JP2010223464A - Evaporator - Google Patents

Evaporator Download PDF

Info

Publication number
JP2010223464A
JP2010223464A JP2009069301A JP2009069301A JP2010223464A JP 2010223464 A JP2010223464 A JP 2010223464A JP 2009069301 A JP2009069301 A JP 2009069301A JP 2009069301 A JP2009069301 A JP 2009069301A JP 2010223464 A JP2010223464 A JP 2010223464A
Authority
JP
Japan
Prior art keywords
refrigerant
header
heat exchange
refrigerant outlet
header portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009069301A
Other languages
Japanese (ja)
Other versions
JP5194279B2 (en
Inventor
Naohisa Higashiyama
直久 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2009069301A priority Critical patent/JP5194279B2/en
Publication of JP2010223464A publication Critical patent/JP2010223464A/en
Application granted granted Critical
Publication of JP5194279B2 publication Critical patent/JP5194279B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporator capable of preventing variations of discharge air temperature which is the temperature of air passed through a heat exchange core part. <P>SOLUTION: Inside of a refrigerant outlet header 6 of the evaporator 1 is divided by a partition member 23 into a first space 24 positioned on the side of a refrigerant inlet and refrigerant outlet 8 and a second space 25 positioned on the side opposite to the first space 24. Inside of a refrigerant inlet header is communicated with inside of the second space 25 of the refrigerant outlet header 6. Heat exchange pipes 14 connected to the refrigerant outlet header 6 and a second intermediate heater 11 are divided into a first heat exchange pipe group 28 leading to the first space 24 of the refrigerant outlet header 6 and the second intermediate header 11 and a second heat exchange pipe group 29 leading to the second space 25 of the refrigerant outlet header 6 and the second intermediate header 11. Part of a refrigerant made to flow into the refrigerant inlet header is made to flow within the second intermediate header 11 through the second space 25 of the refrigerant outlet header 6 and the heat exchange pipes 14 of the second heat exchange pipe group 29. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、たとえば自動車に搭載されるカーエアコンに好適に使用されるエバポレータに関する。   The present invention relates to an evaporator suitably used for, for example, a car air conditioner mounted on an automobile.

たとえば高性能化および小型軽量化の要求を満たすエバポレータとして、本出願人は、先に、冷媒入口ヘッダ部と、冷媒入口ヘッダ部に対して通風方向に並んで配置された冷媒出口ヘッダ部と、冷媒入口ヘッダ部と間隔をおいて配置された第1中間ヘッダ部と、第1中間ヘッダ部に対して通風方向に並ぶとともに冷媒出口ヘッダ部と間隔をおいて配置された第2中間ヘッダ部と、冷媒入口ヘッダ部および第1中間ヘッダ部の長さ方向に間隔をおいて配置されるとともに両端部が冷媒入口ヘッダ部および第1中間ヘッダ部に接続された複数の熱交換管と、冷媒出口ヘッダ部および第2中間ヘッダ部の長さ方向に間隔をおいて配置されるとともに両端部が冷媒出口ヘッダ部および第2中間ヘッダ部に接続された複数の熱交換管とを備えており、冷媒入口ヘッダ部の一端部に冷媒入口が設けられるとともに、冷媒出口ヘッダ部における冷媒入口と同一端部に冷媒出口が設けられ、冷媒入口から冷媒入口ヘッダ部内に流入した冷媒が、第1中間ヘッダ部、第2中間ヘッダ部および冷媒出口ヘッダ部の順に流れて冷媒出口から流出するエバポレータを提案した(特許文献1参照)。   For example, as an evaporator that satisfies the demand for higher performance and smaller size and lighter, the applicant firstly, a refrigerant inlet header portion, a refrigerant outlet header portion arranged in the ventilation direction with respect to the refrigerant inlet header portion, A first intermediate header portion disposed at a distance from the refrigerant inlet header portion; a second intermediate header portion arranged in the ventilation direction with respect to the first intermediate header portion and disposed at a distance from the refrigerant outlet header portion; A plurality of heat exchange pipes arranged at intervals in the length direction of the refrigerant inlet header portion and the first intermediate header portion and having both ends connected to the refrigerant inlet header portion and the first intermediate header portion; A plurality of heat exchange pipes arranged at intervals in the length direction of the header portion and the second intermediate header portion and having both ends connected to the refrigerant outlet header portion and the second intermediate header portion; A refrigerant inlet is provided at one end of the inlet header portion, a refrigerant outlet is provided at the same end as the refrigerant inlet in the refrigerant outlet header portion, and the refrigerant flowing from the refrigerant inlet into the refrigerant inlet header portion is the first intermediate header portion. The evaporator which flows in order of the 2nd middle header part and the refrigerant outlet header part, and flows out from the refrigerant outlet was proposed (refer to patent documents 1).

特許文献1記載のエバポレータの場合、エバポレータを通過する空気の冷媒入口ヘッダ部および冷媒出口ヘッダ部の長さ方向の風速分布が均一な場合、優れた性能を得られる。   In the case of the evaporator described in Patent Document 1, excellent performance can be obtained when the air velocity distribution in the length direction of the refrigerant inlet header portion and the refrigerant outlet header portion of the air passing through the evaporator is uniform.

ところで、カーエアコンのエバポレータは、通常、空気通路を有するケーシング内に配置されて用いられる。当該ケーシングには、たとえば上流側端部が空気導入口に連なった第1部分と、上流側端部にエバポレータが配置され、かつ第1部分での空気流れ方向と直角をなす方向に空気が流れる第2部分と、第1部分と第2部分とを通じさせ、かつ第1部分を流れてきた空気の流れ方向を変えて第2部分に流入させる連通部分とを有し、空気導入口から導入されかつ第1部分を流れてきた空気が連通部分で流れ方向を変えて第2部分に流入し、エバポレータの熱交換コア部を通過するようになされているものがある。このようなケーシングの場合、ケーシングの空気通路の連通部分における第1部分の近傍部分では風速が低く、第1部分から遠ざかるにつれて風速が高くなる傾向にあり、エバポレータの熱交換コア部の幅方向において風速分布にばらつきが生じる。その結果、風速が高い部分では、熱交換管内を流れる冷媒が蒸発しやすくなり、熱交換管の内部圧力が高まって液相の冷媒が流入しにくくなって液相の冷媒が不足する。したがって、風速の高い部分では、エバポレータの熱交換コア部を通過してきた空気の温度である吐気温が高くなり、当該吐気温が熱交換コア部の幅方向にばらついて冷却性能が低下する。   By the way, an evaporator of a car air conditioner is usually used by being disposed in a casing having an air passage. In the casing, for example, a first portion whose upstream end is connected to an air inlet and an evaporator are disposed at the upstream end, and air flows in a direction perpendicular to the air flow direction in the first portion. A second portion, and a communication portion that passes through the first portion and the second portion and changes the flow direction of the air flowing through the first portion and flows into the second portion, and is introduced from the air introduction port. In some cases, the air that has flowed through the first portion changes the flow direction at the communicating portion, flows into the second portion, and passes through the heat exchange core portion of the evaporator. In the case of such a casing, the wind speed is low in the vicinity of the first part in the communication part of the air passage of the casing, and the wind speed tends to increase as the distance from the first part increases. In the width direction of the heat exchange core part of the evaporator Variations in wind speed distribution. As a result, at a portion where the wind speed is high, the refrigerant flowing in the heat exchange tube is likely to evaporate, the internal pressure of the heat exchange tube is increased, and the liquid phase refrigerant is difficult to flow in, and the liquid phase refrigerant is insufficient. Therefore, in the part where the wind speed is high, the air discharge temperature, which is the temperature of the air that has passed through the heat exchange core part of the evaporator, becomes high, the air discharge temperature varies in the width direction of the heat exchange core part, and the cooling performance decreases.

そして、特許文献1記載のエバポレータの場合も、冷媒入口に冷媒を送り込む冷媒流入パイプおよび冷媒出口から冷媒を送り出す冷媒流出パイプの配置の都合上、熱交換コア部における冷媒入口および冷媒出口が設けられた側で風速が低くなり、これと反対側で風速が高くなることがある。   Also in the case of the evaporator described in Patent Document 1, the refrigerant inlet and the refrigerant outlet in the heat exchange core are provided for the convenience of the arrangement of the refrigerant inflow pipe that sends the refrigerant to the refrigerant inlet and the refrigerant outflow pipe that sends the refrigerant from the refrigerant outlet. The wind speed may be lower on the other side, and the wind speed may be higher on the opposite side.

特開2006−183994号公報JP 2006-183994 A

この発明の目的は、上記問題を解決し、熱交換コア部における冷媒入口および冷媒出口が設けられた側で風速が低くなり、これと反対側で風速が高くなった場合であっても、熱交換コア部を通過してきた空気の温度である吐気温のばらつきを防止しうるエバポレータを提供することにある。   The object of the present invention is to solve the above-mentioned problem, even when the wind speed is low on the side where the refrigerant inlet and the refrigerant outlet are provided in the heat exchange core and the wind speed is high on the opposite side. An object of the present invention is to provide an evaporator that can prevent variations in the temperature of air discharged, which is the temperature of air that has passed through an exchange core.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)冷媒入口ヘッダ部と、冷媒入口ヘッダ部に対して通風方向に並んで配置された冷媒出口ヘッダ部と、冷媒入口ヘッダ部と間隔をおいて配置された第1中間ヘッダ部と、第1中間ヘッダ部に対して通風方向に並ぶとともに冷媒出口ヘッダ部と間隔をおいて配置された第2中間ヘッダ部と、冷媒入口ヘッダ部および第1中間ヘッダ部の長さ方向に間隔をおいて配置されるとともに両端部が冷媒入口ヘッダ部および第1中間ヘッダ部に接続された複数の熱交換管と、冷媒出口ヘッダ部および第2中間ヘッダ部の長さ方向に間隔をおいて配置されるとともに両端部が冷媒出口ヘッダ部および第2中間ヘッダ部に接続された複数の熱交換管とを備えており、冷媒入口ヘッダ部の一端部に冷媒入口が設けられるとともに、冷媒出口ヘッダ部における冷媒入口と同一端部に冷媒出口が設けられ、冷媒入口から冷媒入口ヘッダ部内に流入した冷媒が、第1中間ヘッダ部、第2中間ヘッダ部および冷媒出口ヘッダ部の順に流れて冷媒出口から流出するエバポレータであって、
冷媒入口ヘッダ部内に流入した冷媒の一部が、冷媒出口ヘッダ部を経て、冷媒入口および冷媒出口とは反対側に位置する熱交換管内に入り、当該熱交換管を通って第2中間ヘッダ部内に流れるようになされているエバポレータ。
1) a refrigerant inlet header, a refrigerant outlet header arranged side by side in the ventilation direction with respect to the refrigerant inlet header, a first intermediate header arranged at a distance from the refrigerant inlet header, and a first A second intermediate header portion arranged in the ventilation direction with respect to the intermediate header portion and spaced from the refrigerant outlet header portion, and arranged at intervals in the length direction of the refrigerant inlet header portion and the first intermediate header portion. And a plurality of heat exchange pipes whose both ends are connected to the refrigerant inlet header portion and the first intermediate header portion, and the refrigerant outlet header portion and the second intermediate header portion are arranged at intervals in the length direction. A refrigerant outlet header section and a plurality of heat exchange tubes connected to the second intermediate header section at both ends, a refrigerant inlet is provided at one end of the refrigerant inlet header section, and a refrigerant in the refrigerant outlet header section A refrigerant outlet is provided at the same end as the port, and the refrigerant flowing into the refrigerant inlet header from the refrigerant inlet flows in the order of the first intermediate header, the second intermediate header, and the refrigerant outlet header and then flows out of the refrigerant outlet. An evaporator,
Part of the refrigerant that has flowed into the refrigerant inlet header part passes through the refrigerant outlet header part, enters the heat exchange pipe located on the opposite side of the refrigerant inlet and the refrigerant outlet, passes through the heat exchange pipe, and enters the second intermediate header part. An evaporator that is made to flow through.

2)冷媒出口ヘッダ部内が、仕切部材によって、冷媒入口および冷媒出口側に位置する第1空間と、冷媒入口および冷媒出口とは反対側に位置する第2空間とに区画され、冷媒入口ヘッダ部内と冷媒出口ヘッダ部の第2空間内とが通じさせられ、冷媒出口ヘッダ部および第2中間ヘッダ部に接続された熱交換管が、冷媒出口ヘッダ部の第1空間および第2中間ヘッダ部に通じ、かつ第2中間ヘッダ部側から冷媒出口ヘッダ部側に冷媒を流す第1熱交換管群と、冷媒出口ヘッダ部の第2空間および第2中間ヘッダ部に通じ、かつ冷媒出口ヘッダ部側から第2中間ヘッダ部側に冷媒を流す第2熱交換管群とに分けられている上記1)記載のエバポレータ。   2) The inside of the refrigerant outlet header is partitioned by the partition member into a first space located on the refrigerant inlet and refrigerant outlet side and a second space located on the opposite side of the refrigerant inlet and refrigerant outlet. And the heat exchange pipe connected to the refrigerant outlet header portion and the second intermediate header portion are connected to the first space and the second intermediate header portion of the refrigerant outlet header portion. And the first heat exchange tube group for flowing the refrigerant from the second intermediate header portion side to the refrigerant outlet header portion side, the second space of the refrigerant outlet header portion and the second intermediate header portion, and the refrigerant outlet header portion side The evaporator according to the above 1), which is divided into a second heat exchange tube group for flowing a refrigerant from the first to the second intermediate header portion side.

3)冷媒出口ヘッダ部の第2空間の長さが、冷媒出口ヘッダ部の長さの1/8以下である上記2)記載のエバポレータ。   3) The evaporator according to 2) above, wherein the length of the second space of the refrigerant outlet header is 1/8 or less of the length of the refrigerant outlet header.

4)第1中間ヘッダ部と第2中間ヘッダ部とが、冷媒入口および冷媒出口が設けられている側において通じさせられている上記2)または3)記載のエバポレータ。   4) The evaporator according to 2) or 3) above, wherein the first intermediate header portion and the second intermediate header portion are communicated on the side where the refrigerant inlet and the refrigerant outlet are provided.

5)冷媒入口ヘッダ部内が、分流制御壁によって、冷媒入口を通して冷媒が流入する第1の空間と、熱交換管が通じる第2の空間とに区画されており、冷媒入口ヘッダ部の第1空間内と第2空間内とが、分流制御壁における冷媒入口とは反対側の端部に形成された連通部により通じさせられ、分流制御壁に、複数の分流調整用貫通穴が長さ方向に間隔をおいて形成されている上記1)〜4)のうちのいずれかに記載のエバポレータ。   5) The refrigerant inlet header section is partitioned by a flow dividing control wall into a first space where the refrigerant flows through the refrigerant inlet and a second space where the heat exchange pipe communicates, and the first space of the refrigerant inlet header section The inside of the second space and the inside of the second space are communicated with each other by a communication portion formed at an end of the flow dividing control wall opposite to the refrigerant inlet, and a plurality of flow dividing adjustment through holes are provided in the length direction on the flow dividing control wall. The evaporator according to any one of 1) to 4), which is formed at intervals.

上記1)および2)のエバポレータによれば、冷媒入口ヘッダ部内に流入した冷媒の一部が、冷媒出口ヘッダ部を経て、冷媒入口および冷媒出口とは反対側に位置する熱交換管内に入り、当該熱交換管を通って第2中間ヘッダ部内に流れるようになされているので、熱交換コア部における冷媒入口および冷媒出口が設けられた側で風速が低くなり、これと反対側で風速が高くなったとしても、冷媒入口および冷媒出口が設けられた側と反対側での液相冷媒の不足が抑制される。したがって、熱交換コア部における風速の高い部分を通過してきた空気の温度である吐気温の上昇が抑制され、その結果当該吐気温の熱交換コア部の幅方向のばらつきが防止され、冷却性能が向上する。   According to the evaporators 1) and 2), a part of the refrigerant flowing into the refrigerant inlet header part passes through the refrigerant outlet header part and enters the heat exchange pipe located on the opposite side of the refrigerant inlet and the refrigerant outlet, Since the air flows through the heat exchange pipe into the second intermediate header, the wind speed is low on the side where the refrigerant inlet and the refrigerant outlet are provided in the heat exchange core, and the wind speed is high on the opposite side. Even if it becomes, the shortage of the liquid phase refrigerant on the side opposite to the side where the refrigerant inlet and the refrigerant outlet are provided is suppressed. Therefore, an increase in the discharge temperature, which is the temperature of the air that has passed through the portion of the heat exchange core portion where the wind speed is high, is suppressed, and as a result, variation in the width direction of the heat exchange core portion of the discharge temperature is prevented, and the cooling performance is improved. improves.

上記2)のエバポレータによれば、比較的簡単な構成で、冷媒入口ヘッダ部内に流入した冷媒の一部を、冷媒出口ヘッダ部を経て、冷媒入口および冷媒出口とは反対側に位置する熱交換管内に導き、当該熱交換管を通って第2中間ヘッダ部内に流すことが可能になる。   According to the evaporator of the above 2), with a relatively simple configuration, a part of the refrigerant that has flowed into the refrigerant inlet header portion passes through the refrigerant outlet header portion, and heat exchange is located on the opposite side of the refrigerant inlet and the refrigerant outlet. It becomes possible to guide into the pipe and flow through the heat exchange pipe and into the second intermediate header portion.

上記3)のエバポレータによれば、冷媒入口ヘッダ部側と冷媒出口ヘッダ部側のそれぞれに最適に冷媒を分配することができる。   According to the evaporator 3), the refrigerant can be optimally distributed to the refrigerant inlet header portion side and the refrigerant outlet header portion side.

上記4)のエバポレータによれば、第1中間ヘッダ部と第2中間ヘッダ部とが、冷媒入口および冷媒出口が設けられている側において通じさせられているので、第1中間ヘッダ部内から第2中間ヘッダ部内に流入した冷媒が、慣性力により冷媒入口および冷媒出口とは反対側に流れやすくなり、第1熱交換管群における冷媒入口および冷媒出口とは反対側に位置する熱交換管内に多くの冷媒が流入しやすくなる。しかしながら、この場合であっても、上記2)のように構成されていると、第2熱交換管群の熱交換管を通って第2中間ヘッダ部内に流入した冷媒が冷媒入口および冷媒出口側に流れるので、第1中間ヘッダ部内から第2中間ヘッダ部内に流入した冷媒の冷媒入口および冷媒出口とは反対側への流れが打ち消され、第1熱交換管群における冷媒入口および冷媒出口とは反対側に位置する熱交換管内に多くの冷媒が流入することが防止される。したがって、第1熱交換管群の全熱交換管内に冷媒が均一に流入する。   According to the evaporator 4), the first intermediate header portion and the second intermediate header portion are communicated on the side where the refrigerant inlet and the refrigerant outlet are provided. The refrigerant that has flowed into the intermediate header portion easily flows to the side opposite to the refrigerant inlet and the refrigerant outlet due to the inertial force, and much in the heat exchange pipe located on the side opposite to the refrigerant inlet and the refrigerant outlet in the first heat exchange pipe group. It becomes easier for the refrigerant to flow in. However, even in this case, when configured as in 2) above, the refrigerant that has flowed into the second intermediate header through the heat exchange pipe of the second heat exchange pipe group is on the refrigerant inlet and refrigerant outlet sides. Therefore, the flow of the refrigerant flowing into the second intermediate header portion from the first intermediate header portion to the opposite side of the refrigerant inlet and the refrigerant outlet is canceled out, and what are the refrigerant inlet and the refrigerant outlet in the first heat exchange pipe group? Many refrigerants are prevented from flowing into the heat exchange pipe located on the opposite side. Therefore, the refrigerant flows uniformly into all the heat exchange tubes of the first heat exchange tube group.

上記5)のエバポレータによれば、分流制御壁の影響により、冷媒入口ヘッダ部の長さ方向の冷媒の分布を均一化することができ、冷媒入口ヘッダ部と第1中間ヘッダ部とに接続された熱交換管に均等に冷媒を供給することができる。   According to the evaporator of the above 5), the distribution of the refrigerant in the longitudinal direction of the refrigerant inlet header can be made uniform due to the influence of the branch flow control wall, and is connected to the refrigerant inlet header and the first intermediate header. The refrigerant can be evenly supplied to the heat exchange tubes.

この発明の実施形態1のエバポレータの全体構成を示す一部切り欠き斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway perspective view showing an overall configuration of an evaporator according to Embodiment 1 of the present invention. 図1の一部を省略したA−A線断面図である。It is the sectional view on the AA line which omitted a part of Drawing 1. 図1の一部を省略したB−B線断面図である。It is the BB sectional drawing which abbreviate | omitted a part of FIG. この発明の実施形態2のエバポレータの全体構成を示す図2相当の図である。It is a figure equivalent to FIG. 2 which shows the whole structure of the evaporator of Embodiment 2 of this invention. この発明の実施形態2のエバポレータの全体構成を示す図3相当の図である。It is a figure equivalent to FIG. 3 which shows the whole structure of the evaporator of Embodiment 2 of this invention. この発明の実施形態3のエバポレータの全体構成を示す図2相当の図である。It is a figure equivalent to FIG. 2 which shows the whole structure of the evaporator of Embodiment 3 of this invention. この発明の実施形態3のエバポレータの全体構成を示す図3相当の図である。It is a figure equivalent to FIG. 3 which shows the whole structure of the evaporator of Embodiment 3 of this invention.

以下、この発明の実施形態を、図面を参照して説明する。なお、全図面を通じて同一部分および同一物には同一符号を付して重複する説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same part and the same thing through all drawings, and the overlapping description is abbreviate | omitted.

以下の説明において、通風方向下流側(図1に矢印Xで示す方向)を前、これと反対側を後というものとする。また、各図面の上下、左右を上下、左右というものとする。   In the following description, the downstream side in the ventilation direction (the direction indicated by the arrow X in FIG. 1) is referred to as the front, and the opposite side is referred to as the rear. In addition, the upper and lower sides and the left and right sides of each drawing are referred to as up and down and left and right.

また、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

実施形態1
この実施形態は図1〜図3に示すものである。
Embodiment 1
This embodiment is shown in FIGS.

図1〜図3はこの発明の実施形態1のエバポレータの全体構成を示す。   1 to 3 show the overall configuration of an evaporator according to Embodiment 1 of the present invention.

図1〜図3において、エバポレータ(1)は、上下方向に間隔をおいて配置された左右方向にのびるアルミニウム製第1ヘッダタンク(2)およびアルミニウム製第2ヘッダタンク(3)と、両ヘッダタンク(2)(3)間に設けられた熱交換コア部(4)とを備えている。   1 to 3, the evaporator (1) includes an aluminum first header tank (2) and an aluminum second header tank (3) extending in the left-right direction and spaced apart from each other in the vertical direction, and both headers. And a heat exchange core part (4) provided between the tanks (2) and (3).

第1ヘッダタンク(2)は、前側(通風方向下流側)に位置する冷媒入口ヘッダ部(5)と、冷媒入口ヘッダ部(5)の後側(通風方向上流側)に並んで配置され、かつ冷媒入口ヘッダ部(5)に一体化された冷媒出口ヘッダ部(6)とを備えている。冷媒入口ヘッダ部(5)の右端部に冷媒入口(7)が設けられ、冷媒出口ヘッダ部(6)の右端部に冷媒出口(8)が設けられている。第2ヘッダタンク(3)は、冷媒入口ヘッダ部(5)の下方に間隔をおいて配置された第1中間ヘッダ部(9)と、第1中間ヘッダ部の後側に並ぶとともに冷媒出口ヘッダ部(6)の下方に間隔をおいて配置され、かつ第1中間ヘッダ部(9)に一体化された第2中間ヘッダ部(11)とを備えている。ここでは、冷媒入口ヘッダ部(5)と冷媒出口ヘッダ部(6)は第1ヘッダタンク(2)内を垂直状の仕切壁(12)により前後2つの空間に仕切ることにより形成され、第1中間ヘッダ部(9)と第2中間ヘッダ部(11)とは第2ヘッダタンク(3)内を垂直状の仕切壁(13)により前後2つの空間に仕切ることにより形成されている。   The first header tank (2) is arranged side by side on the refrigerant inlet header portion (5) located on the front side (downstream side in the ventilation direction) and on the rear side (upstream side in the ventilation direction) of the refrigerant inlet header portion (5), And a refrigerant outlet header portion (6) integrated with the refrigerant inlet header portion (5). A refrigerant inlet (7) is provided at the right end of the refrigerant inlet header (5), and a refrigerant outlet (8) is provided at the right end of the refrigerant outlet header (6). The second header tank (3) has a first intermediate header portion (9) disposed below the refrigerant inlet header portion (5) at an interval, and is arranged on the rear side of the first intermediate header portion and is arranged at the refrigerant outlet header. And a second intermediate header portion (11) which is disposed below the portion (6) at an interval and integrated with the first intermediate header portion (9). Here, the refrigerant inlet header portion (5) and the refrigerant outlet header portion (6) are formed by dividing the inside of the first header tank (2) into two front and rear spaces by a vertical partition wall (12). The intermediate header portion (9) and the second intermediate header portion (11) are formed by dividing the inside of the second header tank (3) into two front and rear spaces by a vertical partition wall (13).

熱交換コア部(4)は、幅方向を前後方向に向けるとともに左右方向に間隔をおいて配置された複数のアルミニウム製扁平状熱交換管(14)からなる熱交換管列(15)(16)が、前後方向に並んで複数列、ここでは2列配置され、各熱交換管列(15)(16)の隣接する熱交換管(14)どうしの間の通風間隙および左右両端の熱交換管(14)の外側に、それぞれ前後両熱交換管列(15)(16)の熱交換管(14)に跨るようにアルミニウム製コルゲートフィン(17)が配置されて熱交換管(14)にろう付され、左右両端のコルゲートフィン(17)の外側にそれぞれアルミニウム製サイドプレート(18)が配置されてコルゲートフィン(17)にろう付されることにより構成されている。   The heat exchange core section (4) has a heat exchange tube array (15) (16) composed of a plurality of flat aluminum heat exchange tubes (14) with the width direction facing in the front-rear direction and spaced in the left-right direction. ) Are arranged in a plurality of rows in the front-rear direction, here two rows, the ventilation gap between adjacent heat exchange tubes (14) of each heat exchange tube row (15) (16) and heat exchange at both left and right ends Aluminum corrugated fins (17) are arranged outside the pipe (14) so as to straddle the heat exchange pipes (14) of both the front and rear heat exchange pipe rows (15) and (16). An aluminum side plate (18) is disposed outside the corrugated fins (17) at both the left and right ends and brazed to the corrugated fins (17).

前側熱交換管列(15)の熱交換管(14)は第1ヘッダタンク(2)の冷媒入口ヘッダ部(5)と第2ヘッダタンク(3)の第1中間ヘッダ部(9)との間に配置され、その上下両端部は冷媒入口ヘッダ部(5)および第1中間ヘッダ部(9)に接続されている。後側熱交換管列(16)の熱交換管(14)は第1ヘッダタンク(2)の冷媒出口ヘッダ部(6)と第2ヘッダタンク(3)の第2中間ヘッダ部(11)との間に配置され、その上下両端部は冷媒出口ヘッダ部(6)および第2中間ヘッダ部(11)接続されている。   The heat exchange pipe (14) of the front heat exchange pipe row (15) is formed between the refrigerant inlet header part (5) of the first header tank (2) and the first intermediate header part (9) of the second header tank (3). The both upper and lower ends are connected to the refrigerant inlet header (5) and the first intermediate header (9). The heat exchange pipe (14) of the rear heat exchange pipe row (16) includes a refrigerant outlet header section (6) of the first header tank (2) and a second intermediate header section (11) of the second header tank (3). The upper and lower ends are connected to the refrigerant outlet header (6) and the second intermediate header (11).

第1ヘッダタンク(2)の冷媒入口ヘッダ部(5)内は、水平状の分流制御壁(19)により上下方向(熱交換管(14)の長さ方向)に2つの空間(5a)(5b)に仕切られている。なお、冷媒入口(7)は上側空間(5a)内に通じている。冷媒入口ヘッダ部(5)内の下側空間(5b)が熱交換管(14)に通じている。分流制御壁(19)の左端部には、冷媒入口ヘッダ部(5)内の上下両空間(5a)(5b)を通じさせる連通穴(21)(連通部)が設けられている。また、分流制御壁(19)には、複数の分流調整用貫通穴(22)が左右方向に間隔をおいて形成されている。   The refrigerant inlet header (5) of the first header tank (2) has two spaces (5a) (up and down) (horizontal direction of the heat exchange pipe (14)) by a horizontal diversion control wall (19). It is divided into 5b). The refrigerant inlet (7) communicates with the upper space (5a). The lower space (5b) in the refrigerant inlet header (5) communicates with the heat exchange pipe (14). A communication hole (21) (communication portion) through which both the upper and lower spaces (5a) and (5b) in the refrigerant inlet header portion (5) are provided is provided at the left end portion of the flow dividing control wall (19). A plurality of flow dividing adjustment through holes (22) are formed in the flow dividing control wall (19) at intervals in the left-right direction.

第1ヘッダタンク(2)の冷媒出口ヘッダ部(6)内は、垂直板状の仕切部材(23)により、右側(冷媒出口側)に位置する第1空間(24)と、左側に位置する第2空間(25)とに区画されている。第2空間(25)の左右方向の長さは、冷媒出口ヘッダ部(6)の左右方向の長さの1/8以下であることが好ましい。冷媒出口ヘッダ部(6)の第2空間(25)内と、冷媒入口ヘッダ部(5)の上側空間(5a)内とは、仕切壁(12)に形成された連通口(26)を介して通じさせられている。   The refrigerant outlet header portion (6) of the first header tank (2) is located on the left side and the first space (24) located on the right side (refrigerant outlet side) by the vertical plate-like partition member (23). It is partitioned into a second space (25). The length in the left-right direction of the second space (25) is preferably 1/8 or less of the length in the left-right direction of the refrigerant outlet header portion (6). The inside of the second space (25) of the refrigerant outlet header (6) and the inside of the upper space (5a) of the refrigerant inlet header (5) are connected via a communication port (26) formed in the partition wall (12). Through.

第2ヘッダタンク(3)の第1中間ヘッダ部(9)内と第2中間ヘッダ部(11)内とは、第2ヘッダタンク(3)の右端部に設けられた連通部(27)を介して通じさせられている。   In the first intermediate header portion (9) and the second intermediate header portion (11) of the second header tank (3), a communication portion (27) provided at the right end portion of the second header tank (3) is provided. Is communicated through.

後側熱交換管列(16)の熱交換管(14)は、第1ヘッダタンク(2)の冷媒出口ヘッダ部(6)の第1空間(24)および第2ヘッダタンク(3)の第2中間ヘッダ部(11)に通じ、かつ第2中間ヘッダ部(11)側から冷媒出口ヘッダ部(6)側に冷媒を流す第1熱交換管群(28)と、第1ヘッダタンクの(2)の冷媒出口ヘッダ部(6)の第2空間(25)および第2ヘッダタンク(3)の第2中間ヘッダ部(11)に通じ、かつ冷媒出口ヘッダ部(6)側から第2中間ヘッダ部(11)側に冷媒を流す第2熱交換管群(29)とに分けられている。第1熱交換管群(28)が冷媒出口(8)側に位置するとともに第2熱交換管群(29)が冷媒出口(8)とは反対側に位置している。   The heat exchange pipes (14) of the rear heat exchange pipe row (16) are connected to the first space (24) of the refrigerant outlet header (6) of the first header tank (2) and the second header tank (3). 2 a first heat exchange tube group (28) that leads to the intermediate header portion (11) and flows the refrigerant from the second intermediate header portion (11) side to the refrigerant outlet header portion (6) side; 2) is connected to the second space (25) of the refrigerant outlet header portion (6) and the second intermediate header portion (11) of the second header tank (3), and the second intermediate portion from the refrigerant outlet header portion (6) side. It is divided into a second heat exchange tube group (29) for flowing the refrigerant to the header portion (11) side. The first heat exchange tube group (28) is located on the refrigerant outlet (8) side, and the second heat exchange tube group (29) is located on the opposite side to the refrigerant outlet (8).

上述したエバポレータ(1)は、圧縮機および冷媒冷却器としてのコンデンサとともにフロン系冷媒を使用する冷凍サイクルを構成し、カーエアコンとして車両、たとえば自動車に搭載される。そして、圧縮機、コンデンサおよび膨張弁を通過した気液混相の2相冷媒が、冷媒入口(7)を通って第1ヘッダタンク(2)の冷媒入口ヘッダ部(5)の上側空間(5a)内に入る。冷媒入口ヘッダ部(5)の上側空間(5a)内に入った冷媒は左方に流れ、連通穴(21)を通って下側空間(5b)内に入るとともに、分流調整用貫通穴(22)を通って下側空間(5b)内に入る。また、冷媒入口ヘッダ部(5)の上側空間(5a)内に入った冷媒の一部は、連通口(26)を通って冷媒出口ヘッダ部(6)の第2空間(25)内に入る。   The evaporator (1) described above constitutes a refrigeration cycle that uses a chlorofluorocarbon refrigerant together with a compressor and a condenser as a refrigerant cooler, and is mounted on a vehicle, for example, an automobile, as a car air conditioner. The gas-liquid mixed-phase two-phase refrigerant that has passed through the compressor, the condenser, and the expansion valve passes through the refrigerant inlet (7), and the upper space (5a) of the refrigerant inlet header portion (5) of the first header tank (2). Get inside. The refrigerant that has entered the upper space (5a) of the refrigerant inlet header (5) flows to the left, passes through the communication hole (21), enters the lower space (5b), and has a through hole for diversion adjustment (22 ) To enter the lower space (5b). Further, a part of the refrigerant that has entered the upper space (5a) of the refrigerant inlet header (5) enters the second space (25) of the refrigerant outlet header (6) through the communication port (26). .

冷媒入口ヘッダ部(5)の下側空間(5b)内に入った冷媒は、分流して前側熱交換管列(15)の熱交換管(14)内に流入する。熱交換管(14)内に流入した冷媒は、熱交換管(14)内を下方に流れて第2ヘッダタンク(3)の第1中間ヘッダ部(9)内に入る。第1中間ヘッダ部(9)内に入った冷媒は右方に流れ、右端部の連通部(27)を通って第2中間ヘッダ部(11)内に入り、第2中間ヘッダ部(11)内を左方に流れる。また、冷媒出口ヘッダ部(6)の第2空間(25)内に入った冷媒は、後側熱交換管列(16)の第2熱交換管群(29)の熱交換管(14)内に流入する。後側熱交換管列(16)の第2熱交換管群(29)の熱交換管(14)内に流入した冷媒は、熱交換管(14)内を下方に流れて第2ヘッダタンク(3)の第2中間ヘッダ部(11)内に入り、第2中間ヘッダ部(11)内を右方に流れる。   The refrigerant that has entered the lower space (5b) of the refrigerant inlet header (5) is divided and flows into the heat exchange pipe (14) of the front heat exchange pipe row (15). The refrigerant flowing into the heat exchange pipe (14) flows downward in the heat exchange pipe (14) and enters the first intermediate header portion (9) of the second header tank (3). The refrigerant that has entered the first intermediate header portion (9) flows to the right, passes through the communication portion (27) at the right end portion, enters the second intermediate header portion (11), and enters the second intermediate header portion (11). Flows left inside. In addition, the refrigerant that has entered the second space (25) of the refrigerant outlet header (6) flows into the heat exchange pipe (14) of the second heat exchange pipe group (29) of the rear heat exchange pipe row (16). Flow into. The refrigerant that has flowed into the heat exchange pipe (14) of the second heat exchange pipe group (29) of the rear heat exchange pipe row (16) flows downward in the heat exchange pipe (14) to the second header tank ( It enters the second intermediate header part (11) of 3) and flows to the right in the second intermediate header part (11).

第2ヘッダタンク(3)の第2中間ヘッダ部(11)内に入った冷媒は、分流して後側熱交換管列(16)の第1熱交換管群(28)の熱交換管(14)内に流入する。熱交換管(14)内に流入した冷媒は、熱交換管(14)内を上方に流れて第1ヘッダタンク(2)の冷媒出口ヘッダ部(6)内に入る。冷媒出口ヘッダ部(6)内に入った冷媒は右方に流れ、冷媒出口(8)を通って流出する。   The refrigerant that has entered the second intermediate header portion (11) of the second header tank (3) is diverted and the heat exchange tubes (28) of the first heat exchange tube group (28) of the rear heat exchange tube row (16) ( 14) It flows into. The refrigerant flowing into the heat exchange pipe (14) flows upward in the heat exchange pipe (14) and enters the refrigerant outlet header (6) of the first header tank (2). The refrigerant that has entered the refrigerant outlet header (6) flows to the right and flows out through the refrigerant outlet (8).

そして、冷媒が前側熱交換管列(15)の熱交換管(14)内、および後側熱交換管列(16)の熱交換管(14)内を流れる間に、熱交換コア部(4)の通風間隙を通過する空気(図1矢印X参照)と熱交換をし、冷媒は気相となって流出する。   While the refrigerant flows in the heat exchange pipe (14) of the front heat exchange pipe row (15) and in the heat exchange pipe (14) of the rear heat exchange pipe row (16), the heat exchange core section (4 ) And the air passing through the ventilation gap (see arrow X in FIG. 1), and the refrigerant flows out as a gas phase.

ここで、エバポレータ(1)を通過する空気の風速が、左側で高くなっているとともに、右側で低くなっていたとしても、冷媒入口ヘッダ部(5)の上側空間(5a)内に入った冷媒の一部が、連通口(26)を通って冷媒出口ヘッダ部(6)の第2空間(25)内に入り、後側熱交換管列(16)の第2熱交換管群(29)の熱交換管(14)を通って第2中間ヘッダ部(11)に流れるので、後側熱交換管列(16)の風速が高くなっている側の第2熱交換管群(29)の熱交換管(14)を流れる液相冷媒の量が不足が防止される。したがって、熱交換コア部(4)における風速の高い部分を通過した空気の温度である吐気温の上昇が抑制され、その結果当該吐気温の左右方向のばらつきが防止されて、冷却性能が向上する。   Here, even if the wind speed of the air passing through the evaporator (1) is high on the left side and low on the right side, the refrigerant that has entered the upper space (5a) of the refrigerant inlet header (5) Partially enters the second space (25) of the refrigerant outlet header (6) through the communication port (26), and the second heat exchange tube group (29) of the rear heat exchange tube row (16). Of the second heat exchange pipe group (29) on the side where the wind speed of the rear heat exchange pipe row (16) is high. Insufficient amount of liquid-phase refrigerant flowing through the heat exchange pipe (14) is prevented. Therefore, an increase in the discharged air temperature, which is the temperature of the air that has passed through the high wind speed portion in the heat exchange core part (4), is suppressed, and as a result, variation in the left and right direction of the discharged air temperature is prevented, and the cooling performance is improved. .

また、第1中間ヘッダ部(9)内から連通部(27)を通って第2中間ヘッダ部(11)内に流入した冷媒は、慣性力により左側に流れやすくなり、後側熱交換管列(16)の第1熱交換管群(28)における左側に位置する熱交換管(14)内に多くの冷媒が流入しやすくなる。しかしながら、冷媒出口ヘッダ部(6)の第2空間(25)から後側熱交換管列(16)の第2熱交換管群(29)の熱交換管(14)を通って第2中間ヘッダ部(11)内に流入した冷媒が右側に流れるので、第1中間ヘッダ部(9)内から第2中間ヘッダ部(11)内に流入した冷媒の左向きの流れが打ち消され、第1熱交換管群(28)における左側(冷媒入口(7)および冷媒出口(8)とは反対側)に位置する熱交換管(14)内に多くの冷媒が流入することが防止される。したがって、第1熱交換管群(28)の全熱交換管(14)内に液相冷媒が均一に流入することになり、これによりエバポレータ(1)の熱交換コア部(4)における第1熱交換管群(28)が存在する部分を通過する空気の温度である吐気温の左右方向でのばらつきを低減することができる。   In addition, the refrigerant that has flowed from the first intermediate header portion (9) into the second intermediate header portion (11) through the communication portion (27) is likely to flow to the left side due to inertial force, and the rear heat exchange tube row Many refrigerants easily flow into the heat exchange pipe (14) located on the left side in the first heat exchange pipe group (28) of (16). However, the second intermediate header passes from the second space (25) of the refrigerant outlet header (6) through the heat exchange pipe (14) of the second heat exchange pipe group (29) of the rear heat exchange pipe row (16). Since the refrigerant flowing into the section (11) flows to the right side, the leftward flow of the refrigerant flowing from the first intermediate header section (9) into the second intermediate header section (11) is canceled, and the first heat exchange It is possible to prevent a large amount of refrigerant from flowing into the heat exchange pipe (14) located on the left side of the tube group (28) (the side opposite to the refrigerant inlet (7) and the refrigerant outlet (8)). Accordingly, the liquid-phase refrigerant will uniformly flow into the total heat exchange pipe (14) of the first heat exchange pipe group (28), and thereby the first heat exchange core section (4) of the evaporator (1). It is possible to reduce the variation in the left-right direction of the discharged air temperature, which is the temperature of the air passing through the portion where the heat exchange tube group (28) exists.

実施形態2
この実施形態は図4および図5に示すものである。
Embodiment 2
This embodiment is shown in FIG. 4 and FIG.

図4および図5はこの発明の実施形態2のエバポレータの全体構成を示す。   4 and 5 show the overall configuration of an evaporator according to Embodiment 2 of the present invention.

この実施形態2のエバポレータ(30)の場合、第1ヘッダタンク(2)の冷媒出口ヘッダ部(6)の第1空間(24)内が、水平状の第2の分流制御壁(31)により上下方向に2つの空間(24a)(24b)に仕切られている。冷媒出口(8)は上側空間(24a)に通じている。第2の分流制御壁(31)には、複数の分流調整用貫通穴(32)が左右方向に間隔をおいて形成されている。   In the case of the evaporator (30) of the second embodiment, the first space (24) of the refrigerant outlet header (6) of the first header tank (2) is surrounded by the horizontal second flow dividing control wall (31). It is partitioned into two spaces (24a) and (24b) in the vertical direction. The refrigerant outlet (8) communicates with the upper space (24a). A plurality of flow dividing adjustment through holes (32) are formed in the second flow dividing control wall (31) at intervals in the left-right direction.

その他の構成は上記実施形態1のエバポレータ(1)と同様である。   Other configurations are the same as those of the evaporator (1) of the first embodiment.

実施形態3
この実施形態は図6および図7に示すものである。
Embodiment 3
This embodiment is shown in FIG. 6 and FIG.

図6および図7はこの発明の実施形態3のエバポレータの全体構成を示す。   6 and 7 show the overall configuration of an evaporator according to Embodiment 3 of the present invention.

この実施形態3のエバポレータ(35)の場合、第1ヘッダタンク(2)の冷媒入口ヘッダ部(5)の上側空間(5a)内と冷媒出口ヘッダ部(6)の第2空間(25)内とは、第1ヘッダタンク(2)の左端部に設けられた連通部(36)により通じさせられている。   In the case of the evaporator (35) of Embodiment 3, the inside of the upper space (5a) of the refrigerant inlet header portion (5) of the first header tank (2) and the second space (25) of the refrigerant outlet header portion (6). Is communicated by a communication part (36) provided at the left end of the first header tank (2).

その他の構成は上記実施形態2のエバポレータ(30)と同様である。   Other configurations are the same as those of the evaporator (30) of the second embodiment.

この発明によるエバポレータは、カーエアコンを構成する冷凍サイクルのエバポレータとして好適に用いられる。   The evaporator according to the present invention is suitably used as an evaporator of a refrigeration cycle constituting a car air conditioner.

(1)(30)(35):エバポレータ
(5):冷媒入口ヘッダ部
(6):冷媒出口ヘッダ部
(7):冷媒入口
(8):冷媒出口
(9):第1中間ヘッダ部
(11):第2中間ヘッダ部
(14):熱交換管
(19):分流制御壁
(21):連通穴(連通部)
(22):分流調整用貫通穴
(23):仕切部材
(24):第1空間
(25):第2空間
(28):第1熱交換管群
(29):第2熱交換管群
(1) (30) (35): Evaporator
(5): Refrigerant inlet header
(6): Refrigerant outlet header
(7): Refrigerant inlet
(8): Refrigerant outlet
(9): First intermediate header
(11): Second intermediate header
(14): Heat exchange pipe
(19): Shunt control wall
(21): Communication hole (communication part)
(22): Through hole for diversion adjustment
(23): Partition member
(24): First space
(25): Second space
(28): First heat exchange tube group
(29): Second heat exchange tube group

Claims (5)

冷媒入口ヘッダ部と、冷媒入口ヘッダ部に対して通風方向に並んで配置された冷媒出口ヘッダ部と、冷媒入口ヘッダ部と間隔をおいて配置された第1中間ヘッダ部と、第1中間ヘッダ部に対して通風方向に並ぶとともに冷媒出口ヘッダ部と間隔をおいて配置された第2中間ヘッダ部と、冷媒入口ヘッダ部および第1中間ヘッダ部の長さ方向に間隔をおいて配置されるとともに両端部が冷媒入口ヘッダ部および第1中間ヘッダ部に接続された複数の熱交換管と、冷媒出口ヘッダ部および第2中間ヘッダ部の長さ方向に間隔をおいて配置されるとともに両端部が冷媒出口ヘッダ部および第2中間ヘッダ部に接続された複数の熱交換管とを備えており、冷媒入口ヘッダ部の一端部に冷媒入口が設けられるとともに、冷媒出口ヘッダ部における冷媒入口と同一端部に冷媒出口が設けられ、冷媒入口から冷媒入口ヘッダ部内に流入した冷媒が、第1中間ヘッダ部、第2中間ヘッダ部および冷媒出口ヘッダ部の順に流れて冷媒出口から流出するエバポレータであって、
冷媒入口ヘッダ部内に流入した冷媒の一部が、冷媒出口ヘッダ部を経て、冷媒入口および冷媒出口とは反対側に位置する熱交換管内に入り、当該熱交換管を通って第2中間ヘッダ部内に流れるようになされているエバポレータ。
A refrigerant inlet header part, a refrigerant outlet header part arranged side by side in the ventilation direction with respect to the refrigerant inlet header part, a first intermediate header part spaced from the refrigerant inlet header part, and a first intermediate header The second intermediate header part arranged in the ventilation direction with respect to the part and spaced from the refrigerant outlet header part, and arranged in the length direction of the refrigerant inlet header part and the first intermediate header part. And a plurality of heat exchange pipes whose both ends are connected to the refrigerant inlet header and the first intermediate header, and the refrigerant outlet header and the second intermediate header are arranged at intervals in the length direction and both ends. And a plurality of heat exchange pipes connected to the refrigerant outlet header portion and the second intermediate header portion, a refrigerant inlet is provided at one end portion of the refrigerant inlet header portion, and a refrigerant inlet in the refrigerant outlet header portion is provided. The evaporator is provided with a refrigerant outlet at the same end, and the refrigerant flowing into the refrigerant inlet header portion from the refrigerant inlet flows in the order of the first intermediate header portion, the second intermediate header portion, and the refrigerant outlet header portion, and flows out from the refrigerant outlet. Because
Part of the refrigerant that has flowed into the refrigerant inlet header part passes through the refrigerant outlet header part, enters the heat exchange pipe located on the opposite side of the refrigerant inlet and the refrigerant outlet, passes through the heat exchange pipe, and enters the second intermediate header part. An evaporator that is made to flow through.
冷媒出口ヘッダ部内が、仕切部材によって、冷媒入口および冷媒出口側に位置する第1空間と、冷媒入口および冷媒出口とは反対側に位置する第2空間とに区画され、冷媒入口ヘッダ部内と冷媒出口ヘッダ部の第2空間内とが通じさせられ、冷媒出口ヘッダ部および第2中間ヘッダ部に接続された熱交換管が、冷媒出口ヘッダ部の第1空間および第2中間ヘッダ部に通じ、かつ第2中間ヘッダ部側から冷媒出口ヘッダ部側に冷媒を流す第1熱交換管群と、冷媒出口ヘッダ部の第2空間および第2中間ヘッダ部に通じ、かつ冷媒出口ヘッダ部側から第2中間ヘッダ部側に冷媒を流す第2熱交換管群とに分けられている請求項1記載のエバポレータ。 The inside of the refrigerant outlet header is partitioned by a partition member into a first space located on the refrigerant inlet and the refrigerant outlet side and a second space located on the opposite side of the refrigerant inlet and the refrigerant outlet. The heat exchange pipe connected to the refrigerant outlet header part and the second intermediate header part is communicated with the first space and the second intermediate header part of the refrigerant outlet header part. And the first heat exchange tube group for flowing the refrigerant from the second intermediate header portion side to the refrigerant outlet header portion side, the second space of the refrigerant outlet header portion and the second intermediate header portion, and the second outlet from the refrigerant outlet header portion side. 2. The evaporator according to claim 1, wherein the evaporator is divided into a second heat exchange tube group that allows the refrigerant to flow to the intermediate header portion side. 冷媒出口ヘッダ部の第2空間の長さが、冷媒出口ヘッダ部の長さの1/8以下である請求項2記載のエバポレータ。 The evaporator according to claim 2, wherein the length of the second space of the refrigerant outlet header portion is 1/8 or less of the length of the refrigerant outlet header portion. 第1中間ヘッダ部と第2中間ヘッダ部とが、冷媒入口および冷媒出口が設けられている側において通じさせられている請求項2または3記載のエバポレータ。 The evaporator according to claim 2 or 3, wherein the first intermediate header portion and the second intermediate header portion are communicated on a side where the refrigerant inlet and the refrigerant outlet are provided. 冷媒入口ヘッダ部内が、分流制御壁によって、冷媒入口を通して冷媒が流入する第1の空間と、熱交換管が通じる第2の空間とに区画されており、冷媒入口ヘッダ部の第1空間内と第2空間内とが、分流制御壁における冷媒入口とは反対側の端部に形成された連通部により通じさせられ、分流制御壁に、複数の分流調整用貫通穴が長さ方向に間隔をおいて形成されている請求項1〜4のうちのいずれかに記載のエバポレータ。 The refrigerant inlet header portion is partitioned by a flow dividing control wall into a first space into which the refrigerant flows through the refrigerant inlet and a second space through which the heat exchange pipe communicates, and the first space in the refrigerant inlet header portion The inside of the second space is communicated by a communication portion formed at the end of the flow dividing control wall opposite to the refrigerant inlet, and a plurality of flow dividing adjustment through holes are spaced in the length direction on the flow dividing control wall. The evaporator according to any one of claims 1 to 4, wherein the evaporator is formed as described above.
JP2009069301A 2009-03-23 2009-03-23 Evaporator Expired - Fee Related JP5194279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009069301A JP5194279B2 (en) 2009-03-23 2009-03-23 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009069301A JP5194279B2 (en) 2009-03-23 2009-03-23 Evaporator

Publications (2)

Publication Number Publication Date
JP2010223464A true JP2010223464A (en) 2010-10-07
JP5194279B2 JP5194279B2 (en) 2013-05-08

Family

ID=43040840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009069301A Expired - Fee Related JP5194279B2 (en) 2009-03-23 2009-03-23 Evaporator

Country Status (1)

Country Link
JP (1) JP5194279B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455088A (en) * 2010-10-25 2012-05-16 昭和电工株式会社 Evaporator
JP2012167880A (en) * 2011-02-15 2012-09-06 Showa Denko Kk Evaporator
WO2016113825A1 (en) * 2015-01-14 2016-07-21 株式会社デンソー Refrigerant evaporator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3798535A4 (en) * 2018-05-23 2022-03-02 Sanhua Holding Group Co., Ltd. Thermal management system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528476A (en) * 1978-08-22 1980-02-29 Nippon Denso Co Ltd Heat exchanger
JPH08156577A (en) * 1994-12-06 1996-06-18 Nippondenso Co Ltd Air conditioner
JP2002147990A (en) * 2000-11-09 2002-05-22 Zexel Valeo Climate Control Corp Heat exchanger
JP2003014392A (en) * 2001-06-27 2003-01-15 Showa Denko Kk Laminated heat exchanger
JP2004162935A (en) * 2002-11-11 2004-06-10 Japan Climate Systems Corp Evaporator
JP2005300021A (en) * 2004-04-12 2005-10-27 Denso Corp Heat exchanger
JP2007322007A (en) * 2006-05-30 2007-12-13 Showa Denko Kk Heat exchange pipe and evaporator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528476A (en) * 1978-08-22 1980-02-29 Nippon Denso Co Ltd Heat exchanger
JPH08156577A (en) * 1994-12-06 1996-06-18 Nippondenso Co Ltd Air conditioner
JP2002147990A (en) * 2000-11-09 2002-05-22 Zexel Valeo Climate Control Corp Heat exchanger
JP2003014392A (en) * 2001-06-27 2003-01-15 Showa Denko Kk Laminated heat exchanger
JP2004162935A (en) * 2002-11-11 2004-06-10 Japan Climate Systems Corp Evaporator
JP2005300021A (en) * 2004-04-12 2005-10-27 Denso Corp Heat exchanger
JP2007322007A (en) * 2006-05-30 2007-12-13 Showa Denko Kk Heat exchange pipe and evaporator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455088A (en) * 2010-10-25 2012-05-16 昭和电工株式会社 Evaporator
JP2012092991A (en) * 2010-10-25 2012-05-17 Showa Denko Kk Evaporator
US9366463B2 (en) 2010-10-25 2016-06-14 Keihin Thermal Technology Corporation Evaporator
JP2012167880A (en) * 2011-02-15 2012-09-06 Showa Denko Kk Evaporator
WO2016113825A1 (en) * 2015-01-14 2016-07-21 株式会社デンソー Refrigerant evaporator

Also Published As

Publication number Publication date
JP5194279B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5486782B2 (en) Evaporator
US10393416B2 (en) Evaporator
JP5142109B2 (en) Evaporator
JP4810203B2 (en) Heat exchanger
JP2006132920A (en) Heat exchanger
US20190145710A1 (en) Side mounted refrigerant distributor in a flooded evaporator and side mounted inlet pipe to the distributor
JP2012092991A (en) Evaporator
JP2006170598A (en) Heat exchanger
WO2010098056A1 (en) Heat exchanger
JP5764345B2 (en) Evaporator
US10408510B2 (en) Evaporator
JP5636215B2 (en) Evaporator
JP5194279B2 (en) Evaporator
JP2011257111A5 (en)
JP2006207994A (en) Evaporator
JP2016118314A (en) Evaporator
JP2010065880A (en) Condenser
JP5238408B2 (en) Heat exchanger
JP5508818B2 (en) Evaporator
JP2010038448A (en) Heat exchanger
JP5674376B2 (en) Evaporator
JP5238421B2 (en) Heat exchanger
JP2014070860A (en) Heat exchanger
JP2019027685A (en) Condenser
JP5396255B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5194279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees