することができる。また、ガス配管37は、補助側第1ヘッダ34bの下方に配置されており、除霜水の排水経路を邪魔しないため、排水性の悪化を防止することができる。 Then, the heat transferred to the auxiliary side first header 34b is transmitted to the defrost water in the vicinity of the auxiliary side first header 34b, and the temperature of the defrost water becomes high. Therefore, even if the heating operation is restarted after the defrosting operation is completed, the defrosting water in the vicinity of the auxiliary side first header 34b at the lower end of the auxiliary side first heat exchanger 31b where the defrosting water tends to collect after defrosting is generated. It is possible to suppress refreezing. As a result, it is possible to suppress a decrease in heating capacity and damage to the heat exchanger 30. Further, since the gas pipe 37 is arranged below the first header 34b on the auxiliary side and does not interfere with the drainage path of the defrosted water, deterioration of the drainage property can be prevented.
 なお、実施の形態2では、熱交換器30がトップフロー型の室外機10aに搭載された例を説明したが、それに限定されず、熱交換器30はサイドフロー型などその他の種類の室外機にも搭載することができる。 In the second embodiment, an example in which the heat exchanger 30 is mounted on the top-flow type outdoor unit 10a has been described, but the present invention is not limited to this, and the heat exchanger 30 is another type of outdoor unit such as the side-flow type. It can also be installed in.
 また、実施の形態2では、熱交換器30は、2つの熱交換体を有しているが、それに限定されず、1つあるいは3つ以上の熱交換体を有していてもよい。 Further, in the second embodiment, the heat exchanger 30 has two heat exchangers, but is not limited thereto, and may have one or three or more heat exchangers.
 図11は、実施の形態2に係る熱交換器30の変形例の除霜運転時の冷媒の流れを模式的に示す平面図である。図12は、実施の形態2に係る熱交換器30の変形例の除霜運転時の冷媒の流れを模式的に示す斜視図である。なお、図12は、図11の破線で囲まれた一方の熱交換器30のみを示しているが、もう一方の熱交換器30についても同様の構造である。 FIG. 11 is a plan view schematically showing the flow of the refrigerant during the defrosting operation of the modified example of the heat exchanger 30 according to the second embodiment. FIG. 12 is a perspective view schematically showing the flow of the refrigerant during the defrosting operation of the modified example of the heat exchanger 30 according to the second embodiment. Note that FIG. 12 shows only one heat exchanger 30 surrounded by the broken line in FIG. 11, but the other heat exchanger 30 has the same structure.
 熱交換器30が1つのみの熱交換体を有する場合は、図11および図12に示すように、主側熱交換体31a1の下端部に主側第1ヘッダ34aが設けられ、主側熱交換体31a1の上端部に主側第2ヘッダ35aが設けられている。また、補助側熱交換体31b1の下端部に補助側第1ヘッダ34bが設けられ、補助側熱交換体31b1の上端部に補助側第2ヘッダ35bが設けられており、主側列渡しヘッダ33aおよび補助側列渡しヘッダ33bは設けられない。そして、補助側第1ヘッダ34bに液配管36が接続され、主側第1ヘッダ34aにガス配管37が接続される。 When the heat exchanger 30 has only one heat exchanger, as shown in FIGS. 11 and 12, a main side first header 34a is provided at the lower end of the main side heat exchanger 31a1 to provide main side heat. A second header 35a on the main side is provided at the upper end of the exchanger 31a1. Further, an auxiliary side first header 34b is provided at the lower end portion of the auxiliary side heat exchanger 31b1, an auxiliary side second header 35b is provided at the upper end portion of the auxiliary side heat exchanger 31b1, and a main side row passing header 33a is provided. And the auxiliary side column passing header 33b is not provided. Then, the liquid pipe 36 is connected to the auxiliary side first header 34b, and the gas pipe 37 is connected to the main side first header 34a.
 熱交換器30が3つ以上の奇数の熱交換体を有する場合は、最も風上側の主側熱交換体の下端部に主側第1ヘッダ34aが設けられ、最も風上側の補助側熱交換体の下端部に補助側第1ヘッダ34bが設けられる。また、最も風下側の主側熱交換体の上端部に主側第2ヘッダ35aが設けられ、最も風下側の補助側熱交換体の上端部に補助側第2ヘッダ35bが設けられる。また、熱交換体の数-1個の主側列渡しヘッダ33aが設けられ、隣接する主側熱交換体同士を接続する。また、熱交換体の数-1個の補助側列渡しヘッダ33bが設けられ、隣接する補助側熱交換体同士を接続する。そして、補助側第1ヘッダ34bに液配管36が接続され、主側第1ヘッダ34aにガス配管37が接続される。 When the heat exchanger 30 has three or more odd heat exchangers, the main side first header 34a is provided at the lower end of the wind-upper main side heat exchanger, and the wind-up side auxiliary side heat exchange is provided. An auxiliary side first header 34b is provided at the lower end of the body. Further, the main side second header 35a is provided at the upper end portion of the main leeward side heat exchanger, and the auxiliary side second header 35b is provided at the upper end portion of the auxiliary side heat exchanger on the leeward side. Further, the number of heat exchangers-1 main side row passing header 33a is provided, and adjacent main side heat exchangers are connected to each other. In addition, the number of heat exchangers-1 auxiliary side row passing header 33b is provided to connect adjacent auxiliary heat exchangers to each other. Then, the liquid pipe 36 is connected to the auxiliary side first header 34b, and the gas pipe 37 is connected to the main side first header 34a.
 熱交換器30が4つ以上の偶数の熱交換体を有する場合は、最も風上側の主側熱交換体の下端部に主側第1ヘッダ34aが設けられ、最も風上側の補助側熱交換体の下端部に補助側第1ヘッダ34bが設けられる。また、最も風下側の主側熱交換体の下端部に主側第2ヘッダ35aが設けられ、最も風下側の補助側熱交換体の下端部に補助側第2ヘッダ35bが設けられる。また、熱交換体の数-1個の主側列渡しヘッダ33aが設けられ、隣接する主側熱交換体同士を接続する。また、熱交換体の数-1個の補助側列渡しヘッダ33bが設けられ、隣接する補助側熱交換体同士を接続する。そして、補助側第1ヘッダ34bに液配管36が接続され、主側第1ヘッダ34aにガス配管37が接続される。 When the heat exchanger 30 has four or more even heat exchangers, the main side first header 34a is provided at the lower end of the most windy side main side heat exchanger, and the most windy side auxiliary side heat exchange is provided. An auxiliary side first header 34b is provided at the lower end of the body. Further, the main side second header 35a is provided at the lower end of the most leeward main side heat exchanger, and the auxiliary side second header 35b is provided at the lower end of the most leeward auxiliary heat exchanger. Further, the number of heat exchangers-1 main side row passing header 33a is provided, and adjacent main side heat exchangers are connected to each other. In addition, the number of heat exchangers-1 auxiliary side row passing header 33b is provided to connect adjacent auxiliary heat exchangers to each other. Then, the liquid pipe 36 is connected to the auxiliary side first header 34b, and the gas pipe 37 is connected to the main side first header 34a.
 以上、実施の形態2に係る熱交換器30は、複数の扁平管38を有し、主熱交換体と該主熱交換体よりも扁平管38の数が少ない補助熱交換体とで構成された熱交換体を空気の流れ方向に沿って少なくとも一つ以上備えた熱交換器30であって、最も風上側の補助側熱交換体の下端部に設けられた第1ヘッダと、最も風上側の主側熱交換体の下端部に設けられた第2ヘッダと、第1ヘッダに接続され、蒸発器として機能する際に冷媒が流入し、凝縮器として機能する際に冷媒が流出する液配管36と、第2ヘッダに接続され、蒸発器として機能する際に冷媒が流出し、凝縮器として機能する際に冷媒が流入するガス配管37と、を備えている。そして、ガス配管37の少なくとも一部は第1ヘッダの長軸方向に沿って設けられており、ガス配管37は、少なくとも一部が第1ヘッダと接触している。 As described above, the heat exchanger 30 according to the second embodiment is composed of a main heat exchanger and an auxiliary heat exchanger in which the number of flat tubes 38 is smaller than that of the main heat exchanger, which has a plurality of flat tubes 38. A heat exchanger 30 having at least one heat exchanger provided along the direction of air flow, the first header provided at the lower end of the auxiliary heat exchanger on the most wind side, and the windmost side. A liquid pipe connected to the first header and the second header provided at the lower end of the main heat exchanger, in which the refrigerant flows in when functioning as an evaporator and the refrigerant flows out when functioning as a condenser. 36 and a gas pipe 37 connected to a second header, in which the refrigerant flows out when functioning as an evaporator and the refrigerant flows in when functioning as a condenser. At least a part of the gas pipe 37 is provided along the long axis direction of the first header, and at least a part of the gas pipe 37 is in contact with the first header.
 実施の形態2に係る熱交換器30によれば、ガス配管37の少なくとも一部は第1ヘッダ34の長軸方向に沿って設けられており、ガス配管37は、少なくとも一部が第1ヘッダ34と接触している。そのため、除霜運転時に高温高圧のガス冷媒が流れるガス配管37の熱を第1ヘッダ34に伝えることができる。そして、第1ヘッダ34に伝わった熱は、第1ヘッダ34近傍の除霜水に伝わり、除霜水50の温度が高くなる。そのため、除霜運転が終了後、暖房運転が再開されても、第1ヘッダ34近傍の除霜水50が再氷結するのを抑制することができる。その結果、その結果、暖房能力の低下および熱交換器30の破損を抑制することができる。 According to the heat exchanger 30 according to the second embodiment, at least a part of the gas pipe 37 is provided along the long axis direction of the first header 34, and at least a part of the gas pipe 37 is provided in the first header. It is in contact with 34. Therefore, the heat of the gas pipe 37 through which the high-temperature and high-pressure gas refrigerant flows during the defrosting operation can be transferred to the first header 34. Then, the heat transferred to the first header 34 is transmitted to the defrost water in the vicinity of the first header 34, and the temperature of the defrost water 50 becomes high. Therefore, even if the heating operation is restarted after the defrosting operation is completed, it is possible to prevent the defrosting water 50 in the vicinity of the first header 34 from refreezing. As a result, it is possible to suppress a decrease in heating capacity and damage to the heat exchanger 30.
 また、実施の形態2に係る熱交換器30において、ガス配管37は、第1ヘッダ34の下方に配置されている。 Further, in the heat exchanger 30 according to the second embodiment, the gas pipe 37 is arranged below the first header 34.
 実施の形態2に係る熱交換器30によれば、ガス配管37は、第1ヘッダ34の下方に配置されており、除霜水50の排水経路を邪魔しないため、排水性の悪化を防止することができる。 According to the heat exchanger 30 according to the second embodiment, the gas pipe 37 is arranged below the first header 34 and does not interfere with the drainage path of the defrost water 50, so that deterioration of the drainage property is prevented. be able to.
 また、実施の形態2に係る室外機10は、上記の熱交換器30を備えている。実施の形態2に係る室外機10によれば、上記の熱交換器30と同様の効果が得られる。 Further, the outdoor unit 10 according to the second embodiment includes the above heat exchanger 30. According to the outdoor unit 10 according to the second embodiment, the same effect as that of the heat exchanger 30 can be obtained.
 また、実施の形態2に係る空気調和装置100の室外機10は、上記の熱交換器30と、側面に吸込口16を有し上面に吹出口17を有するケーシング15と、熱交換器30の上側に設けられたファン13と、を備え、ケーシング15は、内部に形成された機械室を覆う側面パネル15bを熱交換器30の下側に有し、熱交換器30と側面パネル15bとの間には隙間19が形成されている。 Further, the outdoor unit 10 of the air conditioner 100 according to the second embodiment includes the heat exchanger 30, a casing 15 having a suction port 16 on the side surface and an outlet 17 on the upper surface, and the heat exchanger 30. A fan 13 provided on the upper side is provided, and the casing 15 has a side panel 15b for covering the machine room formed inside thereof under the heat exchanger 30, and the heat exchanger 30 and the side panel 15b are provided with each other. A gap 19 is formed between them.
 実施の形態2に係る空気調和装置100の室外機10によれば、熱交換器30と側面パネル15bとの間には隙間19が形成されている。この隙間19は、ガス配管37の取り回しスペースとなるとともに、熱交換器30で生じた除霜水の排水経路を確保するスペースとなる。そのため、この隙間19によって、ガス配管37を熱交換器30の補助側第1ヘッダ34bの長軸方向に沿って設けることを可能とし、また、排水性の悪化を防止することができる。 According to the outdoor unit 10 of the air conditioner 100 according to the second embodiment, a gap 19 is formed between the heat exchanger 30 and the side panel 15b. This gap 19 serves as a space for handling the gas pipe 37 and a space for securing a drainage path for the defrosted water generated in the heat exchanger 30. Therefore, the gap 19 makes it possible to provide the gas pipe 37 along the long axis direction of the auxiliary side first header 34b of the heat exchanger 30, and it is possible to prevent deterioration of drainage.
 また、実施の形態2に係る空気調和装置100は、上記の室外機10を備えている。実施の形態2に係る空気調和装置100によれば、上記の室外機10と同様の効果が得られる。 Further, the air conditioner 100 according to the second embodiment includes the above-mentioned outdoor unit 10. According to the air conditioner 100 according to the second embodiment, the same effect as that of the outdoor unit 10 can be obtained.
 実施の形態3.
 以下、実施の形態3について説明するが、実施の形態2と重複するものについては説明を省略し、実施の形態2と同じ部分または相当する部分には同じ符号を付す。
Embodiment 3.
Hereinafter, the third embodiment will be described, but the description thereof will be omitted for the parts overlapping with the second embodiment, and the same parts or the corresponding parts as those in the second embodiment will be designated by the same reference numerals.
 図13は、実施の形態3に係る熱交換器30の要部を模式的に示す拡大図で正面図である。
 実施の形態3に係る熱交換器30では、図13に示すように、ガス配管37の少なくとも一部が補助側第1ヘッダ34bの長軸方向に沿って設けられている。そして、ガス配管37は、補助側第1ヘッダ34bとその扁平管38が設けられている全領域34b1で接触している。また、ガス配管37は、補助側第1ヘッダ34bの下方に配置されている。
FIG. 13 is an enlarged front view schematically showing a main part of the heat exchanger 30 according to the third embodiment.
In the heat exchanger 30 according to the third embodiment, as shown in FIG. 13, at least a part of the gas pipe 37 is provided along the long axis direction of the auxiliary side first header 34b. The gas pipe 37 is in contact with the auxiliary side first header 34b in the entire area 34b1 in which the flat pipe 38 is provided. Further, the gas pipe 37 is arranged below the first header 34b on the auxiliary side.
 このように、ガス配管37を、補助側第1ヘッダ34bとその扁平管38が設けられている全領域34b1で接触させる。そうすることで、ガス配管37を補助側第1ヘッダ34bと一部しか接触させない場合と比べて、除霜運転時に高温高圧のガス冷媒が流れるガス配管37の熱を補助側第1ヘッダ34bにより伝えやすくすることができる。 In this way, the gas pipe 37 is brought into contact with the auxiliary side first header 34b and the entire area 34b1 in which the flat pipe 38 is provided. By doing so, the heat of the gas pipe 37 through which the high-temperature and high-pressure gas refrigerant flows during the defrosting operation is transferred by the auxiliary side first header 34b, as compared with the case where the gas pipe 37 is only partially in contact with the auxiliary side first header 34b. It can be made easier to convey.
 また、熱交換器30を成型する際に、熱交換器30の扁平管38とフィン39および各ヘッダのろう付けと同時にガス配管37を補助側第1ヘッダ34bとろう付けすることが可能となるため、熱交換器30の製造を簡略化することができる。さらに、ガス配管37が補助側第1ヘッダ34b寄りに配置されることから、熱交換器30の下部にスペースが形成され、サービススペースを確保することができる。 Further, when molding the heat exchanger 30, it is possible to braze the gas pipe 37 to the auxiliary side first header 34b at the same time as brazing the flat pipe 38 and fins 39 of the heat exchanger 30 and each header. Therefore, the production of the heat exchanger 30 can be simplified. Further, since the gas pipe 37 is arranged closer to the auxiliary side first header 34b, a space is formed in the lower part of the heat exchanger 30, and a service space can be secured.
 以上、実施の形態3に係る熱交換器30において、ガス配管37は、第1ヘッダとその扁平管38が設けられている全領域34b1で接触している。 As described above, in the heat exchanger 30 according to the third embodiment, the gas pipe 37 is in contact with the first header in the entire area 34b1 in which the flat pipe 38 is provided.
 実施の形態3に係る熱交換器30によれば、ガス配管37が第1ヘッダと一部しか接触していない場合と比べて、除霜運転時に高温高圧のガス冷媒が流れるガス配管37の熱を第1ヘッダにより伝えやすくすることができる。 According to the heat exchanger 30 according to the third embodiment, the heat of the gas pipe 37 through which the high-temperature and high-pressure gas refrigerant flows during the defrosting operation is compared with the case where the gas pipe 37 is only partially in contact with the first header. Can be easily conveyed by the first header.
 また、実施の形態3に係る室外機10は、上記の熱交換器30を備えている。実施の形態3に係る室外機10によれば、上記の熱交換器30と同様の効果が得られる。 Further, the outdoor unit 10 according to the third embodiment includes the above heat exchanger 30. According to the outdoor unit 10 according to the third embodiment, the same effect as that of the heat exchanger 30 can be obtained.
 また、実施の形態3に係る空気調和装置100は、上記の室外機10を備えている。実施の形態3に係る空気調和装置100によれば、上記の室外機10と同様の効果が得られる。 Further, the air conditioner 100 according to the third embodiment includes the above-mentioned outdoor unit 10. According to the air conditioner 100 according to the third embodiment, the same effect as that of the outdoor unit 10 can be obtained.
 実施の形態4.
 以下、実施の形態4について説明するが、実施の形態2と重複するものについては説明を省略し、実施の形態2と同じ部分または相当する部分には同じ符号を付す。
Embodiment 4.
Hereinafter, the fourth embodiment will be described, but the description of the parts overlapping with the second embodiment will be omitted, and the same parts or the corresponding parts as those of the second embodiment will be designated by the same reference numerals.
 図14は、実施の形態4に係る熱交換器30の要部を模式的に示す拡大図で正面図である。
 実施の形態4に係る熱交換器30では、図14に示すように、補助側第1ヘッダ34bと主側第1ヘッダ34aとが、高さ方向にずれており、補助側第1ヘッダ34bが主側第1ヘッダ34aよりも上側に配置されている。また、ガス配管37の少なくとも一部が補助側第1ヘッダ34bの長軸方向に沿って設けられている。そして、ガス配管37の少なくとも一部が補助側第1ヘッダ34bと接触している。また、ガス配管37は、補助側第1ヘッダ34bの下方に配置されている。そのため、ガス配管37の補助側第1ヘッダ34bと平行な部分(以下、平行部と称する)37bは、主側第1ヘッダ34aとほぼ同じ高さに配置されている。
FIG. 14 is an enlarged front view schematically showing a main part of the heat exchanger 30 according to the fourth embodiment.
In the heat exchanger 30 according to the fourth embodiment, as shown in FIG. 14, the auxiliary side first header 34b and the main side first header 34a are displaced in the height direction, and the auxiliary side first header 34b is It is arranged above the first header 34a on the main side. Further, at least a part of the gas pipe 37 is provided along the long axis direction of the auxiliary side first header 34b. Then, at least a part of the gas pipe 37 is in contact with the auxiliary side first header 34b. Further, the gas pipe 37 is arranged below the first header 34b on the auxiliary side. Therefore, the portion (hereinafter referred to as a parallel portion) 37b parallel to the auxiliary side first header 34b of the gas pipe 37 is arranged at substantially the same height as the main side first header 34a.
 このように、補助側第1ヘッダ34bを主側第1ヘッダ34aよりも上側に配置することで、熱交換器30の下部にスペースが形成され、サービススペースを確保することができる。また、ガス配管37の平行部37bを、主側第1ヘッダ34aとほぼ同じ高さに配置することができるため、ガス配管37を主側第1ヘッダ34aに対して垂直方向ではなく平行方向に接続することが可能となり、配管接続を簡略化することができる。 By arranging the auxiliary side first header 34b above the main side first header 34a in this way, a space is formed in the lower part of the heat exchanger 30 and a service space can be secured. Further, since the parallel portion 37b of the gas pipe 37 can be arranged at substantially the same height as the main side first header 34a, the gas pipe 37 is not perpendicular to the main side first header 34a but in the parallel direction. It becomes possible to connect, and it is possible to simplify the piping connection.
 以上、実施の形態4に係る熱交換器30において、第1ヘッダと第2ヘッダとが高さ方向にずれており、第1ヘッダが第2ヘッダよりも上側に配置されている。 As described above, in the heat exchanger 30 according to the fourth embodiment, the first header and the second header are displaced in the height direction, and the first header is arranged above the second header.
 実施の形態4に係る熱交換器30によれば、第1ヘッダを第2ヘッダよりも上側に配置することで、熱交換器30の下部にスペースが形成され、サービススペースを確保することができる。また、ガス配管37の第1ヘッダと平行な部分を、第1ヘッダとほぼ同じ高さに配置することができるため、ガス配管37を主側第1ヘッダ34aに対して垂直方向ではなく平行方向に接続することが可能となり、配管接続を簡略化することができる。 According to the heat exchanger 30 according to the fourth embodiment, by arranging the first header above the second header, a space is formed in the lower part of the heat exchanger 30 and a service space can be secured. .. Further, since the portion parallel to the first header of the gas pipe 37 can be arranged at substantially the same height as the first header, the gas pipe 37 is not perpendicular to the main side first header 34a but in the parallel direction. It becomes possible to connect to, and it is possible to simplify the piping connection.
 また、実施の形態4に係る室外機10は、上記の熱交換器30を備えている。実施の形態3に係る室外機10によれば、上記の熱交換器30と同様の効果が得られる。 Further, the outdoor unit 10 according to the fourth embodiment includes the above heat exchanger 30. According to the outdoor unit 10 according to the third embodiment, the same effect as that of the heat exchanger 30 can be obtained.
 また、実施の形態4に係る空気調和装置100は、上記の室外機10を備えている。実施の形態3に係る空気調和装置100によれば、上記の室外機10と同様の効果が得られる。 Further, the air conditioner 100 according to the fourth embodiment includes the above-mentioned outdoor unit 10. According to the air conditioner 100 according to the third embodiment, the same effect as that of the outdoor unit 10 can be obtained.
 実施の形態5.
 以下、実施の形態5について説明するが、実施の形態2と重複するものについては説明を省略し、実施の形態2と同じ部分または相当する部分には同じ符号を付す。
Embodiment 5.
Hereinafter, the fifth embodiment will be described, but the description thereof will be omitted for the parts that overlap with the second embodiment, and the same parts or the corresponding parts as those in the second embodiment will be designated by the same reference numerals.
 図15は、実施の形態5に係る熱交換器30の継手60を模式的に示す斜視図である。図16は、実施の形態5に係る熱交換器30の継手60を模式的に示す断面図である。
 実施の形態5に係る熱交換器30は、図15および図16に示す継手60を備えている。この継手60は、ガス配管37および主側第1ヘッダ34aと同じくアルミニウム製である。また、継手60の一側面には第一開口部60aが形成されており、継手60の上面には第二開口部60bが形成されている。そして、第一開口部60aと第二開口部60bとは、継手60の内部に形成されたL字状の連通穴60cによって連通している。なお、連通穴60cは、厳密にL字状でなくてもよい。
FIG. 15 is a perspective view schematically showing the joint 60 of the heat exchanger 30 according to the fifth embodiment. FIG. 16 is a cross-sectional view schematically showing the joint 60 of the heat exchanger 30 according to the fifth embodiment.
The heat exchanger 30 according to the fifth embodiment includes the joint 60 shown in FIGS. 15 and 16. The joint 60 is made of aluminum like the gas pipe 37 and the main side first header 34a. Further, a first opening 60a is formed on one side surface of the joint 60, and a second opening 60b is formed on the upper surface of the joint 60. The first opening 60a and the second opening 60b are communicated with each other by an L-shaped communication hole 60c formed inside the joint 60. The communication hole 60c does not have to be strictly L-shaped.
 そして、継手60の第一開口部60aおよび第二開口部60bに別体のガス配管37をそれぞれ挿入することで、ガス配管37をL字状にすることができる。つまり、ガス配管37は、その角部に継手60が設けられたL字状を有する。そのため、ガス配管37を主側第1ヘッダ34aに対して垂直方向に接続することが可能となる。ここで、継手60を用いずにガス配管37を主側第1ヘッダ34aに対して垂直方向に接続する場合、ガス配管37に曲げ加工を施す必要があり、また、ガス配管37を引き回すスペースも必要となる。 Then, by inserting a separate gas pipe 37 into the first opening 60a and the second opening 60b of the joint 60, the gas pipe 37 can be made into an L shape. That is, the gas pipe 37 has an L-shape having a joint 60 provided at its corner. Therefore, the gas pipe 37 can be connected in the direction perpendicular to the main side first header 34a. Here, when the gas pipe 37 is connected in the direction perpendicular to the main side first header 34a without using the joint 60, it is necessary to bend the gas pipe 37, and there is also a space for routing the gas pipe 37. You will need it.
 しかし、継手60を用いてガス配管37を主側第1ヘッダ34aに対して垂直方向に接続することで、ガス配管37を主側第1ヘッダ34aに対して垂直方向に接続する際にガス配管37に曲げ加工を施す必要がなくなり、配管接続を簡略化することができる。また、ガス配管37を引き回すスペースも不要となるため、熱交換器30の下部にスペースが形成され、サービススペースを確保することができる。 However, by connecting the gas pipe 37 in the direction perpendicular to the main side first header 34a using the joint 60, the gas pipe 37 is connected in the direction perpendicular to the main side first header 34a. It is not necessary to bend the 37, and the piping connection can be simplified. Further, since the space for routing the gas pipe 37 is not required, a space is formed in the lower part of the heat exchanger 30, and a service space can be secured.
 以上、実施の形態5に係る熱交換器30は、内部にL字状の連通穴60cが形成された継手60を備え、ガス配管37はL字状を有し、その角部に継手60が設けられている。 As described above, the heat exchanger 30 according to the fifth embodiment includes a joint 60 having an L-shaped communication hole 60c formed therein, the gas pipe 37 has an L-shape, and the joint 60 is provided at a corner thereof. It is provided.
 実施の形態5に係る熱交換器30によれば、ガス配管37は、その角部に継手60が設けられたL字状を有しているため、ガス配管37を第1ヘッダに対して垂直方向に接続する際にガス配管37に曲げ加工を施す必要がなくなり、配管接続を簡略化することができる。また、ガス配管37を引き回すスペースも不要となるため、熱交換器30の下部にスペースが形成され、サービススペースを確保することができる。 According to the heat exchanger 30 according to the fifth embodiment, since the gas pipe 37 has an L-shape having a joint 60 provided at its corner, the gas pipe 37 is perpendicular to the first header. It is not necessary to bend the gas pipe 37 when connecting in the direction, and the pipe connection can be simplified. Further, since the space for routing the gas pipe 37 is not required, a space is formed in the lower part of the heat exchanger 30, and a service space can be secured.
 また、実施の形態5に係る室外機10は、上記の熱交換器30を備えている。実施の形態3に係る室外機10によれば、上記の熱交換器30と同様の効果が得られる。 Further, the outdoor unit 10 according to the fifth embodiment includes the above heat exchanger 30. According to the outdoor unit 10 according to the third embodiment, the same effect as that of the heat exchanger 30 can be obtained.
 また、実施の形態5に係る空気調和装置100は、上記の室外機10を備えている。実施の形態3に係る空気調和装置100によれば、上記の室外機10と同様の効果が得られる。 Further, the air conditioner 100 according to the fifth embodiment includes the above-mentioned outdoor unit 10. According to the air conditioner 100 according to the third embodiment, the same effect as that of the outdoor unit 10 can be obtained.
 10 室外機、10a 室外機、11 圧縮機、12 流路切替装置、13 ファン、15 ケーシング、15a 柱部、15b 側面パネル、16 吸込口、17 吹出口、18 ファンガード、19 隙間、20 室内機、21 絞り装置、22 室内熱交換器、23 室内ファン、30 熱交換器、30a 主熱交換部、30b 補助熱交換部、31 第1熱交換体、31a 主側第1熱交換体、31a1 主側熱交換体、31b 補助側第1熱交換体、31b1 :補助側熱交換体、32 第2熱交換体、32a 主側第2熱交換体、32b 補助側第2熱交換体、33 列渡しヘッダ、33a 主側列渡しヘッダ、33b 補助側列渡しヘッダ、34 第1ヘッダ、34a 主側第1ヘッダ、34a1 開口部、34b 補助側第1ヘッダ、34b1 全領域、35 第2ヘッダ、35a 主側第2ヘッダ、35b 補助側第2ヘッダ、36 液配管、37 ガス配管、37b 平行部、38 扁平管、39 フィン、41 屈曲部、42 屈曲部、60 継手、60a 第一開口部、60b 第二開口部、60c 連通穴、100 空気調和装置。 10 outdoor unit, 10a outdoor unit, 11 compressor, 12 flow path switching device, 13 fan, 15 casing, 15a pillar, 15b side panel, 16 suction port, 17 outlet, 18 fan guard, 19 gap, 20 indoor unit , 21 throttle device, 22 indoor heat exchanger, 23 indoor fan, 30 heat exchanger, 30a main heat exchanger, 30b auxiliary heat exchanger, 31 first heat exchanger, 31a main side first heat exchanger, 31a1 main Side heat exchanger, 31b Auxiliary side 1st heat exchanger, 31b1: Auxiliary side heat exchanger, 32 2nd heat exchanger, 32a Main side 2nd heat exchanger, 32b Auxiliary side 2nd heat exchanger, 33 Row passing Header, 33a Main side row passing header, 33b Auxiliary side row passing header, 34 1st header, 34a Main side 1st header, 34a1 Opening, 34b Auxiliary side 1st header, 34b1 All area, 35 2nd header, 35a Main Side 2nd header, 35b Auxiliary side 2nd header, 36 liquid pipe, 37 gas pipe, 37b parallel part, 38 flat pipe, 39 fins, 41 bent part, 42 bent part, 60 joint, 60a first opening, 60b first Two openings, 60c communication hole, 100 air exchanger.

Claims (9)

  1.  複数の扁平管を有する熱交換体を空気の流れ方向に沿って少なくとも一つ以上備えた、室外機に搭載される熱交換器であって、
     最も風上側の熱交換体の下端部に設けられる第1ヘッダと、
     最も風下側の熱交換体の上端部または下端部に設けられる第2ヘッダと、
     前記第1ヘッダに接続され、蒸発器として機能する際に冷媒が流入し、凝縮器として機能する際に冷媒が流出する液配管と、
     前記第2ヘッダに接続され、蒸発器として機能する際に冷媒が流出し、凝縮器として機能する際に冷媒が流入するガス配管と、を備え、
     前記ガス配管の少なくとも一部は前記第1ヘッダの長軸方向に沿って設けられており、
     前記ガス配管は、少なくとも一部が前記第1ヘッダと接触している
     熱交換器。
    A heat exchanger mounted on an outdoor unit provided with at least one heat exchanger having a plurality of flat tubes along the direction of air flow.
    The first header provided at the lower end of the heat exchanger on the windward side,
    A second header provided at the upper end or lower end of the most leeward heat exchanger,
    A liquid pipe connected to the first header, in which the refrigerant flows in when functioning as an evaporator, and outflows when the refrigerant functions as a condenser.
    A gas pipe connected to the second header, from which the refrigerant flows out when functioning as an evaporator and into which the refrigerant flows when functioning as a condenser, is provided.
    At least a part of the gas pipe is provided along the long axis direction of the first header.
    The gas pipe is a heat exchanger in which at least a part of the gas pipe is in contact with the first header.
  2.  複数の扁平管を有し、主熱交換体と該主熱交換体よりも前記扁平管の数が少ない補助熱交換体とで構成された熱交換体を空気の流れ方向に沿って少なくとも一つ以上備えた、室外機に搭載される熱交換器であって、
     最も風上側の補助側熱交換体の下端部に設けられた第1ヘッダと、
     最も風上側の主側熱交換体の下端部に設けられた第2ヘッダと、
     前記第1ヘッダに接続され、蒸発器として機能する際に冷媒が流入し、凝縮器として機能する際に冷媒が流出する液配管と、
     前記第2ヘッダに接続され、蒸発器として機能する際に冷媒が流出し、凝縮器として機能する際に冷媒が流入するガス配管と、を備え、
     前記ガス配管の少なくとも一部は前記第1ヘッダの長軸方向に沿って設けられており、
     前記ガス配管は、少なくとも一部が前記第1ヘッダと接触している
     熱交換器。
    At least one heat exchanger having a plurality of flat tubes and composed of a main heat exchanger and an auxiliary heat exchanger having a smaller number of flat tubes than the main heat exchanger along the air flow direction. It is a heat exchanger mounted on the outdoor unit equipped with the above.
    The first header provided at the lower end of the auxiliary heat exchanger on the windward side, and
    The second header provided at the lower end of the main heat exchanger on the windward side,
    A liquid pipe connected to the first header, in which the refrigerant flows in when functioning as an evaporator, and outflows when the refrigerant functions as a condenser.
    A gas pipe connected to the second header, from which the refrigerant flows out when functioning as an evaporator and into which the refrigerant flows when functioning as a condenser, is provided.
    At least a part of the gas pipe is provided along the long axis direction of the first header.
    The gas pipe is a heat exchanger in which at least a part of the gas pipe is in contact with the first header.
  3.  前記第1ヘッダと前記第2ヘッダとが高さ方向にずれており、
     前記第1ヘッダが前記第2ヘッダよりも上側に配置されている
     請求項2に記載の熱交換器。
    The first header and the second header are displaced in the height direction.
    The heat exchanger according to claim 2, wherein the first header is arranged above the second header.
  4.  内部にL字状の連通穴が形成された継手を備え、
     前記ガス配管は、
     L字状を有し、その角部に前記継手が設けられている
     請求項1または2に記載の熱交換器。
    Equipped with a joint with an L-shaped communication hole formed inside,
    The gas pipe
    The heat exchanger according to claim 1 or 2, which has an L shape and is provided with the joint at a corner thereof.
  5.  前記ガス配管は、前記第1ヘッダの下方に配置されている
     請求項1~4のいずれか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 4, wherein the gas pipe is arranged below the first header.
  6.  前記ガス配管は、前記第1ヘッダとその前記扁平管が設けられている全領域で接触している
     請求項1~5のいずれか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 5, wherein the gas pipe is in contact with the first header in the entire area where the flat pipe is provided.
  7.  請求項1~6のいずれか一項に記載の熱交換器を備えた
     室外機。
    An outdoor unit provided with the heat exchanger according to any one of claims 1 to 6.
  8.  前記熱交換器と、
     側面に吸込口を有し上面に吹出口を有するケーシングと、
     前記熱交換器の上側に設けられたファンと、を備え、
     前記ケーシングは、内部に形成された機械室を覆う側面パネルを前記熱交換器の下側に有し、
     前記熱交換器と前記側面パネルとの間には隙間が形成されている
     請求項7に記載の室外機。
    With the heat exchanger
    A casing with a suction port on the side surface and an outlet on the upper surface,
    A fan provided on the upper side of the heat exchanger is provided.
    The casing has a side panel underneath the heat exchanger that covers the machine room formed inside.
    The outdoor unit according to claim 7, wherein a gap is formed between the heat exchanger and the side panel.
  9.  請求項7または8に記載の室外機を備えた
     空気調和装置。
    An air conditioner comprising the outdoor unit according to claim 7 or 8.
PCT/JP2020/020346 2020-05-22 2020-05-22 Heat exchanger, outdoor unit comprising heat exchanger, and air-conditioning device comprising outdoor unit WO2021234953A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/020346 WO2021234953A1 (en) 2020-05-22 2020-05-22 Heat exchanger, outdoor unit comprising heat exchanger, and air-conditioning device comprising outdoor unit
JP2022524841A JP7357785B2 (en) 2020-05-22 2020-05-22 Heat exchanger, outdoor unit equipped with heat exchanger, and air conditioner equipped with outdoor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020346 WO2021234953A1 (en) 2020-05-22 2020-05-22 Heat exchanger, outdoor unit comprising heat exchanger, and air-conditioning device comprising outdoor unit

Publications (1)

Publication Number Publication Date
WO2021234953A1 true WO2021234953A1 (en) 2021-11-25

Family

ID=78708390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020346 WO2021234953A1 (en) 2020-05-22 2020-05-22 Heat exchanger, outdoor unit comprising heat exchanger, and air-conditioning device comprising outdoor unit

Country Status (2)

Country Link
JP (1) JP7357785B2 (en)
WO (1) WO2021234953A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233572A1 (en) * 2022-06-01 2023-12-07 三菱電機株式会社 Heat exchanger, and refrigeration cycle device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130312436A1 (en) * 2012-05-22 2013-11-28 Nordyne Llc Heat pump with improved defrost cycle and method of defrosting a heat exchanger
CN106918167A (en) * 2015-12-24 2017-07-04 杭州三花微通道换热器有限公司 Heat-exchanger rig and the refrigerant vapor compression system with the heat-exchanger rig
JP2018096638A (en) * 2016-12-15 2018-06-21 日野自動車株式会社 Condenser
US10048024B1 (en) * 2017-04-26 2018-08-14 Joshua D. Sole Two-phase fluid flow distributor and method for parallel microchannel evaporators and condensers
WO2019239446A1 (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Air conditioner outdoor unit and air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130312436A1 (en) * 2012-05-22 2013-11-28 Nordyne Llc Heat pump with improved defrost cycle and method of defrosting a heat exchanger
CN106918167A (en) * 2015-12-24 2017-07-04 杭州三花微通道换热器有限公司 Heat-exchanger rig and the refrigerant vapor compression system with the heat-exchanger rig
JP2018096638A (en) * 2016-12-15 2018-06-21 日野自動車株式会社 Condenser
US10048024B1 (en) * 2017-04-26 2018-08-14 Joshua D. Sole Two-phase fluid flow distributor and method for parallel microchannel evaporators and condensers
WO2019239446A1 (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Air conditioner outdoor unit and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233572A1 (en) * 2022-06-01 2023-12-07 三菱電機株式会社 Heat exchanger, and refrigeration cycle device

Also Published As

Publication number Publication date
JP7357785B2 (en) 2023-10-06
JPWO2021234953A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
CN112204312B (en) Outdoor unit of air conditioner and air conditioner
CN110612425B (en) Heat exchanger
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
KR101558717B1 (en) Heat exchanger and air conditioner equipped with same
CN111656125A (en) Heat exchanger or refrigerating device with heat exchanger
WO2019004139A1 (en) Heat exchanger
WO2021234958A1 (en) Heat exchanger, outdoor unit equipped with heat exchanger, and air conditioner equipped with outdoor unit
WO2021234953A1 (en) Heat exchanger, outdoor unit comprising heat exchanger, and air-conditioning device comprising outdoor unit
JP6521116B1 (en) Refrigeration apparatus having a heat exchanger or heat exchanger
US20200200477A1 (en) Heat exchanger and heat exchange unit including the same
JP2019184192A (en) Outdoor unit
JP6925393B2 (en) Outdoor unit of air conditioner and air conditioner
JP2018138826A (en) Air conditioner
WO2019151217A1 (en) Heat exchanger
US11802719B2 (en) Refrigeration cycle apparatus
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
WO2021234957A1 (en) Heat exchanger and air conditioner comprising said heat exchanger
US20200200476A1 (en) Heat exchanger
WO2021095452A1 (en) Heat exchanger and air conditioner
JP7258151B2 (en) Heat exchanger and refrigeration cycle equipment
JP7137092B2 (en) Heat exchanger
WO2023199466A1 (en) Heat exchanger, and air conditioning device including same
JP7080395B2 (en) Heat exchanger unit and refrigeration cycle device
JP7011187B2 (en) Refrigerant shunt and air conditioner
JP7089187B2 (en) Heat exchanger and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936747

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936747

Country of ref document: EP

Kind code of ref document: A1